KR100870597B1 - A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby - Google Patents

A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby Download PDF

Info

Publication number
KR100870597B1
KR100870597B1 KR1020070078305A KR20070078305A KR100870597B1 KR 100870597 B1 KR100870597 B1 KR 100870597B1 KR 1020070078305 A KR1020070078305 A KR 1020070078305A KR 20070078305 A KR20070078305 A KR 20070078305A KR 100870597 B1 KR100870597 B1 KR 100870597B1
Authority
KR
South Korea
Prior art keywords
fiber
biocomposite
pla
web
polylactic acid
Prior art date
Application number
KR1020070078305A
Other languages
Korean (ko)
Inventor
김현중
이병호
김희수
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070078305A priority Critical patent/KR100870597B1/en
Priority to CN200880101691A priority patent/CN101790454A/en
Priority to PCT/KR2008/004465 priority patent/WO2009020303A2/en
Priority to US12/452,981 priority patent/US20100170649A1/en
Application granted granted Critical
Publication of KR100870597B1 publication Critical patent/KR100870597B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible

Abstract

A method for manufacturing polylactic acid bio composite material is provided to produce a polylactic acid bio composite material by adopting a compression molding using a carding process. A method for manufacturing polylactic acid bio composite material comprises a step for preparing the web by blending fabric through a carding process by selecting substrate polymer the polylactic acid(PLA) fiber and natural fiber as reinforcing material; a step for making the mat by pre-loading the web; and a step for manufacturing by compressing and molding the bio composite plate mat. In a step for preparing web, the web is prepared by replacing some of polylactic acid fiber with the polypropylene fiber. The replaced polypropylene fiber forms 15~35 weight% among the web total weight.

Description

폴리락트산 바이오복합재료 제조방법 및 이에 의한 폴리락트산 바이오복합재료{A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby}A process for manufacturing poly (latic acid) bio-composites and poly (latic acid) bio-composites thereby

본 발명은 바이오복합재료 제조방법, 특히 생분해성 고분자 섬유인 폴리락트산(PLA) 섬유, 및 선택적으로는 범용고분자 폴리프로필렌 섬유, 천연섬유를 카딩공정에 따라 혼섬하고 압축 성형하여 종래 사출성형에 따른 폴리락트산 바이오복합재료 제조상의 문제점을 해결하는 PLA 바이오복합재료 제조방법 및 이에 따른 PLA 바이오복합재료에 관한 것이다.  The present invention provides a method for producing a biocomposite material, in particular, polylactic acid (PLA) fiber, which is a biodegradable polymer fiber, and optionally, a general-purpose polymer polypropylene fiber and a natural fiber by mixing and compression molding according to a carding process. The present invention relates to a PLA biocomposite manufacturing method and a PLA biocomposite accordingly, which solve the problems of lactic acid biocomposite manufacturing.

최근 지구 환경문제에 대한 인식이 증가하고, 폐플라스틱 처리문제, 기후변화 협약, 새로운 환경법규 규정 등 세계적으로 환경문제에 대한규제가 점차 강화되고 있으므로 환경친화적인 신소재로써 바이오복합재료(bio-composites)에 대한 연구가 활발히 진행되고 있다. 바이오복합재료는 셀룰로오스(cellulose)계 물질인 목분, 왕겨분말, 대나무분말 등 천연분말(natural flour)과 목재섬유, 목분, 마, 모 시 등 천연섬유(natural fibers)를 보강제(reinforcements)로 사용한 고분자 복합재료로서 주로 기존에 무기질 원료인 탄소섬유와 유리섬유를 보강재로 한 고분자 복합재료의 대체용으로 사용되고 있다. 이러한 바이오복합재의 장점으로는 기존의 무기질 충전제와는 달리 생분해되므로 환경 친화적이라는 장점을 가지고 있다.Recently, as environmental awareness is increasing and global regulations on environmental issues such as waste plastic treatment, climate change agreements, and new environmental laws and regulations are gradually strengthened, bio-composites are new materials that are more environmentally friendly. There is an active research on. Biocomposites are polymers made from natural flours such as cellulose-based wood flour, rice hull powder, and bamboo powder, and natural fibers such as wood fibers, wood flour, hemp, and ramie as reinforcements. As a composite material, it is mainly used as a substitute for a polymer composite material using carbon fiber and glass fiber, which are inorganic raw materials. The advantage of such a biocomposite is that it is biodegradable unlike conventional inorganic fillers and thus has the advantage of being environmentally friendly.

현재 이용되거나 연구되고 있는 바이오복합재의 대부분은 현재 고분자 산업에서 가장 많이 이용되는 polyolefin (PP, PE, PS)계 고분자에 환경친화적인 생분해성 충전제의 일종인 천연섬유 또는 천연분말을 첨가하여 건축용 deck재로 사용되어 이용되고 있으며 또한 구조용재, 포장용재 그리고 자동차 내장재로 실제적으로 사용하거나 개발 중에 있다. 그러나 이러한 polyolefin계 물질을 기질로 하여 사용하는 것은 부분적으로는 환경친화적인 물질이라고 할 수 있지만 기질이 비분해성이므로 완전히 환경친화적인 재료라고는 말할 수 없다. 따라서 미래에는 자연계에서 완전히 생분해 가능한 환경친화적인 물질인 생분해성 고분자 (biodegradable polymer)를 활용한 바이오복합재료가 산업현장에서 많이 활용될 것으로 기대되며 현재 종료 범용수지와 버금가는 물성을 나타내기 위해 활발한 연구가 진행되고 있다.Most of the biocomposites currently being used or researched are added to the polyolefin (PP, PE, PS) -based polymers, which are currently used in the polymer industry, as natural deck or natural powder, which is a kind of environmentally friendly biodegradable filler. It is being used and used, and it is also practically used or developed for structural materials, packaging materials and automobile interior materials. However, the use of such polyolefin-based materials as substrates can be said to be partly environmentally friendly, but it is not possible to say that they are completely environmentally friendly because the substrates are non-degradable. Therefore, in the future, biocomposites using biodegradable polymers, which are fully biodegradable and environmentally friendly materials in nature, are expected to be used in industrial fields. Is going on.

생분해성 고분자 중 폴리락트산 (PLA, poly(latic acid))이 주목된다. 생분 해성인 PLA를 바이오복합재료 기질고분자로 이용하면, 사용 후 매립 시에도 비독성 물질로 분해가 이루어져 환경 친화적이라는 장점 외에도 고갈되는 석유자원을 대체할 수 있는 지속가능한 생물자원이라는 점에서 주목된다. 그러나, 상기 PLA 섬유는 상온에서 매우 brittle하기 때문에 통상의 사출성형으로 바이오복합재료를 제조하는 경우 문제점이 있다. 즉, Young's modulus가 더 높은 천연 충전물을 혼합 제조하여 사출 성형하는 경우 바이오복합재료가 쉽게 부러지는 문제점이 있을 뿐 아니라 또한, 이러한 취성과 더불어 사출성형에서 요구되는 천연재료의 분말가공으로 인한 문제점도 있다. Among the biodegradable polymers, polylactic acid (PLA, poly (latic acid)) is noted. When biodegradable PLA is used as a biocomposite substrate polymer, it is noted that it is a sustainable biological resource that can replace depleted petroleum resources in addition to its environmentally friendly advantages because it is decomposed into non-toxic substances even when used after landfilling. However, since the PLA fiber is very brittle at room temperature, there is a problem when manufacturing a biocomposite material by conventional injection molding. In other words, bio-composite materials are easily broken when Young's modulus is manufactured by injection-molding higher natural fillers, and in addition, there is a problem due to the brittleness and the powder processing of natural materials required for injection molding. .

본 발명자들은 이러한 PLA 섬유를 기질고분자로 하여 바이오복합재료를 제조하는 경우, 통상의 사출성형에 의한 문제점을 해결하고자 카딩공정을 이용한 압축성형을 제안하고자 한다. 더 나아가, PLA의 취성을 극복하여 물성이 양호한 바이오복합재료를 제공하고자 범용고분자인 PP 섬유를 같이 혼합하여 압축성형에 의한 바이오복합재료를 제조한 결과, 바이오복합재료에서 요구되는 각종 지표들을 만족하는 재료를 제조할 수 있었다.The present inventors propose a compression molding using a carding process in order to solve the problems caused by conventional injection molding when manufacturing a biocomposite material using such PLA fibers as a substrate polymer. Furthermore, in order to overcome the brittleness of PLA and provide biocomposites with good physical properties, PP composites, which are general-purpose polymers, are mixed together to produce biocomposites by compression molding, which satisfy various indices required for biocomposites. Material could be prepared.

본 발명의 일 목적은, 카딩공정을 이용한 압축성형에 따라 PLA 취성이 극복된 바이오복합재료를 제조하는 것이다. 또한, 본 발명의 다른 목적은, 카딩공정을 이용한 압축성형에 따라, PLA 섬유 일부를 범용 고분자인 PP로 대체하여, 물성이 더욱 양호한 바이오복합재료를 제조하는 것이다. 본 발명의 다른 목적은 전자제품 케이스 및 자동차내장재 산업뿐만 아니라 기계적 강도가 요구되는 다양한 산업적인 용도에 적용될 수 있는 바이오복합재료를 제공하는 것이다.One object of the present invention is to prepare a biocomposite material in which PLA brittleness is overcome by compression molding using a carding process. In addition, another object of the present invention, according to compression molding using a carding process, to replace a part of the PLA fiber with a general-purpose polymer PP to produce a biocomposite material having better physical properties. Another object of the present invention is to provide a biocomposite material that can be applied to the electronics case and automotive interior materials industry, as well as various industrial applications requiring mechanical strength.

본 발명은 기질고분자로 PLA, 보강재로 천연섬유를 선택하여 카딩공정을 통하여 혼섬하여 웨브(web)를 준비하는 단계, 상기 웨브를 예압하여 매트(mat)를 제작하는 단계, 및 매트를 압축ㆍ성형하여 바이오복합재 플레이트(plate)를 제조하는 단계로 구성된 바이오복합재료 제조방법에 의해 PLA 취성이 극복되고, 필요한 인장, 굴곡 및 충격강도 범위 내의 지표를 가질 수 있는 바이오복합재료를 제조할 수 있다.The present invention is to prepare a web (web) by mixing the PLA through the carding process by selecting PLA as a substrate polymer, a natural fiber as a reinforcing material, to prepare a mat by pre-loading the web, and to compress and mold the mat The biocomposite manufacturing method comprising the steps of manufacturing the biocomposite plate (plate) to overcome the PLA brittleness, it is possible to produce a biocomposite material that can have an indicator within the required tensile, bending and impact strength range.

또한, 본 발명에 의한 제조방법은 상기 PLA 섬유 일부를 PP섬유로 대체하여도 충분한 강도 및 생분해성을 달성할 수 있는 바이오복합재료를 제조할 수 있는 매우 유용한 발명이다. 본 발명에 따른 바이오복합재료는 일정한 기계적 물성이 유지되므로 전자제품, 자동차 내장재 등의 산업분야에 다양한 응용이 가능하다.In addition, the manufacturing method according to the present invention is a very useful invention that can produce a biocomposite material that can achieve a sufficient strength and biodegradability even by replacing a portion of the PLA fiber with PP fiber. Biocomposite material according to the present invention is a certain mechanical property is maintained, it is possible to various applications in industrial fields such as electronic products, automotive interior materials.

상기 목적을 달성하기 위한 제조방법은, 기질고분자로 PLA, 보강재로 천연섬유를 선택하여 카딩공정을 통하여 혼섬하여 웨브(web)를 준비하는 단계, 상기 웨브를 예압하여 매트(mat)를 제작하는 단계, 및 매트를 압축ㆍ성형하여 바이오 복합재 플레이트(plate)를 제조하는 단계로 구성된 바이오복합재료 제조방법으로 구성된다.In order to achieve the above object, a method of preparing a web by mixing PLA through a carding process by selecting natural fibers as PLA and a reinforcing material as a substrate polymer, and preparing a web by preloading the web And a method for producing a biocomposite material comprising compressing and molding a mat to produce a biocomposite plate.

또한, 본 발명은 상기 PLA 일부를 PP로 대체하여 기질고분자로 PLA 및 PP, 보강재로 천연섬유를 선택하여 카딩공정을 통하여 혼섬하여 웨브(web)를 준비하는 단계, 상기 웨브를 예압하여 매트(mat)를 제작하는 단계, 및 매트를 압축?성형하여 바이오 복합재 플레이트(plate)를 제조하는 단계로 구성된 바이오복합재료 제조방법으로 구성된다.In addition, the present invention is to replace the part of the PLA with PP to prepare a web (web) by mixing the fiber through a carding process by selecting PLA and PP, a natural fiber as a substrate polymer, a reinforcing material, pre-loading the web mat ) And a method of manufacturing a biocomposite material, which comprises a step of manufacturing a bio-composite plate by compressing and molding the mat.

상기 제조방법에 따른 바이오복합재료는 PLA 취성이 극복되고 바이오 복합재에서 요구되는 인장, 굴곡 및 충격강도 범위 내의 지표를 가질 수 있음을 확인하였다.It was confirmed that the biocomposite according to the above manufacturing method can overcome the PLA embrittlement and have an index within the tensile, bending and impact strength ranges required for the biocomposite.

이하 본 발명을 상세하게 설명하고자 하나 이는 단지 예시를 위한 것이고, 본 발명의 범위를 제한하는 것은 아니다. 우선 본 발명에 따른 바이오복합재료 구성 성분들을 설명하며, 이를 적용한 본 발명에 따른 복합재료 및 실험 예들을 기술하고자 한다. 본 명세서를 통하여 언급되는 ‘카딩(carding)공정’은 통상의 소면공정이라고도 하며, 작은 덩어리로 뭉쳐 있는 섬유를 완전히 헤쳐서 잡물이나 아주 짧은 섬유를 제거하고 섬유를 한 가닥씩 분리하여 가지런히 평행이 되게 하고, 이것을 모아서 슬라이버(sliver)로 만드는 공정으로 정의되며, 통상의 소면기 또는 카딩기로 작업될 수 있다.DETAILED DESCRIPTION Hereinafter, the present invention will be described in detail, but for the purpose of illustration, it is not intended to limit the scope of the invention. First, the components of the biocomposite according to the present invention will be described, and the composite materials and experimental examples according to the present invention to which the present invention is applied will be described. The carding process referred to throughout this specification is also referred to as a normal carding process, which completely removes miscellaneous or very short fibers by separating the fibers that are aggregated into small chunks, and separates the fibers one by one so that they are aligned in parallel. It is defined as a process of collecting, collecting and slicing this into a sliver, and can be worked with a conventional carding or carding machine.

본 발명에서 선택된 생분해성 고분자는 poly(lactic acid) (PLA)였으며, 섬유상의 재료를 사용하였다. 길이는 30mm이며, 용융지수는 10∼30g/10min (190℃/2,160g) 이었고 밀도는 1.22g/cm3 이었다. 하기 화학식 1은 PLA의 화학적 구조를 나타낸 것이다.The biodegradable polymer selected in the present invention was poly (lactic acid) (PLA), and a fibrous material was used. The length was 30mm, the melt index was 10-30g / 10min (190 ℃ / 2160g) and the density was 1.22g / cm 3 . Formula 1 shows the chemical structure of PLA.

Figure 112007056803980-pat00001
Figure 112007056803980-pat00001

한편, PLA 일부를 대체할 비분해성 고분자로 사용된 재료로는 (주)코오롱에서 구입한 폴리프로필렌(polypropylene(PP)) 섬유를 사용하였다. PP 섬유의 밀도는 0.91g/㎤와 MFI 12g/10min (230℃/2,160g)이었으며 섬유길이는 30mm이었다. Meanwhile, polypropylene (PP) fibers purchased from Kolon Co., Ltd. were used as materials used as non-degradable polymers to replace a part of PLA. PP fibers had a density of 0.91 g / cm 3 and MFI 12 g / 10 min (230 ° C./2160 g) with a fiber length of 30 mm.

본 발명에서 PLA 및, 선택적으로 PP 섬유와 동반되는, 바이오복합재의 보강재로 천연섬유인 케나프(kenaf) 및 쥬트(jute) 섬유(수통상(주)에서 구입)가 사용되었으며, 이에 국한되지 않고 길이 50∼70mm 내의 천연섬유가 사용될 수 있다.In the present invention, natural fibers such as kenaf and jute fibers (purchased from Suyoung Co., Ltd.) were used as reinforcement materials of PLA and, optionally, PP fibers, and biocomposites, without being limited thereto. Natural fibers within a length of 50 to 70 mm can be used.

<실시 예 1> PLA 바이오복합재료 제조Example 1 Preparation of PLA Biocomposite Material

다음과 같은 단계의 압축ㆍ성형을 통해서 PLA 바이오복합재료를 성형하였다. 우선 카딩기(carding machine)를 사용하여 생분해성 고분자 섬유인 PLA 섬유 및/또 는 비분해성 고분자 PP 섬유, 및 케나프 또는 쥬트섬유를 혼섬하였다. 혼섬 된 웨브(web)을 니들펀치(needle punch)로 punching을 가해준 다음, 120℃에서 예압을 가하여 매트를 제작하고 제작된 매트를 압축성형을 실시하였다. 압축성형시 가해진 온도는 200℃였으며 가해진 압력은 70kgf/cm2 였다. 이 과정을 통하여 바이오 복합재 플레이트를 제작하였다. 제작된 플레이트는 수분의 침투를 방지하기 위하여 폴리에틸렌 백에 넣어 보관하였다. 도 1에서는 이러한 카딩공정을 통한 생분해성 PLA 바이오복합재의 제조공정에 대하여 나타냈다. 또한 표 1에서는 제조된 바이오복합재료의 혼합비율을 정리하였다. 이하 혼합비율은 중량%로 표기된다.The PLA biocomposite was molded through the compression and molding of the following steps. First, carding machines were used to blend the biodegradable polymer fibers, PLA fibers and / or non-degradable polymer PP fibers, and kenaf or jute fibers. The mixed web was punched with a needle punch, and then preloaded at 120 ° C. to prepare a mat, and the produced mat was subjected to compression molding. The compression temperature was 200 ℃ and the pressure was 70kgf / cm 2 . Through this process, a bio composite plate was manufactured. The plate was stored in a polyethylene bag to prevent the penetration of moisture. 1 shows a manufacturing process of the biodegradable PLA biocomposite through the carding process. In addition, Table 1 summarizes the mixing ratio of the manufactured biocomposites. Hereinafter, the mixing ratio is expressed in weight percent.

표 1. 바이오복합재 혼합 비율 (중량%)Table 1. Biocomposite Mixing Ratio (wt%)

Figure 112007056803980-pat00002
Figure 112007056803980-pat00002

<실험 예 1> 시편제조Experimental Example 1 Specimen Preparation

건조된 플레이트는 시편 제작용 펀칭공정(punching press)을 통해서 상온, 5MPa 조건에서 인장강도 시편 및 굴곡강도 시편을 제작하였다. 제작된 시편은 온도 23±2℃, 상대습도 50±5% 조건에서 40시간 조습처리 하였다. The dried plate was fabricated in a tensile strength test specimen and a flexural strength test specimen at room temperature and 5 MPa through a punching process for fabrication. The fabricated specimens were humidified for 40 hours at a temperature of 23 ± 2 ℃ and a relative humidity of 50 ± 5%.

<실험 예 2> 바이오복합재의 인장강도 측정Experimental Example 2 Tensile Strength Measurement of Biocomposites

Carding 공정과 기질고분자의 종류에 따른 바이오복합재의 인장강도에 미치는 영향을 평가하고자 인장강도를 측정하였다. ASTM D638-03에 의거하여 Universal Testing Machine (Zwick Co.)을 사용하여 측정하였다. 이때 인장속도는 5mm/min로 상온에서 측정하였으며 5개 샘플의 평균값으로 인장강도 값을 산출하였다. Tensile strength was measured to evaluate the effect on the tensile strength of biocomposites according to the carding process and the type of substrate polymer. Measurements were made using a Universal Testing Machine (Zwick Co.) according to ASTM D638-03. At this time, the tensile speed was measured at room temperature as 5mm / min and the tensile strength value was calculated as the average value of five samples.

<실험 예 3> 바이오복합재의 굴곡강도 측정Experimental Example 3 Measurement of Flexural Strength of Biocomposites

Carding 공정과 기질고분자의 종류에 따른 바이오복합재의 굴곡강도에 미치는 영향을 평가하고자 굴곡강도를 측정하였다. ASTM D790-03에 따라 Universal Testing Machine (Zwick Co.)을 사용하여 측정하였다. 이때 compression 속도는 5mm/min로 상온에서 측정하였으며 5개 샘플의 평균값으로 인장강도 값을 산출하였다. 도 2는 3점 굴곡시험 방법에 대해 나타냈다.The flexural strength was measured to evaluate the effect on the bending strength of biocomposites according to the carding process and the type of substrate polymer. It was measured using a Universal Testing Machine (Zwick Co.) according to ASTM D790-03. At this time, the compression rate was measured at room temperature of 5mm / min and the tensile strength value was calculated as the average value of five samples. Figure 2 shows the three-point bending test method.

<실험 예 4> 바이오복합재의 충격강도 측정Experimental Example 4 Impact strength measurement of biocomposites

충격강도는 하중에 의해서 재료를 파괴하는데 필요한 에너지를 재료의 단위면적당, 또는 단위폭당으로 나눈 수치를 말한다. ASTM D256에서의 충격강도는 충격면의 폭으로 나눈 값으로 나타낸다. 측정방법으로는 시편의 주간부위에 흠집을 낸 방향에서 측정하는 방법 (notch) 흠집을 낸 반대방향에서 측정하는 방법 (un- notch) 플라스틱 시편을 수직으로 세워놓고 윗부분에 충격을 가해 파괴되는데 소비하는 힘을 측정하는 방법으로써 고분자복합재의 기계적 물성 시험방법 중 가장 중요한 항목 중 하나이다. Notched 방법을 이용하여 충격강도를 실험하였다.Impact strength is the value obtained by dividing the energy required to break a material by load by the unit area or per unit width of the material. Impact strength in ASTM D256 is expressed as the value divided by the width of the impact surface. Measuring method is to measure in the direction of scratches on the main part of the specimen. (Notch) How to measure in the opposite direction to the scratch (un-notch) The force consumed to destroy the plastic specimen by putting it vertically and impacting the upper part. It is one of the most important items in the testing of mechanical properties of polymer composites. Impact strength was tested using the Notched method.

1. 바이오복합재의 종류에 따른 인장강도1. Tensile strength according to the type of biocomposite

도 3 에서는 PP와 천연섬유, PLA와 쥬트섬유 바이오복합재의 인장강도 값에 대하여 나타내었다. 우선 천연섬유와 PP로 이루어진 바이오복합재의 경우 천연섬유의 함유량에 따라 바이오복합재의 인장강도 값이 감소하는 것을 확인할 수 있었다. 최초 30%까지는 바이오복합재의 인장강도 값이 감소가 다소 적었으나 다량의 천연섬유가 함유된 바이오복합재의 경우는 인장강도 값이 크게 저하되는 결과를 통해서 보강재로 다량의 천연섬유가 첨가되었을 경우 오히려 PP와 천연섬유간의 결합이 약화되어 바이오복합재의 인장강도 값이 크게 저감되는 것을 알 수 있었다. 또한 이와 같은 이유는 바이오복합재료에서 천연섬유의 함량의 증가는 바이오복합재내에서 공극의 함량을 증가시키기 때문에 인장강도 값이 저하된다. 이는 다음 표 2 를 통하여 확인할 수 있다. 바이오복합재료는 천연섬유의 함량이 증가함에 따라 다음과 같이 공극의 함량이 증가하는 결과를 나타내었다. 공극은 PP와 jute 섬유간의 결합을 방해하고 응력의 전달을 방해하기 때문에 인장강도 값이 감소하였다. 공극의 함량은 계면에서의 공극 및 천연섬유내의 내강에서의 공극도 포함된다. PLA를 기질고분자로 사용한 바이오복합재료는 PLA의 brittle한 성질로 인하여 천연섬유의 함량이 적은 바이오복합재료 시편 제조 시 표면 crack이 발생하였으며 그로 인하여 복 합재의 강도 값도 낮게 나타났다. 반면 다량의 천연섬유가 함유된 50%, 70%인 바이오복합재료에서는 그 강도 값이 오히려 높게 나타났다. 또한 상대적으로 PP만을 기질고분자로 한 바이오복합재보다도 좋은 인장강도 값을 나타냈다. 이러한 결과는 PLA고분자를 바이오복합재의 기질고분자로서 선택한 하나의 이유라 할 것이다.Figure 3 shows the tensile strength values of PP and natural fibers, PLA and jute fiber biocomposites. First, in the case of a biocomposite made of natural fibers and PP, it was confirmed that the tensile strength value of the biocomposite decreases according to the content of the natural fiber. Although the tensile strength of biocomposite decreased slightly until the first 30%, in the case of biocomposite containing a large amount of natural fiber, the tensile strength value was greatly reduced. It was found that the tensile strength of the biocomposite was greatly reduced by weakening the bond between and the natural fiber. In addition, the reason is that the increase in the content of the natural fiber in the biocomposite increases the content of the voids in the biocomposite, the tensile strength value is lowered. This can be confirmed through the following Table 2. The biocomposite material showed a result of increasing the pore content as the natural fiber content increased. The voids decreased the tensile strength values because they prevented the bond between PP and jute fibers and the transfer of stress. The content of the pores also includes pores at the interface and pores in the lumen in natural fibers. Bio-composites using PLA as substrate polymers showed surface cracks during the production of bio-composite specimens with low natural fiber content due to the brittle nature of PLA, resulting in low strength of the composites. On the other hand, 50% and 70% biocomposites containing a large amount of natural fiber showed higher strength. In addition, it showed relatively better tensile strength than biocomposites containing only PP as substrate polymer. This result may be one reason for selecting PLA polymer as substrate polymer of biocomposite.

표 2. 쥬트/폴리프로필렌 복합재의 천연섬유 함유량에 따른 공극 함량Table 2. Pore Content According to Natural Fiber Content in Jute / Polypropylene Composites

Figure 112007056803980-pat00003
Figure 112007056803980-pat00003

도 4 에서는 바이오복합재의 기질고분자의 종류에 따른 인장강도 값을 나타냈다. PP, PP와 PLA의 혼합, PLA로 나누어서 기질고분자를 사용하였다 (Type 1 : PP fiber 50%+Jute fiber 50%, Type 2 : PP fiber 35% + PLA fiber 15% + Jute fiber 50%, Type 3 : PP fiber 25% + PLA fiber 25% + Jute fiber 50%, Type 4 : PP fiber 15% + PLA fiber 35% + Jute fiber 50%, Type 5 : PLA fiber 50% + Jute fiber 50%). 기질고분자로 PLA 단독으로 사용한 Type 5에서만 약간의 인장강도 값이 저하된 것 이외에는 기질 고분자에 의한 강도값은 크게 저감되지 않고 비슷한 인장강도 값을 나타냈다. 이는 기질고분자 PP의 일부를 PLA로 대체해도 인장강도 값의 영향은 없는 것을 나타내며 PLA로 대체한 바이오복합재료는 생분해도가 높아 서 사용 후 폐기 시에도 PP 섬유만을 기질고분자로 한 복합재료보다 친환경적인 재료로서 사용이 가능할 것이다. 4 shows the tensile strength value according to the type of substrate polymer of the biocomposite. Substrate polymer was used as a mixture of PP, PP and PLA, and PLA (Type 1: PP fiber 50% + Jute fiber 50%, Type 2: PP fiber 35% + PLA fiber 15% + Jute fiber 50%, Type 3 : PP fiber 25% + PLA fiber 25% + Jute fiber 50%, Type 4: PP fiber 15% + PLA fiber 35% + Jute fiber 50%, Type 5: PLA fiber 50% + Jute fiber 50%). Except for the slight decrease in tensile strength only in Type 5, which used PLA alone as the substrate polymer, the strength value of the substrate polymer was not significantly reduced and showed similar tensile strength values. This indicates that even though replacing part of the substrate polymer PP with PLA, there is no effect of tensile strength value.By replacing bio-materials with PLA, the biodegradability is high. It may be used as a material.

이러한 결과로 보아, 카딩공정을 이용한 압축성형을 통하여 제조된 PLA 바이오복합재료는 사출성형을 통하여 제조된 경우와 대비하여, 재료 취성에 따른 문제점을 해결할 수 있었고, PLA 섬유 일부가 PP 섬유로 대체된다고 하더라도 충분한 물성을 보유하는 것으로 보인다.As a result, the PLA biocomposite manufactured by compression molding using the carding process was able to solve the problems caused by the brittleness of the material, compared to the case produced by injection molding, and part of the PLA fiber was replaced by PP fiber. Even if it appears to possess sufficient physical properties.

2. 바이오복합재의 종류에 따른 굴곡강도2. Flexural strength according to the type of biocomposite

실시 예 1에서 제조된 바이오복합재료 굴곡강도를 측정한 결과 도 5와 같이 나타났다. PP와 PLA의 혼합 기질고분자를 사용한 바이오복합재는 Jute 섬유를 50% 충전시켰을 경우에도 PP와 PLA의 혼합에 의해서 강도의 차이가 거의 없었다. 이는 PLA 섬유만으로 적용되는 경우뿐 아니라, PP의 혼합된 기질고분자도 바이오복합재의 기질고분자로 충분히 사용 가능함을 나타낸 것이다. As a result of measuring the bending strength of the biocomposite prepared in Example 1, it was shown in FIG. 5. Biocomposites using mixed substrate polymer of PP and PLA showed little difference in strength by mixing PP and PLA even when 50% of Jute fiber was filled. This indicates that not only the PLA fiber is applied but also the mixed substrate polymer of PP can be sufficiently used as the substrate polymer of the biocomposite.

3. 바이오복합재의 종류에 따른 충격강도3. Impact strength according to the type of biocomposite

도 6을 참조하면 바이오복합재료에서 천연섬유의 함유량이 증가할수록 충격강도 값이 증가하였다. 충격강도의 향상은 바이오복합재가 기질고분자의 취성을 극복했다는 것을 나타낸다. 혼합된 기질고분자를 이용한 충격강도는 도 7에 도시된다. PP와 PLA를 비율별로 혼합하여 기질고분자로 활용하여 쥬트 섬유의 바이오 복 합재로 만든 결과 PP와 PLA 혼합 기질고분자도 충분한 충격강도를 나타냄을 알 수 있었다. Referring to FIG. 6, the impact strength value increased as the content of the natural fiber in the biocomposite material increased. The improvement in impact strength indicates that the biocomposites have overcome the brittleness of the substrate polymer. Impact strength using mixed substrate polymers is shown in FIG. 7. As a result of mixing PP and PLA by the ratio and using the substrate polymer as a biocomposite of jute fiber, the PP and PLA mixed polymer showed sufficient impact strength.

도 1은 본 발명에 의한 바이오복합재료 제조 개략 공정도를 도시한 것이며, 1 shows a schematic process diagram of manufacturing a biocomposite material according to the present invention,

도 2는 본 발명에 의한 바이오복합재료 굴곡강도 측정방법을 도시한 것이며,Figure 2 illustrates a method for measuring the bending strength of the biocomposite material according to the present invention,

도 3은 기질고분자의 종류와 천연섬유 함유량에 따른 인장강도 측정도이며,3 is a tensile strength measurement according to the type of substrate polymer and the content of natural fiber,

도 4는 기질고분자의 종류에 따른 바이오복합재료의 인장강도 측정도이며,4 is a tensile strength measurement of the biocomposite according to the type of substrate polymer,

도 5는 기질고분자의 종류에 따른 바이오복합재료의 굴곡강도 측정도이며,5 is a measurement of the bending strength of the biocomposite according to the type of substrate polymer,

도 6은 기질고분자의 종류와 천연섬유 함유량에 따른 충격강도 측정도이며,6 is an impact strength measurement according to the type of substrate polymer and the content of natural fiber,

도 7은 기질고분자의 종류에 따른 바이오복합재료의 충격강도 측정도이다.7 is a measurement of impact strength of biocomposites according to the type of substrate polymer.

Claims (4)

기질고분자로 폴리락트산(PLA) 섬유, 보강재로 천연섬유를 선택하여 카딩공정을 통하여 혼섬하여 웨브(web)를 준비하는 단계; Preparing a web by mixing the polylactic acid (PLA) fiber as a substrate polymer and natural fiber as a reinforcing material and mixing the same through a carding process; 상기 웨브를 예압하여 매트(mat)를 제작하는 단계; 및 Preloading the web to produce a mat; And 매트를 압축ㆍ성형하여 바이오 복합재 플레이트(plate)를 제조하는 단계로 구성된, 폴리락트산 바이오복합재료 제조방법에 있어서,In the method for producing a polylactic acid biocomposite, comprising the steps of pressing and molding a mat to produce a bio-composite plate, 상기 웨브를 준비하는 단계에서 상기 폴리락트산 섬유 일부를 폴리프로필렌 섬유로 대체하여 웨브가 준비되며, 상기 대체되는 폴리프로필렌 섬유는 웨브(web) 총 중량에 대하여 15~35 중량%가 포함되는 것을 특징으로 하는, 폴리락트산 바이오복합재료 제조방법.In the preparing of the web, a web is prepared by replacing a portion of the polylactic acid fiber with polypropylene fiber, wherein the polypropylene fiber is 15 to 35% by weight based on the total weight of the web. Polylactic acid biocomposite production method. 삭제delete 제1항에 있어서, 천연섬유는 케나프 또는 쥬트 섬유인 것을 특징으로 하는, 폴리락트산 바이오복합재료 제조방법.The method for producing a polylactic acid biocomposite according to claim 1, wherein the natural fiber is kenaf or jute fiber. 제1항 또는 제3항 중 어느 하나의 항에 의한 방법에 의해 제조되는, 폴리락트산 바이오복합재료.A polylactic acid biocomposite produced by the method according to any one of claims 1 to 3.
KR1020070078305A 2007-08-03 2007-08-03 A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby KR100870597B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070078305A KR100870597B1 (en) 2007-08-03 2007-08-03 A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby
CN200880101691A CN101790454A (en) 2007-08-03 2008-07-31 Poly-(lactic acid) Biocomposite material of making a kind of flow process of poly-(lactic acid) Biocomposite material and utilizing this flow process made
PCT/KR2008/004465 WO2009020303A2 (en) 2007-08-03 2008-07-31 A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby
US12/452,981 US20100170649A1 (en) 2007-08-03 2008-07-31 Process for manufacturing poly(lactic acid) bio-composites....

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070078305A KR100870597B1 (en) 2007-08-03 2007-08-03 A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby

Publications (1)

Publication Number Publication Date
KR100870597B1 true KR100870597B1 (en) 2008-11-25

Family

ID=40284781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070078305A KR100870597B1 (en) 2007-08-03 2007-08-03 A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby

Country Status (4)

Country Link
US (1) US20100170649A1 (en)
KR (1) KR100870597B1 (en)
CN (1) CN101790454A (en)
WO (1) WO2009020303A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150124696A (en) * 2014-04-29 2015-11-06 한일이화 주식회사 Ecofriendly thermoplastic felt laminate for car interior substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026A (en) * 1987-11-23 1990-01-05 Polaroid Corp Common driver for shutter blade and objective lens assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400328B1 (en) * 2002-09-18 2010-09-15 Toyota Boshoku Kabushiki Kaisha Fiber board and its producing method
JP4498783B2 (en) * 2004-03-17 2010-07-07 トヨタ紡織株式会社 Method for producing wooden molded body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026A (en) * 1987-11-23 1990-01-05 Polaroid Corp Common driver for shutter blade and objective lens assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
금오공대, 2006*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150124696A (en) * 2014-04-29 2015-11-06 한일이화 주식회사 Ecofriendly thermoplastic felt laminate for car interior substrate
KR101601857B1 (en) 2014-04-29 2016-03-09 주식회사 서연이화 Ecofriendly thermoplastic felt laminate for car interior substrate

Also Published As

Publication number Publication date
WO2009020303A3 (en) 2009-04-02
WO2009020303A2 (en) 2009-02-12
CN101790454A (en) 2010-07-28
US20100170649A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
Barkoula et al. Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate
Tawakkal et al. Mechanical and physical properties of kenaf-derived cellulose (KDC)-filled polylactic acid (PLA) composites
Tábi et al. Chopped basalt fibres: A new perspective in reinforcing poly (lactic acid) to produce injection moulded engineering composites from renewable and natural resources
Oksman et al. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene
Reddy et al. Completely biodegradable soyprotein–jute biocomposites developed using water without any chemicals as plasticizer
Karsli et al. Properties of alkali treated short flax fiber reinforced poly (lactic acid)/polycarbonate composites
KR100921114B1 (en) Preparation method of Poly lactic acid/natural fiber composites
Rokbi et al. Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics
Hassan et al. Study on the performance of hybrid jute/betel nut fiber reinforced polypropylene composites
Dayo et al. Impacts of hemp fiber diameter on mechanical and water uptake properties of polybenzoxazine composites
CA3014638C (en) Thermoplastic bonded preforms and thermoset matrices formed therewith
Rukmini et al. Development of Eco‐Friendly Cotton Fabric Reinforced Polypropylene Composites: Mechanical, Thermal, and Morphological Properties
Jayamani et al. An investigation of sound absorption coefficient on sisal fiber poly lactic acid bio‐composites
KR101646121B1 (en) Biocomposites having high impact strength and flexural strength
KR100870597B1 (en) A process for manufacturing poly(latic acid) bio-composites and poly(latic acid) bio-composites thereby
Atli et al. Mechanical, thermal and biodegradable properties of bioplast-spruce green wood polymer composites
Garkhail et al. Thermoplastic composites based on biopolymers and natural fibres
Subyakto et al. Injection molded of bio-micro-composites from natural fibers and polylactic acid
US20240009891A1 (en) Method for producing a polymer material loaded with recylced textile fibres
Teymoorzadeh et al. Biocomposites of flax fiber and polylactic acid: processing and properties
Shahril et al. Effect of chemical modifier on the properties of polypropylene (PP)/Coconut fiber (CF) in automotive application
Hassan et al. Flexural properties of kenaf fibre mat reinforced PLA composites
Nasir et al. Characterization the Effect of Tensile Strength and Fracture Behavior for Kenaf–Silica Reinforced with Polypropylene
Ojala et al. Foam-laid thermoplastic composites based on kraft lignin and softwood pulp
Othman et al. Studies on water absorption of polypropylene/recycled acrylonitrile butadiene rubber/empty fruit bunch composites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131106

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141110

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee