KR100873054B1 - Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons - Google Patents

Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons Download PDF

Info

Publication number
KR100873054B1
KR100873054B1 KR1020070085526A KR20070085526A KR100873054B1 KR 100873054 B1 KR100873054 B1 KR 100873054B1 KR 1020070085526 A KR1020070085526 A KR 1020070085526A KR 20070085526 A KR20070085526 A KR 20070085526A KR 100873054 B1 KR100873054 B1 KR 100873054B1
Authority
KR
South Korea
Prior art keywords
btex
strain
benzene
ethylbenzene
xylene
Prior art date
Application number
KR1020070085526A
Other languages
Korean (ko)
Inventor
박정훈
정선용
이광춘
김홍재
Original Assignee
전남대학교산학협력단
주식회사 한국이엔시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단, 주식회사 한국이엔시 filed Critical 전남대학교산학협력단
Priority to KR1020070085526A priority Critical patent/KR100873054B1/en
Application granted granted Critical
Publication of KR100873054B1 publication Critical patent/KR100873054B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Abstract

A composite strain BTEX 1, and a method for decomposing soil-polluting materials by using the composite strain BTEX 1 are provided to decompose benzene, toluene, ethylbenzene, xylene or their mixture biologically and rapidly. A composite strain BTEX 1 is the composite strain BTEX 1 (KACC 91316P) of Rhodococcus sp. and Ochrobactrum intermedium and decomposes benzene, toluene, ethylbenzene, xylene or their mixture. Benzene, toluene, ethylbenzene, xylene or their mixture is decomposed by injecting the composite strain BTEX 1 (KACC 91316P) into the medium polluted with benzene, toluene, ethylbenzene, xylene or their mixture.

Description

휘발성 방향족 탄화수소 분해 복합균주 {Complex bacteria(KACC 91316P) for degradation of volatile aromatic hydrocarbons}Complex bacteria (KACC 91316P) for degradation of volatile aromatic hydrocarbons}

본 발명은 토양오염물질의 대표적인 물질인 BTEX(벤젠, 톨루엔, 에틸벤젠, 자일렌)를 생물학적으로 완전히 분해하고 무해한 물질로 변환시키는 복합균주 BTEX 1(KACC 91316P)에 관한 것이다.The present invention relates to a composite strain BTEX 1 (KACC 91316P) that is a representative of soil pollutants BTEX (benzene, toluene, ethylbenzene, xylene) is completely biodegradable and harmless.

BTEX는 한 개의 벤젠고리에 메틸기와 에틸기가 없거나, 하나 또는 두 개가 붙어있는 방향족 화합물이다. BTEX는 벤젠고리가 한 개가 들어있는 방향족 탄화수소로 분해가 어렵고 다른 가벼운 탄화수소류에 비해서 상대적으로 수용성이 크다. 이러한 오염물질들은 미국 환경청(EPA)에서 우선적으로 처리해야 될 물질로 발암 또는 잠재적 발암물질로 분류되어 있다. 석유의 80%가 BTEX으로 이루어져 있고 관리소홀로 지하수 혹은 토양에 누출되거나 유류저장고, 석유관로의 유출사고, 차량에서뿐만 아니라 산업체에서도 많이 발생하는 휘발성 유기화합물(VOCs)의 대표적인 물질이기도 하다. 배출된 BTEX는 주위의 환경을 오염시키고 있고 호흡기를 통해 인체에 장기간 흡입될 경우 백혈병, 임파암, 혈액암, 병변, 세포종양 등이 발생하게 된다. BTEX is an aromatic compound in which one benzene ring is free of methyl and ethyl groups or one or two are attached. BTEX is an aromatic hydrocarbon containing one benzene ring that is difficult to decompose and is relatively more water soluble than other light hydrocarbons. These pollutants are classified as carcinogens or potential carcinogens by the US Environmental Protection Agency. 80% of petroleum is made up of BTEX, and it is a representative substance of volatile organic compounds (VOCs) that occur in groundwater or soil by management alone, oil storage tanks, spills to oil pipelines, and many industries not only in vehicles but also in industry. The released BTEX pollutes the surrounding environment, and when inhaled into the human body through the respiratory system, leukemia, lymph cancer, blood cancer, lesions, and cell tumors occur.

2005년도 환경부 자료에 의하면 전국토양오염도 조사결과 56개 지점이 기준초과 총 3,902개 지점 중 56개 지점(1.4%)이 토양오염우려기준을 초과하였고, 이중 22개 지점(0.6%)이 대책기준을 초과했다. 공장 및 공업지역은 제조과정 및 유류탱크에서 기름누출 등으로 인해 Cu, Zn, BTEX 등이 오염되어 있는 것으로 나타났으며, 교통관련시설에서는 유류 취급 부주의 및 탱크 노후화 등으로 인해 토양 오염도가 상대적으로 높은 것으로 나타났다. According to the 2005 Ministry of Environment's data, 56 of the nation's soil pollution surveys exceeded the standard 56 out of 3,902 sites (1.4%) exceeded the soil pollution concern standards, and 22 of them (0.6%) met the standard. Exceeded. In factories and industrial areas, Cu, Zn, BTEX, etc. were polluted due to oil leakage from manufacturing process and oil tanks, and in the transportation related facilities, soil pollution was relatively high due to oil handling carelessness and tank aging. Appeared.

일부 공업단지에서 BTEX오염도는 무려 6230mg/kg으로 나타나 우려기준 80mg/kg, 대책기준 200mg/kg을 훌쩍 초과해 고 농도의 오염을 나타냈다. 이들 오염된 토양으로부터 유기 오염물질을 제거하는 기술은 물리적, 화학적 및 생물학적인 방법으로 구분할 수 있다. 물리적인 제거 기술에는 토양 세척 방법, 열탈착, 활성탄 고정, 고화안정화, 토양 증기 추출, 토양 굴착 후 격리 등이 있으며, 화학적 제거 방법에는 토양을 소각시켜 오염물질을 완전 산화하는 방법, 토양 유리화, 용매추출, 오염물질 열분해 등 이 있고, 생물학적인 방법에는 굴착 후 현지에서 생물분해로 처리하는 on-site 방법과 굴착하지 않고 원위치에서 미생물 주입 또는 공기 주입으로 미생물을 활성화 시켜 오염물을 분해 제거하는 in-situ 방법이 있다.In some industrial complexes, the BTEX pollution level was 6230mg / kg, which was much higher than 80mg / kg of concern and 200mg / kg of countermeasure. Techniques for removing organic contaminants from these contaminated soils can be divided into physical, chemical and biological methods. Physical removal techniques include soil washing, thermal desorption, activated carbon fixation, solidification stabilization, soil vapor extraction, and sequestration after soil excavation. Chemical removal methods include incineration of soil to completely oxidize contaminants, soil vitrification, and solvent extraction. The biological methods include the on-site method of biodegradation after excavation and the in-situ method of decomposing and removing contaminants by activating microorganisms by injecting microorganisms or injecting air without excavation. There is this.

이들 여러 가지 처리 방법들 중에서 생물학적 처리 방법이 친환경적이고, 경제적인 방법으로 알려져 있으며, 실제 미국에서 생물학적 처리 방법에 의한 토양의 처리 양이 증가 하는 것으로 알려져 있다. 미생물에 의한 유기물질 분해는 박테리아 내부에 존재하는 효소의 산화 또는 환원 반응에 의해 이루어지며, 일반적으로 분자량이 적은 물질이 큰 물질에 비해 분해가 빨리 이루어진다. 유기물질의 특성에 따라 미생물에 의한 분해 정도가 달라지므로, 생물학적 처리 방법을 모든 유기오염물에 적용할 수 있는 것은 아니다. 현재로서는 휘발성이고 수용성이 큰 저분자 유기오염물에 제한적으로 적용되고 있는 실정이다. Among these various treatment methods, biological treatment methods are known as environmentally friendly and economical methods, and in fact, the amount of soil treatment by biological treatment methods is known to increase in the United States. Degradation of organic substances by microorganisms is carried out by oxidation or reduction reactions of enzymes present in bacteria, and in general, substances having a low molecular weight are faster than those of a large substance. Since the degree of degradation by microorganisms varies depending on the nature of the organic material, biological treatment methods may not be applicable to all organic pollutants. At present, the present invention is limitedly applied to low molecular organic pollutants having high volatile and high water solubility.

BTEX는 상대적으로 휘발성 및 수용성이 크고, 독성물질로 알려져 있으므로, BTEX를 효율적으로 분해할 수 있는 균주 개발 및 이에 대한 연구가 진행되고 있다.Since BTEX is relatively volatile and water-soluble and is known as a toxic substance, the development and study of strains that can efficiently decompose BTEX are in progress.

따라서, 본 발명은 상기와 같은 종래의 기술의 문제점을 해결하기 위한 것으로, BTEX로 오염된 토양시료를 채취하여 BTEX분해능을 가진 균주를 분리한 후, 상기 균주를 동정한 다음 분리된 균주를 이용하여 BTEX를 생물학적으로 분해시킬 수 있는 미생물을 제공하는 것이다.Therefore, the present invention is to solve the problems of the prior art as described above, by separating the strain having BTEX resolution by collecting soil samples contaminated with BTEX, using the isolated strain after identifying the strain It is to provide microorganisms capable of biologically degrading BTEX.

상기의 목적을 달성하기 위하여 본 발명은 BTEX를 효과적으로 분해하는 복합균주 BTEX 1(KACC 91316P)를 제공한다. In order to achieve the above object, the present invention provides a composite strain BTEX 1 (KACC 91316P) that effectively decomposes BTEX.

또한 본 발명은 생물학적으로 다환 방향족 탄화수소를 분해하는 방법에 있어 서, 상기 복합균주 BTEX 1(KACC91316P)를 이용하는 것을 특징으로 하는 BTEX의 분해 방법을 제공한다. In another aspect, the present invention provides a method for decomposing BTEX, wherein the complex strain BTEX 1 (KACC91316P) is used in a method for decomposing biologically polycyclic aromatic hydrocarbons.

본 발명은 유류오염 토양으로부터 복합균주 BTEX 1을 분리함으로써, 휘발성 방향족 탄화수소인 벤젠, 톨루엔, 에틸벤젠, 자일렌(BTEX)등을 생물학적으로 쉽게 분해 할 수 있고, BTEX가 복합적으로 혼합되어 오염되어있는 매개체(토양 또는 물 등)의 생물학적 정화에 유용하게 사용할 수 있다.The present invention is to isolate the complex strain BTEX 1 from oil contaminated soil, biologically easy to decompose volatile aromatic hydrocarbons benzene, toluene, ethylbenzene, xylene (BTEX), and BTEX is mixed and contaminated It can be usefully used for biological purification of media (such as soil or water).

상기 복합균주는 BTEX로 오염된 토양으로부터 분리되었다. 채취한 오염토양을 C-배지 200ml에 넣고, 균 성장은 탁도를 통해 확인하였다. 성장이 확인된 균주들은 다시 계대배양을 통해 원하는 균주를 분리하고자 하였다. 계대배양을 최소 10번 이상 반복한 후, BTEX를 분해하는 복합균주를 분리하고 스트리킹(streaking), 또는 도말(spread)함으로써 원하는 복합균주를 얻을 수 있었다. 분리된 복합균주는 두가지 균주로 이루어졌으며 BTEX를 탄소원으로 이용할 수 있는 최소(C-medium)배지에 복합균주를 접종하고, 탁도와 색의 변화 및 BTEX농도 변화를 통해 분해능을 가진 BTEX 1을 분리 할 수 있었다. BTEX 1은 국가기관인 농업생명공학연구원 한국농업미생물자원센터(KACC)에 기탁번호 KACC 91316P 로 기탁하였다. The complex strain was isolated from soil contaminated with BTEX. The collected soil was put in 200 ml of C-medium, and bacterial growth was confirmed through turbidity. Strains that were confirmed to grow were again intended to isolate the desired strain through subculture. After repeating the passage at least 10 times, the desired complex strain was obtained by separating, streaking, or spreading the complex strain decomposing BTEX. The isolated complex strain consisted of two strains, and inoculated the conjugate strain into the C-medium medium that can use BTEX as a carbon source, and isolate BTEX 1 with resolution by changing turbidity, color, and BTEX concentration. Could. BTEX 1 was deposited with KACC 91316P, a Korean National Institute of Agricultural and Biotechnology, KACC.

또한 본 발명은 상기 미생물 KACC 91316P (복합균주 BTEX 1)이 수용액에 벤 젠, 톨루엔, 에틸벤젠, 자일렌이 각각 존재할 경우 모두 분해할 수 있고 BTEX가 혼합기질로 존재할 경우 동시에 분해하는 성질을 갖는 균주의 분해 특성을 제공한다. 또한 동시 분해 시 균주 KACC 91316P는 자일렌의 분해속도에 비해 에틸벤젠, 톨루엔, 벤젠의 분해 속도가 훨씬 빠르고 에틸벤젠, 톨루엔, 벤젠의 순서로 분해가 되는 특징을 가진다. In addition, the present invention is a microorganism KACC 91316P (complex strain BTEX 1) can be decomposed if the presence of benzene, toluene, ethylbenzene, xylene, respectively in the aqueous solution, and the strain having the property of simultaneously decomposing when BTEX is present in the mixed substrate It provides the decomposition characteristics of. In addition, the strain KACC 91316P is characterized in that the decomposition rate of ethylbenzene, toluene, benzene is much faster than the decomposition rate of xylene and decomposes in the order of ethylbenzene, toluene, benzene.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시 예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

[실시예1] 복합균주 BTEX 1의 분리Example 1 Isolation of Complex Strain BTEX 1

토양 시료를 채취한 다음 탄소원-결핍 배지인 carbon-minimal medium(표1 참조) 에틸벤젠 200ul를 포함한 액체배지(200ml)에 1.0g의 토양을 넣고, 진탕식 건식 배양기에서 몇주 동안 배양한다. 배양된 배양액을 신선한 새로운 같은 배지에 접종하여 계대배양을 실시한다. 다음 미생물 성장확인은 탁도를 통해 확인한다. 탁도를 통해 균의 성장이 확인된 경우 같은 조건의 배지에 다시 배양액을 1%로 접종시킨다. 같은 방법으로 최소 10번 이상 계대배양 후 C-medium에서 분해실험을 실시하고 LB고체배지(표2 참조)에 백금이를 이용하여 도말한 후 24시간 정도 배양, 형성되는 콜로니를 확인해서 균주 동정을 실시했다. 도1은 본 발명의 복합균주 BTEX 1 (KACC 91316P)의 1000배 확대한 그람염색이 된 광학현미경 사진이다. Take soil samples and place 1.0 g of soil in a liquid medium (200 ml) containing 200 ul of carbon-minimal medium, carbon-minimal medium (see Table 1), which is a carbon source-deficient medium, and incubate for several weeks in a shake-dry incubator. The culture is inoculated in fresh fresh medium to carry out subculture. Next microbial growth is confirmed by turbidity. When the growth of bacteria is confirmed through turbidity, the culture medium is inoculated again at 1% in the same conditions. In the same way, at least 10 passages are carried out in a C-medium digestion test, and then plated on LB solid medium (see Table 2). Carried out. Figure 1 is an optical micrograph of gram staining magnified 1000 times of the complex strain BTEX 1 (KACC 91316P) of the present invention.

표 1Table 1

(NH4)2SO4 (NH 4 ) 2 SO 4 5.0 g5.0 g Trace element solutionTrace element solution KH2PO4 KH 2 PO 4 1.0 g1.0 g MoO3 MoO 3 1.0 mg1.0 mg K2HPO4 K 2 HPO 4 2.0 g2.0 g ZnSO7H2OZnSO 4 7H 2 O 7.0 mg7.0 mg MgSO7H2OMgSO 4 7H 2 O 0.2 g0.2 g CuSO5H2OCuSO 4 5H 2 O 0.5 mg 0.5 mg NaClNaCl 2.0 g2.0 g H3BO3 H 3 BO 3 1.0 mg1.0 mg CaCl2 CaCl 2 10 mg10 mg MnSO5H2OMnSO 4 5H 2 O 1.0 mg1.0 mg FeSO4·7H2OFeSO 4 · 7H 2 O 10 mg10 mg CoCl6H2OCoCl 2 · 6H 2 O 1.0 mg1.0 mg Yeast extractYeast extract 0.2 g0.2 g NiSO7H2ONiSO 4 7H 2 O 1.0 mg1.0 mg Trace elements solutionTrace elements solution 2.0 mL2.0 mL Deionized water Deionized water 1.0 L 1.0 L Deionized waterDeionized water 1.0 L1.0 L pHpH 7.07.0

표 2TABLE 2

Tryptone Tryptone 10g10 g Yeast extract Yeast extract 5g5 g NaCl NaCl 10g10 g Agar Agar 15g15 g

[실시예2] 분리된 균주의 동정Example 2 Identification of Isolated Strains

상기한 방법으로 분리된 균주는 먼저 그람염색을 통한 현미경 상에서의 형태학적 관찰과 16S rRNA 염기서열 해독을 통한 염기서열 해독을 실시하고 해독된 염기서열은 NCBI의 BLAST database에서 검색을 통해 복합균주의 두 가지 미생물을 동정했다. 분리균의 형태는 광학현미경(Olympus x40)을 이용하여 관찰하였다(도 1 참 조). 16S rRNA 염기서열 해독 후 동정결과 Rhodococcus sp.와 Ochrobactrum intermedium sp.임을 확인할 수 있었다.Strains isolated by the above method were first subjected to morphological observation under gram staining and 16S rRNA sequencing and then to sequencing. Eggplant microorganisms were identified. Morphology of the isolates was observed using an optical microscope (Olympus x40) (see Figure 1). After 16S rRNA sequencing, it was confirmed that Rhodococcus sp. And Ochrobactrum intermedium sp.

[실시예3] 복합균주 BTEX 1의 성장특성Example 3 Growth Characteristics of Complex Strain BTEX 1

분리된 복합균주 BTEX 1의 온도에 따른 활성과 pH에 따른 활성도 범위를 측정하기 위해서 에틸벤젠을 탄소원으로 0.1%(v/v)를 주입한 배양배지를 이용하여 성장특성을 관찰하였다. 성장온도는 25℃, 30℃ 및 35℃로 조절해서 배양을 진행하고 pH를 pH3, pH5, pH6, pH7 과 pH8로 조절해서 실험을 진행했다. 일반적으로 토양은 특성에 따라 pH가 5~9의 범위를 나타내는 것으로 보고되고 있다. 따라서 상기 복합균주 BTEX 1를 위의 방법에 따라 조제된 배지에 적용해서 증식 정도를 분석했다. 분석결과 복합균주 BTEX 1은 25℃부터 35℃까지의 온도에서 모두 성장 가능하였고 30℃에서 다른 온도조건에서의 성장에 비해 증식률이 가장 우수했다.(도 2 참조) 따라서 넓은 온도범위 환경에서 본 복합균주를 이용할 수 있을 것으로 기대된다.Growth characteristics were observed using a culture medium in which 0.1% (v / v) of ethylbenzene was injected into the carbon source in order to measure the activity range according to the temperature of the isolated complex strain BTEX 1 and pH. The growth temperature was adjusted to 25 ℃, 30 ℃ and 35 ℃ to proceed with the culture and the pH was adjusted to pH3, pH5, pH6, pH7 and pH8 experiment. In general, the soil is reported to have a pH range of 5-9 depending on the characteristics. Therefore, the complex strain BTEX 1 was applied to the medium prepared according to the above method to analyze the degree of proliferation. As a result of the analysis, BTEX 1 was able to grow at temperatures ranging from 25 ° C to 35 ° C and showed the best growth rate compared to growth at other temperature conditions at 30 ° C (see Figure 2). It is expected that the strain will be available.

또한, pH에 따른 성장 특성 조사결과 pH5부터 pH8사이에서 성장 가능하였고 중성인 pH7에서 균주들의 성장이 가장 좋았다.(도 3 참조)In addition, the growth characteristics according to the pH, the growth was possible between pH5 to pH8 and the growth of the strains in the neutral pH7 was the best (see Figure 3).

[실시예4] 복합균주 BTEX 1의 단일 기질에 대한 분해능 측정Example 4 Determination of Resolution of a Single Substrate of the Complex Strain BTEX 1

복합균주 BTEX 1이 탄소원으로 벤젠, 톨루엔, 에틸벤젠과 자일렌을 각각 단일 기질로 사용하고 4가지 물질의 분해능을 관찰하는 실시예로서 20ml의 바이얼에 5ml의 배지를 넣고 각각의 기질의 초기농도를 20ppm이 되게 농도를 조절한 다음 시간에 따른 복합균주 BTEX 1의 각 기질 분해율을 관찰하였다. 물질분석은 가스크로마토그래피(GC: Gas Chromatography, 이하 GC라고 한다.) 분석 장비를 이용하였다. 실험방법은 다음과 같이 실시하였다. 먼저 전 배양된 복합균주 BTEX 1 배양액을 원심분리기에 넣어서 7000rpm으로 5분간 원심분리 한다. 원심 분리 후 상등 액은 버리고 다시 멸균된 인산완충용액(PBS: phosphate buffer solution)을 이용하여 기질로 이용되었던 각각의 BTEX를 3회 정도 세척하여 완전히 제거하였다. 세척된 균주는 흡광도(600nm)값이 1.0이 되도록 조절하고 BTEX가 주입된 20ml 바이얼에 50ul씩 멸균된 실린지를 이용하여 접종하였다. BTEX는 휘발성 방향족 탄화수소로써 휘발성이 매우 강하다. 따라서 바이얼은 미니너트 밸브(Mininert valve) 밀봉 시스템을 사용해서 기질의 손실을 막아서 분석실험에 유리하게 했다. 이후, 30℃, 150rpm에서 기질의 분해 특성에 따라서 몇시간 단위로 배양중인 바이얼 상부 공기에서 가스밀봉(gas tight)실린지를 사용해서 GC에 직접 주입해 분석실험을 진행했다. 분리는 비극성 컬럼인 HP-5를 이용했고 분석조건은 주입부 온도 150℃, 오븐 온도 60℃, 검출부 온도 200℃로 등온모드에서 5분간 분석했다. BTEX 1 is a composite strain that uses benzene, toluene, ethylbenzene, and xylene as a single substrate, respectively, and observes the resolution of four substances. 5 ml of medium is added to a 20 ml vial, and the initial concentration of each substrate is After adjusting the concentration to 20ppm was observed the degradation rate of each substrate of the complex strain BTEX 1 over time. Material analysis was performed using gas chromatography (GC) analysis equipment. Experimental method was carried out as follows. First, put the cultured BTEX 1 culture medium in a centrifuge and centrifuge at 7000 rpm for 5 minutes. After centrifugation, the supernatant was discarded, and each BTEX, which was used as a substrate, was completely removed by sterile phosphate buffer solution (PBS). The washed strain was adjusted to have an absorbance (600 nm) value of 1.0 and inoculated using a sterilized syringe by 50ul in a 20ml vial injected with BTEX. BTEX is a volatile aromatic hydrocarbon that is very volatile. Vial therefore used a Mininert valve sealing system to prevent substrate loss, which favored the assay. Then, the experiment was carried out by directly injecting gas into the GC using a gas tight syringe in the upper air of the vial incubating for several hours depending on the decomposition characteristics of the substrate at 30 ° C. and 150 rpm. Separation was performed using HP-5, a non-polar column, and analysis conditions were analyzed for 5 minutes in an isothermal mode at an injection temperature of 150 ° C, an oven temperature of 60 ° C, and a detection temperature of 200 ° C.

단일 기질로 벤젠을 사용했을 때 복합균주 BTEX 1의 분해능을 보면, 균주 접종 후 50시간 내에 벤젠을 모두 분해하며 대조군으로 미생물이 없는 바이얼의 벤젠 의 농도는 초기농도를 유지하고 있는 것을 관찰할 수 있다(도4 참조). 벤젠은 메틸기나 에틸기가 없고 육각형 모양의 안정된 구조를 가지고 있어 일반 탄화수소보다 미생물의 분해가 더 어렵기 때문에 다른 기질에 비해서 완전히 분해를 하는데 더 긴 시간이 필요했을 것으로 사료된다. 다음, 톨루엔을 탄소원으로 사용했을 때 분해상태를 관찰하면 벤젠과 달리 접종 후 빠른 시간 내에 분해가 일어나며 10시간 내에는 완전히 분해가 됨을 관찰할 수 있었다(도5 참조). 그 다음으로 에틸벤젠의 분해능 관찰결과 4가지 기질 중에서 분해효과가 가장 좋아서 5시간 내에 거의 100% 가까이 분해가 일어남을 보여주고 있다(도6 참조). 마지막으로 자일렌에 대한 분해효과를 보기 위해 분해실험을 실행한 결과인데 톨루엔과 거의 비슷한 분해특성을 보여주고 있다(도 7 참조).When the benzene was used as a single substrate, the resolution of the complex strain BTEX 1 could be observed to decompose all the benzene within 50 hours after inoculation of the strain and maintain the initial concentration of benzene in the vial without microorganisms as a control. (See Fig. 4). Since benzene has no methyl group or ethyl group and has a hexagonal stable structure, it is more difficult to decompose microorganisms than general hydrocarbons. Therefore, it was considered that longer time was required for complete decomposition than other substrates. Next, when toluene was used as a carbon source, the decomposition state was observed. Unlike benzene, degradation occurred within a short time after inoculation and completely degraded within 10 hours (see FIG. 5). After that, the resolution of ethylbenzene showed the highest degradation effect among the four substrates, indicating that almost 100% degradation occurred within 5 hours (see FIG. 6). Finally, a decomposition experiment was conducted to see the decomposition effect on xylene, which shows a decomposition characteristic almost similar to that of toluene (see FIG. 7).

상의 분해실험결과 복합균주 BTEX 1은 단일 기질로 벤젠, 톨루엔, 에틸벤젠, 자일렌을 각각 단일 탄소원으로 사용했을 때에는 빠른 시간 내에 모두 완전히 분해를 할 수 있는 것으로 나타났다.As a result of the decomposition of the phase, the BTEX 1 complex strain was able to decompose completely in a short time when benzene, toluene, ethylbenzene and xylene were used as single carbon sources.

[실시예5] 복합균주 BTEX 1의 복합기질에 대한 분해능 측정Example 5 Determination of the Resolution of the Composite Substrate of the Complex Strain BTEX 1

벤젠, 톨루엔, 에틸벤젠, 자일렌이 동시에 존재하는 복합기질을 이용해서 실험을 진행했을 때 복합균주 BTEX 1의 BTEX분해 특성을 파악하고 동시분해 가능성을 평가하기 위해서 실험을 실시했다. 분해실험은 (실시예 4)와 같은 조건으로 하고 GC를 사용해서 같은 조건으로 분석을 진행했다. 분석은 BTEX 배지속의 농도와 휘발된 후 상부기체상의 기질의 농도가 평형이 된 다음 복합균주 BTEX 1을 접종하고 실시하였다.When experiments were conducted using a composite substrate in which benzene, toluene, ethylbenzene, and xylene were present at the same time, an experiment was carried out to determine the BTEX degradation characteristics of the conjugate strain BTEX 1 and to evaluate the possibility of simultaneous decomposition. The decomposition experiment was carried out under the same conditions as in (Example 4), and the analysis was performed under the same conditions using GC. The analysis was carried out after inoculation with the concentration of BTEX medium and the concentration of the substrate on the upper gas was equilibrated, and then inoculated with the conjugate strain BTEX 1.

분석결과 BTEX 복합기질은 80시간 이후에 100% 가까이 분해가 되고 벤젠, 톨루엔, 에틸벤젠은 20시간 정도면 거의 다 분해가 일어나고 있고 자일렌만 비교적 늦게 분해가 일어나고 있음을 관찰 할 수 있다. 이것은 단일기질로 벤젠과 자일렌만을 사용한 분해실험결과와 다르게 나타났다. 이는 4가지 물질이 동시에 존재할 때 벤젠의 분해능이 높아짐과 아울러 자일렌의 분해능이 상대적으로 떨어짐을 관찰할 수 있다. 또한 시간에 따른 분해특성에서 우선 먼저 에틸벤젠을 이용하고 다음 톨루엔, 벤젠, 자일렌의 순서로 기질을 소모하는 것으로 나타났다.(도 8 참조)As a result, BTEX composite substrate is almost 100% decomposed after 80 hours, benzene, toluene and ethylbenzene are almost completely decomposed in about 20 hours, and only xylene is decomposed relatively late. This was different from the decomposition test using only benzene and xylene as a single substrate. It can be observed that when four substances are present at the same time, the resolution of benzene is increased and the resolution of xylene is relatively decreased. In addition, in the decomposition property with time, it was shown that the first use of ethylbenzene, and then consume the substrate in the order of toluene, benzene, xylene (see Fig. 8).

[실시예6] 오염된 흑음지 및 광주토양에서 복합균주 BTEX 1의 분해능 측정Example 6 Resolution of Complex Strain BTEX 1 in Contaminated Black Paper and Gwangju Soil

토양에 따른 복합균주 BTEX 1의 분해능을 알아보기 위해 복합기질 BTEX를 이용하여 분해능을 측정하였다. 실험 방법은 다음과 같이 실시하였다. 유기물 함량 등 물리화학적 특성이 다른 2가지 토양 흑음지(Heukyeumgi), 광주(Gwangju)토양을 20ml vial에 각각 1g씩 넣고 20분간 autoclave를 시켰으며 멸균된 C-medium용액5ml로 이들 토양 샘플을 균질화한 후, BTEX로 각각 오염시켰다. 이 후 30℃ ,120rpm으로 이틀간 진탕 배양하여, 오염물질이 흡착평형에 이르게 한 후 복합균주 BTEX 1을 주입하여 오염물질의 생물학적 분해를 수행하였다. 복합균주 BTEX 1을 주입한 후 vial 내 오염물의 농도를 측정하여 복합균주 BTEX 1에 의한 BTEX의 농도변화를 관찰하였다. 오염물질의 분석방법은 (실시예4)와 같은 조건의 GC 분석법을 이용하였다.In order to determine the resolution of the complex strain BTEX 1 according to soil, the resolution was measured using the composite substrate BTEX. Experimental method was carried out as follows. Two soils with different physicochemical properties, such as organic matter content, were placed in 20ml vial, 1g each, and autoclave for 20 minutes. Homogenized these soil samples with 5ml of sterilized C-medium solution. Then, each was contaminated with BTEX. Thereafter, shaking culture for 30 days at 30 ℃, 120rpm, and the contaminants reached the adsorption equilibrium, and then the bacterial strain BTEX 1 was injected to perform biological decomposition of the contaminants. After injecting the conjugate strain BTEX 1, the concentration of contaminants in the vial was measured to observe the change in concentration of BTEX by the conjugate strain BTEX 1. Contaminants were analyzed by GC analysis under the same conditions as in Example 4.

도 9는 토양을 넣은 후 분해 결과를 나타내는 것으로 미생물이 주입되지 않은 대조군에서는 BTEX의 손실이 매우 적었으나, 복합균주 BTEX 1이 주입된 실험에서 에틸벤젠은 각각의 토양에서 이틀만에 97% 이상의 높은 분해율을 보이고 있는 반면, 벤젠과 톨루엔의 경우는 토양의 특성에 따라 분해율이 다르게 나타났으며 자일렌은 7일 만에 각각의 토양에서 비슷한 분해율을 보였다. 토양에 유기오염물의 흡착은 토양 및 유기오염물의 물리화학적 특성에 따라 크게 차이가 있으며, 또한 미생물은 강하게 흡착된 오염물을 분해하기가 상대적으로 어려운 것으로 알려져 있다. 실험결과에서 BTEX는 흑음지 토양에 흡착이 많이 일어나며 상대적으로 미생물에 의한 분해가 서서히 일어나는 것으로 나타났다. Figure 9 shows the results of decomposition after the soil was added to the microorganism-injected control group was very little loss of BTEX, but in the experiment injected with the complex strain BTEX 1 ethylbenzene was higher than 97% in two days in each soil In the case of benzene and toluene, the decomposition rate was different according to soil characteristics, and xylene showed similar decomposition rate in each soil after 7 days. Adsorption of organic contaminants on soil varies greatly depending on the physicochemical properties of the soil and organic contaminants, and microorganisms are known to be relatively difficult to decompose strongly adsorbed contaminants. The experimental results showed that BTEX absorbed a lot of black soils and slowly degraded by microorganisms.

본 실험에 사용된 복합균주 BTEX 1을 사용해서 벤젠, 톨루엔, 에틸벤젠과 자일렌으로 동시에 오염된 토양 등을 생물학적으로 복원할 때 본 복합균주를 사용해서 빠른 시간 내에 효과적으로 제거할 수 있을 것으로 사료된다. The biological strain of BTEX 1, which is used in this experiment, can be used to effectively remove soils contaminated with benzene, toluene, ethylbenzene and xylene simultaneously. .

도 1은 본 발명에 따른 균주인 KACC 91316P(복합균주 BTEX 1)을 보여주는 현미경 관찰사진(ㅧ1000)Figure 1 is a microscopic observation showing the strain KACC 91316P (complex strain BTEX 1) according to the present invention (ㅧ 1000)

도 2는 복합균주 BTEX 1의 온도에 따른 성장특성2 is a growth characteristic according to the temperature of the complex strain BTEX 1

도 3은 복합균주 BTEX 1의 pH에 따른 성장특성Figure 3 growth characteristics according to the pH of the complex strain BTEX 1

도 4는 복합균주 BTEX 1의 벤젠의 분해특성4 is a decomposition characteristic of benzene of the complex strain BTEX 1

도 5는 복합균주 BTEX 1의 톨루엔의 분해특성5 is a decomposition characteristic of toluene of the complex strain BTEX 1

도 6은 복합균주 BTEX 1의 에틸벤젠의 분해특성6 is a decomposition characteristic of ethylbenzene of the complex strain BTEX 1

도 7은 복합균주 BTEX 1의 자일렌의 분해특성7 is a decomposition characteristic of xylene of the complex strain BTEX 1

도 8은 복합균주 BTEX 1의 BTEX 혼합기질 동시 분해특성8 is a simultaneous decomposition of BTEX mixed substrate of complex strain BTEX 1

도 9는 BTEX로 오염된 흑음지 및 광주토양에서 복합균주 BTEX 1의 분해능 측정Figure 9 Measurement of the resolution of the complex strain BTEX 1 in the black soil and Gwangju soil contaminated with BTEX

Claims (2)

벤젠, 톨루엔, 에틸벤젠, 자일렌, 또는 이들의 혼합물을 분해하는, 로도코커스(Rhodococcus) sp. 및 오크로박트럼 인터미디움(Ochrobactrum intermedium)의 복합균주 BTEX 1(KACC 91316P). Rhodococcus sp., Which degrades benzene, toluene, ethylbenzene, xylene, or mixtures thereof. And complex strain BTEX 1 (KACC 91316P) of Ochrobactrum intermedium . 벤젠, 톨루엔, 에틸벤젠, 자일렌, 또는 이들의 혼합물로 오염된 매개체(medium)에 로도코커스(Rhodococcus) sp. 및 오크로박트럼 인터미디움(Ochrobactrum intermedium)의 복합균주 BTEX 1(KACC 91316P)을 주입하는 단계를 포함하는, 벤젠, 톨루엔, 에틸벤젠, 자일렌, 또는 이들의 혼합물의 분해방법. Rhodococcus sp. On medium contaminated with benzene, toluene, ethylbenzene, xylene, or mixtures thereof. And injecting the complex strain BTEX 1 (KACC 91316P) of Ochrobactrum intermedium , benzene, toluene, ethylbenzene, xylene, or a mixture thereof.
KR1020070085526A 2007-08-24 2007-08-24 Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons KR100873054B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070085526A KR100873054B1 (en) 2007-08-24 2007-08-24 Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070085526A KR100873054B1 (en) 2007-08-24 2007-08-24 Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons

Publications (1)

Publication Number Publication Date
KR100873054B1 true KR100873054B1 (en) 2008-12-09

Family

ID=40372320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070085526A KR100873054B1 (en) 2007-08-24 2007-08-24 Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons

Country Status (1)

Country Link
KR (1) KR100873054B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937722A (en) * 2014-04-24 2014-07-23 烟台海上传奇生物科技有限公司 Ochrobactrum intermedium, microbial agent and applications of ochrobactrum intermedium and microbial agent
CN108853865A (en) * 2018-08-30 2018-11-23 广州大学 A method of degradation dinotefuran
CN109370945A (en) * 2018-11-20 2019-02-22 浙江工业大学 The anthropi ZJUTCB-1 of one high-efficiency degradation chlorobenzene and its application
CN111378598A (en) * 2020-01-19 2020-07-07 中南民族大学 Ochrobactrum sp ZTS-1 strain of Ochrobactrum and application thereof
CN111909874A (en) * 2020-08-17 2020-11-10 东北农业大学 Biocontrol bacterium I-5 and application thereof in controlling alfalfa root rot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623211B2 (en) * 2000-05-24 2003-09-23 Rutgers University Remediation of contaminates including low bioavailability hydrocarbons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623211B2 (en) * 2000-05-24 2003-09-23 Rutgers University Remediation of contaminates including low bioavailability hydrocarbons

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Acta Biotechnol, 20 (2000) 3-4, pp.219-223
Journal of Chemical Technologt and Biotechnology, Vol.77, pp.1308-1315 (2002)
Journal of Korean Society on Water Quality, Vol.21, No.4, pp.347-352 (2005)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937722A (en) * 2014-04-24 2014-07-23 烟台海上传奇生物科技有限公司 Ochrobactrum intermedium, microbial agent and applications of ochrobactrum intermedium and microbial agent
CN103937722B (en) * 2014-04-24 2016-10-26 烟台地元生物科技有限公司 Middle anthropi and microbial bacterial agent and their application
CN108853865A (en) * 2018-08-30 2018-11-23 广州大学 A method of degradation dinotefuran
CN108853865B (en) * 2018-08-30 2020-06-12 广州大学 Method for degrading dinotefuran
CN109370945A (en) * 2018-11-20 2019-02-22 浙江工业大学 The anthropi ZJUTCB-1 of one high-efficiency degradation chlorobenzene and its application
CN111378598A (en) * 2020-01-19 2020-07-07 中南民族大学 Ochrobactrum sp ZTS-1 strain of Ochrobactrum and application thereof
CN111378598B (en) * 2020-01-19 2021-11-30 中南民族大学 Ochrobactrum sp.ZTS-1 strain of Ochrobactrum and application thereof
CN111909874A (en) * 2020-08-17 2020-11-10 东北农业大学 Biocontrol bacterium I-5 and application thereof in controlling alfalfa root rot
CN111909874B (en) * 2020-08-17 2022-08-19 东北农业大学 Biocontrol bacterium I-5 and application thereof in controlling alfalfa root rot

Similar Documents

Publication Publication Date Title
Xiong et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar
Mawang et al. Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants
Ghazali et al. Biodegradation of hydrocarbons in soil by microbial consortium
Kristanti et al. Bioremediation of crude oil by white rot fungi Polyporus sp. S133
Cobas et al. Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum
Prakash et al. Biodegradation potential of petroleum hydrocarbons by bacteria and mixed bacterial consortium isolated from contaminated sites
Elshafie et al. Mycoremediation effect of Trichoderma harzianum strain T22 combined with ozonation in diesel-contaminated sand
KR100873054B1 (en) Complex bacteria(kacc 91316p) for degradation of volatile aromatic hydrocarbons
KR100285035B1 (en) Halogenated Hydrocarbon Degrading Bacteria and Their Uses
Liu et al. Industrial-scale culturing of the crude oil-degrading marine Acinetobacter sp. strain HC8-3S
Zhang et al. Impact of different environmental particles on degradation of dibutyl phthalate in coastal sediments with and without Cylindrotheca closterium
KR100679420B1 (en) Degrading bacteria of polycyclic aromatic
Hocinat et al. Aerobic degradation of BTEX compounds by Streptomyces species isolated from activated sludge and agricultural soils
KR101300348B1 (en) Liquid composition of microorganisms for bioremediation of hydrocarbon-contaminated soil, method of preparing the same, and Bioremediation using the same
Wang et al. Newly isolated Enterobacter cloacae sp. HN01 and Klebsiella pneumoniae sp. HN02 collaborate with self-secreted biosurfactant to improve solubility and bioavailability for the biodegradation of hydrophobic and toxic gaseous para-xylene
KR101710044B1 (en) Pseudomonas sp. sdy3 being abled to resolve oil and oil degradation method using the same
Baruah et al. Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes
Jorfi et al. Bioremediation of pyrene-contaminated soils using biosurfactant
US20170151593A1 (en) Method for scavenging aromatic hydrocarbons, crude petroleum and/or a petroleum refined product
KR101896428B1 (en) Pseudomonas aeruginosa TSKW-S5 strain having oil resolution and oil-releasing ability, a method for purifying contaminated soil using the same, and a method for selecting the strain
KR20130100532A (en) Oil-degrading pseudomonas nitrorducens-octo1 and method for oil degradation using the same
Khorasanizadeh The Effect of Biotic and Abiotic Factors on Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria in the Soil
Najirad et al. Hydrocarbon bioremediation efficiency by two indigenous bacterial strains in contaminated soils
KR100388164B1 (en) Stenotrophomonas maltophilia T3-c, and a Method for Bioremediation of Oil Contamination using the Strain
KR101816087B1 (en) Pseudomonas aeruginosa TSKW-U6 strain having oil resolution ability, a method of oil degradation using the same, and a method of selecting the strain

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee