KR100853832B1 - Iron oxide nanoparticles and method for sysnthesis the same - Google Patents

Iron oxide nanoparticles and method for sysnthesis the same Download PDF

Info

Publication number
KR100853832B1
KR100853832B1 KR1020070029077A KR20070029077A KR100853832B1 KR 100853832 B1 KR100853832 B1 KR 100853832B1 KR 1020070029077 A KR1020070029077 A KR 1020070029077A KR 20070029077 A KR20070029077 A KR 20070029077A KR 100853832 B1 KR100853832 B1 KR 100853832B1
Authority
KR
South Korea
Prior art keywords
iron oxide
iron
particles
oxide nanoparticles
solution
Prior art date
Application number
KR1020070029077A
Other languages
Korean (ko)
Inventor
김용성
김기출
서수정
Original Assignee
김용성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김용성 filed Critical 김용성
Priority to KR1020070029077A priority Critical patent/KR100853832B1/en
Application granted granted Critical
Publication of KR100853832B1 publication Critical patent/KR100853832B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Iron (AREA)

Abstract

A method for manufacturing iron oxide nanoparticles is provided to mass-produce superparamagnetic iron oxide nanoparticles with a diameter of 20 nm or smaller in a simple manner by using an inexpensive iron sulfate precursor and using ultrasonic dispersion and mechanical milling. A method for manufacturing iron oxide nanoparticles includes the steps of: forming an aqueous solution of iron sulfate using iron sulfate; mixing the aqueous solution of iron sulfate with an extraction solution comprising a potassium nitrate-containing aqueous solution to form a mixture solution, followed by extracting iron particles; dispersing the mixture solution to prevent the cohesion of the iron particles using an ultrasonicator or mechanical stirring that uses a non-magnetic material; oxidizing the iron particles to form iron oxide particles; neutralizing the iron oxide particles to obtain neutralized iron oxide particles; milling the neutralized iron oxide particles by a basket milling machine to form iron oxide nanoparticles; and drying the iron oxide nanoparticles.

Description

산화철 나노입자 및 그 제조방법{IRON OXIDE NANOPARTICLES AND METHOD FOR SYSNTHESIS THE SAME}Iron oxide nanoparticles and its manufacturing method {IRON OXIDE NANOPARTICLES AND METHOD FOR SYSNTHESIS THE SAME}

도 1은 본 발명에 따른 산화철 나노입자의 제조공정 흐름도,1 is a flow chart of the manufacturing process of the iron oxide nanoparticles according to the present invention,

도 2 및 도 3은 본 발명에 따른 마그네타이트 산화철 나노입자 및 표준시료의 X선 회절 패턴,2 and 3 are X-ray diffraction patterns of the magnetite iron oxide nanoparticles and the standard sample according to the present invention,

도 4 및 도 5는 본 발명에 따른 마그헤마이트 산화철 나노입자 및 표준시료의 X선 회절 패턴,4 and 5 are X-ray diffraction patterns of maghemite iron oxide nanoparticles and a standard sample according to the present invention,

도 6은 본 발명에 따른 마그네타이트 산화철 나노입자의 고해상도 투과전자현미경 이미지,6 is a high-resolution transmission electron microscope image of the magnetite iron oxide nanoparticles according to the present invention,

도 7은 본 발명에 따른 마그네타이트 산화철 나노입자의 선택적 영역에서의 회절 패턴,7 is a diffraction pattern in a selective region of the magnetite iron oxide nanoparticles according to the present invention,

도 8은 본 발명에 따른 마그헤마이트 산화철 나노입자의 고해상도 투과전자현미경 이미지,8 is a high-resolution transmission electron microscope image of the maghemite iron oxide nanoparticles according to the present invention,

도 9는 본 발명에 따른 마그헤마이트 산화철 나노입자의 선택적 영역에서의 회절 패턴.9 is a diffraction pattern in a selective region of maghemite iron oxide nanoparticles according to the present invention.

본 발명은 산화철 나노입자에 관한 것으로, 보다 상세하게는 20nm 미만의 마그네타이트(magnetite, Fe3O4) 또는 마그헤마이트(maghemite, γ-Fe2O3) 산화철 나노입자 및 제조방법에 관한 것이다.The present invention relates to iron oxide nanoparticles, and more particularly to a magnetite (magnetite, Fe 3 O 4 ) or maghemite (maghemite, γ-Fe 2 O 3 ) iron oxide nanoparticles of less than 20nm.

산화철 나노입자는 그 물리적 특성에 의해 자성유체, 진동감쇄, 위치감지 뿐만아니라 자기공명장치 신호증대, 바이오 셀 분리, 항암제 전달 등의 의료용으로 활용하기 위한 연구가 활발히 진행되고 있다. 특히, 산화철 나노입자 중에서 초상자성의 특성를 갖는 20 nm 크기 이하의 마그네타이트와 마그헤마이트 나노입자가 주로 연구되고 있다. Due to its physical properties, iron oxide nanoparticles have been actively researched for medical applications such as magnetic fluid, vibration attenuation, position detection, magnetic resonance device signal enhancement, bio cell separation, and anticancer drug delivery. In particular, magnetite and maghemite nanoparticles of 20 nm or less having superparamagnetic properties among iron oxide nanoparticles have been mainly studied.

종래에 보고된 산화철 나노입자 합성 방법으로는 철 쿠페론(Fe(cupferron)3) 전구체를 고온의 계면활성제 용액 내에서 열분해하여 마그헤마이트 나노입자를 합성 (J. Am. Chem. Soc., 1999, 121, 11595)하거나, 철 펜타카르보닐(Fe(CO)5)을 열분해하고 트리메틸아민 산화물로 산화시켜 마그헤마이트 나노입자를 합성(J. Am. Chem. Soc., 2001, 123, 12798)하거나 잔류산소에 의한 산화반응을 진행시켜 마그헤마이트 나노분말을 합성(한국특허등록 10-0482278)하였다. 또 철 아세틸아세토네이트(Fe(acac)3)를 알코올과 계면활성제 속에서 열분해하여 마그네타이트를 제조하였다(J. Am. Chem. Soc., 2002, 124, 8204). 하지만 기 보고된 산화철 나노입자 제 조방법들은 까다로운 합성환경(비활성분위기)을 유지해야하고, 고가의 고순도 원료물질 및 냉동-해동장비를 사용해야하는 등 저가의 손쉬운 공정으로 대량생산하기에는 부적합하였다. 예를들면, 비활성 분위기를 제어하기 위하여 오븐에서 말린 실험기구를 진공에 연결하고 가열하면서 공기와 수분을 완전히 제거하고 다시 질소나 아르곤 등의 불활성기체를 채우는 과정을 반복해야하고, 순도 99.999%의 철 펜타카르보닐과 99%의 옥틸 에테르 용매, 그리고 99%+의 올레인산 계면활성제를 사용하여 비활성분위기에서 냉동-해동법(freeze-thaw method)을 사용하여 순수한 철 나노분말을 합성한 후에 산화제를 사용하여 마그헤마이트를 제조하였다.Conventionally reported methods for synthesizing iron oxide nanoparticles synthesized maghemite nanoparticles by pyrolysing an iron couferon (Fe (cupferron) 3 ) precursor in a high temperature surfactant solution (J. Am. Chem. Soc., 1999). , 121, 11595), or pyrolysis of iron pentacarbonyl (Fe (CO) 5 ) and oxidation with trimethylamine oxide to synthesize maghemite nanoparticles (J. Am. Chem. Soc., 2001, 123, 12798). Alternatively, the oxidation reaction with residual oxygen was carried out to synthesize maghemite nanopowder (Korean Patent Registration 10-0482278). Iron acetylacetonate (Fe (acac) 3 ) was pyrolyzed in alcohol and surfactant to prepare magnetite (J. Am. Chem. Soc., 2002, 124, 8204). However, the previously reported methods for manufacturing iron oxide nanoparticles were not suitable for mass production in low cost and easy processes such as maintaining a difficult synthetic environment (inert atmosphere) and using expensive high purity raw materials and freeze-thaw equipment. For example, to control the inert atmosphere, the oven must be dried in a vacuum and heated to remove air and moisture, and then filled with an inert gas such as nitrogen or argon, and the iron having a purity of 99.999%. Pure iron nanopowders were synthesized using freeze-thaw method in an inert atmosphere using pentacarbonyl, 99% octyl ether solvent, and 99% + oleic acid surfactant, and then oxidized with mag Hemite was prepared.

한편, 본 발명에서 사용하는 초음파처리와 유사한 방법을 사용하는 것으로는 한국특허등록 10-0614977호가 있으나, 이는 산화철 입자를 제조하는 전구체 물질(염화철(II)와 염화철(III)사용)이나 제조공정(압전소자 노즐을 이용한 분사법사용)에 있어서 본 발명의 기술적 구성과는 그 내용을 달리하고 있다.On the other hand, there is a method similar to the sonication used in the present invention is Korean Patent Registration No. 10-0614977, which is a precursor material (using iron (II) chloride and iron (III) chloride) or a manufacturing process ( The use of the spraying method using a piezoelectric element nozzle) is different from the technical configuration of the present invention.

따라서 본 발명의 목적은 광촉매로 폭넓게 사용되고 있는 이산화티탄의 합성과정에서 대량으로 생산되는 값이 싼 저급의 황산철 전구체를 사용하고, 초음파 분산 및 기계적 파쇄를 이용함으로써 대량생산이 용이한 방법으로 지름이 20nm 이하인 초상자성 산화철 나노입자 및 제조방법을 제공하는 데 목적이 있다. Therefore, an object of the present invention is to use a low-cost low-cost iron sulfate precursor produced in large quantities in the synthesis of titanium dioxide widely used as a photocatalyst, the diameter is easy to mass production by using ultrasonic dispersion and mechanical crushing It is an object of the present invention to provide superparamagnetic iron oxide nanoparticles having a thickness of 20 nm or less and a manufacturing method.

본 발명의 산화철 입자는 황산철을 전구체로 하는 마그네타이트 또는 마그헤마이트의 결정구조를 이루어져 있다.The iron oxide particles of the present invention have a crystal structure of magnetite or maghemite using iron sulfate as a precursor.

본 발명의 산화철 입자의 제조방법은 황산철을 이용하여 황산철 수용액을 형성하는 단계; 상기 황산철 수용액에 질산칼륨을 포함하는 수용액으로 이루어진 추출용액을 혼합하여 혼합용액을 형성한 후, 철 입자를 추출하는 단계; 상기 철 입자의 응집을 막기 위하여 상기 혼합용액에 초음파분산기 또는 비자성체 소재를 이용한 기계적 교반을 사용하여 분산하는 단계; 상기 철 입자를 산화시켜 산화철 입자로 형성하는 단계; 상기 산화철 입자를 중화시켜 중화된 산화철 입자로 형성하는 단계; 상기 중화된 산화철 입자는 바스켓 밀링기계에 의하여 분쇄되어 산화철 나노입자로 형성되는 단계; 및 상기 산화철 나노입자를 건조하는 단계를 포함한다.Method for producing iron oxide particles of the present invention comprises the steps of forming an iron sulfate aqueous solution using iron sulfate; Mixing the extract solution consisting of an aqueous solution containing potassium nitrate with the iron sulfate solution to form a mixed solution, and then extracting iron particles; Dispersing in the mixed solution by using mechanical agitation using an ultrasonic disperser or a nonmagnetic material to prevent aggregation of the iron particles; Oxidizing the iron particles to form iron oxide particles; Neutralizing the iron oxide particles to form neutralized iron oxide particles; The neutralized iron oxide particles are pulverized by a basket milling machine to form iron oxide nanoparticles; And drying the iron oxide nanoparticles.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1은 본 발명에 따른 산화철 나노입자의 제조공정 흐름도이다.1 is a flow chart of the manufacturing process of the iron oxide nanoparticles according to the present invention.

상온에서 황산철 1g 내지 3g을 탈이온수에 용해시켜 황산철 수용액을 형성한다. 이와는 별도로 40mg 내지 80mg의 질산칼륨과 0.2g 내지 1g의 수산화나트륨을 탈이온수에 용해시켜 추출용액을 형성한다.At room temperature, 1 g to 3 g of iron sulfate is dissolved in deionized water to form an aqueous iron sulfate solution. Separately, 40 mg to 80 mg of potassium nitrate and 0.2 g to 1 g of sodium hydroxide are dissolved in deionized water to form an extraction solution.

각각 탈이온수에 용해된 두 용액, 황산철 수용액과 추출용액을 60℃ 내지 80℃로 가열한 후 혼합하여 혼합용액을 형성한다. 황산철 수용액과 추출용액을 혼합하면, 이온화된 황산철, 질산칼륨 및 수산화나트륨은 서로 반응하고 철이 추출되면서 혼합된 용액은 녹색에서 흑색으로 변한다. The two solutions dissolved in deionized water, the iron sulfate aqueous solution and the extraction solution were heated to 60 ° C. to 80 ° C., and then mixed to form a mixed solution. When the iron sulfate aqueous solution and the extraction solution are mixed, the ionized iron sulfate, potassium nitrate and sodium hydroxide react with each other, and the mixed solution turns from green to black as iron is extracted.

본 발명에 따르면, 철의 추출과정에서 철의 응집을 막기 위하여 초음파 분산기와 비자성체 소재의 바를 이용하여 교반하는 것이 바람직하다. 또한, 교반하는 과정에서 5분 내지 20분 동안 70℃ 내지 90℃의 온도로 가열한다.According to the present invention, in order to prevent iron agglomeration during the extraction of iron, it is preferable to stir using an ultrasonic disperser and a bar of a nonmagnetic material. In addition, it is heated to a temperature of 70 ℃ to 90 ℃ for 5 to 20 minutes in the process of stirring.

본 발명에 따른 초음파 분산기는 28 kHz ± 200 Hz의 주파수와 100 W의 파워로 작동한다.The ultrasonic disperser according to the invention operates at a frequency of 28 kHz ± 200 Hz and a power of 100 W.

다음으로, 가열과 함께 교반된 혼합용액을 상온으로 냉각하고, 과산화수소를 첨가하여 철 입자를 산화시킨다. 철 입자가 산화되면 수산화나트륨을 첨가하여 혼합용액 중화시키고, 탈이온수를 이용하여 세척한다.Next, the mixed solution stirred with heating is cooled to room temperature, and hydrogen peroxide is added to oxidize the iron particles. When the iron particles are oxidized, sodium hydroxide is added to neutralize the mixed solution and washed with deionized water.

세척된 산화철 입자를 탈이온수에 분산시킨 다음, 바스켓 밀링 기계를 이용하여 산화철 입자를 분쇄한다. 분쇄가 완료되면, 산화철 입자를 다시 탈이온수로 세척하고 불활성 가스인 아르곤 분위기의 챔버속에서 60℃ 내지 80℃에서 30분 내지 2시간 동안 건조하여 산화철 나노입자를 수득한다.The washed iron oxide particles are dispersed in deionized water, and then the iron oxide particles are ground using a basket milling machine. When the grinding is completed, the iron oxide particles are washed again with deionized water and dried in an inert gas argon atmosphere chamber at 60 ° C. to 80 ° C. for 30 minutes to 2 hours to obtain iron oxide nanoparticles.

도 2 및 도 3은 본 발명에 따른 마그네타이트 산화철 나노입자 및 표준시료의 X선 회절 패턴이며, 도 4 및 도 5는 본 발명에 따른 마그헤마이트 산화철 나노 입자 및 표준시료의 X선 회절 패턴을 나타낸 것이다.2 and 3 are X-ray diffraction patterns of the magnetite iron oxide nanoparticles and the standard sample according to the present invention, Figures 4 and 5 are X-ray diffraction patterns of the magnetite iron oxide nanoparticles and the standard sample according to the present invention will be.

분석 결과를 표준 패턴 문헌표(JCPDS)와 비교한 결과 수득된 산화철 나노입자의 구조는 마그네타이트 또는 마그헤마이트 산화철임을 알 수 있다.As a result of comparing the analysis result with the standard pattern literature table (JCPDS), it can be seen that the structure of the obtained iron oxide nanoparticles is magnetite or maghemite iron oxide.

도 6 및 도 7은 본 발명에 따른 마그네타이트 산화철 나노입자의 고해상도 투과전자현미경(High Resolution Transmission Electron Microscopy, HRTEM) 이미지와 회절패턴을 나타내며, 도 8 및 도 9는 본 발명에 따른 마그헤마이트 산화철 나노입자의 고해상도 투과전자현미경 이미지와 회절패턴을 나타낸 것이다. 마그네타이트 및 마그헤마이트 산화철 나노입자가 15nm 내지 20nm의 크기로 형성되어 있음을 알 수 있다. 6 and 7 show High Resolution Transmission Electron Microscopy (HRTEM) images and diffraction patterns of the magnetite iron oxide nanoparticles according to the present invention, and FIGS. 8 and 9 show the maghemite iron oxide nanoparticles according to the present invention. High resolution transmission electron microscope images and diffraction patterns of the particles are shown. It can be seen that the magnetite and maghemite iron oxide nanoparticles are formed in a size of 15 nm to 20 nm.

이렇게 제조된 마그네타이트 및 마그헤마이트 산화철 나노입자의 자기적 특성은 상온에서 진동형자력계(Vibrating Sample Magetometer, VSM)로 분석할 경우 각각 25.1 emu/g, 29.3emu/g의 포화자화값을 나타낸다.The magnetic properties of the magnetite and maghemite iron oxide nanoparticles thus prepared show saturation magnetization values of 25.1 emu / g and 29.3 emu / g, respectively, when analyzed with a Vibrating Sample Magetometer (VSM) at room temperature.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been shown and described with reference to the preferred embodiments as described above, it is not limited to the above embodiments and those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

본 발명의 산화철 나노입자 및 그 제조방법은 저가의 황산철을 전구체로 사용하여, 초음파분산 및 기계적 파쇄를 이용함으로써, 15 - 20 nm 크기의 구형의 마 그네타이트 또는 마그헤마이트 산화철 나노입자를 통제하기 어려운 비활성분위기 및 냉동-해동법 등을 사용하지 않고도 손쉽게 대량으로 제조할 수 있는 효과가 있다.The iron oxide nanoparticles of the present invention and a method of manufacturing the same are used to control spherical magnetite or maghemite iron oxide nanoparticles having a size of 15-20 nm by using ultrasonic sulfate and mechanical fracturing using inexpensive iron sulfate as a precursor. There is an effect that can be easily produced in large quantities without using an inert atmosphere and freeze-thaw method that are difficult to do.

Claims (6)

삭제delete 황산철을 이용하여 황산철 수용액을 형성하는 단계;Forming an aqueous iron sulfate solution using iron sulfate; 상기 황산철 수용액에 질산칼륨을 포함하는 수용액으로 이루어진 추출용액을 혼합하여 혼합용액을 형성한 후, 철 입자를 추출하는 단계;Mixing the extract solution consisting of an aqueous solution containing potassium nitrate with the iron sulfate solution to form a mixed solution, and then extracting iron particles; 상기 철 입자의 응집을 막기 위하여 상기 혼합용액에 초음파분산기 또는 비자성체 소재를 이용한 기계적 교반을 사용하여 분산하는 단계;Dispersing in the mixed solution by using mechanical agitation using an ultrasonic disperser or a nonmagnetic material to prevent aggregation of the iron particles; 상기 철 입자를 산화시켜 산화철 입자로 형성하는 단계;Oxidizing the iron particles to form iron oxide particles; 상기 산화철 입자를 중화시켜 중화된 산화철 입자로 형성하는 단계; Neutralizing the iron oxide particles to form neutralized iron oxide particles; 상기 중화된 산화철 입자는 바스켓 밀링기계에 의하여 분쇄되어 산화철 나노입자로 형성되는 단계; 및The neutralized iron oxide particles are pulverized by a basket milling machine to form iron oxide nanoparticles; And 상기 산화철 나노입자를 건조하는 단계Drying the iron oxide nanoparticles 를 포함하는 산화철 나노입자의 제조방법.Iron oxide nanoparticles manufacturing method comprising a. 제2항에 있어서,The method of claim 2, 상기 추출용액은 질산칼륨 및 수산화나트륨을 탈이온수에 용해한 산화철 나노입자의 제조방법.The extraction solution is a method for producing iron oxide nanoparticles dissolved in potassium nitrate and sodium hydroxide in deionized water. 제3항에 있어서, The method of claim 3, 상기 철 입자는 과산화수소수를 첨가하여 산화철 입자를 형성하는 산화철 나노입자의 제조방법.The iron particles are a method of producing iron oxide nanoparticles by adding hydrogen peroxide to form iron oxide particles. 제4항에 있어서,The method of claim 4, wherein 상기 혼합용액에 가해지는 열은 80℃ 내지 90℃에서 10분 내지 30분 동안Heat applied to the mixed solution is 10 to 30 minutes at 80 ℃ to 90 ℃ 지속되는 산화철 나노입자의 제조방법.Method for producing a sustained iron oxide nanoparticles. 삭제delete
KR1020070029077A 2007-03-26 2007-03-26 Iron oxide nanoparticles and method for sysnthesis the same KR100853832B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070029077A KR100853832B1 (en) 2007-03-26 2007-03-26 Iron oxide nanoparticles and method for sysnthesis the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070029077A KR100853832B1 (en) 2007-03-26 2007-03-26 Iron oxide nanoparticles and method for sysnthesis the same

Publications (1)

Publication Number Publication Date
KR100853832B1 true KR100853832B1 (en) 2008-08-22

Family

ID=39878494

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070029077A KR100853832B1 (en) 2007-03-26 2007-03-26 Iron oxide nanoparticles and method for sysnthesis the same

Country Status (1)

Country Link
KR (1) KR100853832B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384523B1 (en) * 2012-11-12 2014-04-14 현대자동차주식회사 Method for pretreating a sample for analysis of permanent magnet using inductively coupledplasma spectrometer
KR102006215B1 (en) * 2018-01-31 2019-08-01 충남대학교산학협력단 Method of manufacturing iron oxide nanoparticles using a high-pressure homogenizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029871A (en) * 2002-10-02 2004-04-08 한국과학기술연구원 Shape anisotropic metal oxide nano-particles and synthetic method thereof
KR20040064009A (en) * 2003-01-09 2004-07-16 박근배 Preparation method of iron oxide or iron oxy-hydroxide from iron sulfate aqueous solution with ozone
KR100684629B1 (en) 2006-01-27 2007-02-22 요업기술원 Manufacturing method of magnetite nano powders

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029871A (en) * 2002-10-02 2004-04-08 한국과학기술연구원 Shape anisotropic metal oxide nano-particles and synthetic method thereof
KR20040064009A (en) * 2003-01-09 2004-07-16 박근배 Preparation method of iron oxide or iron oxy-hydroxide from iron sulfate aqueous solution with ozone
KR100684629B1 (en) 2006-01-27 2007-02-22 요업기술원 Manufacturing method of magnetite nano powders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384523B1 (en) * 2012-11-12 2014-04-14 현대자동차주식회사 Method for pretreating a sample for analysis of permanent magnet using inductively coupledplasma spectrometer
KR102006215B1 (en) * 2018-01-31 2019-08-01 충남대학교산학협력단 Method of manufacturing iron oxide nanoparticles using a high-pressure homogenizer

Similar Documents

Publication Publication Date Title
Vijayakumar et al. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles
Sivakumar et al. Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe (CO) 5
Sodipo et al. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica
Abbas et al. Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique
Gubbala et al. Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique
Li et al. An easy fabrication of monodisperse oleic acid-coated Fe3O4 nanoparticles
Wan et al. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods
Abbas et al. Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process
Wang et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction
Mahdikhah et al. CoFe2O4/Fe magnetic nanocomposite: Exchange coupling behavior and microwave absorbing property
Feng et al. Controlled synthesis of monodisperse CoFe2O4 nanoparticles by the phase transfer method and their catalytic activity on methylene blue discoloration with H2O2
Baskakov et al. Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites
Zhang et al. Mechanochemical synthesis of Fe3O4@(Mg-Al-OH LDH) magnetic composite
CN103493154A (en) Process for producing ferromagnetic particulate powder, and anisotropic magnet, bonded magnet, and compacted magnet
Zhang et al. Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor
Li et al. Hollow CoFe2O4–Co3Fe7 microspheres applied in electromagnetic absorption
Sivakumar et al. Ultrasonic cavitation induced water in vegetable oil emulsion droplets–A simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization
CN105741996B (en) A kind of preparation method of the superparamagnetic nano particle based on low temperature plasma
Pal et al. Facile functionalization of Fe2O3 nanoparticles to induce inherent photoluminescence and excellent photocatalytic activity
Manigandan et al. Manganese sesquioxide to trimanganese tetroxide hierarchical hollow nanostructures: effect of gadolinium on structural, thermal, optical and magnetic properties
Makovec et al. The preparation of MnZn-ferrite nanoparticles in water–CTAB–hexanol microemulsions
Bohlender et al. Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process
KR100853832B1 (en) Iron oxide nanoparticles and method for sysnthesis the same
Kim et al. Synthesis and characterization of magnetite nanopowders
Wang et al. Synthesis of α-Fe ultrafine particles in a saturated salt solution/isopropanol/PVP microemulsion and their structural characterization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee