KR100874210B1 - High elasticity and high strength structural concrete using limestone refuse - Google Patents

High elasticity and high strength structural concrete using limestone refuse Download PDF

Info

Publication number
KR100874210B1
KR100874210B1 KR20070092018A KR20070092018A KR100874210B1 KR 100874210 B1 KR100874210 B1 KR 100874210B1 KR 20070092018 A KR20070092018 A KR 20070092018A KR 20070092018 A KR20070092018 A KR 20070092018A KR 100874210 B1 KR100874210 B1 KR 100874210B1
Authority
KR
South Korea
Prior art keywords
limestone
concrete
elasticity
rock
modulus
Prior art date
Application number
KR20070092018A
Other languages
Korean (ko)
Inventor
이승훈
손유신
Original Assignee
삼성물산 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성물산 주식회사 filed Critical 삼성물산 주식회사
Priority to KR20070092018A priority Critical patent/KR100874210B1/en
Application granted granted Critical
Publication of KR100874210B1 publication Critical patent/KR100874210B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/50Flexible or elastic materials
    • C04B2111/503Elastic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

A high elastic-high intensity structural concrete using limestone debris is provided to improve a performance of a concrete structure by promoting a coefficient of elasticity and evaluating a coefficient of elasticity of a compressive strength according to the combination variable to the concrete using the limestone debris as thick aggregate. A high elastic-high intensity structural concrete using limestone debris comprises water, cement, thick aggregate, and a blending material. The thick aggregate is limestone debris. The limestone debris contains calcium carbonate of 65~85 weight%. A water-binder ratio of the high elastic-high intensity structural concrete using the limestone debris is 20~40%.

Description

석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트{High elasticity and high strength structural concrete using limestone refuse}High elasticity and high strength structural concrete using limestone refuse}

본 발명은 물, 시멘트, 굵은 골재, 혼화재를 포함하여 구성되는 구조용 콘크리트에 있어서, 상기 굵은 골재는 석회암 폐석인 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트에 관한 것이다.The present invention relates to a high-elasticity-high strength structural concrete utilizing limestone waste-rock in the structural concrete comprising water, cement, coarse aggregate, and admixture, wherein the coarse aggregate is limestone waste-rock.

최근 건설 산업의 급속한 성장으로 구조물의 대형화, 초고층화가 진행됨에 따라 고강도 콘크리트에 대한 수요가 증가하고 있는 실정이다. 일반적으로 콘크리트는 모래, 자갈 등의 골재를 시멘트와 물로 반죽하여 굳힌 복합재료로 구성되는데, 고강도 콘크리트에서는 자갈 등 골재 자체의 강도가 문제될 수 있다. 그러나 콘크리트를 구성하는 성분 중 자갈 등의 천연골재가 고갈되어가는 문제가 대두되고 있어 천연골재를 대체할 수 있는 대체골재가 시급히 요청된다. Recently, the demand for high-strength concrete is increasing due to the rapid growth of the construction industry and the increase in the size of the structure. In general, concrete is composed of a composite material hardened by kneading aggregates such as sand and gravel with cement and water. In high-strength concrete, strength of aggregates such as gravel itself may be a problem. However, the problem of depletion of natural aggregates such as gravel among the components constituting the concrete is on the rise, the replacement aggregate that can replace the natural aggregate is urgently required.

반면에 석회암은 시멘트 산업에서 없어서는 안 될 주요한 자원에 해당하나, 시멘트 산업에서는 대체로 고품질의 석회암을 사용하고 있기 때문에 광산 등에서 산출되는 저품질의 석회암 폐석은 방치되어 미관상 또는 환경적인 측면에서 큰 문제를 야기하고 있다.On the other hand, limestone is an indispensable resource in the cement industry, but since the cement industry generally uses high-quality limestone, low-quality limestone waste-rock produced in mines is left unattended, causing great problems in aesthetic or environmental aspects. have.

일반적으로 콘크리트의 탄성계수는 콘크리트의 재질이나 강도의 영향을 받으며, 같은 종류의 콘크리트에서는 압축강도가 클수록 탄성계수가 크다. 따라서 탄성계수가 큰 경우에 고강도 콘크리트를 얻을 수 있다. 한편 이러한 콘크리트의 탄성계수는 구조물의 설계나 해석 또는 처짐 제어 등에서 요구되는 중요한 재료 변수에 해당한다고 할 수 있으나, 그 중요도와는 달리 콘크리트의 탄성계수는 단위중량과 압축강도만을 이용한 함수식으로 간략하게 정의되고 있다. 그리고 이러한 함수식들은 실험치에 근거한 회귀식들로서 많은 불확실성이 내포되어 있는 실정이다. 따라서 콘크리트 산업의 기술 발전과 고강도 콘크리트의 실용화를 위하여는 탄성계수에 대한 체계적인 재정립이 필요하고 할 수 있다. 실제로 현재 국내의 철근콘크리트 구조물의 설계 또는 해석시 적용되는 미국 ACI 318-99 및 ACI 363 규준의 탄성계수 식과 일본 AIJ 규준의 탄성계수 식은 40MPa 이상의 고강도 콘크리트에 대해서는 실측치보다 과대 평가됨이 다수의 연구결과에서 지적되어 왔다. In general, the elastic modulus of concrete is affected by the material and strength of concrete. In the same type of concrete, the higher the compressive strength, the larger the elastic modulus. Therefore, when the elastic modulus is large, high strength concrete can be obtained. On the other hand, the elastic modulus of concrete corresponds to an important material variable required in the design, analysis, or sag control of the structure. It is becoming. And these functional expressions are regressions based on experimental values and contain a lot of uncertainty. Therefore, systematic re-establishment of modulus of elasticity is necessary for the technical development of concrete industry and the practical use of high strength concrete. In fact, the elastic modulus equations of the US ACI 318-99 and ACI 363 norms and the AIJ norms of the Japanese AIJ norm, which are currently applied in the design or analysis of reinforced concrete structures in Korea, are overestimated than actual values for high strength concrete above 40 MPa. It has been pointed out.

상기와 같은 문제점을 해결하기 위하여 창작된 본 발명의 목적은 다음과 같다.An object of the present invention created to solve the above problems is as follows.

첫째, 석회암 폐석을 굵은 골재로 활용한 고탄성-고강도 콘크리트를 구조용 부재로 이용함으로써, 자원 절약 및 환경 부하 저감을 동시에 달성시켜 경제성 있는 시공을 도모함을 본 발명의 목적으로 한다.First, by using high elasticity-high strength concrete using the limestone waste-rock as a coarse aggregate as a structural member, it is an object of the present invention to achieve economical construction by simultaneously saving resources and reducing environmental load.

둘째, 석회암 폐석을 굵은 골재로 활용한 콘크리트에 대하여 배합변수에 따른 압축강도별 탄성계수를 평가함으로써, 탄성계수를 증진시켜 콘크리트 구조물의 성능을 개선하고자 한다.Second, by evaluating the elastic modulus of each compressive strength according to the mixing parameters for concrete using limestone waste-rock as coarse aggregate, the elastic modulus is improved to improve the performance of concrete structures.

상기와 같은 과제를 해결하기 위하여 본 발명은 물, 시멘트, 굵은 골재, 혼화재를 포함하여 구성되는 구조용 콘크리트에 있어서, 상기 굵은 골재는 석회암 폐석인 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트를 제공한다.In order to solve the above problems, the present invention is a structural concrete comprising water, cement, coarse aggregates, admixtures, the coarse aggregate is a high elasticity-high strength structural concrete utilizing limestone waste-rock, characterized in that the limestone waste-rock To provide.

특히, 탄산칼슘이 65~85중량% 함유된 석회암 폐석을 사용하는 경우 탄성계수의 높은 증진으로 고탄성-고강도 콘크리트를 얻을 수 있으며, 이에 더하여 물-결합재비와 혼화재의 종류 및 함량 등을 조절함으로써 강도 40~100MPa의 고강도 콘크리트를 얻을 수 있다. In particular, in the case of using limestone waste-rock containing 65 to 85% by weight of calcium carbonate, high elasticity-high strength concrete can be obtained by increasing the modulus of elasticity, and in addition, the strength is controlled by controlling the water-bonding ratio and the type and content of the admixture. High strength concrete of 40 ~ 100MPa can be obtained.

이상과 같은 본 발명에 따르면 다음과 같은 효과가 기대된다.According to the present invention as described above is expected the following effects.

첫째, 석회암 폐석을 굵은 골재로 활용한 고강도 콘크리트를 구조 부재로 이용함으로써, 자원 절약 및 환경 부하 저감을 동시에 달성시켜 경제성 있는 시공을 도모할 수 있다.First, by using high-strength concrete using limestone waste-rock as coarse aggregate as a structural member, it is possible to achieve economical construction by simultaneously saving resources and reducing environmental load.

둘째, 석회암 폐석을 굵은 골재로 활용한 고강도 콘크리트에 대하여 배합변수에 따른 압축강도별 탄성계수를 평가함으로써, 탄성계수를 증진시켜 콘크리트 구조물의 성능을 개선할 수 있다.Second, by evaluating the elastic modulus according to the compressive strength of the high-strength concrete using the limestone waste-rock as coarse aggregate, it is possible to improve the performance of the concrete structure by improving the elastic modulus.

이하, 본 발명을 바람직한 실시예 및 실험예를 참고하여 상세히 설명한다.
본 발명의 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트는 물, 시멘트, 굵은 골재, 혼화재를 포함하여 구성되는 구조용 콘크리트에서, 상기 굵은 골재는 석회암 폐석인 것을 특징으로 한다.
여기에서 석회암 폐석은 탄산칼슘이 65~85중량% 함유된 것을 사용할 수 있다.
아울러 본 발명의 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트는 물-결합재비가 20~40%이고, 굵은 골재는 중량이 900~1100kg/㎥이며, 혼화재는 치환율율 15~30%인 플라이애쉬 또는 치환율 30~50%인 고로슬래그 미분말 또는 치환율 7~15%의 실리카흄 중 어느 하나인 것을 특징으로 한다. 이때 혼화재는 플라이애쉬 또는 고로슬래그 미분말 또는 실리카흄 중에서 둘을 선택하여 사용하는 것도 가능하다.
Hereinafter, the present invention will be described in detail with reference to preferred examples and experimental examples.
High-elasticity-high strength structural concrete utilizing the limestone waste-rock of the present invention is characterized in that in the structural concrete composed of water, cement, coarse aggregate, admixture, the coarse aggregate is limestone waste-rock.
Here, limestone waste-rock can be used containing 65 to 85% by weight of calcium carbonate.
In addition, the high-elasticity-high strength structural concrete using the limestone waste-rock of the present invention has a water-bonding ratio of 20 to 40%, the coarse aggregate has a weight of 900 to 1100kg / ㎥, and the admixture is a fly ash or a substitution rate of 15 to 30% It is characterized in that any one of 30 to 50% blast furnace slag fine powder or silica fume having a substitution rate of 7 to 15%. In this case, the admixture may be used by selecting either fly ash, blast furnace slag fine powder or silica fume.

본 발명에서는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트를 제작하기 위하여, 굵은 골재의 종류 및 성분함량에 따라 콘크리트 공시체를 제작하고, 콘크리트 압축강도 및 탄성계수를 측정하였다. 여기에서는 ASTM C469의 규정을 따라 공시체에 컴프레소미터를 부착하고 200톤 U.T.M을 사용하여 최대압축강도 40%까지 2회 반복 가력하였고, 최대 압축강도의 40%에 대응하는 강도에 대한 할선계수(secant modulus)를 사용하여 콘크리트의 탄성계수를 측정하였다. In the present invention, in order to manufacture high elastic-high strength structural concrete using limestone waste-rock, concrete specimens were prepared according to the type and composition of coarse aggregate, and the concrete compressive strength and elastic modulus were measured. Here, the compressor was attached to the specimen in accordance with ASTM C469 and subjected to two iterations up to 40% of the maximum compressive strength using a 200 ton UTM, and a secant coefficient for strength corresponding to 40% of the maximum compressive strength. modulus was used to measure the elastic modulus of concrete.

본 발명에서 사용되는 탄성계수 증진율은 측정된 탄성계수를 ACI 363 규준에 의한 탄성계수 값으로 나눈 값을 뜻한다.The modulus of elasticity enhancement used in the present invention means a value obtained by dividing the measured modulus of elasticity by the modulus of elasticity according to the ACI 363 standard.

콘크리트 배합에 사용되는 재료로 시멘트는 1종 포틀랜트 시멘트를 사용하였고, 혼화재는 비중 2.2, 분말도 3600㎠/g 전후인 플라이애쉬, 비중 2.9, 분말도 3600㎠/g 전후인 고로슬래그 미분말, 결정질 제품의 실리카흄을 사용하였다. 또한 굵은 골재로는 일반적으로 레미콘에서 사용하는 화강암 골재와 일정량의 탄산칼슘 함량을 가진 석회암 폐석을 사용하였으며, 굵은 골재의 최대치수는 20mm, 25mm로 하였다. Cement was used as a material for concrete mixing. One type of cement was used as a cement, and the admixture was a fly ash having a specific gravity of 2.2 and a powder degree of 3600㎠ / g, a blast furnace slag with a specific gravity of 2.9 and a powder degree of 3600㎠ / g, crystalline. Silica fume of the product was used. In addition, coarse aggregates are generally used granite aggregates used in ready-mixed concrete and limestone waste-rock with a certain amount of calcium carbonate. The coarse aggregates have a maximum size of 20 mm and 25 mm.

[[ 실시예1Example 1 ] 굵은 골재의 종류에 따른 탄성계수 특성Modulus of Elastic Modulus According to Type of Coarse Aggregate

우선 굵은 골재의 종류에 따른 콘크리트의 탄성계수 특성을 파악하기 위하여, 본 발명에서는 [표1-1]과 같은 배합변수에 따라 제작된 콘크리트를 설계강도 40~100MPa의 범위에서 각각 재령 7일, 14일 및 28일에 대하여 탄성계수를 평가하고, 탄성계수 증진율을 산정하였다. First, in order to grasp the elastic modulus characteristics of the concrete according to the type of coarse aggregate, in the present invention, the concrete produced according to the mixing parameters as shown in [Table 1-1] in the range of the design strength 40 ~ 100MPa, respectively, 7 days, 14 days The modulus of elasticity was evaluated for days and 28 days, and the modulus of elasticity enhancement was calculated.

[표 1-1]콘크리트의 배합변수[Table 1-1] Mixing Parameters of Concrete

물-결합재비(%)Water-binding ratio (%) 20, 25, 30, 35, 4020, 25, 30, 35, 40 굵은 골재 체적(Gv)Coarse aggregate volume (G v ) 0.34, 0.36, 0.380.34, 0.36, 0.38 단위수량(kg/㎥)Unit quantity (kg / ㎥) 155, 165155, 165 굵은 골재 종류Coarse Aggregate Type 석회암, 화강암Limestone, granite

여기에서 사용된 석회암 폐석은 [표1-2]와 같은 화학성분을 갖는다.Limestone waste-rock used here has the chemical composition shown in [Table 1-2].

[표 1-2]석회암 폐석의 화학성분[Table 1-2] Chemical Composition of Limestone Waste Rocks

구분division 화학성분(%)Chemical composition (%) 환산 CaCO3(%)Converted CaCO 3 (%) LOILOI SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 K2OK 2 O Na2ONa 2 O 성분함량Ingredient 31.7631.76 20.7320.73 2.792.79 1.821.82 39.9839.98 1.891.89 0.210.21 0.650.65 0.040.04 71.3571.35

실험결과, 굵은 골재 체적의 변화에 의한 탄성계수 증진율은 일정한 경향을 보이지 않았으며, 굵은 골재 종류가 석회암인 경우에 화강암을 사용한 경우에 비하여 높은 탄성계수 증진율을 나타내었다. 이때 굵은 골재 체적이 0.36인 경우, 물-결합재비에 따른 암석종류별 탄성계수 증진율에 대한 실험결과를 정리하면 [표1-3] 과 같다. As a result, the modulus of elastic modulus increased by the change of coarse aggregate volume did not show a constant tendency, and the modulus of elastic modulus showed a higher modulus of elastic modulus than that of granite when the type of coarse aggregate was limestone. In this case, when the coarse aggregate volume is 0.36, the experimental results of the elastic modulus enhancement rate for each rock type according to the water-bonding material ratio are summarized as in [Table 1-3].

[표 1-3]굵은 골재 종류에 따른 탄성계수 증진율[Table 1-3] Modulus Enhancement Rate by Coarse Aggregate Types

구분division 물-결합재비 (%)Water-binding ratio (%) 단위수량 (kg/㎥)Unit quantity (kg / ㎥) 굵은 골재 종류Coarse Aggregate Type 증진율(%), 실험값/ACI 363% Improvement, experimental value / ACI 363 7일7 days 14일14 days 28일28 days No.1No.1 2020 165   165 석회암  limestone 19.019.0 20.120.1 21.021.0 No.2No.2 2525 24.224.2 29.429.4 27.427.4 No.3No.3 3030 22.922.9 26.126.1 23.523.5 No.4No.4 3535 19.219.2 21.721.7 24.424.4 No.5No.5 4040 25.525.5 24.724.7 25.325.3 No.6No.6 2020 화강암  granite 2.02.0 4.34.3 0.10.1 No.7No.7 2525 9.29.2 6.86.8 3.93.9 No.8No.8 3030 8.08.0 4.84.8 7.07.0 No.9No.9 3535 6.06.0 11.011.0 7.27.2 No.10No.10 4040 5.55.5 8.88.8 8.98.9

[표1-3]에서 석회암과 화강암을 각각 굵은 골재로 사용하였을 때, 굵은 골재 종류에 따른 재령별 탄성계수 증진율은 도1과 같다. 여기에서 도1의 (a), (b) 및 (c)는 각각 재령 7일, 14일 및 28일인 경우의 탄성계수 증진율을 나타낸다. 도1의 (a) 내지 (c)에서와 같이, 석회암 폐석을 사용한 경우 ACI 363 Code에 비하여 높은 탄성계수를 얻을 수 있다.When limestone and granite are used as coarse aggregates in [Table 1-3], the modulus of elastic modulus increases by age according to the type of coarse aggregate is shown in FIG. Here, Figures 1 (a), (b) and (c) show the modulus of elasticity enhancement at 7, 14 and 28 days of age, respectively. As shown in (a) to (c) of Figure 1, when the limestone waste-rock is used, it is possible to obtain a higher modulus of elasticity than ACI 363 Code.

[[ 실시예2Example 2 ] 탄산칼슘 함량에 따른 콘크리트의 압축강도 및 탄성계수 특성Properties of Compressive Strength and Elastic Modulus of Concrete According to Calcium Carbonate Content

굵은 골재의 탄산칼슘 함량에 따른 콘크리트의 압축강도 및 탄성계수 특성을 파악하기 위하여 표[2-1]과 같은 배합을 갖도록 콘크리트를 제작하였다. In order to understand the compressive strength and elastic modulus characteristics of concrete according to the calcium carbonate content of coarse aggregate, concrete was prepared to have the formulation as shown in Table [2-1].

[표 2-1]콘크리트의 배합변수[Table 2-1] Mixing Parameters of Concrete

물-결합재비(%) Water-binding ratio (%) 잔골재율(%) Fine Aggregate Rate (%) 단위재료량(kg/㎥)Unit material amount (kg / ㎥) 단위수량Unit quantity 시멘트cement 실리카흄Silica fume 2020 36.036.0 165  165 759759 6666 2525 44.044.0 614614 4646 3030 41.041.0 550550 -- 3535 43.043.0 471471 --

상기 배합에서 표[2-2]와 같은 굵은 골재 종류 및 성분함량을 갖는 굵은 골 재 시료에 대하여 각각 재령 3, 7, 14, 28일에서 콘크리트의 압축강도 및 탄성계수를 측정하였다. 여기에서 사용된 석회암 폐석의 탄산칼슘 함량은 각각 63중량%, 75중량% 및 93중량% 수준이다. In the above formulation, the compressive strength and modulus of elasticity of concrete were measured at 3, 7, 14, and 28 days, respectively, for coarse aggregate samples having coarse aggregate types and component contents as shown in Table [2-2]. The calcium carbonate content of the limestone waste-rock used here is on the order of 63%, 75% and 93% by weight, respectively.

[표 2-2]시료별 화학성분[Table 2-2] Chemical Composition by Sample

시료명Sample Name 화학성분(%)Chemical composition (%) SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 K2OK 2 O CaCOCaCO 33 화강암granite 70.570.5 14.314.3 1.61.6 1.61.6 0.60.6 0.20.2 5.15.1 -- 석회암 NO.1Limestone NO.1 2.302.30 0.70.7 0.30.3 52.152.1 1.01.0 0.00.0 0.10.1 93.093.0 석회암 NO.2Limestone NO.2 16.516.5 3.63.6 2.22.2 41.741.7 1.61.6 0.40.4 0.90.9 74.474.4 석회암 NO.3Limestone NO.3 23.523.5 5.95.9 4.54.5 35.135.1 2.92.9 0.10.1 1.01.0 62.762.7

이중 재령 28일에서 시료별 콘크리트의 압축강도 및 탄성계수 증진율은 [표2-3]과 같다. The compressive strength and modulus of elasticity of each concrete at 28 days of age are shown in [Table 2-3].

[표 2-3]재령 28일에서의 시료별 콘크리트 압축강도 및 탄성계수 증진율[Table 2-3] Concrete Compressive Strength and Modulus of Elasticity Improvement by Samples at 28 Days of Age

물-결합재비(%) Water-binding ratio (%) 압축강도(MPa)/ 탄성계수(GPa)Compressive strength (MPa) / modulus of elasticity (GPa) 화강암granite 석회암 NO.1Limestone NO.1 석회암 NO.2Limestone NO.2 석회암 NO.3Limestone NO.3 2020 96.2/ 37.596.2 / 37.5 94.5/ 45.294.5 / 45.2 95.9/ 44.095.9 / 44.0 100.0/ 43.7100.0 / 43.7 2525 78.6/ 35.378.6 / 35.3 77.5/ 43.177.5 / 43.1 78.0/ 42.878.0 / 42.8 79.7/ 42.079.7 / 42.0 3030 59.8/ 34.559.8 / 34.5 61.0/ 40.961.0 / 40.9 60.5/ 39.260.5 / 39.2 63.2/ 38.463.2 / 38.4 3535 52.1/ 32.252.1 / 32.2 50.8/ 37.150.8 / 37.1 51.5/ 35.551.5 / 35.5 53.8/ 34.153.8 / 34.1

실험 결과 굵은 골재로 화강암을 사용한 경우보다 석회암 폐석을 사용한 모든 시료에서 높은 탄성계수 증진율을 확인할 수 있다. 따라서 탄산칼슘 함량에 따른 석회암 폐석 취득의 용이성을 고려하여 탄산칼슘이 65~85중량% 함유된 석회암 폐석을 굵은 골재로 사용하기로 한다. 아울러 콘크리트의 압축강도와의 관계를 고려할 때, 바람직하게는 탄산칼슘이 75중량% 포함된 석회암 폐석을 굵은 골재로 사용할 수 있겠다. 이때, 탄산칼슘은 환산탄산칼슘의 중량을 의미한다. Experimental results show higher modulus of elastic modulus in all samples using limestone waste-rock than in the case of coarse aggregates. Therefore, in consideration of the ease of limestone waste-rock acquisition according to the calcium carbonate content, limestone waste-rock containing 65 to 85% by weight of calcium carbonate will be used as coarse aggregate. In addition, considering the relationship with the compressive strength of the concrete, preferably, limestone waste rock containing 75% by weight of calcium carbonate may be used as a coarse aggregate. At this time, calcium carbonate means the weight of calcium carbonate equivalent.

[[ 실시예3Example 3 ] ] 혼화재의Miscible 종류 및 치환율에 따른 탄성계수 특성 Modulus of Elasticity according to Type and Substitution Rate

본 실험에서는 혼화재의 종류 및 치환율에 따른 탄성계수의 특성을 파악하기 위하여 [표3-1]과 같이 시험을 계획하였다. 굵은 골재로는 석회암을 사용하였고, 굵은 골재 체적(Gv)은 0.36이다.In this experiment, tests were planned as shown in Table 3-1 to understand the characteristics of the modulus of elasticity according to the type and the substitution rate of the admixture. Coarse aggregate was used as limestone, and the coarse aggregate volume (G v ) was 0.36.

[표 3-1]콘크리트의 배합변수[Table 3-1] Mixing Parameters of Concrete

물-결합재비(%)Water-binding ratio (%) 25, 3525, 35 플라이애쉬 치환율(%)Fly Ash Substitution Rate (%) 15, 3015, 30 단위수량(kg/㎥)Unit quantity (kg / ㎥) 165165 고로슬래그 미분말 치환율(%)Blast furnace slag fine powder substitution rate (%) 30, 5030, 50 실리카 흄 치환율(%)Silica fume substitution rate (%) 7.5, 157.5, 15

실험 결과를 정리하면 [표3-2] 및 도2와 같다.The results of the experiment are summarized in [Table 3-2] and FIG.

[표 3-2]혼화재의 종류 및 치환율에 따른 탄성계수의 증진율[Table 3-2] Enhancement Rate of Elastic Modulus According to Kinds and Substitution Rate of Admixtures

구분division 단위 수량 (kg/㎥)Unit quantity (kg / ㎥) 혼화재 종류Class of Admixtures 혼화재 치환율 (%)Admixture substitution rate (%) 증진율(%)Promotion rate (%) 7일7 days 14일14 days 28일28 days 물-결합재비 25%25% water-binding 물-결합재비 35%35% water-binding ratio 물-결합재비 25%25% water-binding 물-결합재비 35%35% water-binding ratio 물-결합재비 25%25% water-binding 물-결합재비 35%35% water-binding ratio No.1No.1 165    165 OPCOPC 00 24.224.2 30.730.7 30.530.5 26.326.3 23.123.1 27.327.3 No.2No.2 플라이 애쉬Fly ash 1515 22.522.5 26.126.1 25.625.6 27.627.6 24.624.6 24.724.7 No.3No.3 3030 23.823.8 32.332.3 23.623.6 29.829.8 22.422.4 31.731.7 No.4No.4 고로슬래그 미분말Blast furnace slag powder 3030 24.724.7 20.920.9 27.427.4 27.527.5 25.225.2 23.623.6 No.5No.5 5050 25.425.4 21.421.4 23.623.6 26.326.3 20.420.4 26.326.3 No.6No.6 실리카 흄Silica fume 7.57.5 17.117.1 20.420.4 18.718.7 22.422.4 13.113.1 20.720.7 No.7No.7 1515 8.28.2 17.217.2 10.910.9 16.216.2 9.29.2 16.2216.22

도2의 (a) 내지 (c)에서 볼 수 있는 바와 같이 플라이애쉬를 사용하는 경우, 플라이애쉬의 사용량에 따라 탄성계수가 증진되었음을 확인할 수 있다. 그리고 고로슬래그 미분말을 사용하는 경우에는 물-결합재비가 높은 경우에는 플라이애쉬를 사용한 경우에 비하여 다소 낮은 탄성계수 증진율을 나타내었으나, 물-결합재비가 낮아지는 경우에는 플라이애쉬와 동등한 수준의 탄성계수를 나타내었다. When the fly ash is used as shown in (a) to (c) of Figure 2, it can be seen that the elastic modulus is enhanced according to the amount of fly ash used. In the case of using blast furnace slag powder, when the water-bonding material ratio is high, the modulus of elasticity is slightly lower than that of the fly ash. However, when the water-binding material ratio is low, the elastic modulus is equivalent to that of the fly ash. Indicated.

[[ 실시예4Example 4 ] 굵은 골재 사용량에 따른 탄성계수 특성Elastic Modulus Characteristics of Coarse Aggregate Consumption

본 실험에서는 굵은 골재의 사용량에 따른 탄성계수의 특성을 파악하기 위하 여 [표4-1]과 같이 실험을 계획하였다. 여기에서 사용되는 굵은 골재로는 [표1-2]와 같은 성분으로 구성된 석회암 폐석을 사용하였다.In this experiment, the experiment was planned as shown in [Table 4-1] to understand the characteristics of elastic modulus according to the amount of coarse aggregate. As coarse aggregate used here, limestone waste-rock composed of the components shown in [Table 1-2] was used.

[표 4-1]콘크리트의 배합변수[Table 4-1] Mixing Parameters of Concrete

물-결합재비(%)Water-binding ratio (%) 25, 3525, 35 플라이애쉬 치환율(%)Fly Ash Substitution Rate (%) 1515 단위수량(kg/㎥)Unit quantity (kg / ㎥) 165165 굵은 골재 중량(kg/㎥)Coarse aggregate weight (kg / ㎥) 900, 1000, 1100900, 1000, 1100

상기 배합에 대하여 각각 재령 7일, 14일 및 28일에서 콘크리트의 압축강도와 탄성계수를 측정하였다. 이때 석회암 골재의 사용량에 따른 탄성계수 증진율의 변화를 정리하면 [표4-2] 및 도3과 같다.Compressive strength and modulus of elasticity of concrete were measured at 7, 14 and 28 days of age, respectively. At this time, the change of the modulus of elasticity enhancement according to the amount of limestone aggregate is summarized in [Table 4-2] and FIG.

[표 4-2]석회암 골재 사용량에 따른 탄성계수 증진율[Table 4-2] Modulus of Elasticity Improvement According to Limestone Aggregate Usage

구분division 물-결합재비(%)Water-binding ratio (%) 배합변수Formulation Variables 증진율(%)Promotion rate (%) 단위수량(kg/㎥)Unit quantity (kg / ㎥) 혼화재(%)Admixture (%) 중량(kg/㎥)Weight (kg / ㎥) 7일7 days 14일14 days 28일28 days No.1No.1 35 35 165  165 플라이 애쉬 15 Fly Ash 15 900900 27.727.7 24.224.2 25.825.8 No.2No.2 10001000 28.428.4 24.224.2 27.627.6 No.3No.3 11001100 35.235.2 38.238.2 34.534.5 No.4No.4 25 25 900900 32.832.8 22.522.5 22.222.2 No.5No.5 10001000 32.932.9 24.524.5 24.124.1 No.6No.6 11001100 33.033.0 26.826.8 23.723.7

[표4-2] 및 도3에서 볼 수 있듯이, 석회암 골재를 사용하는 경우 모두 탄성계수 증진을 나타내었다. 특히 석회암 골재의 사용량이 1100kg/㎥인 경우 탄성계수가 최대 34.5%까지 증진되었음을 알 수 있다. 여기에서는 물-결합재비가 35%인 경우 이러한 현상이 더욱 뚜렷하다.As shown in [Table 4-2] and FIG. 3, the use of limestone aggregate showed an improvement in modulus of elasticity. In particular, when the amount of limestone aggregate used is 1100kg / ㎥, it can be seen that the modulus of elasticity was improved up to 34.5%. This is more pronounced here when the water-binding ratio is 35%.

본 발명은 상기에서 언급한 바와 같이 바람직한 실시예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하다. 따라서 본 발명의 청구범위는 이건 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.While the invention has been described in connection with the preferred embodiment as mentioned above, various modifications and variations are possible without departing from the spirit of the invention. Therefore, the claims of the present invention include modifications and variations that fall within the true scope of the invention.

도1은 굵은 골재 종류에 따른 재령별 탄성계수 증진율을 나타내는 그래프이다.1 is a graph showing the elastic modulus enhancement rate for each age according to the type of coarse aggregate.

도2는 혼화재의 종류 및 치환율에 따른 탄성계수 증진율을 나타내는 그래프이다.2 is a graph showing the modulus of elasticity enhancement according to the type and the substitution rate of the admixture.

도3은 석회암 골재 사용량에 따른 탄성계수 증진율을 나타내는 그래프이다.Figure 3 is a graph showing the modulus of elasticity increase according to the limestone aggregate usage.

Claims (5)

물, 시멘트, 굵은 골재, 혼화재를 포함하여 구성되는 구조용 콘크리트에서, In the structural concrete, including water, cement, coarse aggregate, admixture, 상기 굵은 골재는 석회암 폐석인 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트.The coarse aggregate is high elasticity-high strength structural concrete utilizing limestone waste-rock, characterized in that limestone waste-rock. 제1항에서,In claim 1, 상기 석회암 폐석은 탄산칼슘이 65~85중량% 함유된 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트.The limestone waste-rock is a high-elasticity-high strength structural concrete utilizing limestone waste-rock, characterized in that containing 65 to 85% by weight of calcium carbonate. 제1항 또는 제2항에서,The method of claim 1 or 2, 상기 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트는 물-결합재비가 20~40%인 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트.The high-elasticity-high strength structural concrete using the limestone waste-rock is a high-elasticity-high strength structural concrete using the limestone waste-rock, characterized in that the water-bonding material ratio is 20 to 40%. 제1항 또는 제2항에서,The method of claim 1 or 2, 상기 혼화재는 치환율 15~30%인 플라이애쉬 또는 치환율 30~50%인 고로슬래그 미분말 또는 치환율 7~15%의 실리카흄 중 어느 하나인 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트.The admixture is a high-elasticity-high strength structural concrete using limestone waste-rock, characterized in that any one of fly ash having a substitution rate of 15 to 30% or fine blast furnace slag of substitution rate of 30 to 50% or silica fume having a substitution rate of 7 to 15%. 제1항 또는 제2항에서,The method of claim 1 or 2, 상기 굵은 골재는 중량이 900~1100kg/㎥인 것을 특징으로 하는 석회암 폐석을 활용한 고탄성-고강도 구조용 콘크리트.The coarse aggregate is high elasticity-high strength structural concrete using limestone waste-rock, characterized in that the weight is 900 ~ 1100kg / ㎥.
KR20070092018A 2007-09-11 2007-09-11 High elasticity and high strength structural concrete using limestone refuse KR100874210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070092018A KR100874210B1 (en) 2007-09-11 2007-09-11 High elasticity and high strength structural concrete using limestone refuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070092018A KR100874210B1 (en) 2007-09-11 2007-09-11 High elasticity and high strength structural concrete using limestone refuse

Publications (1)

Publication Number Publication Date
KR100874210B1 true KR100874210B1 (en) 2008-12-15

Family

ID=40372674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070092018A KR100874210B1 (en) 2007-09-11 2007-09-11 High elasticity and high strength structural concrete using limestone refuse

Country Status (1)

Country Link
KR (1) KR100874210B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356620B1 (en) * 2012-04-30 2014-02-04 주식회사 씨엠디기술단 Method for manufacturing the filling agent composition and system therefor
KR101356619B1 (en) * 2012-04-30 2014-02-04 주식회사 씨엠디기술단 Filling agent composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356620B1 (en) * 2012-04-30 2014-02-04 주식회사 씨엠디기술단 Method for manufacturing the filling agent composition and system therefor
KR101356619B1 (en) * 2012-04-30 2014-02-04 주식회사 씨엠디기술단 Filling agent composition

Similar Documents

Publication Publication Date Title
Kim et al. Utilization of waste concrete powder as a substitution material for cement
Elinwa et al. Ash from timber waste as cement replacement material
Sardinha et al. Durability properties of structural concrete containing very fine aggregates of marble sludge
Kırgız Strength gain mechanism for green mortar substituted marble powder and brick powder for Portland cement
Feng et al. Evaluation of the physical and chemical properties of fly ash products for use in Portland cement concrete
CN104773965A (en) High strength cement, mortar and concrete including industrial by-products
US8353984B2 (en) Compressive strength improvement of cement and gypsum products
Amankwah et al. Influence of Calcined clay Pozzolana on strength characteristics of Portland cement Concrete.
Ettu et al. Strength variation of OPC-rice husk ash composites with percentage rice husk ash
Patil et al. Effect of copper slag and granite dust as sand replacement on the properties of concrete
Vasanthi et al. Impact of partial replacement of cement by coconut shell ash and coarse aggregate by coconut shell on mechanical properties of concrete
KR101243523B1 (en) High Strength Concrete Composition for High-Rise Building
Kadhim et al. The Influence of nanoclay and powdered ceramic on the mechanical properties of mortar
KR100874210B1 (en) High elasticity and high strength structural concrete using limestone refuse
Maza et al. Combined Effect of Marble Waste as Powder and Aggregate Form on the Proprieties of the Mortar.
KR101622257B1 (en) Composition of a pile using byproduct materials and weak ground reinforcing piles for railway using the same
Hassan et al. The use of silica-breccia as a supplementary cementing material in mortar and concrete
KR100999534B1 (en) Admixture composite for cement alternative, cement binder composite and concrete composite using the same
Kibriya Crushed limestone waste as supplementary cementing material for high strength concrete
Dinh et al. Effect of limestone content on properties of portland limestone cement produced by intergrinding
KR100406218B1 (en) cement blend compound furtherance to do the chief ingredient for slag powder
Nécira et al. Properties of self-compacting mortar made with various mineralogical sources different types of sands and fillers
Prathyusha et al. Mechanical properties of glass fiber reinforced concrete using silica fume and quarry waste as partial replacements
Sharma The influence of pumice powder and glass fibers on concrete
Ramezanianpour et al. The effect of fly ash and blast-furnace slag on mechanical, rheological and durability of self-consolidating concrete-a review.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171128

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181128

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 12