KR100875409B1 - Flame Retardant Expanded Polystyrene Foam Composition - Google Patents

Flame Retardant Expanded Polystyrene Foam Composition Download PDF

Info

Publication number
KR100875409B1
KR100875409B1 KR1020077015966A KR20077015966A KR100875409B1 KR 100875409 B1 KR100875409 B1 KR 100875409B1 KR 1020077015966 A KR1020077015966 A KR 1020077015966A KR 20077015966 A KR20077015966 A KR 20077015966A KR 100875409 B1 KR100875409 B1 KR 100875409B1
Authority
KR
South Korea
Prior art keywords
flame retardant
expanded polystyrene
styrene
weight
polystyrene foam
Prior art date
Application number
KR1020077015966A
Other languages
Korean (ko)
Other versions
KR20070100288A (en
Inventor
킴벌리 에이 맥스웰
윌리엄 제이 주니어 레이만
Original Assignee
알베마를 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알베마를 코포레이션 filed Critical 알베마를 코포레이션
Publication of KR20070100288A publication Critical patent/KR20070100288A/en
Application granted granted Critical
Publication of KR100875409B1 publication Critical patent/KR100875409B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

난연성을 갖는 팽창성 폴리스티렌 발포체 조성물, 난연성 팽창 폴리스티렌 발포체, 상기 발포체의 제조 방법, 및 상기 조성물 및 발포체를 포함하는 생성물이 제공된다. 난연화된 팽창 폴리스티렌 발포체는 하기 구조 (I) 를 갖는 난연성 화합물을 함유한다: Expanded polystyrene foam compositions having flame retardancy, flame retardant expanded polystyrene foams, methods of making the foams, and products comprising the compositions and foams are provided. The flame retarded expanded polystyrene foam contains a flame retardant compound having the following structure (I):

Figure 112007050877952-pct00021
.
Figure 112007050877952-pct00021
.

Description

난연성 팽창 폴리스티렌 발포체 조성물 {FLAME RETARDANT EXPANDED POLYSTYRENE FOAM COMPOSITIONS}Flame retardant expanded polystyrene foam composition {FLAME RETARDANT EXPANDED POLYSTYRENE FOAM COMPOSITIONS}

본 발명은 난연성 조성물 및 이로부터 형성된 팽창 폴리스티렌 발포체와 관련된다. The present invention relates to flame retardant compositions and expanded polystyrene foams formed therefrom.

스티렌 중합체 조성물 및 발포체, 예컨대 팽창성 폴리스티렌 발포체는 성형 물품, 페인트, 필름 코팅재, 및 잡화의 제조에 널리 사용된다. 전형적으로, 물 중 스티렌 단량체(들) 및 난연제의 혼합물의 현탁 중합에 의해 팽창성 스티렌계 중합체, 예컨대 팽창 폴리스티렌을 제조하여 스티렌계 중합체 비드를 형성한다. 소형 비드 (예를 들어, 직경이 평균 약 1 mm 임) 를 증기를 이용하여 예비-팽창시키고, 증기를 이용하여 재성형하여, 원하는 치수로 절단되는 대형 블록 (예를 들어, 높이가 수미터 이하이고 폭이 2-3 미터임) 을 제조한다. Styrene polymer compositions and foams such as expandable polystyrene foams are widely used in the manufacture of molded articles, paints, film coatings, and sundries. Typically, expandable styrene-based polymers, such as expanded polystyrene, are prepared by suspension polymerization of a mixture of styrene monomer (s) and flame retardant in water to form styrene-based polymer beads. Large blocks (eg, up to several meters in height) that are pre-expanded with steam and remolded with steam to form small beads (eg, on average about 1 mm in diameter) and cut to desired dimensions And 2-3 meters in width).

일부 제품 적용을 위해, 이러한 조성물 및 발포체의 가연성을 감소시키는 것이 바람직할 수 있다. 팽창 폴리스티렌 발포체에 사용하기 위한 난연제는 열 안정성, 상당한 스티렌 중 용해도, 및 높은 난연성을 포함하는 여러 요건을 필요로 한다. For some product applications, it may be desirable to reduce the flammability of such compositions and foams. Flame retardants for use in expanded polystyrene foams require several requirements including thermal stability, significant solubility in styrene, and high flame retardancy.

할로겐화 난연성 화합물은 다양한 중합체에서의 사용이 제안되어 왔다. 예를 들어, 각각 그 전체가 참조로써 삽입되는, 미국 특허 제 3,784,509 호; 제 3,868,388 호; 제 3,903,109 호; 제 3,915,930 호; 및 제 3,953,397 호를 참조한다. 그러나, 일부 난연성 조성물은 스티렌 중에 충분히 가용성이지 않아, 폴리스티렌 발포체의 형성 및 품질에 악영향을 미칠 수 있다. 불용성 입자가 핵형성 부위로서 작용할 경우, 스티렌/물 혼합물의 갑작스러운 점도 증가 및 반응기 내에서의 커다란 폴리스티렌 덩어리의 급속한 형성을 야기하는 가능한 현탁 실패가 일어날 수 있다.Halogenated flame retardant compounds have been proposed for use in various polymers. For example, US Pat. No. 3,784,509, each of which is incorporated by reference in its entirety; 3,868,388; 3,868,388; 3,903,109; 3,903,109; 3,915,930; And 3,953,397. However, some flame retardant compositions are not sufficiently soluble in styrene, which may adversely affect the formation and quality of polystyrene foam. If the insoluble particles act as nucleation sites, possible suspension failures may occur that result in a sudden increase in viscosity of the styrene / water mixture and rapid formation of large polystyrene masses in the reactor.

따라서, 스티렌 중에 충분히 가용성이어서 발포체의 형성을 방해하지 않을, 팽창 폴리스티렌 발포체에 사용하기 위한 난연성 화합물이 요구된다. Accordingly, there is a need for flame retardant compounds for use in expanded polystyrene foams that are sufficiently soluble in styrene and will not interfere with the formation of foams.

발명의 개요Summary of the Invention

본 발명은 일반적으로 난연화된 팽창 폴리스티렌 발포체에 관한 것이다. 본 발명의 한 측면에 따르면, 팽창 폴리스티렌 발포체는 하기의 구조를 갖는 난연성 화합물을 함유한다: The present invention relates generally to flame retarded expanded polystyrene foam. According to one aspect of the invention, the expanded polystyrene foam contains a flame retardant compound having the structure:

Figure 112007050877952-pct00001
Figure 112007050877952-pct00001

난연성 화합물은 발포체의 약 0.1 내지 약 10 중량% 의 양으로 존재할 수 있다. 한 측면에서, 난연성 화합물은 발포체의 약 0.5 내지 약 7 중량% 의 양으로 존재한다. 다른 측면에서, 난연성 화합물은 발포체의 약 0.7 내지 약 5 중량% 의 양으로 존재한다. 또다른 측면에서, 난연성 화합물은 발포체의 약 1 내지 약 2 중량% 의 양으로 존재한다. The flame retardant compound may be present in an amount from about 0.1 to about 10 weight percent of the foam. In one aspect, the flame retardant compound is present in an amount from about 0.5 to about 7 weight percent of the foam. In another aspect, the flame retardant compound is present in an amount from about 0.7 to about 5 weight percent of the foam. In another aspect, the flame retardant compound is present in an amount from about 1 to about 2 weight percent of the foam.

난연제는 약 25℃ 에서 약 0.5% 내지 약 8% 의 스티렌 중 용해도를 가질 수 있다. 한 측면에서, 난연제는 약 40℃ 에서 약 0.5 중량% 내지 약 10 중량% 의 스티렌 중 용해도를 가진다.The flame retardant may have a solubility in styrene of about 0.5% to about 8% at about 25 ° C. In one aspect, the flame retardant has a solubility in styrene of about 0.5% to about 10% by weight at about 40 ° C.

팽창 폴리스티렌 발포체는 제조 물품의 형성을 위해 사용될 수 있다. 예를 들어, 팽창 폴리스티렌 발포체는 단열재의 형성을 위해 사용될 수 있다. Expanded polystyrene foam can be used for the formation of articles of manufacture. For example, expanded polystyrene foam can be used for the formation of insulation.

본 발명은 또한 25℃ 에서 약 0.5 중량% 내지 약 8 중량% 의 스티렌 중 용해도를 갖는 난연성 화합물을 함유하는 난연화된 팽창 폴리스티렌 발포체에 대해 고찰한다. The present invention also contemplates flame retarded expanded polystyrene foams containing flame retardant compounds having a solubility in styrene of about 0.5% to about 8% by weight at 25 ° C.

본 발명의 다른 측면에 따르면, 스티렌 중에 가용화된 난연성 화합물을 약 0.5 중량% 내지 약 8 중량% 함유하는 조성물이 제공되는데, 상기 화합물은 하기와 같다:According to another aspect of the present invention there is provided a composition containing from about 0.5% to about 8% by weight of a flame retardant compound solubilized in styrene, wherein the compounds are as follows:

Figure 112007050877952-pct00002
Figure 112007050877952-pct00002

본 발명은 나아가 난연성 팽창 폴리스티렌 발포체의 제조 방법에 대해 고찰한다. 상기 방법은 스티렌 중에 가용화된 난연성 화합물 및 발포제를 함유하는 조성물을 형성하고, 스티렌을 중합하여 폴리스티렌 비드를 형성하는 것을 포함하는데, 여기서, 상기 난연성 화합물은 25℃ 에서 약 0.5 중량% 내지 약 8 중량% 의 스티렌 중 용해도를 가지며, 하기 구조를 가진다: The present invention further contemplates a method for producing a flame retardant expanded polystyrene foam. The method includes forming a composition containing a flame retardant compound and a blowing agent solubilized in styrene and polymerizing styrene to form polystyrene beads, wherein the flame retardant compound is from about 0.5% to about 8% by weight at 25 ° C. It has a solubility in styrene of and has the following structure:

Figure 112007050877952-pct00003
.
Figure 112007050877952-pct00003
.

본 발명은 더욱 나아가 성형된 난연성 팽창 폴리스티렌 생성물의 제조 방법에 대해 고찰한다. 상기 방법은 폴리스티렌, 발포제, 및 하기 구조를 갖는 난연성 화합물을 포함하는 비팽창된 비드를 예비-팽창시키고, 예비-팽창된 비드를 성형하고, 임의로는 상기 비드를 추가로 팽창시켜, 생성물을 형성하는 것을 포함하는데, 여기서, 상기 비드는 실질적으로 삼산화안티몬을 함유하지 않는다: The present invention further contemplates a process for producing molded flame retardant expanded polystyrene products. The method pre-expands unexpanded beads comprising polystyrene, a blowing agent, and a flame retardant compound having the structure: forming pre-expanded beads, optionally further expanding the beads to form a product. Wherein the beads are substantially free of antimony trioxide:

Figure 112007050877952-pct00004
.
Figure 112007050877952-pct00004
.

상기 생성물은 단열재일 수 있다. The product may be a heat insulator.

발명의 상세한 설명Detailed description of the invention

본 발명은 일반적으로 난연성을 갖는 팽창성 폴리스티렌 발포체 조성물, 난연성 팽창 폴리스티렌 발포체, 상기 발포체의 제조 방법, 및 상기 조성물 및 발포체를 포함하는 생성물에 관한 것이다. 본 발명의 한 측면에 따르면, 난연성 팽창성 폴리스티렌 발포체 조성물은 스티렌계 중합체, 예를 들어, 폴리스티렌, 및 하나 이상의 난연성 화합물을 포함한다. 임의로, 상기 조성물은 하나 이상의 상승제 (synergist), 안정화제, 또는 각종 기타 첨가제를 포함할 수 있다. The present invention relates generally to flame retardant expandable polystyrene foam compositions, flame retardant expanded polystyrene foams, methods of making such foams, and to products comprising the compositions and foams. According to one aspect of the invention, the flame retardant expandable polystyrene foam composition comprises a styrenic polymer such as polystyrene, and one or more flame retardant compounds. Optionally, the composition may comprise one or more synergists, stabilizers, or various other additives.

본 발명의 난연성 화합물은 하기 구조를 갖는 화합물, 이의 호변이성체, 입체이성체 및 다형체 ("화합물 (I)" 로 총칭됨) 이다: Flame retardant compounds of the invention are compounds having the following structure, tautomers, stereoisomers and polymorphs thereof (collectively referred to as "Compound (I)"):

Figure 112007050877952-pct00005
.
Figure 112007050877952-pct00005
.

난연성 조성물을 형성하기 위해 화합물 (I) 을 사용하면 열적으로 안정하고도 효과적인 팽창 폴리스티렌 발포체가 생성된다는 것을 발견하였다. 발포체 형성을 방해하는 다른 화합물들과는 달리, 화합물 (I) 은 스티렌 중에 충분히 가용성이어서 폴리스티렌 발포체의 형성에 악영향을 미치지 않는다. It has been found that the use of compound (I) to form flame retardant compositions results in thermally stable and effective expanded polystyrene foam. Unlike other compounds that interfere with foam formation, compound (I) is sufficiently soluble in styrene and does not adversely affect the formation of polystyrene foam.

난연성 화합물은 약 25℃ 에서 약 0.5 내지 약 8 중량% 의 스티렌 중 용해도를 가진다. 한 측면에서, 난연성 화합물은 약 25℃ 에서 약 3 내지 약 7 중량% 의 스티렌 중 용해도를 가진다. 다른 측면에서, 난연성 화합물은 약 25℃ 에서 약 4 내지 약 6 중량% 의 스티렌 중 용해도를 가진다.The flame retardant compound has a solubility in styrene of about 0.5 to about 8 weight percent at about 25 ° C. In one aspect, the flame retardant compound has a solubility in styrene of about 3 to about 7 weight percent at about 25 ° C. In another aspect, the flame retardant compound has a solubility in styrene of about 4 to about 6 weight percent at about 25 ° C.

더욱이, 난연성 화합물은 약 40℃ 에서 약 0.5 내지 약 10 중량% 의 스티렌 중 용해도를 가진다. 한 측면에서, 난연제는 약 40℃ 에서 약 4 내지 약 8 중량% 의 스티렌 중 용해도를 가진다. 다른 측면에서, 난연제는 약 40℃ 에서 약 6 내지 약 8 중량% 의 스티렌 중 용해도를 가진다.Moreover, the flame retardant compound has a solubility in styrene of about 0.5 to about 10% by weight at about 40 ° C. In one aspect, the flame retardant has a solubility in styrene of about 4 to about 8 weight percent at about 40 ° C. In another aspect, the flame retardant has a solubility in styrene of about 6 to about 8 weight percent at about 40 ° C.

난연성 화합물은 전형적으로 조성물 내에 조성물의 약 0.1 내지 약 10 중량% 의 양으로 존재한다. 한 측면에서, 난연성 화합물은 조성물의 약 0.3 내지 약 8 중량% 의 양으로 존재한다. 다른 측면에서, 난연성 화합물은 난연성 화합물은 조성물의 약 0.5 내지 약 7 중량% 의 양으로 존재한다. 또다른 측면에서, 난연성 화합물은 조성물의 약 0.7 내지 약 5 중량% 의 양으로 존재한다. 또다른 측면에서, 난연성 화합물은 조성물의 약 1 내지 약 2 중량% 의 양으로 존재한다. 여기에 다양한 예시 범위가 주어져 있으나, 사용되는 난연성 화합물의 정확한 양은 원하는 난연성 (flame retardancy) 의 정도, 사용되는 구체적인 중합체, 및 생성된 생성물의 최종 용도에 좌우되는 것으로 이해될 것이다. The flame retardant compound is typically present in the composition in an amount of about 0.1 to about 10 weight percent of the composition. In one aspect, the flame retardant compound is present in an amount from about 0.3 to about 8 weight percent of the composition. In another aspect, the flame retardant compound is present in an amount of about 0.5 to about 7 weight percent of the composition. In another aspect, the flame retardant compound is present in an amount from about 0.7 to about 5 weight percent of the composition. In another aspect, the flame retardant compound is present in an amount of about 1 to about 2 weight percent of the composition. While various example ranges are given here, it will be understood that the exact amount of flame retardant compound used will depend upon the degree of flame retardancy desired, the specific polymer used, and the end use of the resulting product.

본 발명의 팽창 발포체는 하기 화학식을 갖는 비닐 방향족 단량체, 예를 들어 스티렌계 단량체로부터 형성된다: The expanded foam of the present invention is formed from vinyl aromatic monomers having the formula: for example styrene-based monomers:

H2C=CR-ArH 2 C = CR-Ar

[식 중, R 은 수소 또는 탄소수 1 내지 4 의 알킬기이고, Ar 은 탄소수 약 6 내지 약 10 의 방향족 기 (각종 알킬 및 할로-고리-치환된 방향족 단위를 포함함) 이다]. 이러한 단량체의 예에는, 스티렌, 알파-메틸스티렌, 오르소-메틸스티렌, 메타-메틸스티렌, 파라-메틸스티렌, 파라-에틸스티렌, 이소프로페닐톨루엔, 이소프로페닐나프탈렌, 비닐 톨루엔, 비닐 나프탈렌, 비닐 비페닐, 비닐 안트라센, 디메틸스티렌, t-부틸스티렌, 몇몇 클로로스티렌 (예컨대, 모노- 및 디클로로-변형체), 및 몇몇 브로모스티렌 (예컨대, 모노-, 디브로모- 및 트리브로모-변형체) 이 포함되지만, 이에 제한되지는 않는다.Wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms, and Ar is an aromatic group having about 6 to about 10 carbon atoms (including various alkyl and halo-ring-substituted aromatic units). Examples of such monomers include styrene, alpha-methylstyrene, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, para-ethylstyrene, isopropenyl toluene, isopropenyl naphthalene, vinyl toluene, vinyl naphthalene, Vinyl biphenyl, vinyl anthracene, dimethylstyrene, t-butylstyrene, some chlorostyrenes (eg mono- and dichloro-modifiers), and some bromostyrenes (eg mono-, dibromo- and tribromo-modifiers) ), But is not limited to such.

본 발명의 한 측면에 따르면, 단량체는 스티렌이다. 폴리스티렌은 당업계에 공지된, 벌크 (bulk) 또는 덩어리, 용액, 현탁 또는 에멀젼 중합 기법에 의해 용이하게 제조된다. 중합은 자유 라디칼, 양이온성 또는 음이온성 개시제, 예컨대 디-t-부틸 퍼옥시드, 아조-비스(이소부티로니트릴), 디-벤조일 퍼옥시드, t-부틸 퍼벤조에이트, 디큐밀 퍼옥시드, 칼륨 퍼술페이트, 알루미늄 트리클로라이드, 붕소 트리플루오라이드, 에테레이트 착물, 티탄 테트라클로라이드, n-부틸리튬, t-부틸리튬, 큐밀칼륨, 1,3-트리리티오시클로헥산 등의 존재 하에서 실시할 수 있다. 단독 또는 스티렌과 공중합가능한 하나 이상의 단량체의 존재 하에서의 스티렌의 중합에 관한 추가적인 세부사항은 널리 공지되어 있으며, 여기서 상세히 설명하지 않는다. According to one aspect of the invention, the monomer is styrene. Polystyrene is readily prepared by bulk or lump, solution, suspension or emulsion polymerization techniques known in the art. The polymerization can be carried out with free radical, cationic or anionic initiators such as di-t-butyl peroxide, azo-bis (isobutyronitrile), di-benzoyl peroxide, t-butyl perbenzoate, dicumyl peroxide, potassium Persulfate, aluminum trichloride, boron trifluoride, etherate complex, titanium tetrachloride, n-butyllithium, t-butyllithium, cumyl potassium, 1,3-tririthiocyclohexane, etc. . Further details regarding the polymerization of styrene alone or in the presence of one or more monomers copolymerizable with styrene are well known and are not described in detail here.

폴리스티렌은 전형적으로 약 1,000 이상의 분자량을 가진다. 본 발명의 한 측면에 따르면, 폴리스티렌은 약 50,000 이상의 분자량을 가진다. 본 발명의 다른 측면에 따르면, 폴리스티렌은 약 150,000 내지 약 500,000 의 분자량을 가진다. 그러나, 적합하거나 또는 원할 경우, 더 큰 분자량을 갖는 폴리스티렌이 사용될 수 있는 것으로 이해될 것이다. Polystyrene typically has a molecular weight of at least about 1,000. According to one aspect of the invention, the polystyrene has a molecular weight of at least about 50,000. According to another aspect of the invention, the polystyrene has a molecular weight of about 150,000 to about 500,000. However, it will be understood that if appropriate or desired, polystyrenes having a higher molecular weight can be used.

본 발명의 난연성 조성물은 임의로 상승제를 포함할 수 있다. 상승제는 일반적으로 조성물의 약 0.01 내지 약 5 중량% 의 양으로 존재할 수 있다. 한 측면에서, 상승제는 조성물의 약 0.05 내지 약 3 중량% 의 양으로 존재한다. 다른 측면에서, 상승제는 조성물의 약 0.1 내지 약 1 중량% 의 양으로 존재한다. 또다른 측면에서, 상승제는 조성물의 약 0.1 내지 약 0.5 중량% 의 양으로 존재한다. 또다른 측면에서, 상승제는 조성물의 약 0.2 중량% 의 양으로 존재한다.The flame retardant composition of the present invention may optionally comprise a synergist. The synergist may generally be present in an amount from about 0.01 to about 5 weight percent of the composition. In one aspect, the synergist is present in an amount from about 0.05 to about 3 weight percent of the composition. In another aspect, the synergist is present in an amount from about 0.1 to about 1 weight percent of the composition. In another aspect, the synergist is present in an amount from about 0.1 to about 0.5 weight percent of the composition. In another aspect, the synergist is present in an amount of about 0.2% by weight of the composition.

상승제가 사용될 경우, 상승제의 총량 대 난연성 화합물의 총량의 비는 전형적으로 약 1:1 내지 약 1:7 이다. 본 발명의 한 측면에 따르면, 상승제의 총량 대 난연성 화합물의 총량의 비는 약 1:2 내지 약 1:4 이다. 본 발명에 따라 사용하기에 적합할 수 있는 상승제의 예에는, 디큐밀, 산화제2철, 아연 산화물, 아연 붕산염, 및 V 족 원소, 예를 들어, 비스무트, 비소, 인 및 안티몬의 산화물이 포함되지만, 이에 제한되지는 않는다. 본 발명의 한 측면에 따르면, 상승제는 디큐밀 퍼옥시드이다.When a synergist is used, the ratio of the total amount of synergist to the total amount of flame retardant compounds is typically from about 1: 1 to about 1: 7. According to one aspect of the invention, the ratio of the total amount of synergist to the total amount of flame retardant compounds is from about 1: 2 to about 1: 4. Examples of synergists that may be suitable for use in accordance with the present invention include dicumyl, ferric oxide, zinc oxide, zinc borate, and oxides of group V elements such as bismuth, arsenic, phosphorus and antimony However, it is not limited thereto. According to one aspect of the invention, the synergist is dicumyl peroxide.

그러나, 여기에서 상승제의 사용을 설명하였으나, 효과적인 난연성 조성물을 얻기 위해 상승제가 필요하지는 않은 것으로 이해될 것이다. 따라서, 본 발명의 한 측면에 따르면, 난연성 조성물은 실질적으로 상승제를 함유하지 않는다. 본 발명의 다른 측면에 따르면, 난연성 조성물은 실질적으로 안티몬 화합물을 함유하지 않는다. 본 발명의 또다른 측면에 따르면, 조성물은 상승제를 함유하지만, 실질적으로 삼산화안티몬을 함유하지 않는다. However, while the use of synergists has been described herein, it will be understood that no synergists are required to obtain effective flame retardant compositions. Thus, according to one aspect of the invention, the flame retardant composition is substantially free of synergists. According to another aspect of the present invention, the flame retardant composition is substantially free of antimony compounds. According to another aspect of the invention, the composition contains a synergist but is substantially free of antimony trioxide.

본 발명의 난연성 발포체는 임의로 열 안정화제를 포함한다. 열 안정화제의 예에는, 제올라이트; 히드로탈시트; 탈크; 유기주석 안정화제, 예를 들어, 부틸 주석, 옥틸 주석, 및 메틸 주석 메르캅티드, 부틸 주석 카르복실레이트, 옥틸 주석 말레에이트, 디부틸 주석 말레에이트; 에폭시 유도체; 중합체성 아크릴계 결합제; 금속 산화물, 예를 들어, ZnO, CaO 및 MgO; 혼합 금속 안정화제, 예를 들어, 아연, 칼슘/아연, 마그네슘/아연, 바륨/아연 및 바륨/칼슘/아연 안정화제; 금속 카르복실레이트, 예를 들어, 아연, 칼슘, 바륨 스테아레이트 또는 기타 장쇄 카르복실레이트; 금속 포스페이트, 예를 들어, 나트륨, 칼슘, 마그네슘 또는 아연; 또는 이들의 임의의 조합물이 포함되지만, 이에 제한되지는 않는다. Flame retardant foams of the invention optionally comprise a heat stabilizer. Examples of heat stabilizers include zeolites; Hydrotalcite; Talc; Organotin stabilizers such as butyl tin, octyl tin, and methyl tin mercaptide, butyl tin carboxylate, octyl tin maleate, dibutyl tin maleate; Epoxy derivatives; Polymeric acrylic binders; Metal oxides such as ZnO, CaO and MgO; Mixed metal stabilizers such as zinc, calcium / zinc, magnesium / zinc, barium / zinc and barium / calcium / zinc stabilizers; Metal carboxylates such as zinc, calcium, barium stearate or other long chain carboxylates; Metal phosphates such as sodium, calcium, magnesium or zinc; Or any combination thereof, but is not limited thereto.

열 안정화제는 일반적으로 난연성 화합물의 약 0.01 내지 약 10 중량% 의 양으로 존재할 수 있다. 한 측면에서, 열 안정화제는 난연성 화합물의 약 0.3 내지 약 10 중량% 의 양으로 존재한다. 다른 측면에서, 열 안정화제는 난연성 화합물의 약 0.5 내지 약 5 중량% 의 양으로 존재한다. 또다른 측면에서, 열 안정화제는 난연성 화합물의 약 1 내지 약 5 중량% 의 양으로 존재한다. 또다른 측면에서, 열 안정화제는 난연성 화합물의 약 2 중량% 의 양으로 존재한다. The heat stabilizer may generally be present in an amount from about 0.01 to about 10 weight percent of the flame retardant compound. In one aspect, the heat stabilizer is present in an amount from about 0.3 to about 10 weight percent of the flame retardant compound. In another aspect, the heat stabilizer is present in an amount from about 0.5 to about 5 weight percent of the flame retardant compound. In another aspect, the heat stabilizer is present in an amount from about 1 to about 5 weight percent of the flame retardant compound. In another aspect, the heat stabilizer is present in an amount of about 2% by weight of the flame retardant compound.

본 발명의 조성물 및 발포체에 사용될 수 있는 기타 첨가제에는, 예를 들어, 압출 보조제 (예를 들어, 바륨 스테아레이트 또는 칼슘 스테아레이트), 유기퍼옥시드 또는 디큐밀 화합물 및 유도체, 염료, 안료, 충전제, 열 안정화제, 산화방지제, 정전기방지제, 강화제 (reinforcing agent), 금속 스캐빈저 (scavenger) 또는 불활성화제, 충격 조절제, 가공 보조제, 금형 이형제 (mold releasing agent), 윤활제, 블로킹 방지제, 다른 난연제, 다른 열 안정화제, 산화방지제, UV 안정화제, 가소제, 유동 보조제 (flow aid), 및 유사 물질이 포함된다. 원할 경우, 핵형성제 (예를 들어, 탈크, 칼슘 실리케이트 또는 인디고) 를 폴리스티렌 조성물 내에 포함시켜 셀 크기를 조절할 수 있다.  Other additives that may be used in the compositions and foams of the present invention include, for example, extrusion aids (eg, barium stearate or calcium stearate), organoperoxide or dicumyl compounds and derivatives, dyes, pigments, fillers, Heat stabilizers, antioxidants, antistatic agents, reinforcing agents, metal scavengers or inactivators, impact modifiers, processing aids, mold releasing agents, lubricants, antiblocking agents, other flame retardants, other Heat stabilizers, antioxidants, UV stabilizers, plasticizers, flow aids, and similar materials. If desired, nucleating agents (eg, talc, calcium silicate or indigo) can be included in the polystyrene composition to control cell size.

본 발명의 난연성 조성물은 난연화된 폴리스티렌 발포체, 예를 들어, 팽창성 폴리스티렌 발포체를 형성하기 위해 사용될 수 있다. 이러한 발포체는 단열재를 포함하지만 이에 제한되지는 않는 다수의 목적을 위해 사용될 수 있다. 난연성 폴리스티렌 발포체는 당업계에 공지된 임의의 적합한 방법에 의해 제조될 수 있다. 일반적으로, 상기 방법은 "1 단계 방법" 또는 "2 단계 방법" 중 어느 하나를 포함한다.The flame retardant compositions of the invention can be used to form flame retarded polystyrene foams, for example expandable polystyrene foams. Such foams can be used for a number of purposes, including but not limited to thermal insulation. Flame retardant polystyrene foams can be prepared by any suitable method known in the art. In general, the method includes either a "one step method" or a "two step method".

보다 통상적으로 사용되는 "1 단계 방법" 은, 스티렌 중 난연제 용해, 이어서 2 단계로 수행되는 수성 현탁 중합을 포함한다. 중합은 약 9O℃ 에서 수시간 동안 수행되는데, 여기서, 디벤조일 퍼옥시드와 같은 개시제가 중합을 촉진시킨 후, 약 13O℃ 까지 상승시키고, 그 동안 고압 하에 발포제를 첨가한다. 상기 온도에서, 디큐밀 퍼옥시드는 중합을 완료시킬 것이다. 덜 통상적으로 사용되는 "2 단계 방법" 은 약 130℃ 까지 상승시키는 동안 발포제와 함께, 이후 단계에서 난연제를 첨가하는 것을 포함한다. 통상적으로 펜탄 가용성 난연제가 "2 단계 방법" 에 사용된다. More commonly used "one-step processes" include dissolution of flame retardants in styrene followed by aqueous suspension polymerization carried out in two steps. The polymerization is carried out at about 9O < 0 > C for several hours, after which an initiator such as dibenzoyl peroxide accelerates the polymerization and then rises to about 13O < 0 > C, during which the blowing agent is added under high pressure. At this temperature, the dicumyl peroxide will complete the polymerization. A less commonly used “two step method” involves adding a flame retardant in subsequent steps with a blowing agent while raising to about 130 ° C. Typically pentane soluble flame retardants are used in the "two step process".

본 발명에 따라 사용하기에 적합할 수 있는 방법의 추가적인 예에는, 각각 그 전체가 본원에 참조로써 삽입되는, 미국 특허 제 2,681,321 호; 제 2,744,291 호; 제 2,779,062 호; 제 2,787,809 호; 제 2,950,261 호; 제 3,013,894 호; 제 3,086,885 호; 제 3,501,426 호; 제 3,663,466 호; 제 3,673,126 호; 제 3,793,242 호; 제 3,973,884 호; 제 4,459,373 호; 제 4,563,481 호; 제 4,990,539 호; 제 5,100,923 호; 및 제 5,124,365 호에 제공된 방법이 포함되지만, 이에 제한되지는 않는다. 스티렌계 중합체의 팽창성 비드를 발포 성형체로 전환시키는 절차는, 예를 들어, 각각 그 전체가 본원에 참조로써 삽입되는, 미국 특허 제 3,674,387 호; 제 3,736,082 호; 및 제 3,767,744 호에 기재되어 있다.Further examples of methods that may be suitable for use in accordance with the present invention include, but are not limited to, US Pat. Nos. 2,681,321, each of which is incorporated herein by reference in its entirety; 2,744,291; 2,744,291; 2,779,062; 2,779,062; 2,787,809; 2,787,809; 2,950,261; 2,950,261; 3,013,894; 3,086,885; 3,501,426; 3,663,466; 3,663,466; 3,673,126; 3,673,126; 3,793,242; 3,793,242; 3,973,884; No. 4,459,373; No. 4,563,481; No. 4,990,539; 5,100,923; 5,100,923; And the methods provided in US Pat. No. 5,124,365. Procedures for converting expandable beads of styrene-based polymers into foamed moldings are described, for example, in US Pat. No. 3,674,387, each of which is incorporated herein by reference in its entirety; 3,736,082; 3,076,076; And 3,767,744.

다양한 기포제 (foaming agent) 또는 발포제 (blowing agent) 가 본 발명의 팽창 또는 발포된 난연성 중합체의 제조에 사용될 수 있다. 적합한 물질의 예는, 그 전체가 본원에 참조로써 삽입되는 미국 특허 제 3,960,792 호에 제공되어 있다. 예를 들어, 에탄, 에틸렌, 프로판, 프로필렌, 부탄, 부틸렌, 이소부탄, 펜탄, 네오펜탄, 이소펜탄, 헥산, 헵탄, 및 이들의 임의의 혼합물을 포함하는 지방족 탄화수소; 휘발성 탄화수소 및/또는 할로탄화수소 (halohydrocarbon), 예컨대 메틸 클로라이드, 클로로플루오로메탄, 브로모클로로디플루오로메탄, 1,1,1-트리플루오로에탄, 1,1,1,2-테트라플루오로에탄, 디클로로플루오로메탄, 디클로로디플루오로메탄, 클로로트리플루오로메탄, 트리클로로플루오로메탄, 유사(sym)-테트라클로로디플루오로에탄, 1,2,2-트리클로로-1,1,2-트리플루오로에탄, 유사(sym)-디클로로테트라플루오로에탄; 휘발성 테트라알킬실란, 예컨대 테트라메틸실란, 에틸트리메틸실란, 이소프로필트리메틸실란, 및 n-프로필트리메틸실란, 및 이들의 임의의 혼합물을 포함하는 휘발성 탄소-함유 화학 물질이 이러한 목적을 위해 널리 사용된다. 플루오르-함유 발포제의 일례는 상표명 HFC-152a (FORMACEL Z-2, E.I. duPont de Nemours and Co.) 으로 제공되는 1,1-디플루오로에탄이다. 미세하게 분할된 옥수수속대와 같은 함수 (water-containing) 식물성 물질이 또한 발포제로서 사용될 수 있다. 그 전체가 본원에 참조로써 삽입되는 미국 특허 제 4,559,367 호에 기재된 바와 같이, 이러한 식물성 물질은 또한 충전제로서 작용할 수 있다. 이산화탄소는 또한 발포제로서, 또는 이의 구성성분으로서 사용될 수 있다. 이산화탄소를 발포제로서 사용하는 방법은 예를 들어, 그 전체가 본원에 참조로써 삽입되는, 미국 특허 제 5,006,566 호; 제 5,189,071 호; 제 5,189,072 호; 및 제 5,380,767 호에 기재되어 있다. 발포제 및 발포제 혼합물의 다른 예에는, 질소, 아르곤, 또는 이산화탄소를 함유하거나 함유하지 않은 물이 포함된다. 원할 경우, 이러한 발포제 또는 발포제 혼합물을, 적당한 휘발성이 있는 에테르, 탄화수소 또는 알콜과 혼합할 수 있다. 예를 들어, 그 전체가 본원에 참조로써 삽입되는 미국 특허 제 6,420,442 호를 참조한다.Various foaming agents or blowing agents can be used to prepare the expanded or foamed flame retardant polymers of the present invention. Examples of suitable materials are provided in US Pat. No. 3,960,792, which is incorporated herein by reference in its entirety. Aliphatic hydrocarbons including, for example, ethane, ethylene, propane, propylene, butane, butylene, isobutane, pentane, neopentane, isopentane, hexane, heptane, and any mixtures thereof; Volatile hydrocarbons and / or halohydrocarbons such as methyl chloride, chlorofluoromethane, bromochlorodifluoromethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoro Ethane, dichlorofluoromethane, dichlorodifluoromethane, chlorotrifluoromethane, trichlorofluoromethane, sym-tetrachlorodifluoroethane, 1,2,2-trichloro-1,1, 2-trifluoroethane, sym-dichlorotetrafluoroethane; Volatile tetraalkylsilanes such as tetramethylsilane, ethyltrimethylsilane, isopropyltrimethylsilane, and n-propyltrimethylsilane, and any mixtures thereof, are widely used for this purpose. One example of a fluorine-containing blowing agent is 1,1-difluoroethane provided under the trade name HFC-152a (FORMACEL Z-2, E.I. duPont de Nemours and Co.). Water-containing vegetable materials, such as finely divided corncobs, may also be used as blowing agents. As described in US Pat. No. 4,559,367, which is hereby incorporated by reference in its entirety, such plant material may also act as a filler. Carbon dioxide can also be used as blowing agent or as a component thereof. Methods of using carbon dioxide as a blowing agent include, for example, US Pat. No. 5,006,566, which is incorporated herein by reference in its entirety; 5,189,071; 5,189,071; 5,189,072; 5,189,072; And 5,380,767. Other examples of blowing agents and blowing agent mixtures include water with or without nitrogen, argon, or carbon dioxide. If desired, such blowing agents or mixtures of blowing agents can be mixed with ethers, hydrocarbons or alcohols with suitable volatility. See, for example, US Pat. No. 6,420,442, which is incorporated herein by reference in its entirety.

팽창 폴리스티렌 발포체는 전형적으로 각종 구성성분 및 첨가제를, 발포체의 형성에 사용되는 조성물과 관련하여 앞서 기술한 상대적인 양으로 포함할 수 있다. 따라서, 예를 들어, 본 발명에 따른 팽창 폴리스티렌 발포체는 난연성 화합물을, 발포체의 약 0.1 내지 약 10 중량% 의 양으로 함유할 수 있다. 한 측면에서, 난연성 화합물은 발포체의 약 0.3 내지 약 8 중량% 의 양으로 존재한다. 다른 측면에서, 난연성 화합물은 발포체의 약 0.5 내지 약 7 중량% 의 양으로 존재한다. 또다른 측면에서, 난연성 화합물은 발포체의 약 0.7 내지 약 5 중량% 의 양으로 존재한다. 또다른 측면에서, 난연성 화합물은 발포체의 약 1 내지 약 2 중량% 의 양으로 존재한다. 여기에 특정 범위 및 양을 기재하였으나, 발포체 중 구성성분의 기타 상대적인 양은 본 발명에 의해 정해지는 것으로 이해될 것이다. Expanded polystyrene foams may typically include various components and additives in the relative amounts described above with respect to the compositions used to form the foams. Thus, for example, expanded polystyrene foam according to the present invention may contain a flame retardant compound in an amount of about 0.1 to about 10% by weight of the foam. In one aspect, the flame retardant compound is present in an amount from about 0.3 to about 8 weight percent of the foam. In another aspect, the flame retardant compound is present in an amount of about 0.5 to about 7 weight percent of the foam. In another aspect, the flame retardant compound is present in an amount of about 0.7 to about 5 weight percent of the foam. In another aspect, the flame retardant compound is present in an amount from about 1 to about 2 weight percent of the foam. While specific ranges and amounts are described herein, it will be understood that other relative amounts of constituents in the foam are defined by the present invention.

팽창 폴리스티렌 발포체 생성물, 예를 들어, 단열재를 형성하는 방법은 다음과 같다. 팽창 폴리스티렌 발포체의 제조에 사용되는 원료 수지를, 직경이 0.5 내지 1.3 mm 의 범위인 소형 비드 형태로 얻었다. 소형 비드는 제조업자에 의해 적은 비율의 발포제를 함유하도록 제조 및 제형화된 것이다. 발포제를 각 소형 비드의 본체 전체에 함침시켰다. 제조 중의 예비-팽창기 (pre-expansion phase) 는 간단히, 소형 비드를 가열 및 그의 유리 전이기 동안 비드로부터의 신속한 가스 방출을 통해 그의 원래 크기의 거의 50 배까지 팽창시키는 것이다. The process for forming expanded polystyrene foam products, for example insulation, is as follows. The raw material resin used for manufacture of expanded polystyrene foam was obtained in the form of small beads having a diameter in the range of 0.5 to 1.3 mm. Small beads are manufactured and formulated to contain a small proportion of blowing agent by the manufacturer. The blowing agent was impregnated into the entire body of each small bead. The pre-expansion phase during manufacture is simply to expand the small beads to nearly 50 times their original size through heating and rapid gas release from the beads during its glass transition.

미리 정해진 양의 비드를 팽창 장비 내로 도입한다. 증기를 용기 내로 도입하고, 증기 중의 열이 비드로부터 펜탄을 방출시킴에 따라 팽창하는 비드를 교반기가 혼합한다. 수준 표시기는 원하는 특정 부피에 도달된 시기를 표시한다. 압력 균등화기 (pressure equalization phase) 이후, 팽창된 비드를 층 건조기 (bed dryer) 내로 방출시키고, 표면으로부터 모든 응축된 증기 수분을 건조시킨다. 예비-팽창이 완료되고, 또다른 주기의 가동이 준비된다. 이 공정은 완료까지 대략 200 초가 소요된다. A predetermined amount of beads is introduced into the expansion equipment. The steam is introduced into the vessel and the stirrer mixes the expanding beads as the heat in the steam releases the pentane from the beads. The level indicator indicates when the desired specific volume is reached. After the pressure equalization phase, the expanded beads are released into a bed dryer and all condensed vapor moisture from the surface is dried. Pre-expansion is complete and another cycle is ready for operation. This process takes approximately 200 seconds to complete.

팽창된 비드를 건조시킨 후, 숙성 공정을 위해 이들을 대형의 오픈 보관 백 (bag) 내로 취입 (blowing) 한다. 비드는 생성된 수백만 개의 셀 내에서 비드 내부가 진공이 되는 동적 물리적 변형을 겪었다. 이러한 진공은 대기압과 같아져야 하며; 그렇지 않을 경우, 이러한 미묘한 균형이 비드의 붕괴 또는 내파 (implosion) 를 야기할 것이다. 이러한 팽창된 비드의 숙성 공정은 비드에 다시 공기를 채워 균등화되게 한다. 이러한 숙성은 원하는 비드의 팽창 밀도에 따라, 12 시간 내지 48 시간이 소요될 수 있다. 숙성이 완료된 후, 비드는 이어서 블록으로 성형하기에 용이하다. After the expanded beads have dried, they are blown into a large open storage bag for the aging process. Beads experienced a dynamic physical deformation in which the interior of the beads became a vacuum within the millions of cells produced. This vacuum should be equal to atmospheric pressure; Otherwise, this delicate balance will cause the beads to collapse or implosion. The maturing process of this expanded bead refills the beads to allow for equalization. This maturation can take 12 to 48 hours, depending on the expansion density of the desired beads. After aging is complete, the beads are then easy to form into blocks.

성형 공정은 느슨하게 팽창된 비드를 취하여, 진공 보조, 블록 금형을 사용하여 상기 비드를 고체 블록으로 형성하는 것을 포함한다. 로드 셀 (load cell) 의 시스템을 활용함으로써, 컴퓨터는 몰드 공동 내로 도입되는 비드의 정확한 중량을 조절할 수 있다. 일단 공동이 채워지면, 컴퓨터는 진공 시스템을 사용하여 공동으로부터 잔류 공기를 제거한다. 진공은, 공동 내에서 전체 비드 덩어리 위로 흐르는 생증기 (live steam) 에 의해 완화된다. 이러한 진공 헹굼 공정은 비드 표면의 중합체 구조를 연화시키고, 그 직후 보다 생증기로 금형 공동을 가압한다. 증기로부터의 잠열 및 후속적인 압력 증가는 비드를 더욱 팽창시킨다. 이는 폐쇄된 환경이기 때문에, 비드가 팽창할 수 있는 유일한 방법은 이들 사이에 임의의 공간을 채워서 연질 표면이 다면체 형 고체 구조 내로 함께 융합되게 하는 것이다. 컴퓨터는 미리 정해진 설정점에 도달한 후 압력을 방출한다. 이제 느슨한 비드는 고체 블록으로 융합된다. The molding process involves taking loosely expanded beads and forming the beads into solid blocks using a vacuum assisted, block mold. By utilizing a system of load cells, the computer can control the exact weight of the beads introduced into the mold cavity. Once the cavity is filled, the computer uses a vacuum system to remove residual air from the cavity. The vacuum is relaxed by live steam flowing over the entire bead mass in the cavity. This vacuum rinse process softens the polymer structure of the bead surface and immediately presses the mold cavity with live steam. The latent heat from the steam and subsequent pressure increase further expand the beads. Since this is a closed environment, the only way beads can expand is to fill any space between them so that the soft surfaces fuse together into a polyhedral solid structure. The computer releases pressure after reaching a predetermined set point. Loose beads are now fused into solid blocks.

열 경화는 상기 공정에서 그 다음 단계이다. 이는 갓 성형된 블록의 경화 공정을 촉진시키고, 상기 물질이 치수적으로 안정하도록 보장하며, 완전 건조 물질에 최상의 제작 결과를 제공한다. Thermal curing is the next step in the process. This facilitates the curing process of freshly formed blocks, ensures that the material is dimensionally stable, and provides the best fabrication results for the completely dry material.

본 발명은 하기 실시예에 의해 추가로 설명되는데, 이 실시예는 어떠한 식으로든 본 발명의 범주를 제한하는 것으로 해석되어서는 안된다. 오히려, 본원의 기재내용을 읽고난 후 본 발명의 정신 및 첨부된 청구항의 범주에서 벗어나지 않고 당업자에게 제안될 수 있는 이의 각종 기타 측면, 구현예, 변형, 및 등가물이 사용될 수 있음을 명백히 이해할 것이다. The invention is further illustrated by the following examples which should not be construed as limiting the scope of the invention in any way. Rather, it will be apparent that after reading the disclosure herein various other aspects, embodiments, modifications, and equivalents thereof may be used which may be suggested to one skilled in the art without departing from the spirit of the invention and the scope of the appended claims.

실시예 1Example 1

N, 2-3-디브로모프로필-4,5-디브로모헥사히드로프탈이미드 ("화합물 (I)") 을 하기 예시적 절차에 따라 제조하였다. 기타 절차가 당업계에 공지되어 있으며 본원에서는 논의하지 않는다.N, 2-3-dibromopropyl-4,5-dibromohexahydrophthalimide ("Compound (I)") was prepared according to the following exemplary procedure. Other procedures are known in the art and are not discussed herein.

질소 플로우 (flow) 및 수냉각식 (water-cooled) 환류 응축기가 구비된 4 구 5 L 자켓 플라스크에 900 g 의 자일렌 및 1 kg (6.57 mol) 의 무수 테트라히드로프탈산 (THPA, 95 ~ 96%) 을 장입하였다. 교반한 (250 rpm) 슬러리에, 알릴아민 (413 g, 7.23 mol) 을 첨가 깔때기를 통해 45 분 동안 첨가했다. 반응은 발열반응이어서, 30℃ 로 고정된 순환조 (circulating bath) 유체를 이용하여 온도를 50 내지 80℃ 로 유지하였다. 알릴아민 첨가를 완료한 후에, 조 온도를 165℃로 상승시키고, 2 시간 동안 유지했다 (GC 로 반응 완료). 순환 조 유체 온도를 150℃ 로 감소시키고, 용매를 진공 흡입기 (~3" Hg; Rxn T = 138 ~ 140℃) 를 이용해 제거했다. 대부분의 자일렌을 제거한 후에, 조 온도를 65 ℃ (Rxn T = 56℃) 로 감소시키고, 500 g 의 BCM (브로모클로로메탄) 을 첨가한 후 염기 세정제로 세정하였다. 수용액 (1,260 g 의 물, 50 g 의 Na2CO3) 을 첨가하고, 교반 후, 상 분리하였다. 암 적색/갈색 유기상 (1,907 g: ~ 500 g 의 BCM, ~ 1,256 g 의 생성물 (65.8 중량%), ~ 200 g 의 자일렌) 을 오렌지색 수성 상 (1,332 g) 으로부터 분리했다. GC 분석은 부식 (caustic) 반응마무리 후 ~ 100 면적% 생성물을 나타냈다.900 g of xylene and 1 kg (6.57 mol) of tetrahydrophthalic anhydride (THPA, 95-96%) in a four-necked 5 L jacketed flask equipped with a nitrogen flow and water-cooled reflux condenser ). To the stirred (250 rpm) slurry, allylamine (413 g, 7.23 mol) was added via an addition funnel for 45 minutes. The reaction was exothermic and the temperature was maintained at 50-80 ° C. using a circulating bath fluid fixed at 30 ° C. After the allylamine addition was completed, the bath temperature was raised to 165 ° C. and maintained for 2 hours (complete reaction by GC). The circulation bath fluid temperature was reduced to 150 ° C. and the solvent was removed using a vacuum inhaler (˜3 ”Hg; Rxn T = 138 to 140 ° C.). After most of the xylene was removed, the bath temperature was reduced to 65 ° C. (Rxn T = 56 ° C.) and 500 g of BCM (bromochloromethane) were added followed by washing with a base detergent, aqueous solution (1,260 g of water, 50 g of Na 2 CO 3 ) was added and after stirring, The dark red / brown organic phase (1907 g: ˜500 g BCM, ˜1256 g product (65.8 wt.%), ˜200 g xylene) was separated from the orange aqueous phase (1,332 g). The analysis showed ˜100 area% product after finishing the caustic reaction.

Figure 112007050877952-pct00006
Figure 112007050877952-pct00006

N-알릴-테트라히드로프탈이미드:N-allyl-tetrahydrophthalimide:

Figure 112007050877952-pct00007
Figure 112007050877952-pct00007

질소 플로우가 구비된 4 구 5 L 자켓 플라스크에 약 500 g 의 BCM, 약 20 g 의 수성 HBr, 약 20 g 의 에탄올을 장입하고, 순환 조 온도를 약 2 내지 3℃ (반응 T = 5 ℃, 초기) 로 냉각했다. 교반한 (300 rpm) 용매에, 약 2,209 g (13.8 mol, 2.1 ~ 2.2 eq) 의 브롬 용액 및 THPAI (1,907 g) 의 BCM/자일렌 용액을, 약 2.5 시간 동안 첨가 깔때기를 통해 플라스크의 반대쪽으로부터 표면 위로 함께 공급했다. 반응 온도를 33℃ 미만으로 했다. 용액을 추가로 30 분 동안 교반하고, 물 (1450 g), Na2SO3 (20 g, 0.16 mol, FW=126), Na2CO3 (90 g, 0.85 mol, FW=106) 의 수용액을 첨가해 유기 상을 세정했다 (수성 상 pH = 8 ~ 9). 메탄 올 (1.7 kg) 을 45℃ 에서 반응기에 첨가하고, 반응 온도를 약 5O℃ (조 T 는 약 68℃) 로 상승시켰다. 반응기를 실온으로 냉각시키면서 또 다른 1 kg 의 메탄올을 첨가했다. 분말을 여과하고, 메탄올로 헹군 후, 약 2.5 시간 동안 공기 순환 오븐 내 약 65℃ 에서 건조시켜, 2,625 g 의 백색 분말 생성물 (76% 수율) 을 수득했다. Mp 104 ~ 118℃.Into a four neck 5 L jacketed flask equipped with a nitrogen flow, about 500 g of BCM, about 20 g of aqueous HBr, about 20 g of ethanol were charged and the circulation bath temperature was about 2 to 3 ° C. (reaction T = 5 ° C., Initial stage). In a stirred (300 rpm) solvent, about 2,209 g (13.8 mol, 2.1 to 2.2 eq) of bromine solution and THPAI (1,907 g) of BCM / xylene solution were added from the opposite side of the flask through an addition funnel for about 2.5 hours. Fed together over the surface. Reaction temperature was made into less than 33 degreeC. The solution is stirred for an additional 30 minutes and an aqueous solution of water (1450 g), Na 2 SO 3 (20 g, 0.16 mol, FW = 126), Na 2 CO 3 (90 g, 0.85 mol, FW = 106) Added and the organic phase was washed (aqueous phase pH = 8-9). Methanol (1.7 kg) was added to the reactor at 45 ° C and the reaction temperature was raised to about 50 ° C (crude T is about 68 ° C). Another 1 kg of methanol was added while cooling the reactor to room temperature. The powder was filtered, rinsed with methanol and then dried at about 65 ° C. in an air circulation oven for about 2.5 hours to give 2625 g of white powder product (76% yield). Mp 104-118 ° C.

Figure 112007050877952-pct00008
Figure 112007050877952-pct00008

브롬화 N-알릴-테트라히드로프탈이미드 (62.6 중량% Br):Brominated N-allyl-tetrahydrophthalimide (62.6 wt.% Br):

Figure 112007050877952-pct00009
Figure 112007050877952-pct00009

실시예 2Example 2

난연제 효능을 예시하기 위해서, N, 2-3-디브로모프로필-4,5-디브로모헥사히드로프탈이미드 ("화합물 (I)") 를 함유하는 다양한 조성물을 제조하고, 이를, 통상 한계 산소 지수 (LOI) 시험으로 지칭되는 ASTM 표준 시험 방법 D 2863-87 에 적용했다. 상기 시험에서, LOI 값이 높을수록, 조성물의 난연성이 더 큰 것이다.To illustrate flame retardant efficacy, various compositions containing N, 2-3-dibromopropyl-4,5-dibromohexahydrophthalimide ("Compound (I)") are prepared, which are usually Applied to ASTM Standard Test Method D 2863-87, referred to as Limit Oxygen Index (LOI) test. In this test, the higher the LOI value, the greater the flame retardancy of the composition.

농축물 (10 중량% 화합물 I) 을 형성시킨 다음, 약 35 중량% 농축물 대 약 65 중량% PS-168 순수 (neat) 수지의 비율로, 상기 농축물을 순수 수지내에 넣고, 이산화탄소 주입을 통해 저밀도 발포체를 압출하여 샘플 A 를 제조하였다. PS-168 은, Dow Chemical Company 에서 시판되고 있는, 다목적 비(non)-난연화된 등급의 비강화 결정성 폴리스티렌이다. 이의 중량평균분자량은 약 172,000 달톤이고, 수평균분자량은 약 110,000 달톤 (GPC 로 측정) 이다. 분자량 분석은 시차 굴절계 및 Precision Detectors 모델 PD-2000 광산란 강도 검출기 및 공극률이 100, 103, 104 및 500 옹스트롬인 Ultrastyragel 컬럼이 구비된 Waters 150-CV 모듈 방식 겔 침투 크로마토그래피를 이용하여 THF 중에서 측정되었다. 분자량의 측정에는 폴리스티렌 표준 (Showa denko) 을 사용하였다. A concentrate (10 wt% compound I) was formed, and then at a ratio of about 35 wt% concentrate to about 65 wt% PS-168 neat resin, the concentrate was placed in pure resin and injected via carbon dioxide Sample A was prepared by extruding low density foam. PS-168 is a versatile non-flame retarded grade of non-reinforced crystalline polystyrene sold by Dow Chemical Company. Its weight average molecular weight is about 172,000 Daltons, and the number average molecular weight is about 110,000 Daltons (measured by GPC). Molecular weight analysis was determined in THF using a Waters 150-CV modular gel permeation chromatography with differential refractometer and Precision Detectors model PD-2000 light scattering intensity detector and Ultrastyragel columns with porosities of 100, 103, 104 and 500 angstroms. The polystyrene standard (Showa denko) was used for the measurement of molecular weight.

농축물은 약 10 중량% 의 화합물 I, 약 0.5 중량% 의 히드로탈시트 (hydrotalcite) 열 안정화제, 약 4.3 중량% 의 Mistron Vapor Talc, 약 1.5 중량% 의 칼슘 스테아레이트, 및 약 83.7 중량% 의 Dow PS-168 를 함유하였다. 농축물을 약 175℃ 의 용융 온도에서 Werner & Phleiderer ZSK-30 공(co)-회전 이축 스크류 (screw) 압출기 상에서 제조했다. 표준 분산 혼합 스크류 프로파일을 약 250 rpm 및 약 1 kg/시간의 공급 속도로 사용했다. PS-168 수지 농축물을 단축 스크류 중량식 공급장치를 통해 공급하고, 분말 첨가제를 예비 혼합하고 이축 스크류 분말 공급장치를 이용해 공급했다.The concentrate comprises about 10% by weight of compound I, about 0.5% by weight of hydrotalcite heat stabilizer, about 4.3% by weight of Mistron Vapor Talc, about 1.5% by weight of calcium stearate, and about 83.7% by weight of Dow PS-168 was contained. The concentrate was prepared on a Werner & Phleiderer ZSK-30 co-rotating twin screw extruder at a melt temperature of about 175 ° C. A standard dispersed mixing screw profile was used at a feed rate of about 250 rpm and about 1 kg / hour. The PS-168 resin concentrate was fed through a single screw gravimetric feeder, premixed powder additives and fed using a twin screw powder feeder.

이어서, 약 35 중량% 의 농축물 대 약 65 중량% 의 폴리스티렌의 비율로, 동일한 이축 스크류 압출기를 사용하여 농축물을 순수 Dow 폴리스티렌 PS-168 내로 혼합하여, 하기 조건을 이용해 발포체를 제조하였다: 1 구역 온도 (약 175℃), 2 구역 온도 (약 16O℃), 3 구역 온도 (약 13O℃) 및 4 구역 온도 (약 13O℃), 약 145℃ 의 다이 온도, 약 60 rpm 의 스크류 속도, 약 3.2 kg/시간의 공급 속도, 40/80/150 의 스크린 팩, 약 290 내지 약 310 psig 의 이산화탄소 압력, 약 16O℃ 의 용융 온도, 약 63 내지 약 70% 의 토크 (torque), 및 약 2 내지 약 3 ft/분의 출발 (takeoff) 속도.The concentrate was then mixed into pure Dow polystyrene PS-168 using the same twin screw extruder, at a ratio of about 35% by weight of the concentrate to about 65% by weight of polystyrene, to prepare a foam using the following conditions: 1 Zone temperature (about 175 ° C.), zone 2 temperature (about 160 ° C.), zone 3 temperature (about 1300 ° C.) and zone 4 temperature (about 1300 ° C.), die temperature of about 145 ° C., screw speed of about 60 rpm, about Feed rate of 3.2 kg / hour, screen pack of 40/80/150, carbon dioxide pressure of about 290 to about 310 psig, melting temperature of about 160 ° C., torque of about 63 to about 70%, and about 2 to about Takeoff speed of about 3 ft / min.

발포체는 발포 공정용 핵형성제로서 약 1.5 중량% 의 탈크, 및 약 3.5 중량% 의 난연제 (약 2.2 중량% 의 브롬) 를 함유하였다. 또한 압출 및 발포체-형성 공정 동안 난연제를 안정화시키기 위해, 난연성 화합물의 약 5 중량% 의 양의 DHT4A 히드로탈시트를 사용하였다. 한 구멍이 막혀 있는, 표준 2-구멍 연선 다이 (two-hole stranding die: 직경이 1/8 인치인 구멍) 를 사용해 발포체를 제조했다. 생성된, 직경이 5/8 인치인 발포체 막대 (rod) 는 매우 얇은 외피 (0.005 인치 이하) 및 미세 폐쇄 셀 (closed cell) 구조를 가졌다. 이산화탄소 가스를 배럴 (barrel) #8 (ZSK-30 은 9-배럴 압출기임) 내로 주입하였다. 막대를 이산화탄소와 함께 약 9.0 lbs/ft3 (0.14 의 비중) 의 밀도로 발포시켰다.The foam contained about 1.5 wt% talc and about 3.5 wt% flame retardant (about 2.2 wt% bromine) as the nucleating agent for the foaming process. DHT4A hydrotalcite was also used in an amount of about 5% by weight of the flame retardant compound to stabilize the flame retardant during the extrusion and foam-forming process. The foam was made using a standard two-hole stranding die (hole 1/8 inch in diameter) with one hole blocked. The resulting foam rod, 5/8 inch in diameter, had a very thin skin (up to 0.005 inches) and a fine closed cell structure. Carbon dioxide gas was injected into barrel # 8 (ZSK-30 is a 9-barrel extruder). The rod was foamed with carbon dioxide at a density of about 9.0 lbs / ft 3 (specific gravity of 0.14).

농축물이 약 9 중량% 의 SAYTEX® HP900SG 안정화된 헥사브로모시클로도데칸 (HBCD) 을 함유했다는 것을 제외하고는 샘플 A 와 같이 대조군 샘플 K 를 제조하였다.Control sample K was prepared as sample A except that the concentrate contained about 9% by weight of SAYTEX® HP900SG stabilized hexabromocyclododecane (HBCD).

평가 결과를 하기 표 1 에 제시하였다.The evaluation results are shown in Table 1 below.

Figure 112007050877952-pct00010
Figure 112007050877952-pct00010

상기 결과는, N, 2-3-디브로모프로필-4,5-디브로모헥사히드로프탈이미드가 시판 HBCD 에 필적하는 고효능 난연제임을 나타낸다.The results indicate that N, 2-3-dibromopropyl-4,5-dibromohexahydrophthalimide is a high potency flame retardant comparable to commercial HBCD.

실시예 3Example 3

본 발명에 따라 사용된 N, 2-3-디브로모프로필-4,5-디브로모헥사히드로프탈이미드 ("화합물 (I)") 의 열 안정성을 열 HBR 측정 시험을 이용해 평가하였다.The thermal stability of N, 2-3-dibromopropyl-4,5-dibromohexahydrophthalimide ("Compound (I)") used according to the invention was evaluated using a thermal HBR measurement test.

먼저, 약 0.5 내지 약 1.0 g 의 난연제 샘플의 무게를 재어 3 구 50 mL 둥근 바닥 플라스크에 넣었다. 이어서, 테플론 튜브 (Teflon tubing) 를 플라스크의 개구 중 하나에 부착했다. 테플론 튜브를 통해 질소를 약 0.5 SCFH 의 유속으로 플라스크 내로 공급했다. 소형 환류 응축기를 플라스크 상의 또다른 개구에 부착했다. 세번째 개구는 막았다. 약 85℃의 온도에서 물 중 약 50 부피% 의 글리콜 용액을 환류 응축기를 통해 흘려주었다. 비톤 튜브 (Viton tubing) 를 응축기의 상부 및 기체 세정 용기 (gas scrubbing bottle) 에 부착했다. 또다른 2 개의 용기를 첫번째 용기에 직렬로 부착하였다. 3 개의 용기는 모두 약 90 mL 의 약 0.1 N NaOH 용액을 함유하였다. 장치를 조립한 후, 질소를 약 2 분 동안 시스템을 통해 퍼징하였다. 이어서, 둥근 바닥 플라스크를 약 22O℃ 에서 오일조 내에 배치하고, 샘플을 약 15 분 동안 가열했다. 이어서, 플라스크를 오일조로부터 제거하고 질소를 약 2 분 동안 퍼징하였다. 3 개의 기체 세정 용기의 내용물을 600 mL 비이커로 옮겼다. 용기 및 비톤 튜브를 비이커 내로 헹구어 냈다. 이어서, 내용물을 약 1:1 HNO3 로 산성화시키고, 약 0.01 N AgNO3 으로 적정했다. 샘플을 2 회 진행시켜 2 회 측정의 평균을 기록했다. 압출성 폴리스티렌 발포체 또는 압출된 폴리스티렌 발포체에서 열 안정성 난연제를 위해서는 보다 낮은 열 HBr 값이 바람직하다.First, about 0.5 to about 1.0 g of a flame retardant sample was weighed and placed in a three neck 50 mL round bottom flask. Teflon tubing was then attached to one of the openings in the flask. Nitrogen was fed into the flask through a Teflon tube at a flow rate of about 0.5 SCFH. A small reflux condenser was attached to another opening on the flask. The third opening was closed. About 50% by volume glycol solution in water was flowed through the reflux condenser at a temperature of about 85 ° C. Viton tubing was attached to the top of the condenser and to a gas scrubbing bottle. Another two vessels were attached in series to the first vessel. All three vessels contained about 90 mL of about 0.1 N NaOH solution. After assembling the device, nitrogen was purged through the system for about 2 minutes. The round bottom flask was then placed in an oil bath at about 22O <0> C and the sample was heated for about 15 minutes. The flask was then removed from the oil bath and purged with nitrogen for about 2 minutes. The contents of three gas cleaning vessels were transferred to a 600 mL beaker. The vessel and the viton tube were rinsed into the beaker. The contents were then acidified with about 1: 1 HNO 3 and titrated with about 0.01 N AgNO 3 . The sample was run twice and the average of the two measurements was recorded. Lower thermal HBr values are preferred for heat stable flame retardants in extruded polystyrene foam or extruded polystyrene foam.

본 발명의 샘플 B 를 실시예 1 에서 기술한 바와 같이 제조하였다. Sample B of the present invention was prepared as described in Example 1.

평가 결과를 하기 표 2 에 제시하였다. The evaluation results are shown in Table 2 below.

Figure 112007050877952-pct00011
Figure 112007050877952-pct00011

상기 평가 결과는, 여기에 기술한 난연제가, 압출된 폴리스티렌 발포체에 사용되는 전형적인 조작 온도로 가열 시, 열 절단된 HBr 을 과량 방출하도록 분해되지 않는, 열 안정성임을 나타낸다. The results of the evaluation indicate that the flame retardant described herein is thermally stable, which does not decompose to release excessively heat-cut HBr when heated to typical operating temperatures used in extruded polystyrene foam.

실시예 4Example 4

팽창성 폴리스티렌 발포체 제조 성능에 대한 난연제 용해도의 영향을 측정하였다. SAYTEX

Figure 112007050877952-pct00012
BN-451 (N,N'-에틸렌비스(5,6-디브로모-2,3-노르보르난디카르복시미드; CAS No. 52907-07-0) ("BN-451") 로부터 샘플 P 를 제조하였다. V-2 폴리프로필렌에서 낮은 로딩 (약 4 중량%) 으로 사용하기에는 주로 BN-451 이 권고된다. BN-451 의 스티렌 용해도는 약 25℃ 에서 약 0.1 중량% 미만이다.The effect of flame retardant solubility on the expandable polystyrene foam production performance was measured. SAYTEX
Figure 112007050877952-pct00012
Sample P was taken from BN-451 (N, N'-ethylenebis (5,6-dibromo-2,3-norbornanedicarboxymid; CAS No. 52907-07-0) ("BN-451") BN-451 is mainly recommended for use with low loadings (about 4 weight percent) in V-2 polypropylene The styrene solubility of BN-451 is less than about 0.1 weight percent at about 25 ° C.

Figure 112007050877952-pct00013
Figure 112007050877952-pct00013

팽창성 폴리스티렌 비드를 형성하기 위한 스티렌의 수성 현탁 중합을 다음과 같이 실시하였다. 200 g 의 탈이온수 중 약 0.28 g 의 폴리비닐 알콜 (PVA) 을 1 리터들이 뷔히 (Buchi) 유리관 내로 부었다. 별도로, 약 200 g 의 스티렌 중 약 2.10 g 의 SAYTEX

Figure 112007050877952-pct00014
BN-451, 및 약 0.64 g 의 디벤조일 퍼옥시드 (물 중 약 75 중량%) 를 함유하는 혼합물을 제조하였다. 상기 후자의 혼합물에서는 불용성 BN-451 입자가 뚜렷이 보였으며, 상기 혼합물을 PVA 수용액을 함유하는 용기 내로 부었다. 상기 액체를, 반응기 내에서 전단응력을 생성하기 위한 배플 (baffle) 의 존재 하에 약 1000 rpm 으로 고정된 임펠러 형 교반기로 혼합하였다. 이어서, 혼합물을 하기의 가열 프로파일에 적용하였다: 약 2O℃ 에서 약 9O℃ 까지 약 45 분 내 가열 및 약 9O℃ 에서 약 4.25 시간 유지 (제 1 단계 조작).Aqueous suspension polymerization of styrene to form expandable polystyrene beads was carried out as follows. About 0.28 g of polyvinyl alcohol (PVA) in 200 g of deionized water was poured into a 1 liter Buchi glass tube. Separately, about 2.10 g of SAYTEX in about 200 g of styrene
Figure 112007050877952-pct00014
A mixture containing BN-451, and about 0.64 g of dibenzoyl peroxide (about 75% by weight in water) was prepared. In the latter mixture, insoluble BN-451 particles were clearly seen, and the mixture was poured into a vessel containing PVA aqueous solution. The liquid was mixed with an impeller-type stirrer fixed at about 1000 rpm in the presence of a baffle for generating shear stress in the reactor. The mixture was then subjected to the following heating profile: heating from about 20 ° C. to about 90 ° C. in about 45 minutes and holding at about 4.25 hours at about 100 ° C. (first step operation).

반응의 제 2 단계 (약 9O℃ 에서 약 13O℃ 까지 약 1 시간 내 가열 및 약 13O℃ 에서 약 2 시간 유지) 는 시도하지 않았다. 전형적으로는, 약 2 시간 후, 안정한 현탁 중합이 일어날 때 매우 작은 비드가 형성되기 시작한다. 점도의 급속한 증가 및 커다란 폴리스티렌 덩어리의 형성에 의해 증명되는, 제 1 단계 동안 수성 현탁 중합의 실패가 약 9O℃ 에서 약 2 시간 이내에 관찰되었다. 따라서, 약 9O℃ 에서 약 2 시간 가열한 후 상기 절차를 중지하였다. 이러한 평가 결과는, 이러한 조성의 조성물이 내화성 폴리스티렌 비드를 형성하는 데 사용될 수 없음을 나타낸다. 보다 높은 스티렌 용해도를 갖는 난연제가 요구된다.No second step of the reaction (heating from about 90 ° C. to about 1300 ° C. in about 1 hour and holding at about 13 ° C. for about 2 hours) was not attempted. Typically, after about 2 hours, very small beads begin to form when stable suspension polymerization occurs. Failure of aqueous suspension polymerization was observed within about 2 hours at about 90 ° C. during the first step, evidenced by the rapid increase in viscosity and the formation of large polystyrene mass. Thus, the procedure was stopped after heating at about 90 ° C. for about 2 hours. These evaluation results indicate that compositions of this composition cannot be used to form refractory polystyrene beads. There is a need for flame retardants with higher styrene solubility.

이러한 결과는, 열가소성 수지, 예컨대 폴리프로필렌 및 고충격 폴리스티렌 (HIPS) 에 사용되도록 권고되는 난연제가 반드시 폴리스티렌 발포체, 예컨대 팽창 폴리스티렌 내에서의 기능과 상호연관될 수 있는 것은 아님을 입증한다. These results demonstrate that flame retardants recommended for use in thermoplastic resins such as polypropylene and high impact polystyrene (HIPS) may not necessarily be correlated with their function in polystyrene foam such as expanded polystyrene.

놀랍게도, 본 발명자들은 N, 2-3-디브로모프로필-4,5-디브로모헥사히드로프탈이미드 ("화합물 (I)") 가 팽창 폴리스티렌 공정에 효과적으로 사용되기 위해 필요한 용해도를 가진다는 것을 발견하였다. 스티렌 중 용해도는 약 25℃ 에서 약 8 중량% 및 적당한 열이 있는 경우 (약 40℃) 에는 약 10 중량% 이다. Surprisingly, the inventors have found that N, 2-3-dibromopropyl-4,5-dibromohexahydrophthalimide ("Compound (I)") has the solubility necessary for effective use in expanded polystyrene processes. I found that. Solubility in styrene is about 8% by weight at about 25 ° C and about 10% by weight with moderate heat (about 40 ° C).

Figure 112007050877952-pct00015
Figure 112007050877952-pct00015

팽창성 폴리스티렌 비드를 다음과 같이 제조하였다. 약 200 g 의 탈이온수 중 약 0.28 g 의 폴리비닐 알콜 (PVA) 을 1 리터들이 뷔히 유리관 내로 부었다. 별도로, 약 200 g 의 스티렌 중 약 1.68 g 의 FR, 약 0.22 g 의 디큐밀 퍼옥시드, 및 약 0.64 g 의 디벤조일 퍼옥시드 (물 중 약 75 중량%) 를 함유하는 용액을 형성하였다. 상기 후자의 용액을, PVA 수용액을 함유하는 용기 내로 부었다. 상기 액체를, 반응기 내에서 전단응력을 생성하기 위한 배플의 존재 하에 약 1000 rpm 으로 고정된 임펠러 형 교반기를 사용하여 혼합하였다. 이어서, 혼합물을 하기의 가열 프로파일에 적용하였다: 약 2O℃ 에서 약 9O℃ 까지 약 45 분 내 가열 및 약 9O℃ 에서 약 4.25 시간 유지 (제 1 단계 조작); 약 9O℃ 에서 약 13O℃ 까지 약 1 시간 내 가열 및 약 130℃ 에서 약 2 시간 유지 (제 2 단계 조작); 및 약 13O℃ 에서 약 2O℃ 까지 1 시간 내 가열.Expandable polystyrene beads were prepared as follows. About 0.28 g of polyvinyl alcohol (PVA) in about 200 g of deionized water was poured into a 1 liter vichy glass tube. Separately, a solution was formed containing about 1.68 g of FR, about 0.22 g of dicumyl peroxide, and about 0.64 g of dibenzoyl peroxide (about 75% by weight in water) in about 200 g of styrene. The latter solution was poured into a container containing an aqueous PVA solution. The liquid was mixed using an impeller type stirrer fixed at about 1000 rpm in the presence of a baffle for generating shear stress in the reactor. The mixture was then subjected to the following heating profiles: heating from about 20 ° C. to about 9O ° C. in about 45 minutes and holding about 4.25 hours at about 100 ° C. (first step operation); Heating from about 90 ° C. to about 13 ° C. in about 1 hour and holding at about 130 ° C. for about 2 hours (second step operation); And heating from about 13 ° C. to about 20 ° C. in 1 hour.

제 1 단계의 마지막에, 반응기를 질소로 가압하였다 (약 2 바아). 일단 냉각되면, 반응기를 비우고 혼합물을 여과하였다. 상기 공정에서 형성된 난연성 비드를 약 6O℃ 에서 하룻밤 동안 건조시키고, 이어서, 체질하여 비드 크기 분포를 측정하였다. 이 절차에서, 맨 위에 체 크기가 가장 큰 것에서부터 바닥에 체 크기가 가장 작은 것의 순서로 체를 적층시키고, 그 밑에 캐치팬 (catch pan) 을 두었다. 체를 약 10 분 동안 약 50% 출력 세팅으로 진동시키고, 체의 무게를 개별적으로 재었다 (체 스크린의 용기 무게를 공제함). 물질의 총 질량에 근거하여, 각 체 크기에서의 물질의 중량% 를 계산하였다. 약 88.4% 전환이 이루어졌다. At the end of the first step, the reactor was pressurized with nitrogen (about 2 bar). Once cooled, the reactor was emptied and the mixture filtered. The flame retardant beads formed in the process were dried at about 60 ° C. overnight and then sieved to determine the bead size distribution. In this procedure, the sieves were stacked in order from the largest sieve size at the top to the smallest sieve size at the bottom, with a catch pan below them. The sieves were vibrated at about 50% power setting for about 10 minutes and the sieves were individually weighed (subtracting the container weight of the sieve screen). Based on the total mass of the substance, the weight percent of the substance at each sieve size was calculated. Approximately 88.4% conversion took place.

샘플 P 는 실시예 4 에서 설명하였다. 난연성 화합물을 첨가하지 않고 유사하게 샘플 V 를 제조하였다. 결과는 표 5 에 제시하였다. Sample P was described in Example 4. Sample V was similarly prepared without the addition of flame retardant compounds. The results are shown in Table 5.

Figure 112007050877952-pct00016
Figure 112007050877952-pct00016

이러한 평가 결과는, 본 발명의 조성물이 이후 팽창 폴리스티렌 발포체의 형성을 위해 사용될 수 있는 난연성 팽창성 폴리스티렌 비드의 형성을 위해 성공적으로 사용될 수 있음을 나타낸다. These evaluation results indicate that the compositions of the present invention can be successfully used for the formation of flame retardant expandable polystyrene beads that can then be used for the formation of expanded polystyrene foam.

전술한 내용은 예시 및 설명의 목적으로 제시되었다. 이는 전체를 망라한다거나 본 발명을 개시된 정확한 실시예 또는 구현예로 제한하고자 하는 것이 아니다. 상기 교시내용의 견지에서 명백한 변형 또는 변화가 가능하다. 논의된 구현예(들) 는, 당업자가 본 발명을 다양한 측면에서 및 고찰되는 특정 용도에 적합한대로 다양한 변형을 가해 활용할 수 있도록, 본 발명의 원리 및 이의 실제 적용에 대한 최상의 예시를 제공하도록 선택 및 기재되었다. 모든 이러한 변형 및 변화는 공정하고도 합법적으로 주어진 범위에 따라 해석될 경우 첨부된 청구항에 의해 결정되는 바와 같은 본 발명의 범주 내에 있다. The foregoing has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise examples or embodiments disclosed. Obvious modifications or variations are possible in light of the above teaching. The embodiment (s) discussed are selected and provided to provide a best illustration of the principles of the invention and its practical application, so that those skilled in the art can make various changes and adapt the invention to the specific use contemplated. Described. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the scope fairly and lawfully given.

이하의 청구항이 물질, 구성성분 및/또는 성분을 현재 시제 ("포함한다", "이다" 등) 로 언급하더라도, 이러한 언급은 하나 이상의 다른 물질, 구성성분 및/또는 성분과 먼저 접촉, 배합 또는 혼합되기 직전의 시기에 존재했던 대로의, 또는 용액 중에 형성된 경우라면 용액 중에 형성되지 않은 경우에 존재하는 대로의, 본 명세서에 따른 모든 물질, 구성성분 또는 성분을 가리킨다. 본 명세서에 따라 수행된다면, 물질, 구성성분 또는 성분이 상기 접촉, 배합, 혼합 또는 제자리 형성 과정 동안 변형 또는 화학적 반응을 통해 그의 본래의 정체성을 상실할 수도 있음은 문제가 되지 않는다. Although the following claims refer to materials, components, and / or components as present tense ("comprises", "is", etc.), such references are first contacted, blended or It refers to all materials, components or components according to the present specification as they existed at the time just prior to mixing or as present if they were not formed in solution if they were formed in solution. If performed in accordance with the present specification, it does not matter that a substance, component or ingredient may lose its original identity through modification or chemical reaction during the contacting, blending, mixing or in situ formation process.

Claims (14)

하기 구조를 갖는 난연성 화합물을 함유하는 난연화된 팽창 폴리스티렌 발포체: Flame retardant expanded polystyrene foam containing a flame retardant compound having the structure:
Figure 112007050877952-pct00017
.
Figure 112007050877952-pct00017
.
제 1 항에 있어서, 난연성 화합물이 발포체의 0.1 내지 10 중량% 의 양으로 존재하는 팽창 폴리스티렌 발포체.The expanded polystyrene foam according to claim 1, wherein the flame retardant compound is present in an amount of 0.1 to 10% by weight of the foam. 제 1 항에 있어서, 난연성 화합물이 발포체의 0.5 내지 7 중량% 의 양으로 존재하는 팽창 폴리스티렌 발포체.The expanded polystyrene foam according to claim 1, wherein the flame retardant compound is present in an amount of 0.5 to 7% by weight of the foam. 제 1 항에 있어서, 난연성 화합물이 발포체의 0.7 내지 5 중량% 의 양으로 존재하는 팽창 폴리스티렌 발포체.The expanded polystyrene foam according to claim 1, wherein the flame retardant compound is present in an amount of 0.7 to 5% by weight of the foam. 제 1 항에 있어서, 난연성 화합물이 발포체의 1 내지 2 중량% 의 양으로 존재하는 팽창 폴리스티렌 발포체.The expanded polystyrene foam according to claim 1, wherein the flame retardant compound is present in an amount of 1 to 2% by weight of the foam. 제 1 항에 있어서, 난연성 화합물이 25℃ 에서 0.5 중량% 내지 8 중량% 의 스티렌 중 용해도를 갖는 팽창 폴리스티렌 발포체.The expanded polystyrene foam according to claim 1, wherein the flame retardant compound has a solubility in styrene of 0.5% to 8% by weight at 25 ° C. 제 1 항에 있어서, 난연제가 40℃ 에서 0.5 중량% 내지 10 중량% 의 스티렌 중 용해도를 갖는 팽창 폴리스티렌 발포체.The expanded polystyrene foam of claim 1 wherein the flame retardant has a solubility in styrene of 0.5% to 10% by weight at 40 ° C. 제 1 항에 있어서, 제조 물품으로서 제공되는 팽창 폴리스티렌 발포체. The expanded polystyrene foam of claim 1, wherein the expanded polystyrene foam is provided as an article of manufacture. 제 8 항에 있어서, 제조 물품이 단열재인 팽창 폴리스티렌 발포체. 9. The expanded polystyrene foam of claim 8, wherein the article of manufacture is a heat insulator. 삭제delete 스티렌 중에 가용화된 난연성 화합물을 0.5 중량% 내지 8 중량% 함유하는 조성물로서, 상기 화합물이 하기 구조를 갖는 조성물: A composition containing from 0.5% to 8% by weight of a flame retardant compound solubilized in styrene, wherein the compound has the structure
Figure 112008050306545-pct00018
.
Figure 112008050306545-pct00018
.
하기를 포함하는, 난연성 팽창 폴리스티렌 발포체의 제조 방법:A method of making a flame retardant expanded polystyrene foam, comprising: - 스티렌 중에 가용화된 난연성 화합물 및 발포제를 포함하는 조성물을 형성함, 이 때, 상기 난연성 화합물은 25℃ 에서 0.5 중량% 내지 8 중량% 의 스티렌 중 용해도를 가지며, 하기 구조를 가짐: Forming a composition comprising a flame retardant compound solubilized in styrene and a blowing agent, wherein the flame retardant compound has a solubility in styrene of 0.5% to 8% by weight at 25 ° C. and has the following structure:
Figure 112008050306545-pct00019
;
Figure 112008050306545-pct00019
;
- 상기 스티렌을 중합시켜 폴리스티렌 비드를 형성함. Polymerizing the styrene to form polystyrene beads.
하기를 포함하는, 성형된 난연성 팽창 폴리스티렌 생성물의 제조 방법: A method of making a molded flame retardant expanded polystyrene product, comprising: - 폴리스티렌, 발포제, 및 하기 구조를 갖는 난연성 화합물을 포함하는 비팽창된 비드를 예비-팽창시킴, 여기서, 상기 비드는 실질적으로 삼산화안티몬을 함유하지 않음:Pre-expanding unexpanded beads comprising polystyrene, a blowing agent, and a flame retardant compound having the structure: wherein said beads are substantially free of antimony trioxide:
Figure 112007050877952-pct00020
Figure 112007050877952-pct00020
And
- 예비-팽창된 비드를 성형하고, 임의로는 추가로 비드를 팽창시켜, 생성물을 형성함.Pre-expanded beads are molded, optionally further expanding the beads to form the product.
제 13 항에 있어서, 생성물이 단열재인 방법. The method of claim 13, wherein the product is a heat insulator.
KR1020077015966A 2004-12-22 2004-12-22 Flame Retardant Expanded Polystyrene Foam Composition KR100875409B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/043332 WO2006071213A1 (en) 2004-12-22 2004-12-22 Flame retardant expanded polystyrene foam compositions

Publications (2)

Publication Number Publication Date
KR20070100288A KR20070100288A (en) 2007-10-10
KR100875409B1 true KR100875409B1 (en) 2008-12-23

Family

ID=36615225

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077015966A KR100875409B1 (en) 2004-12-22 2004-12-22 Flame Retardant Expanded Polystyrene Foam Composition

Country Status (11)

Country Link
US (1) US20080096989A1 (en)
EP (1) EP1828267A4 (en)
JP (1) JP2008525572A (en)
KR (1) KR100875409B1 (en)
CN (1) CN101087819A (en)
BR (1) BRPI0419268A (en)
CA (1) CA2591820A1 (en)
IL (1) IL184015A0 (en)
MX (1) MX2007007550A (en)
TW (1) TW200636051A (en)
WO (1) WO2006071213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641211A (en) * 2018-05-09 2018-10-12 安徽富煌钢构股份有限公司 A kind of impact resins base polystyrene foamed heat insulating plank and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0419269A (en) * 2004-12-22 2007-12-18 Albemarle Corp flame retardant extruded polystyrene foam compositions
WO2006071217A1 (en) * 2004-12-22 2006-07-06 Albemarle Corporation Flame retardant polystyrene foam compositions
WO2008106334A2 (en) * 2007-02-26 2008-09-04 Albemarle Corporation Flame retarded styrenic polymer foams and foam precursors
WO2009002761A1 (en) * 2007-06-27 2008-12-31 Albemarle Corporation A method for making n-2,3-dibromopropyl-4,5-dibromohexahydrophthalimide
WO2009035836A1 (en) * 2007-09-07 2009-03-19 Albemarle Corporation A method for making n-2,3-dibromopropyl-4-5-dibromohexahydrophthalimide
WO2009065799A1 (en) 2007-11-20 2009-05-28 Akzo Nobel N.V. Process for preparing styrene-based (co)polymers
CN102076746B (en) 2008-05-02 2014-05-14 巴斯夫欧洲公司 PS foams having low metal content
CN102471517B (en) 2009-08-13 2015-05-13 旭化成化学株式会社 Expandable beads, molded body using the same, and production method for molded body
CN105189628B (en) 2013-05-20 2018-04-10 第一工业制药株式会社 Flame-retardant expandable styrene resin composition and its foam molding
KR101483923B1 (en) 2013-10-23 2015-01-19 금호석유화학 주식회사 Method for producing the functional expanded polystyrene which have the high closed cell contents
US10677569B2 (en) 2016-05-03 2020-06-09 International Business Machines Corporation Vehicle disablement and retrieval
CN109082016A (en) * 2018-07-11 2018-12-25 桐城市新瑞建筑工程有限公司 A kind of fire prevention methyl plate and preparation method thereof

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681321A (en) 1950-02-27 1954-06-15 Basf Ag Production of porous materials from film-forming organic thermoplastic masses
DE941389C (en) 1951-04-19 1956-04-12 Basf Ag Process for the production of porous moldings from thermoplastics
DE973134C (en) 1951-04-26 1959-12-10 Basf Ag Process for the production of dimensionally stable porous moldings from thermoplastics
DE936955C (en) 1953-09-25 1955-12-22 Basf Ag Process for the production of foamable styrene polymers
US3013894A (en) 1960-02-10 1961-12-19 Dow Chemical Co Coal acid coated particulate foamable styrene polymer compositions
US3086885A (en) 1960-09-22 1963-04-23 Dow Chemical Co Non-clumping foamable thermoplastic polymer granules and method of making
DE1257778B (en) * 1964-08-13 1968-01-04 Huels Chemische Werke Ag Process for the preparation of N-2-acyloxyaethyl-phthalimides
US3455950A (en) * 1967-07-28 1969-07-15 Universal Oil Prod Co N,n'-bis-imides of polyhalosubstituted polyhydropolycyclicdicarboxylic acids
US3673126A (en) 1967-11-13 1972-06-27 Dow Chemical Co Continuous process for making expandable thermoplastic resin compositions
US3501426A (en) 1967-12-21 1970-03-17 Dow Chemical Co Diffusion process for making foamable styrene polymer granules
US3960792A (en) 1968-07-10 1976-06-01 The Dow Chemical Company Plastic foam
US3663466A (en) 1968-08-01 1972-05-16 Dow Chemical Co Foamable thermoplastic polymer granules and method for making
RO57632A (en) 1968-09-06 1975-02-15
DE2008126C3 (en) 1970-02-21 1974-01-03 Badische Anilin- & Soda-Fabrik Ag, 6700 Ludwigshafen Method and device for the production of foam moldings
US3734758A (en) * 1971-05-06 1973-05-22 Universal Oil Prod Co Novel flame retardant compositions of matter
US3784509A (en) * 1971-09-24 1974-01-08 Cities Service Co Fire retardant compositions
US3903109A (en) * 1971-09-24 1975-09-02 Cities Service Oil Co Halo imide fire retardant compositions
US3736082A (en) 1971-11-26 1973-05-29 Basf Ag Steam chamber
US3793242A (en) 1972-08-17 1974-02-19 Dow Chemical Co Foamable thermoplastic polymer granules and method for making
US3868388A (en) 1972-10-20 1975-02-25 Cities Service Co Flame-retardant composition
FI752642A (en) * 1974-10-11 1976-04-12 Basf Ag
US3973884A (en) 1974-10-23 1976-08-10 Basf Wyandotte Corporation Manufacture of high-density foamed polymer
US3994836A (en) * 1975-01-13 1976-11-30 Hermann Honer Process for preparing flame resistant molded articles of foamed polystyrene
US3953397A (en) 1975-04-14 1976-04-27 Velsicol Chemical Corporation N-(halobenzoyl)-3,4-dibromohexahydrophthalimides
US4003862A (en) * 1975-10-23 1977-01-18 Michigan Chemical Corporation N-substituted tetrahalophthalimides as flame retardants
US4404361A (en) * 1982-01-11 1983-09-13 Saytech, Inc. Flame retardant for polymeric compositions
DE3234664A1 (en) 1982-09-18 1984-03-22 Basf Ag, 6700 Ludwigshafen FOAM PLASTIC PARTICLES BASED ON POLY-P-METHYLSTYROL
US4393147A (en) * 1982-11-22 1983-07-12 Cosden Technology, Inc. Expandable polymeric styrene particles
US4563481A (en) 1984-07-25 1986-01-07 The Dow Chemical Company Expandable synthetic resinous thermoplastic particles, method for the preparation thereof and the application therefor
US4559367A (en) 1985-04-12 1985-12-17 The Dow Chemical Company Combination blowing agent and filler for thermoplastic foams
DE3741095A1 (en) 1987-12-04 1989-06-15 Basf Ag METHOD FOR PRODUCING FOAMS WITH HIGH PRESSURE RESISTANCE
DE3842305A1 (en) 1988-12-16 1990-06-21 Basf Ag METHOD FOR PRODUCING STYRENE POLYMERISATE FOAM PARTICLES
DE3936595A1 (en) 1989-11-03 1991-05-08 Basf Ag METHOD FOR PRODUCING EXPANDABLE STYRENE POLYMERS
DE4009897A1 (en) 1990-03-28 1991-10-02 Basf Ag FINE-PIECE EXPANDABLE STYRENE POLYMERS
US5189072A (en) 1990-04-06 1993-02-23 The Dow Chemical Company Polymeric composition comprising transient foam control agent
US5189071A (en) 1992-04-06 1993-02-23 The Dow Chemical Company Polymeric composition comprising transient foam control agent
US5380767A (en) 1992-10-23 1995-01-10 The Dow Chemical Company Foamable gel with an aqueous blowing agent expandable to form a unimodal styrenic polymer foam structure and a process for making the foam structure
DE19856759A1 (en) 1998-12-09 2000-06-15 Basf Ag Flame retardant polystyrene foams
TW200734385A (en) * 2000-02-23 2007-09-16 Ajinomoto Kk Flame-retarded thermoplastic resin composition
JP4035979B2 (en) * 2000-10-20 2008-01-23 株式会社カネカ Expandable polystyrene resin particles and method for producing the same
US20040209967A1 (en) * 2003-04-21 2004-10-21 Ranken Paul F. Flame retarded styrenic polymer foams
BRPI0419269A (en) * 2004-12-22 2007-12-18 Albemarle Corp flame retardant extruded polystyrene foam compositions
WO2006071217A1 (en) * 2004-12-22 2006-07-06 Albemarle Corporation Flame retardant polystyrene foam compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641211A (en) * 2018-05-09 2018-10-12 安徽富煌钢构股份有限公司 A kind of impact resins base polystyrene foamed heat insulating plank and preparation method thereof

Also Published As

Publication number Publication date
MX2007007550A (en) 2007-07-20
BRPI0419268A (en) 2007-12-18
TW200636051A (en) 2006-10-16
EP1828267A1 (en) 2007-09-05
CN101087819A (en) 2007-12-12
KR20070100288A (en) 2007-10-10
EP1828267A4 (en) 2009-01-14
CA2591820A1 (en) 2006-07-06
JP2008525572A (en) 2008-07-17
US20080096989A1 (en) 2008-04-24
IL184015A0 (en) 2007-10-31
WO2006071213A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US7714029B2 (en) Method of producing expandable polystyrene beads which have excellent heat insulation properties
KR100875409B1 (en) Flame Retardant Expanded Polystyrene Foam Composition
JP2013514397A (en) Flame retardant polymer foam
KR20070034587A (en) Styrene polymer particle foamed material with reduced thermal conductivity
JP2007009018A (en) Process for producing expandable styrenic resin particle, expandable styrenic resin particle and molded product of styrenic resin expanded particle
JP5750221B2 (en) Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP6323242B2 (en) Method for producing expandable composite resin particles
JP6730811B2 (en) Expandable vinyl aromatic polymer composition
US20080096990A1 (en) Flame Retardant Polystyrene Foam Compositions
JPH0461018B2 (en)
MX2007007548A (en) Flame retardant extruded polystyrene foam compositions.
KR20100071371A (en) Method for producing expandable polystyrene beads which have excellent flammable capability
KR100898893B1 (en) Flame retardant polystyrene foam compositions
JPH0338298B2 (en)
KR20090028643A (en) Flame retardant polystyrene foam compositions
US20040209967A1 (en) Flame retarded styrenic polymer foams
KR100716224B1 (en) Two steps method for producing expandable polystyrene particles with high functional properties
KR100536089B1 (en) Method for Preparing Flame-Retardant Styrenic Resin with High Degree of Expansion Using a Small Amount of Blowing Agents
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article
JPH10330526A (en) Heat-resistant expanded resin particle
KR100898892B1 (en) Flame retardant extruded polystyrene foam compositions
JPH10287763A (en) Heat-resistant expandable resin particle
JP2010505010A (en) Extruded polystyrene foam composition with flame retardancy
JPH10316792A (en) Heat-resistant expandable resin particle
JPH1192585A (en) Expandable styrene resin particle and expandable styrene resin molded product

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee