KR100861181B1 - Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them - Google Patents

Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them Download PDF

Info

Publication number
KR100861181B1
KR100861181B1 KR1020020015665A KR20020015665A KR100861181B1 KR 100861181 B1 KR100861181 B1 KR 100861181B1 KR 1020020015665 A KR1020020015665 A KR 1020020015665A KR 20020015665 A KR20020015665 A KR 20020015665A KR 100861181 B1 KR100861181 B1 KR 100861181B1
Authority
KR
South Korea
Prior art keywords
vitamin
calcitriol
hydroxyvitamin
productivity
bioconversion
Prior art date
Application number
KR1020020015665A
Other languages
Korean (ko)
Other versions
KR20030076027A (en
Inventor
김기원
김태용
이홍섭
강대중
김병제
홍순광
Original Assignee
일동제약주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일동제약주식회사 filed Critical 일동제약주식회사
Priority to KR1020020015665A priority Critical patent/KR100861181B1/en
Publication of KR20030076027A publication Critical patent/KR20030076027A/en
Application granted granted Critical
Publication of KR100861181B1 publication Critical patent/KR100861181B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Abstract

본 발명은 전구체인 비타민 D3에 하이드록실기를 도입하여 활성형 비타민 D3를 생산하는 슈도노카르디아 아우토트로피카(Pseudonocardia autotrophica) ID9302에 관한 것으로써, 토양에서 분리한 야생균주 슈도노카르디아 아우토트로피카를 자외선, NTG, EtBr 등의 변이원으로 돌연변이시켜 각종 탄소원, 질소원, 기타 배지원의 최적화 시험과 배양 공정과 생물전환 공정을 개선함으로써 25-하이드록시비타민 D3와 칼시트리올을 고생산하는 것을 특징으로 한다.
The present invention relates to Pseudonocardia autotrophica ID9302 which introduces a hydroxyl group to a precursor of vitamin D3 to produce an active vitamin D3, wherein the wild strain Pseudonocardia autotroph isolated from soil. It is characterized by high production of 25-hydroxyvitamin D3 and calcitriol by mutating the mutants with mutations such as UV, NTG, EtBr, and optimization of various carbon sources, nitrogen sources, and other media sources, and improving the cultivation and bioconversion processes. .

비타민 D3, 칼시트리올, 생물전환, 슈도노카르디아, 자외선Vitamin D3, Calcitriol, Bioconversion, Pseudocardia, Ultraviolet

Description

비타민 디쓰리를 생물전환하는 균주 및 이를 이용한 칼시트리올 생산방법{Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them}Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them

도면1은 슈도노카르디아 아우토트로피카 ID9302의 생물전환에 의해 생산되는 칼시트리올의 구조 1 shows the structure of calcitriol produced by the bioconversion of Pseudocardia autotrophica ID9302

도면2는 Scanning Electron Microscope에 의한 슈도노카르디아 아우토트로피카 ID9302의 형태(×12.5K)Figure 2 shows the shape of the Pseudonocardia autotrophica ID9302 by Scanning Electron Microscope (× 12.5K).

도면3은 대량 발효시 배양 시간에 따른 칼시트리올과 25-하이드록시비타민 D3의 생산성
Figure 3 shows the productivity of calcitriol and 25-hydroxyvitamin D3 according to the incubation time during mass fermentation

본 발명은 골다공증 치료제인 칼시트리올을 생산하는 균주인 슈도노카르디아 아우토트로피카 ID9302와 이 균주를 이용하여 생물전환 기법으로 비타민 D3의 탄소원 1번과 25번 위치에 하이드록실기를 도입하여 1α,25-디하이드록시비타민 D3(칼시트 리올)를 고생산하는 방법을 개발하였고 또한 25-하이드록시비타민 D3를 전구체로 하여 탄소원 1α 위치에 하이드록실기를 도입함으로써 칼시트리올(도면1)을 고생산하는 방법에 관한 것이다.
The present invention uses a strain Pseudonocardia autotrophica ID9302, which produces calcitriol, a therapeutic agent for osteoporosis, and introduces a hydroxyl group at positions 1 and 25 of the carbon source of vitamin D3 using a bioconversion technique. Development of high production of dihydroxyvitamin D3 (calcitriol) and high production of calcitriol (Fig. 1) by introducing hydroxyl groups at the carbon source 1α position with 25-hydroxyvitamin D3 as a precursor It is about.

골다공증이란 정상인에서는 골형성과 골흡수가 균형을 이루어 건강한 뼈를 유지하나 폐경기 이후의 여성이나 고령의 노인에서는 골형성이 느리고 골흡수가 빨라 점차로 뼈의 조직이 약해지는 현상이다. 골형성과 골흡수는 여러 가지 복잡한 생리기작에 의해 조절되고 폐경기의 여성은 여성 호르몬인 에스트로겐의 생성이 저하되어 골형성은 점점 줄어들고 계속해서 골흡수가 일어나 골다공증에 걸리게 된다. 노인의 경우는 골형성이나 골흡수 모두의 대사기능이 저하되면서 골흡수가 골형성보다 점차 우세해져서 골다공증에 걸리게 되는 것이다. 이러한 골다공증의 예방이나 치료를 위해서 골흡수 억제제나 골형성 촉진제 그리고 칼슘 보강제 등을 사용하고 있다. 특히 에스트로겐이나 Ca 결합단백질인 칼시토닌을 투여하거나, 혹은 뼈의 Ca 흡수촉진을 위하여 활성형 비타민 D3인 칼시디올이나 칼시트리올을 투여하고 있다. 현재 에스트로겐은 홀몬으로 계속 투여시 골질량의 급격한 감소는 예방할 수 있으나 유방암, 자궁암 유발같은 심각한 부작용을 초래할 수 있기 때문에 사용에 제한적이다(Yoo H.J., 2001, Estrogen metabolism as a risk factor for head and neck cancer, Otolaryngol Head Neck Surg 124(3):241-7) . 칼시토닌은 피하주사로만 투여가 가능해 투약에 불편함이 있고 단백질 특성상 체내에서 분해되기 때문에 지속적으로 일정한 간격으로 투여하는 단점이 있다. 이에 비해 활성형 비타민 D3인 칼시트리올은 정상인의 경우에 간과 신장에서 비타민 D3의 전환에 의해 생성되는 생체 내 물질로써 부작용이 적고, 경구투여로 간단히 투약이 가능하며, 생리학적으로 뼈에 Ca의 흡수를 촉진시켜 골다공증의 치료효과가 탁월한 것으로 알려져 있다. 또한 칼시트리올은 골다공증 치료 및 예방에 임상적으로 사용되는 것 외에도 부갑상선 기능저하증, 만성신부전증, 피부건성증, 종양 등의 치료 효과가 보고되었으며 최근에는 cell proliferation을 저해한다고 보고되고 있다(Jensen SS외, 2001, Inhibitory effects of 1alpha,25-dihydroxyvitamin D3 on the G(1)-S phase-controlling machinery. Mol. Endocrinol., 15(8):1370-80).
Osteoporosis is a balance between bone formation and bone resorption in normal people to maintain healthy bones, but in post-menopausal women and the elderly, bone formation is slow and bone resorption is rapidly weakening the bone tissue. Bone formation and bone resorption are controlled by a variety of complex physiological mechanisms, and in postmenopausal women, the production of the female hormone estrogen decreases, resulting in less and less bone formation and subsequent bone resorption resulting in osteoporosis. In the elderly, as the metabolic function of both bone formation and bone resorption decreases, bone resorption becomes more prevalent than bone formation, resulting in osteoporosis. For the prevention or treatment of such osteoporosis, bone resorption inhibitors, bone formation promoters and calcium adjuvant are used. Particularly, calcitonin, which is an estrogen or Ca-binding protein, or calcidiol or calcitriol, an active vitamin D3, is administered to promote Ca absorption in bone. Estrogen is currently used as a hormone, but it can prevent the rapid decrease in bone mass, but it is limited to use because it can cause serious side effects such as breast and uterine cancer (Yoo HJ, 2001, Estrogen metabolism as a risk factor for head and neck cancer, Otolaryngol Head Neck Surg 124 (3): 241-7). Calcitonin can be administered only by subcutaneous injection, which is inconvenient to administer and decomposes in the body due to protein properties. In contrast, calcitriol, an active vitamin D3, is a biological substance produced by the conversion of vitamin D3 in the liver and kidney in normal people with little side effects, simple administration by oral administration, and physiological absorption of Ca into bone. It is known to promote osteoporosis with an excellent therapeutic effect. In addition to clinically used for the treatment and prevention of osteoporosis, calcitriol has been reported to treat parathyroid hypoplasia, chronic kidney failure, dry skin, tumors, etc. and recently, it has been reported to inhibit cell proliferation (Jensen SS et al., 2001). , Inhibitory effects of 1alpha, 25-dihydroxyvitamin D3 on the G (1) -S phase-controlling machinery.Mol.Endocrinol . , 15 (8): 1370-80).

활성형 비타민 D3인 칼시트리올은 현재 유기합성법에 의해 생산되고 있고 따라서 화학구조상의 stereospecificity와 regiospecificity를 고려하고 탄소원 1번 또는 25번 위치에 선택적으로 하이드록시기를 도입해야 하기 때문에 다단계 유기합성공정을 거쳐야 한다. 따라서 반응기작이 복잡하고 비용이 많이 든다(Kametani 외, 1987, Synthesis of vitamin D3 and related compounds, Med. Res. Rev., 7, 147-171). 이러한 화학합성에 의한 유도체 연구는 칼시트리올의 전합성 및 유도체에 대한 합성 등에 대해서 활발하게 이루어졌으며 1α와 25번 탄소의 하이드록시기 도입 외에 그 외의 탄소에도 하이드록실화를 시도하였고 iodination, bromination, phosphorylation 등의 새로운 유도물과 carboxylation, methylation, carbon chain 증가 등 유도체의 화학적 전환연구가 있었다.
Calcitriol, the active vitamin D3, is currently produced by organic synthesis, and therefore must undergo a multi-step organic synthesis process, taking into account the stereospecificity and regiospecificity of the chemical structure and selectively introducing a hydroxyl group at position 1 or 25. Thus, the reactor operation is complex and expensive (Kametani et al., 1987, Synthesis of vitamin D3 and related compounds, Med. Res. Rev. , 7, 147-171). Derivatives by chemical synthesis have been actively studied for the synthesis of calcitriol and the synthesis of derivatives. In addition to the introduction of hydroxyl groups of 1α and 25 carbons, it attempted hydroxylation to other carbons, iodination, bromination, phosphorylation, etc. There was a new inducer and chemical conversion of derivatives such as carboxylation, methylation and carbon chain increase.

동물의 기관을 이용하여 비타민 D3에 하이드록실화를 도입하는 연구도 보고되었다. 닭의 신장의 homogenate 혹은 미토콘드리아 분취물을 이용하여 1α 위치에 하이드록실화를 발표하였고 쥐의 간을 이용하여 25번 위치에 하이드록실화 또한 보고되었고 식물조직을 이용한 칼시트리올의 생합성 연구가 보고된 바 있다. 최근에는 자외선 조건에서 keratinocyte를 이용하여 7-디하이드로콜레스테롤에서 칼시트리올로의 전환에 대한 연구가 보고되었다. 그러나 이러한 조직이나 기관을 이용한 연구 결과로는 생산성이 현저히 낮아 많은 양의 기관을 필요로 하기 때문에 실제로 생산되는 소량의 활성물질을 분리하는 것은 비효율적이며 생산성이 낮아서 실제 생산에 응용되기는 어렵다고 할 수 있다.
Studies using animal organs to introduce hydroxylation into vitamin D3 have also been reported. Hydrogenation was reported at position 1α using homogenate or mitochondrial fraction of chicken kidney, hydroxylation at position 25 was also reported using mouse liver, and biosynthesis studies of calcitriol using plant tissue were reported. . Recently, studies on the conversion of 7-dihydrocholesterol to calcitriol using keratinocytes under UV conditions have been reported. However, as a result of research using these tissues or organs, productivity is so low that a large amount of organs are required, so it is difficult to separate a small amount of active material actually produced, which is inefficient and difficult to apply to actual production.

미생물에 의한 생물전환반응은 stereospecific하고 regiospecific하다는 것이 이미 입증되어 있다. 따라서 활성형 vitamin D3 생산방법을 기존의 유기합성법으로부터 미생물의 hydroxylation 기능을 이용하는 생물전환에 의한 경제적인 방법으로 대체할 수 있다(Rosazza 외, 1979, Mictobial models for drug metabolism, Adv. Appl. Microbiol., 25, 169-208). 미생물에 의한 vitamin D3 유도체 변환에 관한 연구는 1990년에 일본의 Taisho제약에 의해서 토양방선균인 Streptomyces 균주를 탐색하여 이 균주를 이용한 비타민 D3의 하이드록실화를 보고하였다(USP 4,892,821). 그러나 비타민 D3나 25-하이드록시비타민 D3를 전구체로 하여 칼시트리올을 생산하는 균주의 생물 전환능은 삼각플라스크 규모의 배양 수준에서의 결과이며 또한 buffer를 이용한 생물전환 방법이기 때문에 생산성의 증가를 도모할 수가 없으며 생산성 또 한 낮은 것으로 판단된다. 또한 1992년에 Taisho 제약에서 Amycolata sp.를 이용한 비타민 D3에서 칼시트리올로의 생물전환에 대한 보고에 따르면 25-하이드록시비타민 D3는 8.3㎎/ℓ, 칼시트리올은 0.17㎎/ℓ의 생산성을 나타내었으며 이는 본 발명의 생산성에 비하면 현저히 낮은 것으로 판단된다.
Bioconversion reactions by microorganisms have already been demonstrated to be stereospecific and regiospecific. Therefore, active-form vitamin D3 can be replaced in the production method in an economical way by biotransformation using the hydroxylation function of the microorganism from a conventional organic synthesis method (Rosazza et al., 1979, Mictobial models for drug metabolism , Adv. Appl. Microbiol., 25, 169-208). In 1990, a study on the transformation of vitamin D3 derivatives by microorganisms was carried out by Taisho Pharmaceutical of Japan, which investigated the strain of Streptomyces , a soil actinomycete, and reported the hydroxylation of vitamin D3 using this strain (USP 4,892,821). However, the bioconversion capacity of calcitriol-producing strains using vitamin D3 or 25-hydroxyvitamin D3 as precursors is a result of the triangular flask-scale culture, and the bioconversion method using buffers can increase productivity. The productivity is also low. In 1992, Taisho Pharmaceutical reported the bioconversion of vitamin D3 to calcitriol using Amycolata sp. With 25-hydroxyvitamin D3 and 8.3 mg / l for calcitriol and 0.17 mg / l. It is judged to be remarkably low compared to the productivity of the invention.

그러므로 본 발명처럼 생물전환 능력을 가진 미생물을 분리 및 개량하여 비타민 D3를 전구체로 하여 생물전환에 의해 하이드록시기를 도입함으로써 활성형 비타민 D3인 칼시트리올을 고생산할 수 있는 생물전환 공정을 개발함으로써 생산원가를 획기적으로 낮출 수 있을 것이다.
Therefore, by separating and improving microorganisms having bioconversion ability as in the present invention, by introducing a hydroxyl group by bioconversion by using vitamin D3 as a precursor, by developing a bioconversion process capable of high production of calcitriol, an active vitamin D3, It can be lowered dramatically.

본 발명의 목적은 콜레칼시페롤이 생물전환에 의해 활성형 비타민 D3인 25-하이드록시비타민 D3를 생산하는 균주를 토양에서 분리한 후 이 균주를 돌연변이시키고 또한 배지원, 배양공정, 생물전환공정 등을 최적화하여 비타민 D3에 하이드록시기를 도입하는 능력을 극대화함으로써 25-하이드록시비타민 D3 및 칼시트리올을 고생산하고 또한 25-하이드록시비타민 D3를 전구체로 하여 생물전환에 의해 칼시트리올을 제조하는 방법을 제공하는 것이다.An object of the present invention is to isolate the strain of cholecalciferol producing 25-hydroxyvitamin D3, an active vitamin D3 by bioconversion, in the soil and then mutating the strain, and also media, culture, bioconversion process By maximizing the ability to introduce hydroxy groups into vitamin D3 by optimizing and the like, high yield of 25-hydroxyvitamin D3 and calcitriol is also provided, and a method of producing calcitriol by bioconversion using 25-hydroxyvitamin D3 as a precursor It is.

이하 본 발명을 상세히 기술한다.Hereinafter, the present invention will be described in detail.

비타민 D3는 생체 내의 칼슘과 인의 대사조절에 관여하며 또한 에르고스테롤이나 7-디하이드로콜레스테롤을 전구체로 사용하여 피부에서 자외선 조사에 의해 미량 생성된다. 이렇게 생성된 비타민 D3 는 간에서 25번 탄소에 하이드록시기가 도입되어 25-하이드록시비타민 D3로 전환되고 이 물질은 다시 신장에서 1α 탄소에 하이드록시기가 도입되어 1α, 25-디하이드록시비타민 D3 즉 칼시트리올로 전환되며 이렇게 전환된 25-하이드록시비타민 및 칼시트리올은 생체 내의 Ca 흡수 및 대사조절 활성이 있는 활성형 비타민 D3로 알려져 있고(Hector 외, 1983, Vitamin D:Recent advances, Ann. Rev. Biochem., 52:411-439), 이 중에서도 칼시트리올이 가장 활성이 강한 것으로 밝혀져 있다(Joji 외, 1991, Applied and environmental microbiology, 2841-2846). 이에 비타민 D3에 생물전환 즉 하이드록시기를 도입할 수 있는 능력을 가진 균주를 탐색하기 위해 각지의 토양을 채취하여 미생물을 분리하였다. 그 중에서 연구소 뒷산에서 채취한 토양에서 전구체인 비타민 D3를 생물전환하여 25-하이드록시비타민 D3를 생산하는 야생균주를 분리하였다. 이를 자세히 설명하면 채취된 토양에서 방선균을 선별 분리 및 배양하여 균체 만을 취득한 후 20mM potassium phosphate buffer(pH6.8)에 현탁하여 에탄올에 100㎎/㎖ 농도로 녹인 비타민 D3를 적정 농도(final 200㎍/㎖)로 가하여 혼합한 후 진탕배양기(200rpm, 28℃)에서 3일간 반응시켰다. 반응액 3㎖에 추출용매(methylene chloride/methanol=1/2) 3㎖를 가하여 혼합한 후 methylene chloride 층을 취하여 40℃ 이하에서 감압농축하여 HPLC 분석으로 비타민 D3와 동일한 UV 패턴을 나타내는 물질이지만 RT가 다른 물질을 찾았고 또한 25-하이드록시비타민 D3 순품과 일치하는 UV 패턴 및 RT를 나타내는 물질을 생산하는 야생균주를 선발하였으며 25-하이드록시비타민 D3의 생산성은 0.82㎎/ℓ로 낮았다.
Vitamin D3 is involved in the metabolism of calcium and phosphorus in the body and is also produced in trace amounts by UV irradiation in the skin using ergosterol or 7-dihydrocholesterol as precursors. The resulting vitamin D3 is converted into 25-hydroxyvitamin D3 by the introduction of a hydroxy group on carbon number 25 in the liver, which in turn is introduced into the 1α carbon by the kidney, thereby introducing 1α, 25-dihydroxyvitamin D3, 25-hydroxyvitamin and calcitriol, which are converted to calcitriol and thus converted, are known as active vitamin D3 with Ca absorption and metabolic activity in vivo (Hector et al., 1983, Vitamin D: Recent advances, Ann. Rev. Biochem . 52: 411-439), among which calcitriol is found to be the most active (Joji et al., 1991, Applied and environmental microbiology , 2841-2846). Thus, in order to search for strains with the ability to introduce biotransformation, that is, hydroxyl groups into vitamin D3, soil was collected from various places to separate microorganisms. Among them, wild strain producing 25-hydroxyvitamin D3 was isolated by bioconversion of precursor vitamin D3 from soil collected from the rear of the institute. In detail, the actinomycetes were screened and isolated from the collected soil to obtain only the cells, and then suspended in 20mM potassium phosphate buffer (pH6.8) and dissolved in vitamin D3 in ethanol at a concentration of 100 mg / ml. ㎖) was added and mixed, followed by reaction for 3 days in a shaker (200rpm, 28 ℃). After adding 3 ml of the extraction solvent (methylene chloride / methanol = 1/2) to 3 ml of the reaction mixture, the methylene chloride layer was taken and concentrated under reduced pressure at 40 ° C. or lower. Was found, and wild strains were selected that produced substances exhibiting UV patterns and RTs consistent with 25-hydroxyvitamin D3 pure products, and the productivity of 25-hydroxyvitamin D3 was low at 0.82 mg / l.

선발된 균주에 대한 각종 배지원에 대한 영양요구성을 파악한 뒤 각종 탄소원, 질소원, 금속원 등의 배지원에 따른 활성형 비타민 D3의 생산성을 확인하였고 이를 토대로 하여 돌연변이원인 UV, NTG, EtBr의 다단계 변이를 통해 활성형 비타민 D3의 생산성을 증가시켰으며 또한 배양 공정 중의 종균 배양배지 및 배양 기간별에 따른 생산성의 차이를 확인하였고 생물전환 반응의 조건 중 전구체 용해제 및 전구체 투입시기 그리고 반응시간 등에 대한 조사를 통해 25-하이드록시비타민 및 칼시트리올의 생산성을 극대화하였다.
After understanding the nutritional composition of various media sources for the selected strains, we confirmed the productivity of active vitamin D3 according to media sources such as carbon source, nitrogen source, and metal source, and based on this, multi-stage of UV, NTG, EtBr mutants Variation increased the productivity of the active vitamin D3, and also confirmed the difference in productivity according to the spawn culture medium and incubation period during the cultivation process. To maximize the productivity of 25-hydroxyvitamin and calcitriol.

균주의 동정은 Shirling과 Gottlieb의 방법(Shirling 외, 1966, Methods for characterization of Streptomyces species, Int. J. System. Bacteriol., 16, 313-340)과 Bergey‘s manual of systematic bacteriology (Williams 외, 1989, Bergey‘s manual of systematic bacteriology Vol.4, Williams & Wilkins)등에 기술된 방법에 따라 진행하였다.
The identification of strains is described by Shirling and Gottlieb's method (Shirling et al., 1966, Methods for characterization of Streptomyces species, Int. J. System. Bacteriol ., 16, 313-340) and Bergey's manual of systematic bacteriology (Williams et al., 1989, Bergey's Manual of systematic bacteriology Vol. 4, Williams & Wilkins et al.

균주의 형태학적인 특징은 균사는 불규칙적인 rectiflexible branch를 형성하고 있으며 포자 chain은 glycerol-asparagine agar, inorganic salts-starch agar, oatmeal agar 등에서 많은 spore를 형성하고 현미경학적인 관찰에서 균사는 액체 배양에서 pH8 이상의 dead phase에서는 분절되는 현상을 나타내었고 포자 표면은 smooth, cylindrical form이다(도면2).
The morphological characteristics of the strains are that the mycelia form irregular rectiflexible branches, and the spore chains form many spores in glycerol-asparagine agar, inorganic salts-starch agar, oatmeal agar, etc. In the dead phase, there was a segmentation phenomenon and the spore surface was smooth, cylindrical form (Fig. 2).

배양학적인 특징은 고체배지 상에서는 다양한 배지원에서 생장하였고 초기 발육이 늦으며 배양 4-5일 이후부터 급격히 균체량이 증가하는 것으로 나타났고 colony 표면에 주름이 존재하였고 배양 기간이 길어질수록 백색에서 연회색의 색소를 띄었으며 colony 배면색(reverse side)은 연갈색을 나타내었다. 액체배양 시에는 배양 7일까지 core가 계속 성장하다가 이 후 감소하였으며 core에서 균사가 뻗어나가는 모습을 보였다.
The cultivation characteristics were that the solid medium was grown in various media sources, the initial growth was late, and the cell mass increased rapidly after 4-5 days of cultivation. The wrinkles were present on the colony surface. Pigmented, colony reverse side was light brown. In the liquid culture, the core continued to grow until 7 days of culture, and then decreased, and mycelia were extended from the core.

생리적 특징은 표 1에 기술하였고 wall chemotype은 Ⅵ형이며 whole-cell sugar pattern은 A형을 나타내었다. 따라서 이상의 결과를 종합하면 슈도노카르디아 아우토트로피카의 근연균주인 것으로 확인되었기에 슈도노카르디아 아우토트로피카 ID9302로 명명하였고 특허출원을 위해 2001.6.13자로 유전자은행(KCTC)에 균주를기탁하였고 KCTC1029BP의 기탁번호를 부여받았다.The physiological characteristics are described in Table 1 and the wall chemotype is type VI and the whole-cell sugar pattern is type A. Therefore, according to the above results, it was confirmed that it is a related strain of Pseudonocardia autotrophica and named as Pseudonocardia autotrophica ID9302, and the strain was deposited in the Gene Bank (KCTC) for the patent application as 2001.6.13 and KCTC1029BP Has been given a deposit number.

.Characteristics.Characteristics ID9302ID9302 ArabinoseArabinose ++ FructoseFructose ++ GlucoseGlucose ++ InositolInositol ++ MannitolMannitol ++ RaffinoseRaffinose ++ RhamnoseRhamnose ++ SucroseSucrose ++ XyloseXylose ++ 10℃10 ℃ ++ 45℃45 ℃ -- AdenineAdenine ++ CaseinCasein -- HypoxanthineHypoxanthine ++ TyrosineTyrosine ++ UreaUrea ++ EsculinEsulin ++ StarchStarch ++

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

<실시예1>Example 1

균주의 개량의 방법으로 UV 조사, NTG 처리, EtBr 처리의 다단계 변이원을 이용한 균주 개량을 진행하였다. 우선 SYM 배지에 균주를 도말하여 7일 동안 28℃에서 As a method of improving the strain, strain improvement using a multi-stage mutagen of UV irradiation, NTG treatment, and EtBr treatment was performed. First, spread the strain on the SYM medium at 28 ℃ for 7 days

충분히 배양하였다. 포자가 충분히 형성된 뒤 20% glycerol로 포자를 현탁시켜 10분간 sonication을 실시한 다음 멸균 탈지면으로 여과하여 포자를 수거하고 deep freezer에서 3일동안 보관 후 해동함으로써 생존한 spore의 수를 측정하였고 이를 적정 농도(104/㎖)로 aliquot하여 시험에 사용하였다.
Incubated sufficiently. After enough spores were formed, the spores were suspended in 20% glycerol, sonicated for 10 minutes, filtered through sterile cotton wool, collected in spores, stored in a deep freezer for 3 days, and thawed to determine the number of surviving spores. 10 4 / ml) was used for the test aliquot.

UV에서는 99.9% 정도의 사멸율을 보이는 곳에서 돌연변이가 가장 잘 일어난다고 알려져 있다. 그 시점은 약 7-10분 정도인데 15분까지 처리하여 99.99%의 사멸율을 나타내는 조건에서 콜로니를 선별하였다. 이를 자세히 설명하면 샤레당 1ml씩 도말 후 건조하여 28℃ 배양기에서 1시간 동안 배양하였다. 이렇게 처리된 포자를 UV(254nm)로 각각 0, 1, 1.5, 2, 2.5, 3, 4, 5, 7, 10, 12, 15, 30분간 조사하여 샤레를 호일로 싸서 4℃ 냉장고에 2시간 보관한 후 28℃ 배양기에서 4일간 배양하여 콜로니를 선별하였다. In UV, mutations are most likely to occur at 99.9% mortality. The time point was about 7-10 minutes, and the colonies were selected under conditions showing a mortality rate of 99.99% after 15 minutes of treatment. In detail, 1ml per shale smeared and dried and incubated for 1 hour in a 28 ℃ incubator. The treated spores were irradiated with UV (254 nm) at 0, 1, 1.5, 2, 2.5, 3, 4, 5, 7, 10, 12, 15 and 30 minutes, respectively, wrapped in a curry foil and placed in a 4 ℃ refrigerator for 2 hours. After storage, the colonies were selected by culturing for 4 days at 28 ℃ incubator.

NTG처리에서는 40-50% 사멸시 돌연변이율이 가장 좋다고 알려져 있는데 본 균주는 NTG에 매우 민감해서 10분 간격으로 처리한 결과 10분과 20분 사이에서 50%의 사멸율을 나타내었으나 45분간 처리하여 99%이상 사멸한 조건에서 콜로니를 선별하였다. In the NTG treatment, the mutation rate is known to be the best at 40-50% killing. This strain is very sensitive to NTG and treated at 10 minute intervals showed 50% mortality between 10 and 20 minutes, but it was 99% after 45 minutes. Colonies were selected under abnormally killed conditions.

EtBr 처리에서는 37℃ 배양에서 EtBr을 처리하여 균의 돌연변이를 유도하였다. 논문에 의하면 10또는 20ug/ml 정도 처리하여야 하는데 본 균주의 초기 성장이 느려 5ug/ml 이하로 처리하여 60% 사멸율의 돌연변이를 유도하였다. 이렇게 돌연변이된 균주(ID9302)를 배양공정에 따라 배양한 결과 야생균주에 비해 25-하이드록시 비타민 D3의 생산성이 5배 증가한 4㎎/ℓ을 나타내었다.
In EtBr treatment, EtBr was treated in 37 ° C. culture to induce the mutation of the bacteria. According to the paper, 10 or 20ug / ml should be treated, but the initial growth of the strain was slowed down to less than 5ug / ml to induce mutations of 60% mortality. As a result of culturing the mutated strain (ID9302) according to the culturing process, the productivity of 25-hydroxy vitamin D3 was increased by 5 times compared to wild strain 4 mg / L.

<실시예2>Example 2

ID9302를 전분 1%, yeast extract 0.4%, malt extract 1%, agar 2%의 고체배지에서 4일간 배양하여 가로x세로 1㎠의 면적으로 잘라내어 이를 포도당 1.5%, 소이톤 1.5%, 염화나트륨 0.5%, 칼슘 카보네이트 0.2%를 함유하는 멸균 액체배지(pH 7.0) 50㎖(in 300㎖ 삼각플라스크)에 접종하여 1차 종균배지로 사용하였다. 1차 종균 배지에 접종된 ID9302는 28℃에서 200rpm으로 1-3일간 진탕배양하여 이를 2차 종균배양액으로 사용하였다. 이때 2차 종균배양액의 pH는 6.8-7.8 사이에서 유지되어야 한다. 본배양 배지는 건조 이스트 0.4%, 포도당 1%, 전분 3%, 어육 1%, 염화나트륨 0.2%, 인산염 0.01%, 칼슘 카보네이트 0.2%, pH 7.0의 멸균액체배지 50㎖를 사용하였고 300㎖ 삼각플라스크에서 28℃에서 200rpm으로 6-10일간 진탕배양하였다. 전구체인 비타민 D3의 투여량은 에탄올 50㎕에 녹인 5㎎이었고 상기의 배양액 3㎖에 추출용매(methylene chloride/methanol=1/2) 6㎖를 가하여 혼합한 후 methylene chloride 층을 취하여 40℃에서 감압농축하여 HPLC 분석으로 25-하이드록시비타민 D3와 칼시트리올의 순품과 일치하는 UV 패턴 및 RT를 나타내는 25-하이드록시비타민 D3와 칼시트리올의 면적을 비교 계산하여 생산성을 확인하였고 HPLC 분석 조건은 칼럼은 J'sphere ODS-H80(150×4.6㎜I.D.), mobile phase는 85%-100% methanol(in H2O), flow rate는 1㎖/min, detection은 photodiode array detector를 사용하였다. 25-하이드록시비타민 D3의 최대 생산성은 10㎎/ℓ였고 칼시트리올의 최대 생산성은 1㎎/ℓ였다. 이는 현재까지 발표된 미생물의 생물전환능을 이용한 활성형 비타민 D3의 생산 시험 중에서 가장 높은 생산성을 나타내는 결과인 것으로 판단된다.
ID9302 was incubated for 4 days in solid medium containing starch 1%, yeast extract 0.4%, malt extract 1%, and agar 2%, cut into areas of 1 cm width x height 1.5% glucose, 1.5% soyton, 0.5% sodium chloride, 50 ml (in 300 ml Erlenmeyer flask) containing sterile liquid medium (pH 7.0) containing 0.2% calcium carbonate was used as the primary seed medium. ID9302 inoculated in the primary seed medium was shaken at 28 rpm at 28 ° C. for 1-3 days and used as a secondary seed culture medium. The pH of the secondary seed culture should be maintained between 6.8-7.8. The culture medium was used as a dry yeast 0.4%, glucose 1%, starch 3%, fish meat 1%, sodium chloride 0.2%, phosphate 0.01%, calcium carbonate 0.2%, pH 7.0 sterile liquid medium 50ml in a 300ml Erlenmeyer flask Shaking was incubated at 28 ° C. at 200 rpm for 6-10 days. The dose of the precursor vitamin D3 was 5 mg dissolved in 50 μl of ethanol, and 6 ml of extraction solvent (methylene chloride / methanol = 1/2) was added to 3 ml of the culture medium, followed by mixing. Concentration was confirmed by productivity by comparing the area of 25- hydroxyvitamin D3 and calcitriol showing the UV pattern and RT consistent with the pure 25-hydroxyvitamin D3 and calcitriol pure by HPLC analysis. The sphere ODS-H80 (150 × 4.6mmID), mobile phase was 85% -100% methanol (in H2O), flow rate was 1ml / min, and detection was performed using a photodiode array detector. The maximum productivity of 25-hydroxyvitamin D3 was 10 mg / l and the maximum productivity of calcitriol was 1 mg / l. This is the result showing the highest productivity among the production test of active vitamin D3 using the bioconversion capacity of microorganisms published to date.

<실시예3> Example 3                     

실시예2의 본배양 배지 조건이외에도 sucrose, trehalose, maltose 등의 탄소원과 대두분, 땅콩, 옥수수 가루, 펩톤 등의 질소원을 추가하거나 혹은 대체해도 활성형 비타민의 생산은 가능하다. 또한 실시예2의 배지 농도를 달리하여 배양 시에도 활성형 비타민 D3의 생산성의 증감이 나타난다.
In addition to the conditions of the main culture medium of Example 2, the production of active vitamins is possible even by adding or replacing carbon sources such as sucrose, trehalose, maltose, and nitrogen sources such as soy flour, peanut, corn flour, and peptone. In addition, the productivity of the active vitamin D3 also increases and decreases in culture by varying the medium concentration of Example 2.

<실시예4>Example 4

실시예2의 전구체인 비타민 D3의 투여량을 20㎎까지 증가했을 때에 25-하이드록시비타민 D3의 생산성은 40㎎/ℓ이었고 칼시트리올의 생산성은 5.5㎎/ℓ을 나타내었고 이는 전구체의 농도와 비례하여 활성형 비타민의 생산성이 증가하는 것으로 판단된다.
When the dose of vitamin D3, the precursor of Example 2, was increased to 20 mg, the productivity of 25-hydroxyvitamin D3 was 40 mg / l and the productivity of calcitriol was 5.5 mg / l, which was proportional to the concentration of the precursor. The productivity of active vitamins is believed to increase.

<실시예5>Example 5

실시예2의 전구체인 비타민 D3 대신에 25-하이드록시비타민 D3 1㎎을 50㎕ 에탄올에 녹여 실시예2와 동일한 방법을 실시했을 때 1㎎/ℓ의 칼시트리올 생산성을 나타내었고 투여량을 2, 3, 4, 5㎎으로 증가하여 생물전환을 실시했을 경우에 칼시트리올 생산성 역시 비례적으로 증가하여 2, 3.2, 4.1, 5.4㎎/ℓ을 나타내었다.
Instead of the vitamin D3 precursor of Example 2, 1 mg of 25-hydroxyvitamin D3 was dissolved in 50 µl of ethanol, and the same method as in Example 2 yielded 1 mg / L of calcitriol productivity. When bioconversion was increased to 4, 5 mg, calcitriol productivity was also increased proportionally to 2, 3.2, 4.1, and 5.4 mg / l.

<실시예6>Example 6

전구체 용해제로 사용하는 에탄올 이외에 계면활성제인 cremophore, propylene glycol, dipropylene glycol, tween 85, tween 80, detaine 96, PEG 300을 에탄올 과 동일한 비율로 혼합하여 비타민 D3 5㎎을 50㎖에 투여하는 실시예2와 동일한 공정을 진행하면 25-하이드록시비타민 D3와 칼시트리올의 생산성이 높아지는 것을 확인하였고 이 중에서 cremophore와 tween80, tween 85을 사용했을 때 에탄올 단독사용보다 2.5배 높은 최대 2.5㎎/ℓ의 칼시트리올 생산성을 나타내었다. 동일한 조건으로 비타민 D3를 20㎎ 투여했을 때 25-하이드록시비타민 D3의 생산성은 50㎎/ℓ이었고 칼시트리올의 생산성은 9.7㎎/ℓ을 나타내었다.
In addition to ethanol used as a precursor solubilizer, surfactants cremophore, propylene glycol, dipropylene glycol, tween 85, tween 80, detaine 96, and PEG 300 were mixed in the same proportion as ethanol to administer 5 mg of vitamin D3 to 50 ml. When the same process as in the 25-hydroxyvitamin D3 and calcitriol productivity was confirmed that the increase of the use of cremophore, tween 80, tween 85, 2.5 times higher than the ethanol alone, 2.5 mg / ℓ of calcitriol productivity It was. When 20 mg of vitamin D3 was administered under the same conditions, the productivity of 25-hydroxyvitamin D3 was 50 mg / l and the productivity of calcitriol was 9.7 mg / l.

<실시예7>Example 7

실시예의 배지 및 조건들을 이용한 본배양을 30L 발효조에서 20L 배양을 실시하였고 발효조 배양 조건은 28℃, 통기량 1VVM, 교반속도 500rpm으로 10일간 배양하였다. 비타민 D3 투여량은 2g이었고 본 균주의 초기 성장이 느리기 때문에 500rpm으로 교반하다가 배양 3일째에 균사의 절단 방지 및 성장 속도의 조절 목적으로 교반 속도를 400rpm으로 낮추어 배양한다. 이 후 배양 5일째에는 통기량을 0.5VVM으로 낮추어서 균주의 성장을 조절하면서 배양액의 pH가 8.0을 넘지 않도록 한다. 배양 8일째에 최대 생산성을 나타내었고 25-하이드록시비타민 D3의 생산성은 10.4㎎/ℓ이었고 칼시트리올은 3.86㎎/ℓ이었다(도면3). 이는 p450 system에 의한 하이록실화는 산소에 의해 조절되는 것으로 알려져 있기 때문에 발효조에 의한 산소 전달 능력이 더 우수한 결과인 것으로 판단된다. 또한 이러한 결과는 더 높은 농도의 비타민을 투여했을 경우 더 높은 칼시트리올 생산성을 예측할 수 있음을 알 수 있다.
The main culture using the medium and the conditions of the Example was carried out 20L culture in a 30L fermenter and the culture conditions of the fermenter were incubated for 10 days at 28 ℃, aeration rate 1VVM, agitation speed 500rpm. Since vitamin D3 dose was 2g and the initial growth of the strain was slow, the mixture was stirred at 500rpm, and then cultured by lowering the stirring rate to 400rpm on the 3rd day of culture to prevent the hyphae and to control the growth rate. After 5 days of culture, the aeration rate is lowered to 0.5VVM to control the growth of the strain so that the pH of the culture solution does not exceed 8.0. Maximum productivity was shown on day 8 of culture, and the productivity of 25-hydroxyvitamin D3 was 10.4 mg / l and calcitriol was 3.86 mg / l (Fig. 3). This is because the hydroxylation by the p450 system is known to be controlled by oxygen, and thus the oxygen transfer capacity by the fermenter is considered to be a better result. These results also indicate that higher calcitriol productivity can be predicted with higher vitamin concentrations.

<실시예8>Example 8

ID9302를 이용하여 비타민 D3에서 25-하이드록시비타민 D3와 칼시트리올로의 생물전환능을 최적화하기 위해서 배양공정을 확립하였고 이를 상세히 설명하면 ID9302를 고체배지에서 4일 동안 28℃에서 충분히 생장시킨 다음 종균배양 배지에서 3일간 배양한다. 본 균주는 stationary phase가 3일 정도 유지되기 때문에 전배양 3일 후에 중간배양을 실시한다. 중간배지 조성은 전배양 배지와 동일하며 중간배양액의 5%를 접종량으로 사용하였고 중간배양은 3일 동안 진행하며 이때 pH는 8을 넘지 않도록 한다. 본배양액을 기준으로 중간배양액 5%를 접종량으로 하여 본배양을 진행하며 p450 hydroxylase system은 배양 초기에 활성화되기 때문에 본배양과 동시에 전구체를 접종하여 생물전환 반응을 진행하며 이 균주는 pH 8 이상에서 분절화되는 현상을 나타내기 때문에 배양 3일째에 통기량과 교반속도를 조절하면서 pH가 8을 넘지 않도록 균주의 성장 속도를 느리게 유지한다.
In order to optimize the bioconversion capacity of vitamin D3 to 25-hydroxyvitamin D3 and calcitriol using ID9302, the culture process was established. In detail, ID9302 was grown in solid medium at 28 ° C for 4 days and then seed cultured. Incubate for 3 days in the medium. Since the stationary phase is maintained for 3 days, the medium is cultured after 3 days of preculture. The medium composition is the same as the preculture medium, and 5% of the medium culture was used as the inoculum, and the medium culture was carried out for 3 days, and the pH was not to exceed 8. Based on the main culture solution, the main culture is inoculated with 5% of the intermediate culture solution. Since the p450 hydroxylase system is activated at the beginning of the culture, the biotransformation reaction is carried out by inoculating the precursor at the same time as the main culture. Because of this phenomenon, the growth rate of the strain is maintained slowly so that the pH does not exceed 8 while adjusting the aeration amount and the stirring speed on the third day of the culture.

<실시예9)Example 9

생물전환반응이 종료된 배양액 20L를 원심분리하여 cell은 아세톤 10L로 추출하여 40℃ 이하에서 감압농축하였고 배양 여액은 HP20에 흡착시켜 메탄올로 용출시켜 활성물질을 분취하였고 이를 40℃ 이하에서 감압농축하여 cell 추출액과 혼합하였다. 혼합액은 헥산과 디클로르메탄(2/1)으로 재추출하여 40℃ 이하에서 감압농축하였다. 이 농축액을 헥산과 디클로르메탄(3/7)에 용해하여 -20℃에서 1시간동안 방치 후 상등액을 취하여 Sephadex LH20 column에 적용하였다. 이동상은 헥산과 디클로 르메탄(3/7)이었으며 비타민 D3와 25-하이드록시비타민 D3 그리고 칼시트리올 순으로 분취되었다. 비타민 D3와 25-하이드록시비타민 D3의 순도는 90% 이상이었고 비타민 D3와 25-하이드록시비타민 D3는 각각 1.2g과 110㎎을 분리하였으며 이는 칼시트리올 생산을 위한 전구체로 재사용이 가능하였다. 칼시트리올 분취액은 YMC J'sphere ODS column, 55% CH3CN, 265㎚, 5㎖/분의 조건으로 분리하여 순수한 백색 결정의 칼시트리올 52㎎을 얻었다.
After centrifugation of 20 L of the bioconversion reaction, the cells were extracted with 10 L of acetone and concentrated under reduced pressure at 40 ° C. or lower. The culture filtrate was adsorbed onto HP20 and eluted with methanol to separate the active substance. It was mixed with the cell extract. The mixture was re-extracted with hexane and dichloromethane (2/1) and concentrated under reduced pressure at 40 ℃ or less. The concentrated solution was dissolved in hexane and dichlormethane (3/7), and left at -20 ° C for 1 hour. The supernatant was collected and applied to a Sephadex LH20 column. The mobile phases were hexane and dichlormethane (3/7), followed by vitamin D3, 25-hydroxyvitamin D3 and calcitriol. The purity of vitamin D3 and 25-hydroxyvitamin D3 was more than 90%, and vitamin D3 and 25-hydroxyvitamin D3 were isolated 1.2g and 110mg, respectively, which could be reused as precursors for calcitriol production. Calcitriol aliquots were separated under conditions of YMC J'sphere ODS column, 55% CH 3 CN, 265 nm, 5 ml / min to give 52 mg of pure white crystals of calcitriol.

본 발명은 유기합성에 의해 생산되는 물질을 미생물의 생물전환에 의해 stereospecific하고 regiospecific하게 고생산함으로써 칼시트리올의 생산단가를 크게 낮추어 경쟁력 있는 의약품 생산이 가능하며 또한 유기합성이 아닌 발효에 의한 생산을 하기 때문에 골다공증치료제인 칼시트리올을 안정적, 경제적 그리고 환경친화적으로 생산할 수 있다.According to the present invention, the production cost of calcitriol can be greatly reduced by producing stereospecific and regiospecific materials produced by organic synthesis by bioconversion of microorganisms. Calcitriol, an osteoporosis treatment, can be produced stably, economically and environmentally.

Claims (2)

비타민 D3에 하이드록실기를 도입하는 생물전환능력을 가진 슈도노카르디아 아우토트로피카 ID9302(기탁번호 KCTC 1029BP).Pseudocardia autotrophica ID9302 (Accession No. KCTC 1029BP) with a bioconversion ability to introduce hydroxyl groups into vitamin D3. 생물전환능력을 가진 슈도노카르디아 아우토트로피카 ID9302(기탁번호 KCTC 1029BP)를 이용하여 전구체인 비타민 D3 혹은 25-하이드록시비타민 D3에 하이드록실기를 도입하여 칼시트리올을 생산하는 방법Method for producing calcitriol by introducing hydroxyl group into precursor vitamin D3 or 25-hydroxyvitamin D3 using Pseudonocardia autotrophica ID9302 (Accession No. KCTC 1029BP) with bioconversion ability
KR1020020015665A 2002-03-22 2002-03-22 Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them KR100861181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020015665A KR100861181B1 (en) 2002-03-22 2002-03-22 Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020015665A KR100861181B1 (en) 2002-03-22 2002-03-22 Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them

Publications (2)

Publication Number Publication Date
KR20030076027A KR20030076027A (en) 2003-09-26
KR100861181B1 true KR100861181B1 (en) 2008-09-30

Family

ID=32225884

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020015665A KR100861181B1 (en) 2002-03-22 2002-03-22 Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them

Country Status (1)

Country Link
KR (1) KR100861181B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071327A3 (en) * 2008-12-19 2010-09-23 일동제약주식회사 Buffer composition for catalyzing the preparation of calcitriol or calcifediol and method for preparing calcitriol or calcifediol using same
CN110396527A (en) * 2019-02-19 2019-11-01 山东惠仕莱生物科技有限公司 A kind of method of vitamine D3 hydroxylation enzymatic conversion production 25-hydroxyvitamin D3

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357229B1 (en) * 2006-05-31 2016-07-20 MicroBiopharm Japan Co., Ltd. Hydroxylase gene and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl Microbiol Biotechnol., 38(2), pp.152~157 (1992. 11.)
Biochem Biophys Acta., 1219(1), pp.179~183 (1994. 9. 13.)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071327A3 (en) * 2008-12-19 2010-09-23 일동제약주식회사 Buffer composition for catalyzing the preparation of calcitriol or calcifediol and method for preparing calcitriol or calcifediol using same
CN102482687A (en) * 2008-12-19 2012-05-30 一栋制药株式会社 Buffer composition for catalyzing the preparation of calcitriol or calcifediol and method for preparing calcitriol or calcifediol using same
JP2012512648A (en) * 2008-12-19 2012-06-07 イルドン ファーマ カンパニー リミテッド Calcitriol or calciferdiol production-promoting buffer composition and method for producing calcitriol or calcifediol using the same
US8530205B2 (en) 2008-12-19 2013-09-10 Il Dong Pharm Co., Ltd. Buffer composition for catalyzing the preparation of calcitriol or calcifediol and method for preparing calcitriol or calcifediol using same
CN102482687B (en) * 2008-12-19 2014-08-27 一栋制药株式会社 Buffer composition for catalyzing the preparation of calcitriol or calcifediol and method for preparing calcitriol or calcifediol using same
CN110396527A (en) * 2019-02-19 2019-11-01 山东惠仕莱生物科技有限公司 A kind of method of vitamine D3 hydroxylation enzymatic conversion production 25-hydroxyvitamin D3

Also Published As

Publication number Publication date
KR20030076027A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
EP1751272B1 (en) Production of tacrolimus (fk-506) using new streptomyces species
JPS58212787A (en) Substance ws6049, its preparation and anticancer agent containing the same as active constituent
KR100861181B1 (en) Microorganisms hydroxylating vitamin D3 and manufacturing process of calsitriol by using of them
Bouras et al. Nutritional requirements for the production of dithiolopyrrolone antibiotics by Saccharothrix algeriensis NRRL B-24137
JP5283927B2 (en) Novel compound amicolamycin, its production method and its use
US7202062B2 (en) Strains of Saccharaothrix, process for producing pravastain using the strains and isolation process of (HMG)-CoA reductase
JP4351395B2 (en) WK-5344A substance, WK-5344B substance and methods for producing them
JP5502397B2 (en) Novel compound amicorose derivative, its production method and its use
KR19980018741A (en) Polyene antibiotics, 3874 H1 to H6, processes for their preparation and use
WO1996016053A1 (en) Phthalide compounds and their production process
JPH0676425B2 (en) WS-9326A, WS-9326B and derivatives thereof
EP1671640A1 (en) Mutant strain of Actinoplanes teichomyceticus for the production of teicoplanin
KR100266435B1 (en) Mutant strains producing anthracyclin system antibiotics and process for preparing doxorubicin with mixed culture
KR100490280B1 (en) A biological method for producing D-ribose from D-xylose using a Bacillus subtilis mutant
JPH0784472B2 (en) Antibiotic A80190
JP3643082B2 (en) New saccharolytics strain, method for producing pravastatin using the same, and method for isolating (HMG) -CoA reductase
EP0314401B1 (en) New compound wf 2015 a and b, production thereof and use thereof
US6818422B2 (en) Substances K97-0239 and process for producing the same
JPH0625277A (en) Bacterium producing novel testosterone-5alpha-reductase-inhibiting substance, sna-4606, novel testosterone-5-reductase-inhibiting substance, sna-4606 and its production
JP3779719B2 (en) New saccharolytics strain, method for producing pravastatin using the same, and method for isolating (HMG) -CoA reductase
US7432080B2 (en) Process for the production of teicoplanin
JPWO2003064668A1 (en) Novel microorganisms, their products and their use
JP2000295999A (en) BIOLOGICAL PRODUCTION OF 1-alpha,24-DIHYDROXYVITAMIN D3
KR20010109831A (en) Novel streptomyces sp. strain and method for producing oleamide therefrom
KR19980034805A (en) New strain Blakeslia trispora (+) and (-), and method for preparing beta carotene using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120907

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140813

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150708

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160811

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170711

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180817

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 12