KR100855171B1 - Preparation method of nanocomposites in supercritical carbon dioxide - Google Patents

Preparation method of nanocomposites in supercritical carbon dioxide Download PDF

Info

Publication number
KR100855171B1
KR100855171B1 KR1020070013477A KR20070013477A KR100855171B1 KR 100855171 B1 KR100855171 B1 KR 100855171B1 KR 1020070013477 A KR1020070013477 A KR 1020070013477A KR 20070013477 A KR20070013477 A KR 20070013477A KR 100855171 B1 KR100855171 B1 KR 100855171B1
Authority
KR
South Korea
Prior art keywords
group
monomer
groups
nanocomposite
inorganic oxide
Prior art date
Application number
KR1020070013477A
Other languages
Korean (ko)
Inventor
임권택
할도리 유아라즈
이민영
훌라티 수반 가나파티
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020070013477A priority Critical patent/KR100855171B1/en
Application granted granted Critical
Publication of KR100855171B1 publication Critical patent/KR100855171B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A method for preparing a nanocomposite by using supercritical carbon dioxide is provided to obtain a nanocomposite comprising an inorganic oxide in a conductive polymer in an eco-friendly manner with a high conversion while facilitating easy separation of a desired product and avoiding a solubilization problem. A method for preparing a nanocomposite comprising an inorganic oxide homogeneously in a conductive polymer comprises the steps of performing surface modification of an inorganic oxide with a silane coupling agent, and polymerizing the surface-modified inorganic oxide together with a conductive monomer and oxidant catalyst in supercritical carbon dioxide, wherein the conductive monomer is monomer X represented by the following formula 1 or monomer Y represented by the following formula 2, includes a polymer obtained by homopolymerization of monomer X or monomer Y, and has a weight average molecular weight of 1,000-10,000,000; the inorganic oxide is selected from TiO2, SiO2, Al2O3, CaCO3, ZrO3, ZnO2 and SnO2; the oxidant catalyst is selected from ammonium persulfate, ferric chloride, cupric chloride, copper(II) fluoroborate, copper(II) oxychloride and potassium perchromate; and the supercritical carbon dioxide has a temperature of 31-100 deg.C and a pressure of 137.9-500 bars. In the formulae, Z is an imine or vinyl; Q is S, Se or N-R7; and each of R1-R7 is selected from H, OH, a halogen, halide, C50 or lower alkyl, alkoxy, alkylcarboxy, alkylester, alkylhydroxyl, nitroalkyl, cyanoalkyl, haloalkyl, oxyhaloalkyl, cyanohaloalkyl, aryl, oxyaryl, haloaryl, nitroaryl, cyanoaryl, oxyhaloalkylaryl, haloalkylaryl, nitrohaloalkylaryl and cyanohaloalkylaryl.

Description

초임계이산화탄소를 이용한 나노컴포지트의 제조방법{PREPARATION METHOD OF NANOCOMPOSITES IN SUPERCRITICAL CARBON DIOXIDE} Manufacturing method of nanocomposite using supercritical carbon dioxide {PREPARATION METHOD OF NANOCOMPOSITES IN SUPERCRITICAL CARBON DIOXIDE}

도 1(a) 순수한 이산화티타늄의 TEM 사진이다. Figure 1 (a) is a TEM photograph of pure titanium dioxide.

도 1(c) 표면개질된 이산화티타늄의 TEM 사진이다.Figure 1 (c) is a TEM photograph of the surface-modified titanium dioxide.

도 1(b)와 (d)는 다른 배율의 폴리피롤/이산화티타늄 나노컴포지트의 TEM 사진이다.1 (b) and (d) are TEM photographs of polypyrrole / titanium dioxide nanocomposites at different magnifications.

도 2(a)는 폴리피롤 고분자의 FT-IR 스펙트럼이다. Figure 2 (a) is the FT-IR spectrum of the polypyrrole polymer.

도 2(b)는 실시예 2에따라 제조된 폴리피롤/이산화티타늄 나노컴포지트의 FT-IR 스펙트럼이다.2 (b) is the FT-IR spectrum of the polypyrrole / titanium dioxide nanocomposite prepared according to Example 2. FIG.

도 3은 실시예 2에따라 제조된 폴리피롤/이산화티타늄 나노컴포지트의 EDX 스펙트럼이다.3 is an EDX spectrum of the polypyrrole / titanium dioxide nanocomposite prepared according to Example 2. FIG.

도 4(a)는 폴리피롤 고분자의 TGA 스펙트럼이다. 4 (a) is a TGA spectrum of a polypyrrole polymer.

도 4(b)는 실시예 2에따라 제조된 폴리피롤/이산화티타늄 나노컴포지트의 TGA 스펙트럼이다.Figure 4 (b) is the TGA spectrum of the polypyrrole / titanium dioxide nanocomposite prepared according to Example 2.

도 5(a)는 실시예 2에따라 제조된 폴리피롤/이산화티타늄 나노컴포지트의 XRD 스펙트럼이다.5 (a) is an XRD spectrum of a polypyrrole / titanium dioxide nanocomposite prepared according to Example 2. FIG.

도 5(b)는 순수한 이산화티타늄의 XRD 스펙트럼이다.5 (b) is the XRD spectrum of pure titanium dioxide.

도 5(c)는 폴리피롤 고분자의 XRD 스펙트럼이다.5 (c) is an XRD spectrum of a polypyrrole polymer.

본 발명은 초임계이산화탄소를 이용한 나노컴포지트(nanocomposite)의 제조 방법에 관한 것으로서, 보다 상세하게는 무기산화물을 표면 개질한 후 초임계 이산화탄소 내에서 중합을 통하여 표면 개질된 무기산화물과 전도성 고분자의 나노컴포지트를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a nanocomposite (nanocomposite) using supercritical carbon dioxide, and more particularly, to a surface-modified inorganic oxide and nanocomposite of the surface-modified inorganic oxide and the conductive polymer through polymerization in supercritical carbon dioxide It relates to a method of manufacturing.

최근 무기입자를 고분자 내에 삽입하여 나노컴포지트를 만드는 방법에 관한 연구가 활발히 이루어지고 있다. Recently, researches on making nanocomposites by inserting inorganic particles into polymers have been actively conducted.

미국등록특허 6599631에서는 복합재의 성분간의 화학 결합을 포함하는 무기 입자/중합체 컴포지트를 합성하여 전기, 광학 및 전기광학 장치 등에 응용하였다.In US Patent No. 6599631, an inorganic particle / polymer composite including chemical bonds between components of a composite is synthesized and applied to an electric, optical and electro-optical device.

다양한 종류의 전도성 고분자 중 폴리피롤, 폴리아닐린, 폴리티오펜 등은 용이한 제조방법, 높은 전도도, 뛰어난 안정성 등과 같은 여러 가지 장점들 때문에 학문적/실용적 연구가 진행되어 왔다. Among various kinds of conductive polymers, polypyrrole, polyaniline, polythiophene, etc. have been studied for practical reasons due to various advantages such as easy manufacturing method, high conductivity, and excellent stability.

나노기술의 발전과 함께 전도성 고분자로 구성된 구형 나노입자, 코어-셀 나노입자, 나노캡슐, 나노튜브, 나노복합재료 등의 서로 다른 형태를 지닌 나노재료들이 다양한 합성 방법에 의해 제조될 수 있었다.With the development of nanotechnology, nanomaterials having different forms such as spherical nanoparticles, core-cell nanoparticles, nanocapsules, nanotubes, and nanocomposites composed of conductive polymers can be manufactured by various synthetic methods.

특히 전도성 고분자와 무기산화물의 나노컴포지트(nanocomposite)는 독특한 미세구조, 향상된 물리적, 전기-광학 특성으로 전지 양극(battery cathode), 마이크로전자공학(microelectronics), 태양전지(solar cell) 등의 광범위한 분야에 사용될 수 있어, Langmuir, 1992, Vol.8, 2178-2182쪽에서는 폴리아닐린과 실리카 나노컴포지트 입자를 제조하였고, Journal of Material Chemistry, 1994, Vol.4, 935-942쪽에서는 폴리피롤과 실리카 나노컴포지트 입자를 제조하였으며, Chemistry of Materials, 1995, Vol.7, 171-178쪽에서는 폴리피롤과 이산화주석 나노컴포지트를 제조하는 등 다양한 연구가 이루어져 왔다. In particular, nanocomposites of conductive polymers and inorganic oxides have a unique microstructure, improved physical and electro-optic properties, and are used in a wide range of applications, including battery cathodes, microelectronics, and solar cells. Polyaniline and silica nanocomposite particles were prepared in Langmuir, 1992, Vol. 8, 2178-2182, and polypyrrole and silica nanocomposite particles in Journal of Material Chemistry, 1994, Vol. 4, 935-942. In Chemistry of Materials, 1995, Vol. 7, pp. 171-178, various studies have been made, including the production of polypyrrole and tin dioxide nanocomposites.

그리고, 대한민국 공개특허 2006-0091134에서는 실리카 나노입자 표면에 아닐린으로 기능화하고, 기능화된 실리카 나노입자에 유기용매에 잘 용해되는 전도성 고분자를 산화성 고분자화 반응을 통해 그래프팅하여 상기 전도성 고분자가 캡핑된 실리카 나노입자를 합성하였다. In addition, the Republic of Korea Patent Publication 2006-0091134, functionalized with aniline on the surface of the silica nanoparticles, and the conductive polymer is grafted to the functionalized silica nanoparticles well soluble in an organic solvent through an oxidative polymerization reaction, the conductive polymer capped silica Nanoparticles were synthesized.

그러나 이와 같은 제조법에서는 용매를 제거하는 과정에서 가용화 문제가 발생하고, 특히 유기 용매를 사용할 경우에는 고비용과 환경오염의 문제를 발생시킬 수 있다.However, in such a manufacturing method, solubilization problem occurs in the process of removing the solvent, especially when using an organic solvent may cause problems of high cost and environmental pollution.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 초임계이산화탄소를 이용하여 친환경적이고, 생성물의 분리가 간단하고, 가용화 문제가 없으며, 높은 전환율로서 전도성 고분자에 무기산화물을 균일하게 포함하는 나노컴포지트의 제조방법을 제공하는 것이다. Accordingly, the present invention is to solve the above problems, an object of the present invention is to use supercritical carbon dioxide, environmentally friendly, simple separation of the product, there is no solubilization problem, the inorganic oxide to the conductive polymer with high conversion rate It is to provide a method for producing a nanocomposite containing uniformly.

상기 기술적 과제를 달성하기 위하여 본 발명은, 실란 커플링제를 이용하여 무기산화물을 표면 개질 시키고, 상기 표면 개질된 무기산화물을 전도성 단량체, 산화제 촉매와 함께 초임계 이산화탄소 내에서 중합 반응하여 나노컴포지트를 제조하는 단계를 포함하는 전도성 고분자에 무기산화물을 함유하는 나노컴포지트의 제조방법을 제공한다.
초임계 이산화탄소는 가격이 싸고, 불연성이며, 무독성인 용매로서 추출 등의 분야에 환경친화적인 용매로서 사용되고 있다. 특히, 액체와 같은 밀도와 기체와 같은 점도를 가져 확산성이 뛰어나고 물질전달이 빨라서 화학반응에서 전환율을 높이는 장점이 있다.
In order to achieve the above technical problem, the present invention, a surface-modified inorganic oxide using a silane coupling agent, and the surface-modified inorganic oxide is polymerized in a supercritical carbon dioxide with a conductive monomer, an oxidant catalyst to produce a nanocomposite It provides a method for producing a nanocomposite containing an inorganic oxide in a conductive polymer comprising the step of.
Supercritical carbon dioxide is an inexpensive, nonflammable, non-toxic solvent, and is used as an environmentally friendly solvent in the fields of extraction and the like. In particular, it has the advantage of increasing the conversion rate in the chemical reaction by having a high density and the same viscosity as the gas and excellent diffusion properties and fast material transfer.

이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에서 나노컴포지트라함은 수백 나노미터 이하의 평균 입경을 가지는 나노입자를 포함하는 합성물을 의미한다. 균일한 나노입자의 출현은 기술적인 분야에서 큰 영향력을 발휘하고 있다. 이러한 나노 크기의 재료는 기존의 입자들에 비해 새로운 물리적 특성을 보인다. 나노입자는 기존의 벌크 재료에 비해 체적대비 표면적이 매우 크고 표면의 결함 비율이 크기 때문에 재료의 표면 성질이 매우 중요하다. In the present invention, the nanocomposite refers to a composite including nanoparticles having an average particle diameter of several hundred nanometers or less. The emergence of uniform nanoparticles has been a major influence in the technical field. These nanoscale materials show new physical properties compared to conventional particles. Nanoparticles have a very large surface area to volume ratio and a large surface defect ratio than conventional bulk materials, so the surface properties of the material are very important.

본 발명의 상기 나노컴포지트는 하나의 전도성 고분자 입자에 하나 또는 그 이상의 무기산화물을 포함하는 것으로, 표면 개질된 무기산화물과 전도성 단량체가 초임계 이산화탄소 내에서 촉매를 사용하여 얻어진다.The nanocomposite of the present invention includes one or more inorganic oxides in one conductive polymer particle, and surface-modified inorganic oxides and conductive monomers are obtained by using a catalyst in supercritical carbon dioxide.

본 발명의 상기 무기산화물은 이산화티타늄(TiO2), 이산화규소(SiO2), 삼산화이알루미늄(Al2O3), 삼탄산칼슘(CaCO3), 삼산화지르코늄(ZrO3), 이산화아연(ZnO2), 이산화주석(SnO2) 중에서 선택되는 하나 이상일 수 있다. 그러나 본 발명의 무기산화물이 상기의 예에만 한정되는 것은 아니다.The inorganic oxide of the present invention is titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), dialuminum trioxide (Al 2 O 3 ), calcium tricarbonate (CaCO 3 ), zirconium trioxide (ZrO 3 ), zinc dioxide (ZnO 2) ), Tin dioxide (SnO 2 ) may be one or more selected from. However, the inorganic oxide of the present invention is not limited only to the above examples.

상기 무기산화물은 나노 크기로 제조된 것을 구매하여 사용할 수도 있고, 다양한 크기의 무기산화물로 합성하여 사용할 수도 있다.The inorganic oxide may be used to purchase the one prepared in the nano-size, or may be used by synthesizing the inorganic oxide of various sizes.

본 발명의 무기산화물을 표면 개질하는 단계에서 표면 개질은 기존에 알려진 방식인 Journal of Materials Chemistry, 1997, Vol.7, 1527-1532쪽에 기재된 공지 방법에 의해 용이하게 제조될 수 있다. Surface modification in the step of surface modification of the inorganic oxide of the present invention can be easily prepared by known methods described in the Journal of Materials Chemistry, 1997, Vol. 7, 1527-1532, which is a known method.

본 발명의 상기 초임계이산화탄소를 이용하여 전도성 고분자에 무기산화물이 균일하게 분산된 나노컴포지트의 제조방법에서, 표면 개질된 무기산화물과 전도성 단량체를 촉매와 함께 초임계이산화탄소 내에서 1 ~ 2시간 동안 중합하여 제조된다.In the method for producing a nanocomposite in which inorganic oxide is uniformly dispersed in a conductive polymer using the supercritical carbon dioxide of the present invention, the surface-modified inorganic oxide and the conductive monomer are polymerized together with a catalyst for 1 to 2 hours in supercritical carbon dioxide. It is manufactured by.

본 발명의 전도성 단량체는 다음의 화학식 1로 표현되는 단량체 X 또는 화학식 2로 표현되는 단량체 Y 이고, 상기 전도성 고분자는 단량체 X 또는 단량체 Y를 사용하여 이들을 단일 또는 공-중합 반응시켜서 제조할 수 있다;The conductive monomer of the present invention is a monomer X represented by the following formula (1) or a monomer Y represented by the formula (2), the conductive polymer can be prepared by using a monomer X or a monomer Y by a single or co-polymerization reaction thereof;

[화학식 1][Formula 1]

Figure 112007012070078-pat00002
또는
Figure 112007012070078-pat00003
또는
Figure 112007012070078-pat00004
이고,
Figure 112007012070078-pat00002
or
Figure 112007012070078-pat00003
or
Figure 112007012070078-pat00004
ego,

[화학식 2][Formula 2]

Figure 112007012070078-pat00005
또는
Figure 112007012070078-pat00006
이며,
Figure 112007012070078-pat00005
or
Figure 112007012070078-pat00006
Is,

식 중, Z는 이민기 또는 비닐기이고, Q는 S, Se 또는 N-R 7 이고, R1, R2, R3, R4, R5, R6 및 R7은, 서로 독립적으로, 수소, 하이드록시기, 할로겐원자, 할라이드, 탄소수 50 이내의 알킬기, 알콕시기, 알킬 카르복시기, 일킬에스테르기, 알킬하이드록시기, 니트로알킬기, 시아노알킬기, 할로알킬기, 옥시할로알킬기, 니트로알킬기, 시아노할로일킬기, 아릴기, 옥시아릴기, 할로아릴기, 니트로아릴기, 시아노아릴기, 옥시할로알킬아릴기, 할로알킬아릴기, 니트로할로알킬아릴기, 및 시아노할로알킬아릴기로 이루어진 군 중에서 선택되고, 제조된 고분자의 중량 평균 분자량은 1,000 ~ 10,000,000이다.Wherein Z is an imine group or a vinyl group, Q is S, Se or NR 7, and R 1, R 2, R 3, R 4, R 5, R 6 and R 7 are, independently from each other, hydrogen, a hydroxyl group, a halogen atom, a halide Alkyl groups, alkoxy groups, alkyl carboxyl groups, ylalkyl ester groups, alkylhydroxy groups, nitroalkyl groups, cyanoalkyl groups, haloalkyl groups, oxyhaloalkyl groups, nitroalkyl groups, cyanohaloalkyl groups, aryl groups, It is selected from the group consisting of an oxyaryl group, haloaryl group, nitroaryl group, cyanoaryl group, oxyhaloalkylaryl group, haloalkylaryl group, nitrohaloalkylaryl group, and cyanohaloalkylaryl group, Average molecular weight of the prepared polymer is 1,000 to 10,000,000.

상기 전도성 고분자는 다음과 같은 3 가지 방법에 의하여 제조될 수 있다:The conductive polymer may be prepared by the following three methods:

1) 화학식 1의 X 단량체를 단일 중합반응시켜 X의 단일중합체 고분자를 합성하는 방법; 2) 화학식 2의 Y 단량체를 단일 중합반응시켜 Y의 단일중합체 고분자를 합성하는 방법; 및 3) 화학식 1의 단량체 X와 화학식 2의 단량체 Y를 0.01:99.99 ~ 99.99:0.01의 몰비로 공중합 반응시켜 X와 Y의 공중합체 고분자를 합성하는 방법.1) a method of synthesizing a homopolymer of X by homopolymerizing the X monomer of Formula 1; 2) a method of synthesizing the homopolymer of Y by homopolymerizing the Y monomer of Formula 2; And 3) copolymerizing the monomer X of Formula 1 and the monomer Y of Formula 2 at a molar ratio of 0.01: 99.99 to 99.99: 0.01 to synthesize a copolymer polymer of X and Y.

상기 3)의 방법으로 제조된 단량체 X 및 Y의 공중합체는 다음과 같은 화학식 3으로 표현될 수 있다;The copolymer of monomers X and Y prepared by the method of 3) may be represented by the following formula (3);

[화학식 3] [Formula 3]

Figure 112007012070078-pat00007
Figure 112007012070078-pat00007

상기 식 중,In the above formula,

Figure 112007012070078-pat00008
또는
Figure 112007012070078-pat00009
또는
Figure 112007012070078-pat00010
이고,
Figure 112007012070078-pat00008
or
Figure 112007012070078-pat00009
or
Figure 112007012070078-pat00010
ego,

Figure 112007012070078-pat00011
또는
Figure 112007012070078-pat00012
이며,
Figure 112007012070078-pat00011
or
Figure 112007012070078-pat00012
Is,

Z는 이민기 또는 비닐기이고, Q는 S, Se 또는 N-R 7 이고, R1, R2, R3, R4, R5, R6 및 R7은, 서로 독립적으로, 수소, 하이드록시기, 할로겐 원자, 할라이드, 탄소수 50 이내의 알킬기, 알콕시기, 알킬 카르복시기, 일킬에스테르기, 알킬하이드록시 기, 니트로알킬기, 시아노알킬기, 할로알킬기, 옥시할로알킬기, 니트로알킬기, 시아노할로일킬기, 아릴기, 옥시아릴기, 할로아릴기, 니트로아릴기, 시아노아릴기, 옥시할로알킬아릴기, 할로알킬아릴기, 니트로할로 알킬아릴기, 및 시아노할로알킬아릴기로 이루어진 군 중에서 선택되고, m은 몰분률로서, 0 ≤m ≤1.0 이고, n은 고분자 중합도로서, 5 ≤n ≤500,000이고, 제조된 고분자의 중량 평균 분자량은 1,000 ~ 10,000,000이다.Z is an imine group or a vinyl group, Q is S, Se or NR 7, and R 1, R 2, R 3, R 4, R 5, R 6 and R 7 are, independently from each other, hydrogen, a hydroxyl group, a halogen atom, a halide, 50 carbon atoms. Within an alkyl group, an alkoxy group, an alkyl carboxyl group, an alkyl group, an alkylhydroxy group, a nitroalkyl group, a cyanoalkyl group, a haloalkyl group, an oxyhaloalkyl group, a nitroalkyl group, a cyanohaloylalkyl group, an aryl group, an oxyaryl group , Haloaryl group, nitroaryl group, cyanoaryl group, oxyhaloalkylaryl group, haloalkylaryl group, nitrohaloalkylaryl group, and cyanohaloalkylaryl group, m is the mole fraction For example, 0 ≦ m ≦ 1.0, n is a polymer degree of polymerization, 5 ≦ n ≦ 500,000, and the weight average molecular weight of the prepared polymer is 1,000 to 10,000,000.

이들 중합반응에는 촉매가 필요한데, 상기 중합반응의 촉매로는 일반적인 산화제를 사용할 수 있으며, 상기 산화제는 암모늄퍼설페이트, 염화제이철, 염화제이구리, 불화붕소화구리(II), 염화산화구리(II) 및 중크롬산칼륨으로 이루어진 군 중에서 선택하여 사용하는 것이 바람직하다.Catalysts are required for these polymerization reactions, and a general oxidizing agent may be used as the catalyst of the polymerization reaction, and the oxidizing agent may be ammonium persulfate, ferric chloride, cupric chloride, copper fluoride (II), or copper oxide (II) chloride. And it is preferable to select and use from the group which consists of potassium dichromate.

상기 반응이 진행되는 초임계 이산화탄소에서 초임계 상태는 31 ~ 100 ℃의 온도와 137.9 ~ 500 bar의 압력 하에서 이루어지며, 바람직하게는 온도가 40 ℃이고, 압력이 137.9 bar이다.In the supercritical carbon dioxide in which the reaction proceeds, the supercritical state is made at a temperature of 31 to 100 ° C. and a pressure of 137.9 to 500 bar. Preferably, the temperature is 40 ° C. and the pressure is 137.9 bar.

상기 나노컴포지트의 전도성 고분자 내부에 무기산화물의 함량은 5 ~ 50 중량 퍼센트가 바람직하다.The content of the inorganic oxide in the conductive polymer of the nanocomposite is preferably 5 to 50% by weight.

상기 초임계 이산화탄소 내에서의 중합은 1 ~ 2시간이 바람직하고 이때 일반적으로 95 중량 퍼센트 이상의 수율을 얻을 수 있다. The polymerization in the supercritical carbon dioxide is preferably 1 to 2 hours, in which a yield of generally 95% by weight or more can be obtained.

이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 실시예일뿐, 본 발명의 하기 실시예에 의해 한정된 것은 아니다. Hereinafter, preferred embodiments of the present invention are described. However, the following examples are only preferred examples of the present invention and are not limited by the following examples of the present invention.

<< 실시예Example 1> 1>

초임계이산화탄소Supercritical Carbon Dioxide 내에서  Within 나노컴포지트의Nanocomposite 제조 방법 Manufacturing method

초임계 이산화탄소 내에서 나노컴포지트의 제조 방법은 우선 0.4 g의 표면 개질된 이산화티타늄[Journal of Materials Chemistry, 1997, Vol.7, 1527-1532쪽에 기재된 공지 방법에 의해 균일한 나노 크기의 이산화티타늄(TiO2) 입자의 표면에 실란 화합물이 처리됨]과 1 g의 피롤을 서스펜션 상태로 분산시킨 후, 스테인레스 고압 반응기에서 투입하였다. 삼염화철을 소량의 메탄올에 녹여 고압 반응기에 넣고, 테프론이 코팅된 마그네틱 바를 고압 반응기 내에 동시에 넣어 중합을 진행하였다. 반응기 내부의 압력은 ISCO 실린지 펌프 (Model 260D)를 이용하여 조절하였으며 반응온도와 압력은 각각 40 ℃와 137.9 bar로 고정하여 사용하였다. 모든 중합은 2시간 동안 진행하였으며 반응기를 실온으로 냉각시킴으로써 반응을 종료하였다. 얻어진 고분자 입자는 이산화탄소를 감압하여 기체 상태로 변화시켜 반응혼합물로부터 쉽게 분리되었으며, 중합이 끝난 생성물은 잔존하는 염화철을 제거하기 위하여 메탄올을 이용하였다. 마지막으로 50 ℃ 온도에서 24시간 동안 오븐에서 건조하였다. 건조 후 측정된 수율은 90 중량 퍼센트 이상을 나타내었고, TGA, XRD 및 IR을 이용하여 피롤 고분자가 무기산화물 입자를 포함하는 나노컴포지트 임을 확인하였다. TEM 측정 결과 전도성 고분자 내에 이산화티타늄 나노입자가 균일하게 분포되어 있음을 확인하였다.The process for preparing nanocomposites in supercritical carbon dioxide is based on 0.4 g of surface modified titanium dioxide (TiO) of uniform nano-sized titanium dioxide (TiO) by the known method described in Journal of Materials Chemistry, 1997, Vol. 7, 1527-1532. 2 ) the silane compound was treated on the surface of the particles] and 1 g of pyrrole was dispersed in a suspension state, and then charged in a stainless high pressure reactor. Iron trichloride was dissolved in a small amount of methanol, placed in a high pressure reactor, and a Teflon-coated magnetic bar was simultaneously placed in a high pressure reactor to perform polymerization. The pressure inside the reactor was controlled using an ISCO syringe pump (Model 260D), and the reaction temperature and pressure were fixed at 40 ℃ and 137.9 bar, respectively. All polymerization proceeded for 2 hours and the reaction was terminated by cooling the reactor to room temperature. The obtained polymer particles were easily separated from the reaction mixture by reducing the carbon dioxide into a gaseous state, and the polymerization product was used to remove residual iron chloride. Finally it was dried in an oven at 50 ° C. for 24 hours. Yield measured after drying showed more than 90% by weight, it was confirmed that the pyrrole polymer is a nanocomposite containing inorganic oxide particles using TGA, XRD and IR. As a result of TEM measurement, it was confirmed that the titanium dioxide nanoparticles were uniformly distributed in the conductive polymer.

본 발명은 전도성 고분자와 무기산화물의 나노컴포지트로 이루어져 있어서, 무기물질이 가지고 있는 물리적 장점과 고분자의 가공성 및 신축성을 동시에 가지고, 초임계 이산화탄소를 이용하여 중합하므로 생성물의 분리가 매우 간단하다. 그리고 전환율이 높고, 용매를 제거하는 과정에서 가용화하는 문제점이 없으며, 제조된 나노복합재료는 전지 양극(battery cathode), 센서 나노스코픽 어셈블리 구조(constructing nanoscopic assemblies in sensors), 마이크로전자공학(microelectronics), 태양전지(solar cell) 등 다양한 분야에 실용적으로 사용 가능하게 하는데 그 효과가 있다.The present invention is composed of a nanocomposite of a conductive polymer and an inorganic oxide, at the same time having the physical advantages of the inorganic material and processability and elasticity of the polymer, and polymerization using supercritical carbon dioxide, the separation of the product is very simple. In addition, the conversion rate is high, and there is no problem of solubilization in the removal of the solvent, and the manufactured nanocomposite includes battery cathode, constructing nanoscopic assemblies in sensors, microelectronics, It is effective to make practical use in various fields such as solar cells.

Claims (9)

전도성 고분자에 무기산화물을 균일하게 포함하는 나노컴포지트의 제조방법에 있어서, 무기산화물을 실란커플링제를 이용하여 표면개질시키고, 상기 표면 개질된 무기산화물을 전도성 단량체, 산화제 촉매와 함께 초임계 이산화탄소 내에서 중합하는 단계로,In the method for producing a nanocomposite comprising an inorganic oxide uniformly in the conductive polymer, the inorganic oxide is surface-modified using a silane coupling agent, and the surface-modified inorganic oxide in a supercritical carbon dioxide with a conductive monomer, an oxidant catalyst In the step of polymerization, 상기 전도성 단량체는 다음의 화학식 1로 표현되는 단량체 X 또는 화학식 2로 표현되는 단량체 Y 이고, 상기 전도성 고분자는 단량체 X 또는 단량체 Y를 단일 중합 반응시켜서 얻어지는 것을 포함하고, 중량 평균분자량은 1,000 ~ 10,000,000인 전기전도성 고분자:The conductive monomer is a monomer X represented by the following formula (1) or a monomer Y represented by the formula (2), wherein the conductive polymer is obtained by a single polymerization reaction of the monomer X or monomer Y, the weight average molecular weight is 1,000 to 10,000,000 Electrically conductive polymers: [화학식 1][Formula 1]
Figure 712008002592084-pat00029
또는
Figure 712008002592084-pat00030
또는
Figure 712008002592084-pat00031
이고,
Figure 712008002592084-pat00029
or
Figure 712008002592084-pat00030
or
Figure 712008002592084-pat00031
ego,
[화학식 2][Formula 2]
Figure 712008002592084-pat00032
또는
Figure 712008002592084-pat00033
이며,
Figure 712008002592084-pat00032
or
Figure 712008002592084-pat00033
Is,
식 중, Z는 이민기 또는 비닐기이고, Q는 S, Se 또는 N-R 7 이고, R1, R2, R3, R4, R5, R6 및 R7 은, 서로 독립적으로, 수소, 하이드록시기, 할로겐 원자, 할라이드, 탄소수 50 이내의 알킬기, 알콕시기, 알킬 카르복시기, 일킬 에스테르기, 알킬하이드록시기, 니트로알킬기, 시아노알킬기, 할로알킬기, 옥시할로알킬기, 니트로알킬기, 시아노할로일킬기, 아릴기, 옥시아릴기, 할로아릴기, 니트로아릴기, 시아노아릴기, 옥시할로알킬아릴기, 할로알킬아릴기, 니트로할로알킬아릴기, 및 시아노할로알킬아릴기로 이루어진 군 중에서 선택되는 것을 포함하고,Wherein Z is an imine group or a vinyl group, Q is S, Se or NR 7, and R 1, R 2, R 3, R 4, R 5, R 6 and R 7 are, independently from each other, hydrogen, a hydroxyl group, a halogen atom, a halide Alkyl groups, alkoxy groups, alkyl carboxyl groups, ylalkyl ester groups, alkylhydroxy groups, nitroalkyl groups, cyanoalkyl groups, haloalkyl groups, oxyhaloalkyl groups, nitroalkyl groups, cyanohaloalkyl groups, aryl groups, It includes one selected from the group consisting of an oxyaryl group, haloaryl group, nitroaryl group, cyanoaryl group, oxyhaloalkylaryl group, haloalkylaryl group, nitrohaloalkylaryl group, and cyanohaloalkylaryl group. and, 상기 무기산화물은 이산화티타늄(TiO2), 이산화규소(SiO2), 삼산화이알루미늄(Al2O3), 삼탄산칼슘(CaCO3), 삼산화지르코늄(ZrO3), 이산화아연(ZnO2) 이산화주석(SnO2) 중에서 선택된 것을 포함하며,The inorganic oxide is titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), dialuminum trioxide (Al 2 O 3 ), calcium tricarbonate (CaCO 3 ), zirconium trioxide (ZrO 3 ), zinc dioxide (ZnO 2 ) tin dioxide (SnO 2 ) and selected from 상기 산화제 촉매는 암모늄퍼설페이트, 염화제이철, 염화제이구리, 불화붕소화구리(II), 염화 산화구리(II) 및 중크롬산칼륨 중에서 선택되는 것을 포함하는 것으로,The oxidant catalyst is selected from ammonium persulfate, ferric chloride, cupric chloride, copper fluoride (II), copper chloride (II) chloride and potassium dichromate, 상기 초임계 이산화탄소의 초임계 상태는 이산화탄소의 온도는 31 ~ 100 ℃이고, 압력이 137.9 ~ 500 bar인 것을 특징으로 하는 나노컴포지트의 제조방법.The supercritical state of the supercritical carbon dioxide is a method of producing a nanocomposite, characterized in that the temperature of the carbon dioxide is 31 ~ 100 ℃, the pressure is 137.9 ~ 500 bar.
제1항에 있어서, 상기 나노컴포지트는 하나의 전도성 고분자 입자에 하나 또는 그 이상의 무기 산화물을 포함하는 것을 특징으로 하는 나노컴포지트의 제조방법.The method of claim 1, wherein the nanocomposite comprises one or more inorganic oxides in one conductive polymer particle. 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 나노컴포지트의 전도성 고분자 내부에 표면 개질된 무기산화물의 함량은 5 ~ 50 중량 퍼센트인 것을 특징으로 하는 나노컴포지트의 제조방법.The method of claim 1, wherein the content of the inorganic oxide surface-modified inside the conductive polymer of the nanocomposite is 5 to 50% by weight. 삭제delete 제1항에 있어서, 상기 화학식 1로 표현되는 단량체 X와 화학식 2로 표현되는 단량체 Y를 공중합 반응시켜서 얻어는 것을 포함하고, 중량 평균 분자량은 1,000 ~ 10,000,000인 전도성 고분자:The conductive polymer according to claim 1, which is obtained by copolymerizing a monomer X represented by Formula 1 and a monomer Y represented by Formula 2, wherein the weight average molecular weight is 1,000 to 10,000,000. [화학식 3][Formula 3]
Figure 712008002592084-pat00034
Figure 712008002592084-pat00034
상기 식 중,In the above formula,
Figure 712008002592084-pat00035
또는
Figure 712008002592084-pat00036
또는
Figure 712008002592084-pat00037
이고,
Figure 712008002592084-pat00035
or
Figure 712008002592084-pat00036
or
Figure 712008002592084-pat00037
ego,
Figure 712008002592084-pat00038
또는
Figure 712008002592084-pat00039
이며,
Figure 712008002592084-pat00038
or
Figure 712008002592084-pat00039
Is,
Z는 이민기 또는 비닐기이고, Q는 S, Se 또는 N-R 7 이고, R1, R2, R3, R4, R5, R6 및 R7은, 서로 독립적으로, 수소, 하이드록시기, 할로겐 원자, 할라이드, 탄소수 50 이내의 알킬기, 알콕시기, 알킬 카르복시기, 일킬에스테르기, 알킬하이드록시기, 니트로알킬기, 시아노알킬기, 할로알킬기, 옥시할로알킬기, 니트로알킬기, 시아노할로일킬기, 아릴기, 옥시아릴기, 할로아릴기, 니트로아릴기, 시아노아릴기, 옥시할로알킬아릴기, 할로알킬아릴기, 니트로할로 알킬아릴기, 및 시아노할로알킬아릴기로 이루어진 군 중에서 선택되고, m은 몰분률로서, 0 ≤m ≤1.0 이고, n은 고분자 중합도로서, 5 ≤n ≤500,000 인 것을 특징으로하는 나노컴포지트의 제조방법.Z is an imine group or a vinyl group, Q is S, Se or NR 7, and R 1, R 2, R 3, R 4, R 5, R 6 and R 7 are, independently from each other, hydrogen, a hydroxyl group, a halogen atom, a halide, 50 carbon atoms. Within alkyl group, alkoxy group, alkyl carboxyl group, alkyl group, alkylhydroxy group, nitroalkyl group, cyanoalkyl group, haloalkyl group, oxyhaloalkyl group, nitroalkyl group, cyanohaloylalkyl group, aryl group, oxyaryl group , Haloaryl group, nitroaryl group, cyanoaryl group, oxyhaloalkylaryl group, haloalkylaryl group, nitrohaloalkylaryl group, and cyanohaloalkylaryl group, m is the mole fraction The method of manufacturing a nanocomposite, wherein 0 ≦ m ≦ 1.0 and n is a polymer degree of polymerization, wherein 5 ≦ n ≦ 500,000.
제8항에 있어서, 상기 단량체 X와 단량체 Y를 공중합 반응시켜서 얻어지는 중량 평균 분자량이 1000 ~ 10,000인 전도성 고분자는 0.01 : 99.99 ~ 99.99 : 0.01의 몰비로 공중합되어 있는 것을 특징으로하는 나노컴포지트의 제조방법.The method of manufacturing a nanocomposite according to claim 8, wherein the conductive polymer having a weight average molecular weight of 1000 to 10,000 obtained by copolymerizing the monomer X and the monomer Y is copolymerized at a molar ratio of 0.01: 99.99 to 99.99: 0.01. .
KR1020070013477A 2007-02-09 2007-02-09 Preparation method of nanocomposites in supercritical carbon dioxide KR100855171B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070013477A KR100855171B1 (en) 2007-02-09 2007-02-09 Preparation method of nanocomposites in supercritical carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070013477A KR100855171B1 (en) 2007-02-09 2007-02-09 Preparation method of nanocomposites in supercritical carbon dioxide

Publications (1)

Publication Number Publication Date
KR100855171B1 true KR100855171B1 (en) 2008-08-29

Family

ID=39878882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070013477A KR100855171B1 (en) 2007-02-09 2007-02-09 Preparation method of nanocomposites in supercritical carbon dioxide

Country Status (1)

Country Link
KR (1) KR100855171B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217338A (en) * 2022-12-02 2023-06-06 内蒙古鄂尔多斯电力冶金集团股份有限公司 Method for chemically recycling polyvinyl chloride resin by supercritical method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770216A (en) 1993-04-28 1998-06-23 Mitchnick; Mark Conductive polymers containing zinc oxide particles as additives
US6057409A (en) 1995-04-03 2000-05-02 Xerox Corporation Supercritical polymerization processes
US20060194928A1 (en) 2005-01-27 2006-08-31 Charpentier Paul A Polymer composite synthesis in supercritical fluids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770216A (en) 1993-04-28 1998-06-23 Mitchnick; Mark Conductive polymers containing zinc oxide particles as additives
US6057409A (en) 1995-04-03 2000-05-02 Xerox Corporation Supercritical polymerization processes
US20060194928A1 (en) 2005-01-27 2006-08-31 Charpentier Paul A Polymer composite synthesis in supercritical fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217338A (en) * 2022-12-02 2023-06-06 内蒙古鄂尔多斯电力冶金集团股份有限公司 Method for chemically recycling polyvinyl chloride resin by supercritical method

Similar Documents

Publication Publication Date Title
Abd El-Ghaffar et al. Polyaniline nanocomposites via in situ emulsion polymerization based on montmorillonite: Preparation and characterization
Choi et al. Synthesis of exfoliated polyacrylonitrile/Na− MMT nanocomposites via emulsion polymerization
Rong et al. Graft polymerization of vinyl monomers onto nanosized alumina particles
McDaniel et al. Well-dispersed nanocomposites using covalently modified, multilayer, 2D titanium carbide (MXene) and in-situ “Click” polymerization
Du et al. Novel solid-state and template-free synthesis of branched polyaniline nanofibers
Xu et al. Synthesis and characterization of water-soluble multiwalled carbon nanotubes grafted by a thermoresponsive polymer
CN101633779A (en) Conductive polyaniline composite electrode material and preparation method thereof
Luan et al. Synthesis techniques, properties and applications of polymer nanocomposites
Karim et al. Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization
SinhaRay et al. Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers: 3. A water dispersible nanocomposite from pyrrole-montmorillonite polymerization system
KR101348865B1 (en) Manufacturing method of nano-structured composites using gelation materials
Sobani et al. “Grafting through” approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization
Moqadam et al. Synthesis and characterization of sunflower oil-based polysulfide polymer/cloisite 30B nanocomposites
US20160148715A1 (en) Conductive cellulose nanocrystals, method of producing same and uses thereof
Massoumi et al. In situ chemical oxidative graft polymerization of aniline from phenylamine end-caped poly (ethylene glycol)-functionalized multi-walled carbon nanotubes
CN100402583C (en) Method for synthesizing polyaniline nano particles
JP6427419B2 (en) Bio-inspired method to obtain multifunctional dynamic nanocomposites
Effati et al. Continuous microfluidic fabrication of polypyrrole nanoparticles
US20190194400A1 (en) Conductive cellulose nanocrystals, method of producing same and uses thereof
KR100855171B1 (en) Preparation method of nanocomposites in supercritical carbon dioxide
KR101395843B1 (en) Graphene-polyamide based composite and manufacturing method thereof
Ramalingam et al. SYNTHESIS, SURFACE AND TEXTURAL CHARACTERIZATION OF Ag DOPED POLYANILINE-SiO 2 (Pan-Ag/RHA) NANOCOMPOSITESDERIVEDFROM BIOMASS MATERIALS.
KR100999173B1 (en) Preparative method of conductive silica nano-tube composite by using in situ polymerization of aniline
Lan et al. Preparation of poly (o‐phenylenediamine) nanoparticles with hydrolysed PEO45‐b‐PtBA35 as template and its electrochemical properties
Cheng et al. Polymer brush-grafted cellulose nanocrystals for the synthesis of porous carbon-coated titania nanocomposites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120718

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130813

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee