KR100854482B1 - 리소그래피 장치 및 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법 - Google Patents

리소그래피 장치 및 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법 Download PDF

Info

Publication number
KR100854482B1
KR100854482B1 KR1020060096314A KR20060096314A KR100854482B1 KR 100854482 B1 KR100854482 B1 KR 100854482B1 KR 1020060096314 A KR1020060096314 A KR 1020060096314A KR 20060096314 A KR20060096314 A KR 20060096314A KR 100854482 B1 KR100854482 B1 KR 100854482B1
Authority
KR
South Korea
Prior art keywords
gas
gas flow
component
shower
opposing sides
Prior art date
Application number
KR1020060096314A
Other languages
English (en)
Other versions
KR20070036734A (ko
Inventor
타르코 아드리안 루돌프 반 엠펠
로날드 반 데르 함
니크 야코부스 요한네스 로제트
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20070036734A publication Critical patent/KR20070036734A/ko
Application granted granted Critical
Publication of KR100854482B1 publication Critical patent/KR100854482B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

리소그래피 장치는 제 1 가스 흐름을 상기 장치의 내부 공간으로 공급하도록 구성되는 적어도 제 1 가스 샤워기, 및 제 2 가스 흐름을 상기 장치의 내부 공간으로 공급하도록 구성되는 적어도 제 2 가스 샤워기를 포함하고, 가스 샤워기들은 전체적으로 또는 부분적으로 서로를 향해, 제 1 가스 흐름 및 제 2 가스 흐름을 지향하도록 구성된다.
또한, 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법이 제공되고, 컨디셔닝된 제 1 가스 흐름 및 컨디셔닝된 제 2 가스 흐름은, 컨디셔닝된 제 1 가스 흐름 및 컨디셔닝된 제 2 가스 흐름이 서로 전체적으로 또는 부분적으로 지향되도록 내부 공간으로 공급된다.

Description

리소그래피 장치 및 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법{Lithographic Apparatus and Method for conditioning an interior space of a device manufacturing apparatus}
이하, 대응하는 참조 부호들이 대응하는 부분들을 나타내는 첨부된 개략적인 도면들을 참조하여, 단지 예시의 방식으로만 본 발명의 실시예들을 설명할 것이다.
도 1은 본 발명의 일 실시예에 따른 리소그래피 장치를 도시하는 도면;
도 2는 종래의 가스 샤워 시스템의 일부분을 개략적으로 도시하는 단면도;
도 3은 본 발명의 일 실시예에 따른 가스 샤워 시스템의 일부분을 도시하는 도면;
도 4는 도 3의 개략적인 평면도;
도 5는 도 4와 유사한 대안적인 실시예의 평면도;
도 6은 일 실시예에 따른 가스 샤워 시스템의 가스 방출구 측면을 세부적으로 도시하는 단면도;
도 7은 또 다른 실시예의 일부분의 평면도;
도 8은 도 3과 유사한 본 발명의 다른 실시예의 도면; 및
도 9는 일 실시예의 일부분을 개략적으로 도시하는 측면도이다.
본 발명은 리소그래피 장치 및 디바이스 제조 장치의 내부 공간(interior space)을 컨디셔닝(conditioning)하는 방법에 관한 것이다.
리소그래피 장치는 기판 상에, 통상적으로는 기판의 타겟부 상에 원하는 패턴을 적용시키는 기계이다. 리소그래피 장치는, 예를 들어 집적 회로(IC)의 제조시에 사용될 수 있다. 그 경우, 대안적으로 마스크 또는 레티클이라 칭해지는 패터닝 디바이스가 IC의 개별 층 상에 형성될 회로 패턴을 생성하는데 사용될 수 있다. 이 패턴은 기판(예컨대, 실리콘 웨이퍼) 상의 (예를 들어, 1 개 또는 수개의 다이의 부분을 포함하는) 타겟부 상으로 전사(transfer)될 수 있다. 패턴의 전사는 통상적으로 기판 상에 제공된 방사선-감응재(레지스트) 층 상으로의 이미징(imaging)을 통해 수행된다. 일반적으로, 단일 기판은 연속하여 패터닝되는 인접한 타겟부들의 네트워크를 포함할 것이다. 알려진 리소그래피 장치는, 한번에 타겟부 상으로 전체 패턴을 노광함으로써 각각의 타겟부가 조사(irradiate)되는 소위 스테퍼, 및 방사선 빔을 통해 주어진 방향("스캐닝" - 방향)으로 패턴을 스캐닝하는 한편, 이 방향과 평행한 방향(같은 방향으로 평행한 방향) 또는 역-평행한 방향(반대 방향으로 평행한 방향)으로 기판을 동기적으로 스캐닝함으로써 각각의 타겟부가 조사되는 소위 스캐너를 포함한다. 또한, 기판 상에 패턴을 임프린트(imprint)함으로써, 패터닝 디바이스에서 기판으로 패턴을 전사하는 것이 가능하다.
현재 기술로부터 가스 샤워기(gas shower)들의 적용예가 알려져 있다. 예를 들어, 유럽 특허 EP 0 498 499는 도 18에서 리소그래피 장치의 일부분을 예시하고 있다. 상기 장치는 간섭계 시스템(interferometer system) 및 간섭계 빔이 전파하는 공간을 포함한다. 간섭계 시스템의 더 높은 정확성을 얻기 위해, 일정한, 바람직하게는 층류(laminar stream)의 공기가 이 공간을 통해 지나간다. 공급된 공기의 순도(purity) 및 온도 모두가 제어될 수 있다. 공기는 예를 들어 순도 클래스 1로 이루어지며, 예를 들어 그 온도는 0.1℃ 내에서 안정적이다.
리소그래피 장치를 제공하는 것이 바람직하며, 상기 장치 내에서 광학 경로들 및/또는 내부의 전체 또는 일부분의 컨디셔닝이 개선될 수 있다.
본 발명의 일 실시형태에서, 적어도 상기 장치의 내부 공간으로 제 1 가스 흐름(gas flow)을 공급하도록 구성되는 제 1 가스 샤워기, 및 적어도 상기 장치의 내부 공간으로 제 2 가스 흐름을 공급하도록 구성되는 제 2 가스 샤워기를 포함하는 리소그래피 장치가 제공되며, 가스 샤워기는 제 1 가스 흐름 및 제 2 가스 흐름을, 서로를 향해 전체적으로 또는 부분적으로 지향하도록 구성된다.
또한 본 발명의 일 실시형태에서, 제 1 측면 및 제 1 측면과 마주보는(face away) 제 2 측면을 갖는 1 이상의 장치 컴포넌트(component)를 포함하는 리소그래피 장치가 제공되며, 상기 장치는 장치 컴포넌트의 제 1 측면을 향해, 전체적으로 또는 부분적으로 제 1 가스 흐름을 공급하고, 장치 컴포넌트의 제 2 측면을 향해, 전체적으로 또는 부분적으로 제 2 가스 흐름을 공급하도록 구성되는 가스 샤워 시스템을 포함한다.
본 발명의 일 실시형태에서, 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법이 제공되며, 컨디셔닝된 제 1 가스 흐름 및 컨디셔닝된 제 2 가스 흐름이 서로를 향해 전체적으로 또는 부분적으로 지향되도록, 컨디셔닝된 제 1 가스 흐름 및 컨디셔닝된 제 2 가스 흐름은 내부 공간으로 공급되게 된다.
또한 본 발명의 일 실시형태에서, 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법이 제공되며, 제 1 가스 흐름은 장치 컴포넌트의 제 1 측면을 향해 전체적으로 또는 부분적으로 지향되고, 제 2 가스 흐름은 제 1 측면과 마주보도록 향하는, 장치 컴포넌트의 제 2 측면을 향해 전체적으로 또는 부분적으로 지향된다.
도 1은 본 발명의 일 실시예에 따른 리소그래피 장치를 개략적으로 도시한다. 상기 장치는:
- 방사선 빔(B)(예를 들어, UV 방사선 또는 다른 타입의 방사선)을 컨디셔닝(condition)하도록 구성된 조명 시스템(일루미네이터)(IL);
- 패터닝 디바이스(예를 들어, 마스크)(MA)를 지지하도록 구성되고, 소정 파라미터들에 따라 패터닝 디바이스를 정확히 위치시키도록 구성된 제 1 위치설정기(PM)에 연결된 지지 구조체(예를 들어, 마스크 테이블)(MT);
- 기판(예를 들어, 레지스트-코팅된 웨이퍼)(W)을 유지하도록 구성되고, 소정의 파라미터들에 따라 기판을 정확히 위치시키도록 구성된 제 2 위치설정기(PW)에 연결된 기판 테이블 또는 기판 지지체(예를 들어, 웨이퍼 테이블)(WT)를 포함하는 기판 지대(substrate zone: SZ); 및
- 기판(W)의 (예를 들어, 1 이상의 다이를 포함하는) 타겟부(C) 상으로 패터닝 디바이스(MA)에 의해 방사선 빔(B)에 부여된 패턴을 투영하도록 구성된 투영 시스템(예를 들어, 굴절 투영 렌즈 시스템)(PS)을 포함한다.
조명 시스템은 방사선을 지향, 성형, 또는 제어하기 위하여, 굴절, 반사, 자기, 전자기, 정전기 또는 다른 타입의 광학 구성요소들, 또는 여하한의 그 조합과 같은 다양한 타입의 광학 구성요소들을 포함할 수 있다.
지지 구조체는 패터닝 디바이스를 지지, 즉 그 무게를 견딘다. 이는 패터닝 디바이스의 방위, 리소그래피 장치의 디자인, 및 예를 들어 패터닝 디바이스가 진공 환경에서 유지되는지의 여부와 같은 다른 조건들에 의존하는 방식으로 패터닝 디바이스를 유지한다. 지지 구조체는 패터닝 디바이스를 유지하기 위해 기계적, 진공, 정전기, 또는 다른 클램핑 기술들을 이용할 수 있다. 지지 구조체는, 예를 들어 필요에 따라 고정되거나 이동가능할 수 있는 프레임 또는 테이블일 수 있다. 지지 구조체는, 패터닝 디바이스가 예를 들어 투영 시스템에 대해 원하는 위치에 있을 것을 보장할 수 있다. 본 명세서의 "레티클" 또는 "마스크"라는 용어의 어떠한 사용도 "패터닝 디바이스"라는 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
본 명세서에서 사용되는 "패터닝 디바이스"라는 용어는, 기판의 타겟부에 패턴을 생성하기 위해서, 방사선 빔의 단면에 패턴을 부여하는데 사용될 수 있는 여하한의 디바이스를 언급하는 것으로 폭넓게 해석되어야 한다. 방사선 빔에 부여된 패턴은, 예를 들어 상기 패턴이 위상-시프팅 피처(phase-shifting feature)들 또는 소위 어시스트 피처(assist feature)들을 포함하는 경우, 기판의 타겟부 내의 원하 는 패턴과 정확히 일치하지 않을 수도 있다는 것을 유의하여야 한다. 일반적으로, 방사선 빔에 부여된 패턴은 집적 회로와 같이 타겟부에 생성될 디바이스 내의 특정 기능 층에 해당할 것이다.
패터닝 디바이스는 투과형 또는 반사형일 수 있다. 패터닝 디바이스의 예로는 마스크, 프로그램가능한 거울 어레이, 및 프로그램가능한 LCD 패널들을 포함한다. 마스크는 리소그래피 분야에서 잘 알려져 있으며, 바이너리(binary)형, 교번 위상-시프트형 및 감쇠 위상-시프트형과 같은 마스크 타입뿐만 아니라, 다양한 하이브리드(hybrid) 마스크 타입들을 포함한다. 프로그램가능한 거울 어레이의 일 예시는 작은 거울들의 매트릭스 구성을 채택하며, 그 각각은 입사하는 방사선 빔을 상이한 방향으로 반사시키도록 개별적으로 기울어질 수 있다. 기울어진 거울들은 거울 매트릭스에 의해 반사되는 방사선 빔에 패턴을 부여한다.
본 명세서에서 사용되는 "투영 시스템"이라는 용어는, 사용되는 노광 방사선에 대하여, 또는 침지 액체의 사용 또는 진공의 사용과 같은 다른 인자들에 대하여 적절하다면, 굴절, 반사, 카타디옵트릭(catadioptric), 자기, 전자기 및 정전기 광학 시스템, 또는 여하한의 그 조합을 포함하는 여하한의 타입의 투영 시스템을 내포하는 것으로서 폭넓게 해석되어야 한다. 본 명세서의 "투영 렌즈"라는 용어의 어떠한 사용도 "투영 시스템"이라는 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
본 명세서에 도시된 바와 같이, 상기 장치는 (예를 들어, 투과 마스크를 채택하는) 투과형으로 구성된다. 대안적으로, 상기 장치는 (예를 들어, 앞서 언급된 바와 같은 타입의 프로그램가능한 거울 어레이를 채택하거나, 반사 마스크를 채택하는) 반사형으로 구성될 수 있다.
리소그래피 장치는 2 개(듀얼 스테이지) 이상의 기판 테이블 (및/또는 2 이상의 마스크 테이블)을 갖는 형태로 구성될 수 있다. 이러한 "다수 스테이지" 기계에서는 추가 테이블이 병행하여 사용될 수 있으며, 또는 1 이상의 테이블이 노광에 사용되고 있는 동안 1 이상의 다른 테이블에서는 준비작업 단계가 수행될 수 있다.
또한, 리소그래피 장치는 투영 시스템과 기판 사이의 공간을 채우기 위해서, 기판의 전체 또는 일부분이 비교적 높은 굴절률을 갖는 액체, 예컨대 물로 덮일 수 있는 형태로도 구성될 수 있다. 또한, 침지 액체는 리소그래피 장치 내의 다른 공간들, 예를 들어 마스크와 투영 시스템 사이에도 적용될 수 있다. 침지 기술은 투영 시스템의 개구수(numerical aperture)를 증가시키는 기술로 당업계에 잘 알려져 있다. 본 명세서에서 사용되는 "침지"라는 용어는 기판과 같은 구조체가 액체 내에 담그어져야 함을 의미하는 것이라기보다는, 노광시 액체가 투영 시스템과 기판 사이에 놓이기만 하면 된다는 것을 의미한다.
도 1을 참조하면, 일루미네이터(IL)는 방사선 소스(SO)로부터 방사선 빔을 수용한다. 예를 들어, 상기 소스가 엑시머 레이저(excimer laser)인 경우, 상기 소스 및 리소그래피 장치는 별도의 개체일 수 있다. 이러한 경우, 상기 소스는 리소그래피 장치의 일부분을 형성하는 것으로 간주되지 않으며, 상기 방사선 빔은 예를 들어 적절한 지향 거울 및/또는 빔 익스팬더(beam expander)를 포함하는 빔 전달 시스템(BD)의 도움으로, 소스(SO)로부터 일루미네이터(IL)로 통과된다. 다른 경우, 예를 들어 상기 소스가 수은 램프인 경우, 상기 소스는 리소그래피 장치의 통합부일 수 있다. 상기 소스(SO) 및 일루미네이터(IL)는, 필요에 따라 빔 전달 시스템(BD)과 함께 방사선 시스템이라고도 칭해질 수 있다.
상기 일루미네이터(IL)는 방사선 빔의 각도 세기 분포를 조정하는 조정기(AD)를 포함할 수 있다. 일반적으로, 일루미네이터의 퓨필 평면 내의 세기 분포의 적어도 외반경 및/또는 내반경 크기(통상적으로, 각각 외측-σ 및 내측-σ라 함)가 조정될 수 있다. 또한, 일루미네이터(IL)는 인티그레이터(IN) 및 콘덴서(CO)와 같이, 다양한 다른 구성요소들을 포함할 수도 있다. 일루미네이터는 방사선 빔의 단면에 원하는 균일성(uniformity) 및 세기 분포를 갖기 위해, 방사선 빔을 컨디셔닝하는데 사용될 수 있다.
상기 방사선 빔(B)은 지지 구조체(예를 들어, 마스크 테이블(MT)) 상에 유지되어 있는 패터닝 디바이스(예를 들어, 마스크(MA)) 상에 입사되며, 패터닝 디바이스에 의해 패터닝된다. 상기 마스크(MA)를 가로질렀으면, 상기 방사선 빔(B)은 투영 시스템(PS)을 통과하여 기판(W)의 타겟부(C) 상에 상기 빔을 포커스한다. 제 2 위치설정기(PW) 및 위치 센서(IF)(예를 들어, 간섭계 디바이스, 리니어 인코더 또는 용량성 센서)의 도움으로, 기판 테이블(WT)은, 예를 들어 방사선 빔(B)의 경로 내에 상이한 타겟부(C)들을 위치시키도록 정확하게 이동될 수 있다. 이와 유사하게, 제 1 위치설정기(PM) 및 또 다른 위치 센서(도 1에 명확히 도시되지 않음)는, 예를 들어 마스크 라이브러리(mask library)로부터의 기계적인 회수 후에, 또는 스캔하는 동안, 방사선 빔(B)의 경로에 대해 마스크(MA)를 정확히 위치시키는데 사용 될 수 있다. 일반적으로, 마스크 테이블(MT)의 이동은, 장-행정 모듈(long-stroke module: 개략 위치설정) 및 단-행정 모듈(short-stroke module: 미세 위치설정)의 도움을 받아 실현될 것이며, 이는 제 1 위치설정기(PM)의 일부분을 형성한다. 이와 유사하게, 기판 테이블(WT)의 이동은 장-행정 모듈 및 단-행정 모듈을 이용하여 실현될 수 있으며, 이는 제 2 위치설정기(PW)의 일부분을 형성한다. (스캐너와는 대조적으로) 스테퍼의 경우, 마스크 테이블(MT)은 단-행정 액추에이터에만 연결되거나 고정될 수 있다. 마스크(MA) 및 기판(W)은 마스크 정렬 마크들(M1 및 M2) 및 기판 정렬 마크들(P1 및 P2)을 이용하여 정렬될 수 있다. 비록, 예시된 기판 정렬 마크들이 지정된(dedicated) 타겟부들을 차지하고 있지만, 그들은 타겟부들 사이의 공간들 내에 위치될 수도 있다(이들은 스크라이브-레인 정렬 마크(scribe-lane alignment mark)들로 알려져 있다). 이와 유사하게, 마스크(MA) 상에 1 이상의 다이가 제공되는 상황들에서, 마스크 정렬 마크들은 다이들 사이에 위치될 수 있다.
도시된 장치는 다음과 같은 모드들 중 1 이상에서 사용될 수 있다:
1. 스텝 모드에서, 마스크 테이블(MT) 및 기판 테이블(WT)은 기본적으로 정지 상태로 유지되는 한편, 방사선 빔에 부여되는 전체 패턴은 한번에 타겟부(C) 상에 투영된다(즉, 단일 정적 노광(single static exposure)). 그 후, 기판 테이블(WT)은 상이한 타겟부(C)가 노광될 수 있도록 X 및/또는 Y 방향으로 시프트된다. 스텝 모드에서 노광 필드의 최대 크기는, 단일 정적 노광시에 이미징되는 타겟부(C)의 크기를 제한한다.
2. 스캔 모드에서, 마스크 테이블(MT) 및 기판 테이블(WT)은 방사선 빔에 부 여된 패턴이 타겟부(C) 상에 투영되는 동안에 동기적으로 스캐닝된다(즉, 단일 동적 노광(single dynamic exposure)). 마스크 테이블(MT)에 대한 기판 테이블(WT)의 속도 및 방향은 투영 시스템(PS)의 확대(축소) 및 이미지 반전 특성에 의하여 결정될 수 있다. 스캔 모드에서 노광 필드의 최대 크기는 단일 동적 노광시 타겟부의 (스캐닝 되지 않는 방향으로의) 폭을 제한하는 반면, 스캐닝 동작의 길이는 타겟부의 (스캐닝 방향으로의) 높이를 결정한다.
3. 또 다른 모드에서, 마스크 테이블(MT)은 프로그램가능한 패터닝 디바이스를 유지하여 기본적으로 정지된 상태로 유지되며, 방사선 빔에 부여된 패턴이 타겟부(C) 상에 투영되는 동안, 기판 테이블(WT)이 이동되거나 스캐닝된다. 이 모드에서는, 일반적으로 펄스화된 방사선 소스(pulsed radiation source)가 채택되며, 프로그램가능한 패터닝 디바이스는 기판 테이블(WT)이 각각 이동한 후, 또는 스캔 중에 계속되는 방사선 펄스 사이사이에 필요에 따라 업데이트된다. 이 작동 모드는 앞서 언급된 바와 같은 타입의 프로그램가능한 거울 어레이와 같은 프로그램가능한 패터닝 디바이스를 이용하는 마스크없는 리소그래피(maskless lithography)에 용이하게 적용될 수 있다.
또한, 상술된 사용 모드들의 조합 및/또는 변형, 또는 완전히 다른 사용 모드들이 채택될 수도 있다.
일 실시예에서, 상기 장치는 1 이상의 간섭계 시스템(IF)뿐만 아니라, 상기 간섭계 시스템(IF)의 광학 경로(OP)의 전체 또는 일부분으로 층류 가스를 공급하도록 배치되는 1 이상의 가스 샤워기를 포함할 수 있다. 이는 도 1 내지 도 8에 개략 적으로 도시되어 있다.
도 2는 종래의 상기 장치의 내부 일부분, 예를 들어 광학 빔의 실질적으로 평행한(parallel) 경로(OP)에 의해 가로질러지는 상기 장치의 기판 지대(SZ)(도 1 참조) 일부분을 컨디셔닝하기 위한 가스 샤워 시스템의 일부분을 도시한다. 도 2에서, 빔 경로(OP)가 단면도로 도시되며, 도면의 평면에 수직으로 연장될 수 있다. 각각의 빔은, 예를 들어 간섭계 위치설정 시스템의 간섭계 빔일 수 있다. 간섭계 시스템은, 예를 들어 EP 0 498 499 A에서 설명된 시스템과 유사하거나, 상이하게 구성될 수 있다. 예를 들어, 광학 경로(OP)는 XY 평면 내(도 1 참조)에, 또는 상이한 방향으로 기판 테이블 또는 기판 지지체를 위치시키기 위한 간섭계 빔의 경로일 수 있다. 예를 들어, 위에서 설명한 바와 같이, 상기 장치는 투영 시스템에 대해, X 및/또는 Y 방향으로 이동가능한 기판 지지체를 포함할 수 있다. 간섭계 시스템은 이러한 이동가능한 기판 지지체의 X 및/또는 Y 위치설정을 제공하기 위한 시스템일 수 있다. 상기 X 및 Y 방향은 직교 방향일 수 있다.
도 2에 도시된 바와 같이, 상기 장치의 컴포넌트(10)는 광학 경로(OP)에 가까이 (도면에서는 위로) 연장된다. 그러므로, 이 컴포넌트(10)는 광학 경로(OP)에 가까운 공간의 일부분을 차지한다. 이 장치 컴포넌트(10)는, 예를 들어 실질적으로 (도면의 평면에 수직인 방향으로 보이는) 광학 경로(OP)를 따라 연장될 수 있다. 또한, 컴포넌트(10)는 인접한 광학 빔 경로(OP)에 실질적으로 평행하게 연장될 수 있다(또한, 아래에 설명된 실시예와 관련하여, 도 4 참조). 예를 들어, 이 컴포넌트(10)는 광학 경로(OP)에 대해 횡단 방향, 예를 들어 상기 X 및 Y 방향에 수직인 Z 방향으로 기판 홀더의 위치설정을 제공하도록 설치될 수 있는 거울, 예를 들어 기다란 거울(elongated mirror)일 수 있다. 또한, 광학 경로(OP)에 가까이 (도면에서는 위로) 연장하는 이 컴포넌트(10)는, 예를 들어 센서 또는 상이한 장치 컴포넌트일 수 있다.
종래의 장치에서는, 내부 공간으로 각각의 컨디셔닝된 가스 흐름을 공급하기 위해, 하나의 가스 샤워기(101)가 장치 컴포넌트(10) 옆에서 연장된다. 컨디셔닝된 가스는, 예를 들어 불활성 가스(inert gas), 혼합 가스(gas mixture), 공기 또는 상이한 가스일 수 있다. 컨디셔닝된 가스는 순도 클래스 1의 초청정 공기(ultraclean air)일 수 있다. 가스의 온도는 비교적 안정적인데, 예를 들어 0.1℃ 내에서, 특히 0.001℃ 내에서 안정적일 수 있다. 이러한 열적으로 안정한 가스가 제공될 수 있는 방법은 종래 기술로부터 알려진다.
도 2에서, 가스 흐름은 화살표 g에 의해 도시된다. 예를 들어, 가스 샤워기(101)는 실질적으로 (도면의 평면에 수직인 방향으로 보이는) 광학 경로(OP)를 따라, 및/또는 예를 들어 광학 경로(OP)의 길이에 대한 컴포넌트(10)의 길이에 의존하여, 실질적으로 언급된 장치 컴포넌트(10)의 길이를 따라 연장될 수 있다. 또한, 일 예시로서 가스 샤워기(101)는 광학 경로(OP)의 방위와 구성에 의존하여, 투영 렌즈 또는 투영 시스템(PS)과 간섭계 "블록"(IF) 사이에서 연장될 수 있다(도 1 참조). 예를 들어, 가스 샤워기(101)는 상기 간섭계 시스템(IF)의 일부분으로부터 이격되어 대향하는 기판 지지체(WT) 또는 투영 렌즈(PL) 측 상으로는 연장되지 않는다. 따라서, 본 실시예에서 가스 샤워기(101)는 실질적으로 투영 렌즈(PL)의 일 측면(one lateral side) 상으로 연장된다.
가스 샤워기 시스템은 간섭계 빔의 경로(OP)를 0.001℃ 안정성으로 컨디셔닝하는데 사용될 수 있다. 장치 컴포넌트(10)의 위치 때문에, 가스 샤워기(101)는 (도 2에서) 상부로부터 광학 경로(OP)를 컨디셔닝할 수 없다. 종래의 시스템에서, 광학 빔을 컨디셔닝하도록 컴포넌트(10) 주위의 가스를 벤딩(bend)하기 위해, 가스 샤워기(101)는 "슬랫(slat)"이라고 불리는 곡선형 베인(curved vane: 112)과 함께, 경사지고 발산적인(diverging) 베인(vane: 111)을 갖추고 있다(이는 비행기 플랩 기술과 비교가능하다).
도 3 내지 도 4는, 장치가 실질적으로 제 1 층류 가스 흐름(g1)을 장치의 내부 공간으로 공급하도록 구성되는 제 1 가스 샤워기(1)를 포함하는 가스 샤워 시스템, 및 실질적으로 제 2 층류 가스 흐름(g2)을 내부 공간으로 공급하도록 구성되는 제 2 가스 샤워기(2)를 포함하는 가스 샤워 시스템을 포함하는, 도 2에서 나타낸 실시예와는 다른 실시예를 도시한다. 제 1 및 제 2 가스 흐름(g1 및 g2) 모두는, 예를 들어 앞서 언급된 컨디셔닝된 가스일 수 있다.
도 3 및 도 4의 실시예에서, 장치의 컴포넌트(10)는 제 1 및 제 2 가스 샤워기(1 및 2)의 양편의(opposite) 가스 방출구(3 및 4) 사이에서 전체적으로 또는 부분적으로 연장된다. 컴포넌트(10)는 간섭계 빔의 실질적으로 평행한 부분들에 의해 가로질러지는 영역에 접하거나(abut), 그 가까이에 위치된다. 도 2의 실시예에서와 같이, 컴포넌트(10)는, 예를 들어 기판 지지체(WT), 센서 또는 상이한 컴포넌트의 위치설정에 사용될 수 있는 거울일 수 있다. 또 다른 실시예에서, 언급된 컴포넌트(10)는 기판 지지체(WT)를 Z 방향으로 위치설정하기 위해 제공된다(도 1 및 도 3 참조).
본 실시예에서, 장치 컴포넌트에는 제 1 측면(13) 및 제 2 측면(14)이 제공된다. 컴포넌트(10)의 제 2 측면은 제 1 측면(13)과 실질적으로 마주보도록 향해 있다. 또한, 장치 컴포넌트(10)는 제 1 및 제 2 측면(13 및 14) 사이에서 연장하는 제 3 측면(15)을 포함할 수 있다. 예를 들어, 일 실시예에서 제 3 측면(15)은 1 이상의 위치설정 빔을 반사하기 위해 거울 표면을 포함한다(도시되지 않음). 예를 들어, 장치 컴포넌트(10)는 실질적으로 직사각형 또는 정사각형의 단면을 가질 수 있으며, 또는 상이한 형상일 수 있다.
나타낸 바와 같이, 가스 샤워기 시스템(1 및 2)은 장치 컴포넌트(10)의 제 1 측면(13)을 향해 전체적으로 또는 부분적으로 제 1 가스 흐름(g1)을 공급하고, 장치 컴포넌트(10)의 제 2 측면(14)을 향해 전체적으로 또는 부분적으로 제 2 가스 흐름(g2)을 공급하도록 구성된다. 특히, 가스 샤워기(1 및 2)의 양편(3 및 4)은 제 1 및 제 2 가스 흐름을 공급하도록 구성된다. 또한, 본 실시예에서 제 1 및 제 2 가스 흐름(g1 및 g2)의 전체 또는 부분들은, 사용 중에 특히 광학 경로(OP)를 컨디셔닝하도록, 장치 컴포넌트(10)의 제 3 측면(15) 앞에서 서로 만난다. 또한, 도 3에 명확하게 도시된 바와 같이, 가스 흐름(g1 및 g2)의 다른 부분들은 광학 경로(OP)로부터 이격되어, 예를 들어 장치 컴포넌트(10)를 따라 반대 방향으로 지향될 수 있 다.
또한, 본 실시예에서 가스 샤워 시스템의 제 1 및 제 2 가스 샤워기(1 및 2)는, 제 1 가스 흐름(g1) 및 제 2 가스 흐름(g2)이 도 3에서 명확하게 볼 수 있는 바와 같이 서로에게, 또한 가스 샤워기(1 및 2) 사이에서 연장하거나, 또는 그 사이에 도달하는 또 다른 장치 컴포넌트(10)를 향해 전체적으로 또는 부분적으로 지향되도록 배치될 수 있다.
2 개의 가스 샤워기(1 및 2)의 어셈블리(assembly)는 서로 별도로 이격될 수 있다. 또한, 각각의 가스 샤워기(1 및 2)는 또 다른 장치 컴포넌트(10)와 별도로 이격될 수 있다. 또한 일 실시예에서, 가스 샤워기(1 및 2)는 광학 경로(OP)의 방위 및 구성에 의존하여, 투영 렌즈 또는 투영 시스템(PS)과 간섭계 "블록"(IF) 사이에서 연장할 수 있다(도 1 참조). 예를 들어, 일 실시예에서 가스 샤워기(1 및 2)는 상기 간섭계 시스템(IF)의 일부분으로부터 이격되어 대향하는 기판 지지체(WT) 또는 투영 렌즈(PL) 측 상으로는 연장되지 않는다. 따라서, 본 실시예에서 가스 샤워기(1 및 2)는 실질적으로 투영 렌즈(PL)의 일 측면 상으로 연장될 수 있다. 일 실시예에서, 가스 샤워기(1 및 2)의 어셈블리들은 예를 들어 간섭계 시스템의 구성에 의존하여, 기판 지지체(WT) 또는 투영 렌즈(PL)의 다양한 측면으로 연장한다. 그 경우에, 가스 샤워기(1 및 2)는 투영 렌즈(PL)의 1 이상의 측면 상으로, 예를 들어 투영 렌즈(PL)의 서로 반대편의 횡방향 측면 상으로 연장될 수 있다.
도 3 및 도 4에서, 2 개의 가스 샤워기(1 및 2)는 서로에 대해 실질적으로 평행하게, 또한 가스 흐름에 의해 컨디셔닝될 평행한 광학 경로(OP) 각각에 대해 실질적으로 평행하게 연장한다. 종래의 장치에서와 같이, 도 3 내지 도 4에서 장치는, 1 이상의 간섭계 빔을 이용하는 (기판 홀더와 같은) 장치의 전체 또는 일부분을 위치설정하기 위한 1 이상의 간섭계 시스템을 포함할 수 있으며, 제 1 가스 샤워기(1)는 간섭계 빔에 의해 가로질러지는 영역에 제 1 가스 흐름(g1)의 전체 또는 일부분을 공급하도록 구성된다. 도 3 및 도 4에서, 제 2 가스 샤워기(2)는 그 영역에 제 2 가스 흐름(g2)의 전체 또는 일부분을 공급하도록 구성된다.
각각의 가스 샤워기(1 및 2)는 다양한 방식으로 배치되고 구성될 수 있다. 예를 들어, 가스 샤워기(1 및 2) 각각은 층류 가스 흐름(g1 및 g2)을 장치 내로 확산시키기 위해, 1 이상의 적절한 가스 방출구(3 및 4)를 포함할 수 있다. 각각의 방출구(3 및 4)에는, 예를 들어 다공성 재료(porous material), 적절한 가스 확산기(disperser), 모노 필라멘트 직물(mono filament cloth), 가스 어퍼처(gas aperture)를 갖는 1 이상의 시트(sheet), 또는 상이한 가스 분배기(distributor)가 제공될 수 있다. 가스 샤워기 방출구(3 및 4) 각각은 1 이상의 재료의 1 이상의 층을 포함할 수 있다. 방출구(3 및 4)는 가스 샤워기(1 및 2) 각각의 업스트림 가스 분배기 챔버(upstream gas distribution chamber)의 벽면(wall) 또는 벽면부일 수 있으며, 또는 그것을 제공할 수 있다. 도 3 내지 도 4의 본 실시예에서, 사용 중에 가스 흐름(g1 및 g2)은 각각의 방출구(3 및 4) 측면으로부터 실질적으로 수직으로 흐른다.
각각의 가스 샤워기(1 및 2) 또는 각각의 가스 방출구(3 및 4)는 사용 중에 가스 샤워기에 적용되고 있는 가스로부터, 실질적으로 균일한 층류 가스 흐름(g)을 발생시키도록 구성된다. 가스 샤워기(3 및 4)에 가스를 공급하는 1 이상의 가스 소스는 도시되지 않는다. 도 3 내지 도 4의 본 실시예에서, 가스 샤워기(1 및 2) 각각은 고속 부분(HV)과 업스트림 저속 부분(LV)을 포함할 수 있다. 고속 부분들은 가스 샤워기(1 및 2)의 양편(3 및 4) 가까이에 위치될 수 있다. 본 실시예에서, 비교적 고속(예를 들어 약 1 m/s 또는 상이한 속도)의 가스는, 양편의 가스 방출구(3 및 4)를 통해 이 고속 부분들로부터 내부 공간으로 배출될 수 있다. 선택적으로, 업스트림 저속 가스 샤워기 부분들도, 화살표(g3 및 g4)에 의해 도시된 바와 같이, 가스를 내부 공간으로 공급하도록 배치될 수 있다.
특히, 제 1 및 제 2 가스 샤워기(1 및 2)의 양편(3 및 4)은, 본 실시예에서와 같이 적어도 서로를 향해, 또한 컴포넌트(10)의 제 1 및 제 2 측면(13 및 14)을 향해, 제 1 가스 흐름 및 제 2 가스 흐름을 지향하도록 배치될 수 있다. 예를 들어, 본 실시예에서 가스 샤워기들의 양편(3 및 4)은 각각의 발산적인 가스 흐름(g1 및 g2)을 내부 공간으로 공급하도록 배치된다. 본 명세서에서, 이러한 가스 흐름(g1 및 g2) 각각은 전체 또는 부분적으로 발산한다. 예를 들어, 가스 흐름(g1 및 g2) 각각은 광학 경로(OP)에 각각 수직인, 예를 들어 XZ 또는 YZ 평면인 가상 평면(virtual plane)에서 보는 경우, 발산하고 있을 수 있다. 각각의 발산적인 가스 흐름(g1 및 g2)은 장치 컴포넌트(10)의 측면(13 및 14) 각각에, 뿐만 아니라 장치 컴포넌트(10) 가까이에 위치되는 광학 경로(OP)에 도달할 수 있다. 발산적인 가스 흐름(g1 및 g2)을 제공하기 위해, 제 1 및 제 2 가스 샤워기의 양편(3 및 4)은, 도 3에 나타낸 바와 같이 단순히 곡선 표면들 또는 볼록한 표면들일 수 있으며, 앞서 설명된 바와 같이 적절한 가스 분배기 또는 가스 확산재가 제공될 수 있다. 예를 들어, 각각의 가스 샤워기(1 및 2)의 외측은 볼록한 가스 분배기 에지 또는 팁(tip)을 포함할 수 있으며, 이 에지 또는 팁은 적어도 인접한 장치 컴포넌트(10)를 향하고, 또한 장치 컴포넌트(10)의 제 3 측면(15) 앞에서 연장한 상기 광학 경로(OP)를 향한다. 양편의 가스 샤워기(3 및 4)는 다양한 다른 방식으로 배치될 수 있으며, 예를 들어 테이퍼 팁(tapered tip)들, 경사진 가스 통로들(아래 참조) 또는 상이한 구성을 가질 수 있다. 대안적으로, 도 9에 도시된 바와 같이(아래 참조) 하나 또는 둘 모두의 가스 샤워기는, 각각의 수렴적인(converging) 가스 흐름 또는 일직선의(collimated)(평행한) 가스 흐름을 제공하도록 구성될 수 있으며, 또는 상이한 방식으로 구성될 수 있다.
또한, 제 1 및 제 2 가스 샤워기(1 및 2)는 내부 공간에 1 이상의 흐름 반류(flow wake)(또는 하부 압력(underpressure))를 유도하도록 구성될 수 있다. 도 3 및 도 4의 본 실시예에서, 상기 흐름 반류는 상기 컴포넌트(10) 가까이에 유도될 수 있다. 반류의 위치가 도 3에 점선의 원(FW)으로 도시되어 있다. 반류(FW)는, 예를 들어 상기 컴포넌트(10) 가까이에서, 예를 들어 상기 컴포넌트(10)와 상기 광학 경로(OP) 사이에서, 및/또는 컴포넌트(10)의 제 3 측면의 앞에서 유도될 수 있다. 또한, 반류(FW)는 광학 경로(OP) 내에서 전체적으로 또는 부분적으로 연장할 수 있다. 또한, 일 실시예에서 제 1 및 제 2 가스 흐름(g1 및 g2)은, 각각의 반류 영역이 이 가스 흐름(g1 및 g2)과 장치 컴포넌트(10) 사이에서 실질적으로 폐쇄되도록 지향될 수 있다.
도 3 및 도 4의 실시예의 사용 중에, 간섭계 빔에 의해 가로질러질 수 있는 장치의 내부 공간이 컨디셔닝될 수 있다. 그때, 컨디셔닝된 제 1 가스 흐름(g1) 및 컨디셔닝된 제 2 가스 흐름(g2)은, 컨디셔닝된 제 1 가스 흐름 및 컨디셔닝된 제 2 가스 흐름이 전체 또는 부분적으로 서로 지향되도록, 또한 장치 컴포넌트(10)의 제 1 및 제 2 측면을 향해 지향되도록 내부 공간으로 공급될 수 있다. 또한, 예를 들어 사용 중에, 간섭계 빔에 의해 가로질러지는 영역을 컨디셔닝하기 위해, 제 1 및 제 2 가스 흐름이 장치 컴포넌트(10) 가까이에서 만날 수 있다. 또한 일 실시예에서, 사용 중에 제 1 및 제 2 가스 흐름은 내부 공간에 앞서 언급된 흐름 반류(FW), 또는 하부 압력을 유도할 수 있다. 또 다른 실시예에서, 예를 들어 중간의 장치 컴포넌트(10)로부터 보면, 제 1 및 제 2 가스 흐름은 서로에 대해 실질적으로 거울-대칭적이다. 예를 들어, 가스 흐름들(g1 및 g2)의 흐름 비율은 실질적으로 동일할 수 있다. 대안적으로, 가스 흐름들(g1 및 g2)은 상이할 수 있으며, 상이한 흐름 비율 및/또는 서로에 대해 다소 상이한 흐름 방향을 가질 수 있다. 일 예시로서, 제 1 및 제 2 가스 샤워기(1 및 2)는 각각 유사한 가스 흐름을 제공하기 위해, 실질적으로 동일할 수 있다(그러나, 거울-대칭적인 흐름 방향을 가짐). 반면에, 제 1 및 제 2 가스 샤워기(1 및 2)는 상이하게 배치될 수 있으며, 및/또는 중간의 장치 컴포넌트(10)로부터 비대칭적인 가스 흐름을 제공하도록 사용될 수 있다.
도 5 및 도 6은 각각의 가스 샤워기(1' 및 2')의 가스 방출구(3' 및 4')가 소정 각도 아래의 가스 흐름(g1 및 g2) 각각을 내부 공간으로 지향하도록 배치되는, 도 3 및 도 4에 나타낸 실시예와 다른 일 실시예를 도시한다. 특히, 사용 중에 가스 흐름들(g1 및 g2)은 실질적으로 각각의 방출구(3' 및 4') 측면과 수직으로 흐르는 것이 아니라, 그 측면과 90°보다 작은 각도 β를 포함한다. 또한, 도 3에 도시된 바와 같이, 예를 들어 광학 경로(OP)에 수직인 가상 평면, 예를 들어 XZ 평면 또는 YZ 평면에서 보는 경우, 자체적으로 가스 흐름 각각은 여전히 발산적인 가스 흐름, 예를 들어 발산적일 수 있다. 하지만, 서로에 대해서 2 개의 흐름은 전체적으로 또는 부분적으로 수렴하거나, 서로 합류할 수 있다(또한, 도 3 참조). 예를 들어, 통로(9)는 각도 β로 상기 샤워기 방출구 측면을 에워쌀 수 있으며, 상기 각도는 약 20°내지 80°의 범위에 있다. 일 예시로서, 상기 각도들은 약 45°내지 55°의 범위에 있을 수 있다.
본 도면(5 및 6)에서 가스 통로(9)는, 예를 들어 상기 광학 경로(OP)에 대해 수직으로 연장하는 가상의 (수직) YZ 평면에 대하여 상기 각도 β를 포함할 수 있다.
각각의 가스 샤워기(1' 및 2')는 경사진 가스 흐름들을 각각 제공하기 위해 다양한 방식으로 구성될 수 있다. 예를 들어, 가스 샤워기(1' 및 2') 각각은 (제 2 가스 샤워기(2')의 방출구(4')의 일부분이 도시된) 도 6에 상세히 나타낸 바와 같이, 복수의 경사진 가스 통로를 포함하는 샤워기 방출구(3' 및 4')를 포함할 수 있다. 샤워기 방출구(3' 및 4')는 복수의 경사진 통로(9)를 갖는 시트(8)를 포함할 수 있으며, 각각의 통로는 시트를 통해 실질적으로 비스듬히 연장한다. 예를 들어, 시트(8)는 금속 시트 또는 합금 시트(alloy sheet)일 수 있으며, 상기 통로(9)는 레이저 드릴 통로(laser drilled passage), 에칭 통로(etched passage) 및/또는 방전 머시닝(electric discharge machining)에 의해 제조된 통로일 수 있다.
일 실시예에서, 상기 가스 샤워기 방출구(3' 및 4') 각각은 복수의 통로(9)를 갖는 얇은 금속 또는 합금 시트(8)를 포함할 수 있으며, 각각의 통로(9)는 금속 시트의 외측 표면에 대해 비스듬히 연장할 수 있다. 또한, 상기 복수의 통로는 서로에 대해 실질적으로 평행하게 연장할 수 있다.
일 실시예에서, (도 6에서 Y 방향으로 측정된) 상기 시트(8)의 두께는 1 mm보다 작을 수 있다. 예를 들어, 상기 두께(t)는 약 0.5 mm이거나, 더 작을 수 있다. 또한, 상기 시트(8)는 금속 시트 또는 합금 시트, 예를 들어 스테인리스강(stainless steel) 또는 성장 니켈(grown nickel), 또는 패턴 상의 합금일 수 있다. 그 경우에, 레이저 드릴링을 이용하여 높은 정확성으로 비교적 작은 가스 통로(9)가 제조될 수 있다. 또한, 가스 통로(9)는 상이한 기술을 이용하여 제조될 수도 있다. 또한, 시트(8)는 플라스틱, 및/또는 1 이상의 상이한 재료로 만들어질 수 있다. 또한 상기 통로(9)를 제공하기 위해, 통로를 에칭하는 단계, 방전 머시닝에 의해 통로를 제조하는 단계, 및/또는 상이한 공정을 이용하는 단계와 같이, 레이저 드릴링과는 상이한 제조 방법들이 적용될 수 있다.
가스 통로(9)는 다양한 직경 또는 치수를 가질 수 있다. 상기 통로(9) 각각의 직경 또는 폭(D)은, 예를 들어 약 0.2 mm보다 작을 수 있다. 예를 들어, 상기 직경 또는 폭은 약 0.1 mm보다 작을 수 있다. 상기 통로 각각의 상기 직경 또는 폭이 약 0.08 mm인 경우에 좋은 결과들이 얻어진다.
일 실시예에서, 리소그래피 장치는 이동가능한 기판 지지체(WT)를 포함할 수 있다. 예를 들어, 도 5의 실시예에서 기판 지지체(WT)(도 1 참조)는 X 방향 및 역방향으로 이동가능할 수 있다. 그 경우에, 또 다른 실시예에서 가스 샤워기(1' 및 2')는, 전체적으로 또는 부분적으로 기판 지지체(WT)의 하나의 이동 방향(X)과 동일한 방향으로 상기 층류 가스를 지향하도록 배치되는 것이 바람직하다. 도 5에 나타낸 바와 같이, 예를 들어 언급된 경사진 가스 통로(9)는 각각의 방출구 측면(3)에 대해 수직인 컴포넌트 및 상기 X 방향과 평행한 컴포넌트를 갖는 흐름 방향(F)을 갖는 가스 흐름을 제공할 수 있다. 이러한 방식으로, 기판 지지체(WT)가 예를 들어 간섭계 블록(IF)에서 떨어져 이동하는 경우, 가스 샤워기(1' 및 2')는 기판 지지체 뒤의 (또 다른) 반류의 발생을 방지하거나 감소시킬 수 있다. 이러한 방식으로, 소위 '제 1 스캔 효과(first scan effect)'(이때, 기판 지지체의 제 1 스캔 이동으로 인해, 비교적 컨디셔닝되지 않은 가스가 기판 지대(SZ)로부터 간섭계 빔 경로(OP) 내로 흡입됨)가 감소되거나 회피될 수 있다.
도 7은 도 4와 유사한, 또 다른 실시예의 일부분의 도면이다. 도 7에서 2 개의 가스 샤워기(1" 및 2")에는 서로 가깝게 위치되는 종단부(21 및 22)가 제공된다. 예를 들어, 종단부들은 또 다른 장치 컴포넌트(10)의 한쪽 끝에서, 예를 들어 투영 시스템(PS) 및/또는 기판 테이블(WT)(도 1 참조)의 마주보도록 향하는 장치 컴포넌트(10)의 끝에서 마주하여(opposite) 연장한다. 예를 들어, 가스 샤워기(1" 및 2")는 장치 컴포넌트(10)의 끝을 실질적으로 에워쌀 수 있다.
도 8은 대안적인 실시예의 일부분을 도시한다. 도 8의 실시예는 도 3에 나타낸 실시예와 다르게, 가스 샤워기 중 하나(201)의 한 측면(203)이 수렴적인 가스 흐름(g1)을 제공하도록 구성된다. 이러한 의도로, 예를 들어 가스 샤워기 각각(201)의 가스 방출구(203) 측면은, 도 8에 나타낸 바와 같이 간단하게 적절한 곡선 표면 또는 오목한 표면일 수 있으며, 앞서 설명된 바와 같이 적절한 가스 분배기 또는 가스 확산재가 제공될 수 있다. 예를 들어, 가스 샤워기 각각(201)의 외측은 오목한 가스 분배 에지 또는 팁을 포함할 수 있으며, 이 에지 또는 팁은 적어도 인접한 장치 컴포넌트(10)를 향하고, 또한 장치 컴포넌트(10)의 제 3 측면(15) 앞에서 연장하는 상기 광학 경로(OP)를 향한다. 예를 들어 수렴적인 가스 흐름(g1)은, 각각의 광학 경로(OP)에 수직인 언급된 가상 평면, 예를 들어 XZ 또는 YZ 평면에서 보는 경우에 수렴적일 수 있다.
또한 도 8의 실시예에서, 가스 샤워기(202)의 한 측면(204)은 일직선의 가스 흐름(g2), 예를 들어 가스 샤워기(202)에서 방출되는 경우에 실질적으로 평행한 흐 름의 가스 흐름(g2)을 제공하도록 구성된다. 이러한 의도로, 예를 들어 가스 샤워기 각각(202)의 가스 방출구 측면(204)은, 도 8에 나타낸 바와 같이 간단하게, 실질적으로 평탄한 표면일 수 있으며, 앞서 설명된 바와 같이 적절한 가스 분배기 또는 가스 확산재가 제공될 수 있다. 또한, 이러한 평탄한 가스 방출구(204)는 적어도 인접한 장치 컴포넌트(10)를 향할 수 있으며, 또한 장치 컴포넌트(10)의 제 3 측면(15) 앞으로 연장하는 상기 광학 경로(OP)를 향할 수 있다. 예를 들어 일직선의 가스 흐름(g2)은, 각각의 광학 경로(OP)에 수직인 언급된 가상 평면, 예를 들어 XZ 또는 YZ 평면에서 보는 경우에 일직선(또는, 서로에 대해 실질적으로 평행)일 수 있다.
또한, 도 8의 실시예에서 가스 샤워기 방출구(203 및 204) 각각에는, 예를 들어 다공성 재료, 적절한 가스 확산기, 모노 필라멘트 직물, 가스 어퍼처를 갖는 1 이상의 시트, 또는 상이한 가스 분배기가 제공될 수 있다. 가스 샤워기 방출구(203 및 204) 각각은 1 이상의 재료의 1 이상의 층을 포함할 수 있다. 방출구(203 및 204)는 가스 샤워기(201 및 202) 각각의 업스트림 가스 분배기 챔버의 벽면 또는 벽면부일 수 있으며, 또는 그것을 제공할 수 있다. 예를 들어, 사용 중에 가스 흐름(g1 및 g2)은 각각의 방출구(203 및 204) 측면으로부터 실질적으로 수직으로 흐른다.
양편의 가스 샤워기 방출구 측면(3, 4, 203, 204)은 다양한 다른 방식으로 배치될 수 있다. 예를 들어, 마주보는 방출구 측면 둘 모두는 평탄한 측면이거나 오목한 측면일 수 있다. 또한, (도 8에서와 같이) 방출구 측면 중 하나가 실질적으로 평탄하거나 오목한 반면, (도 3에서와 같이) 양편의 가스 샤워기의 양 방출구 측면은 볼록하거나, 전체적으로 또는 부분적으로 발산적인 가스 흐름을 제공하도록 구성될 수 있다.
또한 도 8의 실시예는, 예를 들어 특히 가스 흐름(g1 및 g2)의 흐름 방향을 수렴하는 도 4에 나타낸 실시예와 조합될 수 있다. 반면에, 도 8 실시예는 도 5 내지 도 6의 실시예와 조합될 수 있으며, 가스 샤워기의 하나 또는 둘 모두의 가스 방출구(203 및 204)는 (예를 들어, 앞서 설명된 바와 같이 각각의 가스 방출구(203 및 204)에 경사진 가스 통로를 제공함으로써) 소정의 각도에서 각각의 가스 흐름(g1 및 g2)을 내부 공간으로 지향하도록 배치될 수 있다.
도 2 내지 도 8에 나타낸 실시예는, 컨디셔닝된 가스 샤워기 시스템 가스들과 "주변(ambient)" 가스들, 예를 들어 적게(less) 컨디셔닝된 기판 지대(SZ) 가스의 혼합(mixing)을 방지하거나 감소시킬 수 있다. 또한, 층류 샤워 가스들의 감속이 이러한 방식으로 방지될 수 있다. 이는 컨디셔닝된 샤워 가스들과 주변 가스들의 혼합의 감소를 유도할 수 있다. 그러므로, 가스 샤워기(1 및 2)는 특히 언급된 간섭계 빔 경로(OP)를 컨디셔닝하기 위해, 장치 내부(또는 그 일부분)의 만족스러운 컨디셔닝을 유도할 수 있다. 예를 들어 도 3을 참조하여, 장치 컴포넌트(10)로부터 비교적 멀고 하부에 위치된(lower positioned) 간섭계 빔으로의 컨디셔닝되지 않은 가스들의 혼합은 비교적 잘 방지될 수 있다. 이 '하부' 간섭계 빔의 경로는 도 2, 도 3 및 도 8에서 OPL에 의해 나타낼 수 있다.
샤워기(1 및 2)는 2 개의 가스 공급 영역들을 장치 컴포넌트(10)의 각각의 측면(13 및 14)에 제공할 수 있다. 앞선 내용에 따르면, 가스 샤워기(1 및 2) 각각의 각 공급 부분의 표면 또는 가스 공급 측면(3 및 4)은, 소정 속도의 균일한 층류 '다운' 흐름을 생성하기 위해, 모노 필라멘트 직물로 덮이거나 그것이 제공될 수 있다. 가스 샤워기(1 및 2)의 2 개의 표면(3 및 4)은, 낮은 운동량(momentum)의 잠재적인 혼합 지대(potential mixing zone)와 컨디셔닝되지 않은 가스가 간섭계 경로(OP) 외부에 위치되고, 거울 표면 아래의 흐름 반류(FW)가 최소가 되도록, 예를 들어 장치 컴포넌트(10)를 향해 경사진 각도로 위치될 수 있다. 비교적 많은 양의 컨디셔닝되지 않은 가스는, 특히 장치 컴포넌트(10)의 외측, 예를 들어 간섭계 부분(IF) 가까이 및 투영 시스템(PL) 가까이에서(도 1 참조) 이 흐름 반류(FW) 내로 흡입된다고 미리 생각되었었다. 현재, 놀랍게도, 실험에 의하면, 이는 매우 약하게만 일어난다. 컨디셔닝되지 않은 가스의 혼입(entrainment)을 더 제한하기 위해, 가스 샤워기 어셈블리(1 및 2)는, 예를 들어 간섭계 부분 측면에서 (예를 들어, 도 7에서와 같이) 실질적으로 각각의 장치 컴포넌트 전체 끝을 에워쌀 수 있다.
또한, 투영 시스템(PS) 가까이에서 기판 지지체의 최상부 표면은, 예를 들어 가스 샤워기(1 및 2)의 횡방향(lateral) 종단부와 상호작동하여, 압력 정체점(pressure stagnation point: PSP)을 유도하도록 구성될 수 있다. 이러한 압력 정체점(PSP)은 간섭계 경로(OP) 내로의 컨디셔닝되지 않은 가스의 혼입을 회피하거 나 감소시킬 수 있다. 이는 도 9에 개략적으로 도시되어 있으며, 상기 압력 정체점의 위치는 점선의 원(PSP)에 의해 나타내어 있다.
본 명세서에서는, IC 제조에 있어서 리소그래피 장치의 특정 사용예에 대하여 언급되지만, 본 명세서에 서술된 리소그래피 장치는 집적 광학 시스템, 자기 도메인 메모리용 안내 및 검출 패턴, 평판 디스플레이(flat-panel display), 액정 디스플레이(LCD), 박막 자기 헤드 등의 제조와 같이 다른 적용예들을 가질 수도 있음을 이해하여야 한다. 당업자라면, 이러한 대안적인 적용예와 관련하여, 본 명세서의 "웨이퍼" 또는 "다이"라는 어떠한 용어의 사용도 각각 "기판" 또는 "타겟부"라는 좀 더 일반적인 용어와 동의어로 간주될 수도 있음을 이해할 것이다. 본 명세서에서 언급되는 기판은 노광 전후에, 예를 들어 트랙(전형적으로, 기판에 레지스트 층을 도포하고 노광된 레지스트를 현상하는 툴), 또는 메트롤로지 및/또는 검사 툴에서 처리될 수 있다. 적용가능하다면, 이러한 기판 처리 툴과 다른 기판 처리 툴에 본 명세서의 기재 내용이 적용될 수 있다. 또한, 예를 들어 다층 IC를 생성하기 위하여 기판이 한번 이상 처리될 수 있으므로, 본 명세서에 사용되는 기판이라는 용어는 이미 여러번 처리된 층들을 포함한 기판을 칭할 수도 있다.
이상, 광학 리소그래피와 관련하여 본 발명의 실시예들의 특정 사용예를 언급하였지만, 본 발명은 다른 적용예들, 예를 들어 임프린트 리소그래피에 사용될 수 있으며, 본 명세서가 허용한다면 광학 리소그래피로 제한되지 않는다는 것을 이해할 것이다. 임프린트 리소그래피에서 패터닝 디바이스 내의 토포그래피(topography)는 기판 상에 생성된 패턴을 정의한다. 패터닝 디바이스의 토포그래 피는 전자기 방사선, 열, 압력 또는 그 조합을 인가함으로써 레지스트가 경화되는 기판에 공급된 레지스트 층으로 가압될 수 있다. 패터닝 디바이스는 레지스트가 경화된 후에 그 안에 패턴을 남기는 레지스트로부터 이동된다.
본 명세서에서 사용된 "방사선" 및 "빔"이라는 용어는 (예를 들어, 365, 355, 248, 193, 157 또는 126 nm 등의 파장을 갖는) 자외(UV)방사선 및 (예를 들어, 5 내지 20 nm 범위 내의 파장을 갖는) 극자외(EUV)방사선뿐만 아니라, 이온 빔 또는 전자 빔과 같은 입자 빔을 포함하는 모든 형태의 전자기 방사선을 포괄한다.
본 명세서가 허용하는 "렌즈"라는 용어는, 굴절, 반사, 자기, 전자기 및 정전기 광학 구성요소들을 포함하는 다양한 형태의 광학 구성요소들 중 어느 하나 또는 그 조합으로 언급될 수 있다.
이상, 본 발명의 특정 실시예가 설명되었지만 본 발명은 설명된 것과 다르게 실시될 수 있다는 것을 이해할 것이다. 예를 들어, 본 발명은 상기 개시된 바와 같은 방법을 구현하는 기계-판독가능한 명령어의 1 이상의 시퀀스를 포함하는 컴퓨터 프로그램, 또는 이러한 컴퓨터 프로그램이 저장되어 있는 데이터 저장 매체(예를 들어, 반도체 메모리, 자기 또는 광학 디스크)의 형태를 취할 수 있다.
상기 서술내용은 예시를 위한 것이지, 제한하려는 것이 아니다. 따라서, 당업자라면, 아래에 설명되는 청구항들의 범위를 벗어나지 않고 서술된 본 발명에 대한 변형예가 행해질 수도 있음을 이해할 것이다.
예를 들어, 제 1 및 제 2 가스 샤워기는 별도의 가스 샤워기 유닛일 수 있으며, 또는 하나의 가스 샤워기 유닛의 부분들일 수 있다. 또한, 제 1 및 제 2 가스 샤워기는 동일한 가스 샤워 시스템의 일부분일 수 있으며, 또는 상이한 가스 샤워 시스템의 일부분일 수도 있다. 더불어 제 1 및 제 2 가스 샤워기는 가스 샤워기 어셈블리를 형성할 수 있다. 또한, 제 1 및 제 2 가스 샤워기는 서로 통합되고, 서로 연결될 수 있으며, 동일한 가스 공급기에 연결되거나, 상이한 가스 공급기에 연결될 수 있다. 또한, 제 1 및 제 2 가스 샤워기는 상이하게 구성될 수도 있다. 또한, 당업자라면 명확하게 알 수 있는 바와 같이, 1 이상의 또 다른 가스 샤워기가 제공될 수 있다.
본 발명에 따르면, 내부 공간을 컨디셔닝하기 위해 가스 샤워기를 포함하는 리소그래피 장치가 제공된다.

Claims (54)

  1. 리소그래피 장치에 있어서,
    상기 장치의 내부 공간(interior space)으로 제 1 가스 흐름(gas flow)을 공급하도록 구성되는 적어도 제 1 가스 샤워기(gas shower), 및 상기 장치의 내부 공간으로 제 2 가스 흐름을 공급하도록 구성되는 적어도 제 2 가스 샤워기를 포함하여 이루어지고, 상기 가스 샤워기들은 전체적으로 또는 부분적으로 서로를 향해, 상기 제 1 가스 흐름 및 상기 제 2 가스 흐름을 지향하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  2. 제 1 항에 있어서,
    상기 장치의 컴포넌트(component)는, 상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들 사이에서 전체적으로 또는 부분적으로 연장하는 것을 특징으로 하는 리소그래피 장치.
  3. 제 2 항에 있어서,
    상기 컴포넌트는 거울인 것을 특징으로 하는 리소그래피 장치.
  4. 제 1 항에 있어서,
    상기 장치는, 1 이상의 간섭계 빔을 이용하여 상기 장치의 전체 또는 일부분을 위치시키기 위한 1 이상의 간섭계 시스템을 포함하여 이루어지고, 상기 제 1 가스 샤워기는 1 이상의 간섭계 빔에 의해 가로질러지는 영역으로 상기 제 1 가스 흐름의 전체 또는 일부분을 공급하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  5. 제 4 항에 있어서,
    상기 컴포넌트는 상기 1 이상의 간섭계 빔에 의해 가로질러지는 영역에 접하거나, 그 가까이에 위치되는 것을 특징으로 하는 리소그래피 장치.
  6. 제 4 항에 있어서,
    상기 제 2 가스 샤워기는 상기 간섭계 빔에 의해 가로질러지는 영역으로 상기 제 2 가스 흐름의 전체 또는 일부분을 공급하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  7. 제 4 항에 있어서,
    상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들은, 상기 간섭계 빔의 1 이상의 경로에 실질적으로 평행하게 연장하는 것을 특징으로 하는 리소그래피 장치.
  8. 제 4 항에 있어서,
    상기 장치는 투영 시스템에 대해, X 방향 및 Y 방향 중 어느 하나 이상의 방향으로 이동가능한 기판 지지체를 포함하여 이루어지고, 상기 간섭계 시스템은 상기 이동가능한 기판 지지체의 X 방향 및 Y 방향 중 어느 하나 이상의 방향의 위치설정을 제공하기 위한 시스템인 것을 특징으로 하는 리소그래피 장치.
  9. 제 8 항에 있어서,
    상기 장치는 상기 제1 및 제2 가스 샤워기의 마주보는 측면들 사이에서 전체적으로 또는 부분적으로 연장하는 거울을 더 포함하며,
    상기 거울은 상기 기판 지지체를 Z 방향으로 위치시키기 위해 제공되는 것을 특징으로 하는 리소그래피 장치.
  10. 제 1 항에 있어서,
    적어도 상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들은, 상기 내부 공간에 상기 제 1 가스 흐름 및 상기 제 2 가스 흐름을 공급하도록 배치되는 것을 특징으로 하는 리소그래피 장치.
  11. 제 1 항에 있어서,
    상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들 중 1 이상은 곡선 표면(curved surface)인 것을 특징으로 하는 리소그래피 장치.
  12. 제 1 항에 있어서,
    상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들 중 1 이상은, 상기 내부 공간으로 수렴적인(converging) 또는 발산적인(diverging) 가스 흐름을 공급하도록 배치되는 것을 특징으로 하는 리소그래피 장치.
  13. 제 1 항에 있어서,
    상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들 중 1 이상은 오목한 표면(concave surface)인 것을 특징으로 하는 리소그래피 장치.
  14. 제 1 항에 있어서,
    상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들 중 1 이상은 실질적으로 평탄한 표면(flat surface)인 것을 특징으로 하는 리소그래피 장치.
  15. 제 1 항에 있어서,
    상기 장치는 투영 시스템에 대해 이동가능한 기판 지지체를 포함하여 이루어지고, 적어도 상기 제 1 가스 샤워기는, 전체적으로 또는 부분적으로 상기 기판 지지체의 이동의 제 1 방향과 동일한 방향으로 가스 흐름 각각의 일부분을 지향하도록 배치되는 것을 특징으로 하는 리소그래피 장치.
  16. 제 1 항에 있어서,
    적어도 상기 제 1 및 제 2 가스 샤워기는, 상기 내부 공간에 1 이상의 흐름 반류(flow wake)를 유도하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  17. 제 16 항에 있어서,
    상기 장치의 컴포넌트(component)는, 상기 제 1 및 제 2 가스 샤워기의 마주보는 측면들 사이에서 전체적으로 또는 부분적으로 연장하는 것을 특징으로 하며,
    상기 흐름 반류는 상기 컴포넌트 가까이에 유도되는 것을 특징으로 하는 리소그래피 장치.
  18. 제 1 항에 있어서,
    적어도 상기 제 1 가스 샤워기는, 복수의 경사진 가스 통로를 포함하여 이루어지는 샤워기 방출구 측면(shower outlet side)을 포함하여 이루어지는 것을 특징으로 하는 리소그래피 장치.
  19. 제 18 항에 있어서,
    상기 샤워기 방출구 측면은, 상기 복수의 경사진 통로를 갖는 시트(sheet)를 포함하여 이루어지고, 각각의 통로는 상기 시트를 통해 실질적으로 비스듬히 연장하는 것을 특징으로 하는 리소그래피 장치.
  20. 제 19 항에 있어서,
    상기 시트는 금속 시트 또는 합금 시트(alloy sheet)이고, 상기 통로는, 레이저 드릴 통로(laser drilled passage), 에칭 통로(etched passage), 방전 머시닝(electric discharge machining)에 의해 제조된 통로의 그룹 중에서 선택된 하나 이상인 것을 특징으로 하는 리소그래피 장치.
  21. 리소그래피 장치에 있어서,
    제 1 측면 및 상기 제 1 측면과 마주보도록 향하는 제 2 측면을 갖는 1 이상의 장치 컴포넌트를 포함하여 이루어지고, 상기 장치는 전체적으로 또는 부분적으로 상기 장치 컴포넌트의 제 1 측면을 향해 제 1 가스 흐름을 공급하고, 전체적으로 또는 부분적으로 상기 장치 컴포넌트의 제 2 측면을 향해 제 2 가스 흐름을 공급하도록 구성되는 가스 샤워 시스템을 포함하여 이루어지는 것을 특징으로 하는 리소그래피 장치.
  22. 제 21 항에 있어서,
    상기 가스 샤워 시스템은 상기 제 1 및 제 2 가스 흐름을 공급하도록 구성되는 마주보는 측면들을 포함하여 이루어지는 것을 특징으로 하는 리소그래피 장치.
  23. 제 22 항에 있어서,
    상기 장치 컴포넌트는 전체적으로 또는 부분적으로 상기 가스 샤워 시스템의 마주보는 측면들 사이에서 연장하는 것을 특징으로 하는 리소그래피 장치.
  24. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들은 간섭계 빔의 1 이상의 경로와 실질적으로 평행하게 연장하는 것을 특징으로 하는 리소그래피 장치.
  25. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들은 거울-대칭적인 것을 특징으로 하는 리소그래피 장치.
  26. 제 22 항에 있어서,
    상기 장치 컴포넌트는 상기 제 1 및 제 2 측면 사이에서 연장하는 제 3 측면을 포함하여 이루어지고, 상기 제 1 및 제 2 가스 흐름의 전체 또는 일부분은, 사용 중에, 상기 장치 컴포넌트의 제 3 측면 앞에서 서로 만나는 것을 특징으로 하는 리소그래피 장치.
  27. 제 21 항에 있어서,
    상기 장치 컴포넌트는 거울인 것을 특징으로 하는 리소그래피 장치.
  28. 제 21 항에 있어서,
    상기 장치는 1 또는 그 이상의 간섭계 빔을 이용하여, 상기 장치의 전체 또는 일부분을 위치시키기 위한 1 이상의 간섭계 시스템을 포함하여 이루어지고, 상기 가스 샤워 시스템은 상기 간섭계 빔에 의해 가로질러지는 영역으로 상기 제 1 및 제 2 가스 흐름의 전체 또는 일부분을 공급하도록 구성되는 것을 특징으로 하는 리소그래피 장치.
  29. 제 28 항에 있어서,
    상기 장치 컴포넌트는 상기 1 이상의 간섭계 빔에 의해 가로질러지는 영역에 접하거나, 그 가까이에 위치되는 것을 특징으로 하는 리소그래피 장치.
  30. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들 중 1 이상은 곡선 표면인 것을 특징으로 하는 리소그래피 장치.
  31. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들 중 1 이상은 상기 장치 컴포넌트를 향해, 수렴적인 또는 발산적인 가스 흐름을 공급하도록 배치되는 것을 특징으로 하는 리소그래피 장치.
  32. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들 중 1 이상은 오목한 표면인 것을 특징으로 하는 리소그래피 장치.
  33. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들 중 1 이상은 실질적으로 평탄한 표면인 것을 특징으로 하는 리소그래피 장치.
  34. 제 22 항에 있어서,
    상기 가스 샤워 시스템의 마주보는 측면들 중 1 이상은 상기 장치 컴포넌트를 향해 일직선의(collimated) 가스 흐름을 공급하도록 배치되는 것을 특징으로 하는 리소그래피 장치.
  35. 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법에 있어서,
    컨디셔닝된 제 1 가스 흐름 및 컨디셔닝된 제 2 가스 흐름은, 상기 컨디셔닝된 제 1 가스 흐름 및 상기 컨디셔닝된 제 2 가스 흐름이 전체적으로 또는 부분적으로 서로 지향되도록 상기 내부 공간으로 공급되는 것을 특징으로 하는 컨디셔닝 방법.
  36. 제 35 항에 있어서,
    상기 제 1 및 제 2 가스 흐름의 부분들은 상기 장치의 컴포넌트 가까이에서 서로 만나는 것을 특징으로 하는 컨디셔닝 방법.
  37. 제 36 항에 있어서,
    상기 컴포넌트는 거울인 것을 특징으로 하는 컨디셔닝 방법.
  38. 제 35 항에 있어서,
    1 이상의 간섭계 빔은 상기 내부 공간을 가로지르고, 상기 간섭계 빔의 경로는 상기 제 1 가스 흐름 및 제 2 가스 흐름 중 어느 하나 이상의 가스 흐름에 의해 컨디셔닝되는 것을 특징으로 하는 컨디셔닝 방법.
  39. 제 38 항에 있어서,
    상기 장치의 컴포넌트는 상기 1 이상의 간섭계 빔에 의해 가로질러지는 영역에 접하거나, 그 가까이에 위치되는 것을 특징으로 하는 컨디셔닝 방법.
  40. 제 36 항에 있어서,
    상기 제 1 가스 흐름은 상기 장치의 컴포넌트의 제 1 측면을 향해 전체적으로 또는 부분적으로 지향되고, 상기 제 2 가스 흐름은 상기 장치의 컴포넌트의 제 2 측면으로 전체적으로 또는 부분적으로 지향되며, 상기 컴포넌트의 제 1 측면 및 제 2 측면은 서로 마주보도록 향하는 것을 특징으로 하는 컨디셔닝 방법.
  41. 제 35 항에 있어서,
    상기 제 1 및 제 2 가스 흐름은 상기 내부 공간에 흐름 반류를 유도하는 것을 특징으로 하는 컨디셔닝 방법.
  42. 제 35 항에 있어서,
    상기 제 1 및 제 2 가스 흐름은 상기 장치의 거울의 거울 표면 가까이에 흐름 반류를 유도하는 것을 특징으로 하는 컨디셔닝 방법.
  43. 제 35 항에 있어서,
    적어도 상기 제 1 가스 흐름의 수렴적인 부분은 상기 제 2 가스 흐름의 부분으로 지향되거나 또는 상기 장치의 컴포넌트를 향해 지향되거나 또는 상기 제2 가스 흐름의 부분 및 상기 장치의 컴포넌트를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
  44. 제 35 항에 있어서,
    적어도 상기 제 1 가스 흐름의 일직선인 부분은 상기 제 2 가스 흐름의 부분으로 지향되거나 또는 상기 장치의 컴포넌트를 향해 지향되거나 또는 상기 제2 가스 흐름의 부분 및 상기 장치의 컴포넌트를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
  45. 제 35 항에 있어서,
    적어도 상기 제 1 가스 흐름의 발산적인 부분은 상기 제 2 가스 흐름의 부분으로 지향되거나 또는 상기 장치의 컴포넌트를 향해 지향되거나 또는 상기 제2 가스 흐름의 부분 및 상기 장치의 컴포넌트를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
  46. 제 35 항에 있어서,
    적어도 상기 제 1 가스 흐름의 수렴적인 부분은 상기 제 2 가스 흐름의 수렴적인 부분으로 지향되거나 또는 상기 장치의 컴포넌트를 향해 지향되거나 또는 상기 제2 가스 흐름의 수렴적인 부분 및 상기 장치의 컴포넌트를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
  47. 제 35 항에 있어서,
    적어도 상기 제 1 가스 흐름의 수렴적인 부분은 상기 제 2 가스 흐름의 일직선인 부분으로 지향되거나 또는 상기 장치의 컴포넌트를 향해 지향되거나 또는 상기 제2 가스 흐름의 일직선인 부분 및 상기 장치의 컴포넌트를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
  48. 제 35 항에 있어서,
    상기 제 1 및 제 2 가스 흐름의 발산적인 부분은 서로에게 지향되거나 또는 상기 장치의 컴포넌트를 향해 지향되거나 또는 서로에게 및 상기 장치의 컴포넌트를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
  49. 상기 35 항에 있어서,
    상기 내부 공간은 상기 장치의 기판 지대 또는 상기 장치의 기판 지대의 일부분인 것을 특징으로 하는 컨디셔닝 방법.
  50. 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법에 있어서,
    제 1 가스 흐름은 장치 컴포넌트의 제 1 측면을 향해 전체적으로 또는 부분적으로 지향되고, 제 2 가스 흐름은 상기 장치 컴포넌트의 제 2 측면을 향해 전체적으로 또는 부분적으로 지향되며, 제 2 측면은 상기 제 1 측면과 마주보도록 향하 는 것을 특징으로 하는 컨디셔닝 방법.
  51. 제 50 항에 있어서,
    상기 제 1 및 제 2 가스 흐름 중 1 이상은 수렴적인 가스 흐름 또는 발산적인 가스 흐름인 것을 특징으로 하는 컨디셔닝 방법.
  52. 제 50 항에 있어서,
    상기 제 1 및 제 2 가스 흐름의 전체 또는 부분들은 상기 장치 컴포넌트의 제 3 측면 앞의 영역에서 서로 만나고, 상기 제 3 측면은 상기 컴포넌트의 제 1 및 제 2 측면 사이에서 연장하는 것을 특징으로 하는 컨디셔닝 방법.
  53. 제 52 항에 있어서,
    상기 장치 컴포넌트의 제 3 측면은 거울 표면을 포함하는 것을 특징으로 하는 컨디셔닝 방법.
  54. 제 50 항에 있어서,
    간섭계 빔의 광학 경로는 상기 장치 컴포넌트에 가까운 영역에서 연장하고, 상기 제 1 및 제 2 가스 흐름의 전체 또는 부분들은 상기 광학 경로를 향해 지향되는 것을 특징으로 하는 컨디셔닝 방법.
KR1020060096314A 2005-09-29 2006-09-29 리소그래피 장치 및 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법 KR100854482B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/238,156 US7728951B2 (en) 2005-09-29 2005-09-29 Lithographic apparatus and method for conditioning an interior space of a device manufacturing apparatus
US11/238,156 2005-09-29

Publications (2)

Publication Number Publication Date
KR20070036734A KR20070036734A (ko) 2007-04-03
KR100854482B1 true KR100854482B1 (ko) 2008-08-26

Family

ID=37561273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060096314A KR100854482B1 (ko) 2005-09-29 2006-09-29 리소그래피 장치 및 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법

Country Status (8)

Country Link
US (1) US7728951B2 (ko)
EP (1) EP1770444B1 (ko)
JP (1) JP4580915B2 (ko)
KR (1) KR100854482B1 (ko)
CN (1) CN1940728B (ko)
DE (1) DE602006008549D1 (ko)
SG (1) SG131088A1 (ko)
TW (1) TWI344582B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728951B2 (en) * 2005-09-29 2010-06-01 Asml Netherlands B.V. Lithographic apparatus and method for conditioning an interior space of a device manufacturing apparatus
US7420299B2 (en) * 2006-08-25 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7561250B2 (en) * 2007-06-19 2009-07-14 Asml Netherlands B.V. Lithographic apparatus having parts with a coated film adhered thereto
EP2423749B1 (en) 2010-08-24 2013-09-11 ASML Netherlands BV A lithographic apparatus and device manufacturing method
CN111830790A (zh) * 2019-04-17 2020-10-27 上海微电子装备(集团)股份有限公司 一种气浴装置和光刻机
EP3923075A1 (en) 2020-06-08 2021-12-15 ASML Netherlands B.V. Apparatus for use in a metrology process or lithographic process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980027351A (ko) * 1996-10-15 1998-07-15 김광호 반도체 스테퍼설비의 오염방지장치 및 그 방법
KR20030012297A (ko) * 2001-07-31 2003-02-12 주식회사 하이닉스반도체 반도체 스테퍼 설비의 렌즈 온도 조절 장치
KR20030066463A (ko) * 2002-02-05 2003-08-09 캐논 가부시끼가이샤 불활성가스퍼지방법 및 장치, 노광방법, 레티클보관고,레티클검사장치, 레티클반송박스, 및 디바이스제조방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233123A (en) * 1978-12-18 1980-11-11 General Motors Corporation Method for making an air cooled combustor
JPH0785112B2 (ja) * 1987-02-16 1995-09-13 キヤノン株式会社 ステージ装置
JPH07117371B2 (ja) * 1987-07-14 1995-12-18 株式会社ニコン 測定装置
NL9100215A (nl) 1991-02-07 1992-09-01 Asm Lithography Bv Inrichting voor het repeterend afbeelden van een maskerpatroon op een substraat.
JP3089802B2 (ja) * 1992-04-01 2000-09-18 株式会社ニコン ステージの位置計測装置、投影露光装置及び投影露光方法
US5469260A (en) * 1992-04-01 1995-11-21 Nikon Corporation Stage-position measuring apparatus
US5870197A (en) * 1996-10-24 1999-02-09 Nikon Corporation Precision stage interferometer system with local single air duct
US6020964A (en) 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
JP2000036453A (ja) 1998-07-17 2000-02-02 Canon Inc 露光装置およびデバイス製造方法
JP3271759B2 (ja) * 1999-03-31 2002-04-08 株式会社ニコン 走査露光方法、走査型露光装置、及び前記方法を用いるデバイス製造方法
JP4560182B2 (ja) * 2000-07-06 2010-10-13 キヤノン株式会社 減圧処理装置、半導体製造装置およびデバイス製造方法
JP2002373852A (ja) * 2001-06-15 2002-12-26 Canon Inc 露光装置
US7050149B2 (en) * 2002-06-11 2006-05-23 Nikon Corporation Exposure apparatus and exposure method
AU2003242268A1 (en) * 2002-06-11 2003-12-22 Nikon Corporation Exposure system and exposure method
SG145780A1 (en) * 2003-08-29 2008-09-29 Nikon Corp Exposure apparatus and device fabricating method
US7072021B2 (en) 2004-05-17 2006-07-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7728951B2 (en) * 2005-09-29 2010-06-01 Asml Netherlands B.V. Lithographic apparatus and method for conditioning an interior space of a device manufacturing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980027351A (ko) * 1996-10-15 1998-07-15 김광호 반도체 스테퍼설비의 오염방지장치 및 그 방법
KR20030012297A (ko) * 2001-07-31 2003-02-12 주식회사 하이닉스반도체 반도체 스테퍼 설비의 렌즈 온도 조절 장치
KR20030066463A (ko) * 2002-02-05 2003-08-09 캐논 가부시끼가이샤 불활성가스퍼지방법 및 장치, 노광방법, 레티클보관고,레티클검사장치, 레티클반송박스, 및 디바이스제조방법

Also Published As

Publication number Publication date
KR20070036734A (ko) 2007-04-03
CN1940728A (zh) 2007-04-04
EP1770444B1 (en) 2009-08-19
TW200717190A (en) 2007-05-01
US20070071889A1 (en) 2007-03-29
TWI344582B (en) 2011-07-01
EP1770444A1 (en) 2007-04-04
DE602006008549D1 (de) 2009-10-01
JP2007096294A (ja) 2007-04-12
SG131088A1 (en) 2007-04-26
US7728951B2 (en) 2010-06-01
JP4580915B2 (ja) 2010-11-17
CN1940728B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
KR100797085B1 (ko) 가스 샤워, 리소그래피 장치 및 가스 샤워의 사용
JP4621700B2 (ja) リソグラフィ装置およびデバイス製造方法
TWI592767B (zh) 在光罩載台環境中之氣流最佳化
US8441610B2 (en) Assembly comprising a conditioning system and at least one object, a conditioning system, a lithographic apparatus and methods
KR100854482B1 (ko) 리소그래피 장치 및 디바이스 제조 장치의 내부 공간을 컨디셔닝하는 방법
TW201300964A (zh) 微影裝置及元件製造方法
EP1650603B1 (en) Lithographic apparatus and gas flow conditioner
US7542127B2 (en) Lithographic apparatus and method for manufacturing a device
US10642166B2 (en) Patterning device cooling apparatus
JP5328866B2 (ja) ガスマニホールド、リソグラフィ装置用モジュール、リソグラフィ装置、及びデバイス製造方法
JP5456848B2 (ja) リソグラフィ装置及びデバイス製造方法
US8760615B2 (en) Lithographic apparatus having encoder type position sensor system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120810

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130809

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140808

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150807

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160812

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee