KR100850502B1 - Electro ni plating solution and method on the alternater-diode silicon wafer - Google Patents

Electro ni plating solution and method on the alternater-diode silicon wafer Download PDF

Info

Publication number
KR100850502B1
KR100850502B1 KR1020070038177A KR20070038177A KR100850502B1 KR 100850502 B1 KR100850502 B1 KR 100850502B1 KR 1020070038177 A KR1020070038177 A KR 1020070038177A KR 20070038177 A KR20070038177 A KR 20070038177A KR 100850502 B1 KR100850502 B1 KR 100850502B1
Authority
KR
South Korea
Prior art keywords
alternator
silicon wafer
plating
diode
layer
Prior art date
Application number
KR1020070038177A
Other languages
Korean (ko)
Inventor
김동규
이화윤
Original Assignee
주식회사 이넥트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이넥트론 filed Critical 주식회사 이넥트론
Priority to KR1020070038177A priority Critical patent/KR100850502B1/en
Application granted granted Critical
Publication of KR100850502B1 publication Critical patent/KR100850502B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Weting (AREA)

Abstract

A method for fabricating an electrolytic nickel layer on an alternator-diode silicon wafer and a surface treatment solution used in the method are provided to extremely extend a contact area between a nickel layer and a silicon portion of an underlying layer by removing a SiO2 oxide layer using an etchant. An etchant is used for removing an oxide layer. The etchant is a mixture of nitric acid(200 ml/l to 400 ml/l) and hydrofluoric acid(5 ml/l to 20 ml/l) and is applied to an alternator-diode silicon wafer under 10 °C to 40 °C during 60 seconds to 150 seconds. A preliminary treatment is performed on the resultant alternator-diode silicon wafer before a nickel layer is formed, and then an electro nickel plating is performed using an electrolyte under conditions of 40 °C to 70 °C, 3.0 to 5.5 pH, and 2 A/dm^2 to 8 A/dm^2. The electrolyte includes NiCl2 6H2O 20g/l to 40 g/l with respect to Ni(NH2SO3)2 4H2O 300 ml/l to 600 ml/l, a brightening agent of 10 ml/l to 30 ml/l, a semi-brightening agent of 1 ml/l to 5 ml/l and an anti-pit agent of 1 ml/l to 7 ml/l.

Description

알터네이터-다이오드실리콘 웨이퍼 상의 전해니켈층 형성방법 및 이에 사용되는 표면처리액{ Electro Ni plating solution and method on the Alternater-Diode silicon wafer }Electrolytic nickel layer formation method on alternator-diode silicon wafer and surface treatment solution used therein {Electro Ni plating solution and method on the Alternater-Diode silicon wafer}

도 1은 본 발명과 비교 웨이퍼 에칭제로 에칭한 후의 표면상태 분석 SEM 이미지.1 is a SEM image of the surface state after etching with a wafer etching agent compared with the present invention.

도 2a, 2b 및 2c는 본 발명으로 제조되는 웨이퍼에서의 도금층 두께측정위를 나타낸 것.Figures 2a, 2b and 2c shows the plating layer thickness measurement on the wafer produced by the present invention.

본 발명은 제너다이오드라 불리는 알터네이터-다이오드(Alternator-Diode) 실리콘웨이퍼 상의 전해니켈층 형성방법 및 이에 사용되는 표면처리액에 관한 것으로서, 보다 상세하게는 자동차 스타트 코일부에서 유기된 3상 교류전압을 DC로 변환하는 올터네이터-다이오드 실리콘웨이퍼용의 표면상에 전해니켈층을 형성하는 방법 및 이에 사용되는 표면처리액에 관한 것이다.The present invention relates to a method for forming an electrolytic nickel layer on an alternator-diode silicon wafer called a zener diode, and a surface treatment liquid used therein. More specifically, the present invention relates to a three-phase alternating voltage induced in an automobile start coil part. A method of forming an electrolytic nickel layer on a surface for an alternator-diode silicon wafer for conversion to DC, and a surface treatment liquid used therein.

상기 올터네이터-다이오드는 자동차 부품에서는 없어서는 안 될 중요한 소자로서 자동차 한대에 약 9개가 소요된다. 이러한 알터네이터-다이오드는 현재 진공 증착방식으로 표면처리하고 있는데, 진공증착 방법으로 표면처리를 할 경우 금속재료를 증착시키기 위해 진공에서 전자빔이나 전기필라멘트를 이용해 물질을 가열하여 증발시킨 다음 그 증발물을 다른 물질의 표면에 입혀 붙임으로써 막을 형성하는 방법으로써, 이 방법은 생산단가가 상당히 높을 뿐 아니라 공정이 복잡하고 전체 처리시간이 길기 때문에 양산 효율성 면에서 많은 문제점을 안고 있었다.The alternator-diode is an indispensable element in automobile parts and takes about nine in one car. The alternator-diode is currently surface-treated by vacuum evaporation. When surface-treating by vacuum evaporation, the material is heated and evaporated in vacuum using an electron beam or an electric filament to deposit a metal material. As a method of forming a film by coating on the surface of the material, This method had a lot of problems in terms of mass production efficiency because of the high production cost and the complicated process and long processing time.

상기와 같은 알터네이터-다이오드 실리콘웨이퍼의 표면처리방법을 실행하기 전 공정인 알터네이터-다이오드 FAB 공정을 살펴보면, 로웨이퍼(Raw Wafer)를 편성한 후 인과붕소의 확산(Diffusion)으로 N+/P+층(Layer)을 형성하여 다이오드로서의 구조를 형성시킨다.Looking at the alternator-diode FAB process, which is a process before performing the surface treatment method of the alternator-diode silicon wafer as described above, after forming a raw wafer, a N + / P + layer by diffusion of phosphorus and boron is formed. ) To form a structure as a diode.

상기에서와 같이 인과붕소가 확산 완료된 웨이퍼는 일정 매수가 웨이퍼와 웨이퍼간 소스(source)에 의해 하나의 덩어리 형태로 되어지는데 이를 HF를 이용하여 개별적으로 분리시킨다.As described above, a wafer in which phosphorus boron has been diffused has a certain number of wafers in a form of agglomerate by a wafer and a source between wafers, which are separated separately using HF.

상기에서 개별적으로 분리된 웨이퍼 표면에는 소스가 도포되어 있는 상태이므로 이를 제거하기 위해 HF(10㎖/ℓ~50㎖/ℓ), HNO3(100㎖/ℓ~200㎖/ℓ), CH3COOH(10㎖/ℓ~100㎖/ℓ) 용액을 혼합한 화학약품으로 1차적인 Si표면 에칭을 한다.Since the source is coated on the wafer surface separated from the above, in order to remove it, HF (10 mL / L to 50 mL / L), HNO 3 (100 mL / L to 200 mL / L), and CH 3 COOH (10ml / l ~ 100ml / l) The primary Si surface is etched with the chemical mixed with the solution.

상기 1차 Si 에칭을 통해 웨이퍼 표면의 소스를 제거한 후에는 2차적으로 파우더를 이용하여 잔존하는 소스를 완전히 제거시키는 공정인 호닝(Honing)을 실시하는데, 이 공정을 통하여 또한 웨이퍼에 거칠기를 주어 솔더 본딩(Solder bonding)시 접촉 면적을 확대시켜 결합성을 향상시키게 된다. After removing the source on the wafer surface through the primary Si etching, honing is performed to completely remove the remaining source using powder. When bonding (bonding), the contact area is expanded to improve the bonding.

상기와 같은 양면 호닝에 의해 발생된 실리콘 계면의 물리적 스트레스 손상(Stress Damage)층은 약 1000℃~2000℃의 온도로 열처리(Annealing)하여 Si계면의 스트레스를 해소하면 특성의 안정화를 이루게 된다.The physical stress damage layer of the silicon interface generated by the double-sided honing as described above By annealing at a temperature of about 1000 ℃ ~ 2000 ℃ to solve the stress of the Si interface to achieve the stabilization of properties.

상기 열처리 공정까지 완료된 웨이퍼는 2차 실리콘 에칭을 실시하게 되는데 열처리 시 생성된 SiO2 산화막을 제거하기 위해 사용되는 에칭용액으로는 불산, 질산, 황산, 과산화수소등을 사용하게 된다. The wafer completed up to the heat treatment process is subjected to secondary silicon etching. As the etching solution used to remove the SiO 2 oxide film generated during the heat treatment, hydrofluoric acid, nitric acid, sulfuric acid, hydrogen peroxide, and the like are used.

이 경우 알터네이터-다이오드의 주성분이 Si인 것을 고려하면 실리콘에 잘 반응하는 불산을 주 재료로 하여 기타 황산, 질산 등과의 적절한 혼합비가 중요하게 된다. 특히 알터네이터 웨이퍼에는 인 및 붕소가 확산되어 있기 때문에 인 및 붕소에 잘 반응하는 에칭 물질인 젖산, 염산 등의 용액도 적절히 첨가하여 실리콘 웨이퍼와 이후 공정에서의 도금층간의 최적 에칭 표면을 만들어야 한다. In this case, considering that the main component of the alternator-diode is Si, an appropriate mixing ratio with other sulfuric acid, nitric acid, etc. is important, based on hydrofluoric acid which reacts well with silicon. In particular, since the phosphorus and boron are diffused in the alternator wafer, a solution such as lactic acid or hydrochloric acid, which is an etching material that reacts well with phosphorus and boron, should also be appropriately added to make an optimal etching surface between the silicon wafer and the plating layer in subsequent processes.

이상에서의 과정을 일반적으로 알터네이터-다이오드 실리콘 웨이퍼 표면처리에서는 전처리 과정으로 통한다.The above process generally leads to a pretreatment process in the alternator-diode silicon wafer surface treatment.

상기와 같은 전처리과정이 끝나면 알터네이터-다이오드 부품으로의 효능을 발휘시키기 위해 니켈과 코발트를 도금하게 된다.After the pretreatment process, the nickel and cobalt are plated in order to exhibit the efficacy of the alternator-diode part.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서 알터네이터-다이오드 실리콘 웨이퍼의 표면처리공정 중 전처리 마지막 단계의 열처리 시 생성된 SiO2 산화막을 제거하는데 용이하게 사용하여 이후 도금되는 금속 층인 니켈층과 하지층인 실리콘부분의 접촉면적을 최대한 확장시켜 웨이퍼의 인장강도를 강화할 수 있는 표면처리액인 에칭액을 제공함에 있다.The present invention is to solve the problems of the prior art as described above, the nickel layer which is a metal layer to be plated after easy use to remove the SiO 2 oxide film generated during the heat treatment of the last step of pretreatment during the surface treatment process of the alternator-diode silicon wafer The present invention provides an etching solution, which is a surface treatment solution capable of enhancing the tensile strength of a wafer by expanding the contact area of the silicon portion, which is an underlayer, to the maximum.

본 발명의 또 다른 목적은 전처리가 끝난 알터네이터-다이오드 실리콘 웨이퍼 상에 전기 니켈 도금을 하기 위한 표면처리용 도금액을 제공함에 있다. 본 발명은 또한 상기와 같은 에칭액 및 도금액을 사용하여 알터네이터-다이오드 실리콘 웨이퍼를 표면처리하는 방법을 제공함에 또 다른 목적이 있다. It is still another object of the present invention to provide a plating solution for surface treatment for electro-nickel plating on pretreated alternator-diode silicon wafers. Another object of the present invention is to provide a method for surface treating an alternator-diode silicon wafer using the etching solution and the plating liquid as described above.

본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 HNO3 (200㎖/ℓ~400㎖/ℓ)과 HF (5㎖/ℓ~20㎖/ℓ)가 혼합된 에칭제를 제공한다.The present invention provides an etchant in which HNO 3 (200 mL / L to 400 mL / L) and HF (5 mL / L to 20 mL / L) are mixed to achieve the object of the present invention as described above.

상기에서 에칭제의 사용은 10℃~40℃에서 60sec~150sec 행함이 바람직하다.The use of the etchant in the above 60sec ~ 150sec at 10 ℃ ~ 40 ℃ Doing is preferred.

이하에서는 본 발명의 표면처리액인 에칭제를 바람직한 실시 예를 통하여 설명한다.Hereinafter, an etchant which is a surface treatment liquid of the present invention will be described through preferred embodiments.

먼저 본 발명은 설명하기 전에 본 발명에서 사용한 알터네이터 웨이퍼는 전처리 과정 중 마지막 에칭 전까지는 통상의 방법을 사용함을 밝혀두고, 알터네이터의 표면을 구분하기 위해서 인이 확산된 면을 N면이라 하고 붕소가 확산된 면을 P면이라 한다.First, before the present invention, the alternator wafer used in the present invention is known to use a conventional method until the last etching during the pretreatment process. In order to distinguish the surface of the alternator, the surface on which the phosphorus is diffused is referred to as N surface and boron is diffused. The surface is called P side.

본 발명에 따르면 웨이퍼에 인 및 붕소의 다른 원소가 처리되어 있어서 에칭시 N면과 P면이 다르게 반응함을 알 수 있었는데, 대체적으로 P면보다 N면에서 에 칭율이 더 높은 것으로 관찰되었다.According to the present invention, the wafers were treated with other elements of phosphorus and boron, so that the N and P sides reacted differently during etching, and the etching rate was higher in the N plane than the P plane.

본 발명을 실시하기 위하여 먼저 질산, 황산, 젖산, 불산등의 시약을 일정비율로 혼합하여 실시하였다. In order to carry out the present invention, first, reagents such as nitric acid, sulfuric acid, lactic acid, and hydrofluoric acid were mixed at a predetermined ratio.

표 1은 각 시약의 혼합비율을 나타낸 것이다.Table 1 shows the mixing ratio of each reagent.

표 1.Table 1.

NoNo .. ReagentReagent MixingMixing SolutionSolution AmountAmount 1One Hydrochoric AcidHydrochoric acid 300㎖/ℓ~600㎖/ℓ300ml / l ~ 600ml / l Nitric AcidNitric acid 200㎖/ℓ~400㎖/ℓ200ml / l ~ 400ml / l Hydrofluoric AcidHydrofluoric acid 100㎖/ℓ~300㎖/ℓ100ml / l ~ 300ml / l 22 Hydrofluoric AcidHydrofluoric acid 10㎖/ℓ~100㎖/ℓ10 ml / l to 100 ml / l Nitric AcidNitric acid 100㎖/ℓ~200㎖/ℓ100ml / l ~ 200ml / l Acetic AcidAcetic acid 10㎖/ℓ~50㎖/ℓ10 ml / l to 50 ml / l 33 Nitric AcidNitric acid 200㎖/ℓ~500㎖/ℓ200ml / l ~ 500ml / l Hydrofluoric AcidHydrofluoric acid 5㎖/ℓ~50㎖/ℓ5ml / l ~ 50ml / l 44 Hydrofluoric AcidHydrofluoric acid 100㎖/ℓ~300㎖/ℓ100ml / l ~ 300ml / l Nitric AcidNitric acid 200㎖/ℓ~400㎖/ℓ200ml / l ~ 400ml / l Hydrofluoric AcidHydrofluoric acid 200㎖/ℓ~500㎖/ℓ200ml / l ~ 500ml / l 55 Lactic AcidLactic acid 300㎖/ℓ~500㎖/ℓ300ml / l ~ 500ml / l Nitric AcidNitric acid 200㎖/ℓ~400㎖/ℓ200ml / l ~ 400ml / l Hydrofluoric AcidHydrofluoric acid 100㎖/ℓ~200㎖/ℓ100ml / l ~ 200ml / l 66 Hydrofluoric AcidHydrofluoric acid 200㎖/ℓ~400㎖/ℓ200ml / l ~ 400ml / l Hydrofluoric AcidHydrofluoric acid 100㎖/ℓ~300㎖/ℓ100ml / l ~ 300ml / l Nitric AcidNitric acid 200㎖/ℓ~300㎖/ℓ200ml / l ~ 300ml / l

상기 시료 중 조건 3(NO.3)의 에칭제인 질산 : 불산 용액에 제일 잘 반응하는 것으로 관찰되어 질산 : 불산 혼합용액으로 비율조건, 온도조건 및 시간조건 등 구체적 실험을 실시하였다.It was observed that the sample reacts best with the nitric acid: fluoric acid solution, which is an etchant of condition 3 (NO.3), and specific experiments such as ratio conditions, temperature conditions, and time conditions were performed with the nitric acid: fluoric acid mixed solution.

질산 및 불산의 혼합비율조건은 표 2와 같이 실시하였고, 불산의 비율이 높아질수록 더 빠른 속도로 에칭이 진행되는 것을 관찰할 수 있었다.The mixing ratio conditions of nitric acid and hydrofluoric acid were performed as shown in Table 2, and as the ratio of hydrofluoric acid was increased, the etching proceeded at a faster rate.

또한 불산의 농도가 높아질수록 에칭시 가스가 많이 방출되는 것도 관찰되었다.It was also observed that the higher the concentration of hydrofluoric acid, the more gas was released during etching.

표 2.Table 2.

ReagentReagent  \ NoNo .. 1One 22 33 44 55 NitricNitric AcidAcid 200㎖/ℓ ~300㎖/ℓ 200ml / l ~ 300ml / l 200㎖/ℓ ~300㎖/ℓ 200ml / l ~ 300ml / l 200㎖/ℓ ~400㎖/ℓ 200 ml / l to 400 ml / l 300㎖/ℓ ~400㎖/ℓ 300 ml / l to 400 ml / l 300㎖/ℓ ~500㎖/ℓ 300 ml / l to 500 ml / l HydrofluoricHydrofluoric AcidAcid 5㎖/ℓ ~10㎖/ℓ  5 ml / l to 10 ml / l 5㎖/ℓ ~15㎖/ℓ  5 ml / l to 15 ml / l 5㎖/ℓ ~20㎖/ℓ  5 ml / l to 20 ml / l 10㎖ ~40㎖/ℓ10 ml ~ 40 ml / l 20㎖/ℓ ~50㎖/ℓ 20 ml / l to 50 ml / l

에칭제의 온도조건은 표 3과 같이 하여 실시하였다.The temperature conditions of the etchant were performed as shown in Table 3.

표 3.Table 3.

TempTemp . \ . \ NoNo .. 1One 22 33 44 55 TemperatureTemperature 5℃~25℃5 ℃ ~ 25 ℃ 5℃~30℃5 ℃ ~ 30 ℃ 5℃~40℃5 ℃ ~ 40 10℃~40℃10 ℃ ~ 40 10℃~50℃10 ℃ ~ 50 ℃

에칭제인 질산(200㎖/ℓ~400㎖/ℓ)과 불산(5㎖/ℓ~20㎖/ℓ)을 혼합하였을 때 온도가 높아질수록 더 빠른 속도로 에칭이 진행되는 것을 관찰할 수 있었다.When the nitric acid (200 ml / l to 400 ml / l) and the hydrofluoric acid (5 ml / l to 20 ml / l), which were etchants, were mixed, the etching proceeded at a higher rate as the temperature increased.

에칭제의 시간조건은 표 4와 같이 하였다.The time conditions of the etchant were as shown in Table 4.

표 4.Table 4.

TimeTime  \ NoNo .. 1One 22 33 44 55 66 TimeTime 30sec~ 60sec 30sec ~ 60sec 30sec~ 120sec  30sec ~ 120sec 60sec~ 120sec  60sec ~ 120sec 60sec~ 150sec  60sec ~ 150sec 90sec~ 150sec  90sec ~ 150sec 90sec~ 180sec 90sec ~ 180sec

에칭제인 질산(200㎖/ℓ~400㎖/ℓ)과 불산(5㎖/ℓ~20㎖/ℓ)을 혼합하는 조건으로 하고 온도조건은 10℃~40℃ 하여 본 시간 조건을 변경하면서 실험을 진행한 결과 에칭시간이 길어질수록 에칭이 더 잘 이루어짐이 관찰되었다.Experiment with changing the present time condition under the condition of mixing nitric acid (200ml / l ~ 400ml / l) and hydrofluoric acid (5ml / l ~ 20ml / l) as an etchant, and the temperature condition at 10 ℃ ~ 40 ℃ . As a result, it was observed that the longer the etching time, the better the etching.

따라서 고온 및 너무 장시간 동안 에칭할 경우 웨이퍼가 과다 에칭되어 밀착력이 현저히 떨어지는 것으로 판단되어 본 발명에 적용되는 에칭제 조건으로는 HNO3 (200㎖/ℓ~400㎖/ℓ)과 HF (5㎖/ℓ~20㎖/ℓ)을 혼합하여 10℃~40℃에서 60sec~150sec으로 하였을 때 최적의 에칭조건으로 확인되었고 이를 나타낸 것이 도 1이다.Therefore, when the wafer is etched at a high temperature and for a long time, the wafer is overetched and the adhesion strength is significantly decreased. Thus, the etching agent conditions applied to the present invention include HNO 3 (200 mL / L to 400 mL / L) and HF (5 mL / 1 ~ 20mL / ℓ) was confirmed as the optimum etching conditions when the mixture was 60sec ~ 150sec at 10 ℃ ~ 40 ℃ and it is shown in FIG.

도 1은 본 발명의 상기 조건으로 에칭한 것의 표면층과 일본T사의 에칭 후 표면층을 비교한 SEM이미지고, 여기서 A는 에칭전 표면상태를 분석한 SEM 이미지이고, B는 본 발명에 따른 에칭조건으로 에칭한 후의 표면상태 SEM이미지이며, C는 일본국 T사의 에칭 후 표면상태를 분석한 SEM이미지이다. 도 1에서 확인할 수 있듯이 본 발명에 따른 에칭 후 웨이퍼의 표면 이미지는 일본국의 그것과 동일하거나 훨씬 양호함을 알 수 있다.1 is a SEM image comparing the surface layer of the etched under the above conditions of the present invention and the surface layer after etching of Japan T, where A is an SEM image of the surface state before etching, and B is an etching condition according to the present invention. SEM image of the surface state after etching, and C is an SEM image of the surface state after etching of T Company of Japan. As can be seen in Figure 1 it can be seen that the surface image of the wafer after etching according to the present invention is the same or much better than that of Japan.

이하에서는 상기한 바와 같이 에칭이 끝난 알터네이트-다이오드 실리콘웨이퍼 상에 필요한 성능을 부여하기 위해 도금하는 전기니켈도금을 하기 위한 본 발명의 도금액 및 도금 방법에 대하여 설명한다. 이 공정 후에는 전기 코발트 도금을 할 수 있다. Hereinafter, the plating solution and the plating method of the present invention for electro-nickel plating for plating in order to give the required performance on the etched alternated-diode silicon wafer as described above will be described. After this process, electrocobalt plating can be performed.

일반적으로 도금하는 표면처리법은 습식법과 건식법으로 나눌 수 있는데, 습식법은 도금하려는 기지에 액상의 전해질로부터 금속이온을 환원 도금하는 방법으로서 전기 도금, 무전해 도금 등의 다양한 습식 표면처리법이 있고 또한 스퍼터링, 이온플레이팅, 진공증착등의 건식도금, 침적도포, 용융도금, 전착도장등의 방법으로 사용되고 있지만 본 발명에서는 전기도금 법을 사용한다. 전기도금은 외부 전원을 이용하여 음극 표면상에 금속을 도금시키는 방법으로서 전해질 수용액 중에 두 개의 전극을 넣고 전압을 가해주면 외부 회로를 따라 전자가 전하를 운반하고 이온들은 전해액 내의 전하를 운반한다. 전류가 연속적으로 흐르기 위해서는 전극과 전해질 수용액 간의 계면에서 전하 이동이 일어나야 하는데, 이때 전해질 수용액 중 금속이온이 음극계면에서 환원되고 음이온들은 양극에서 산화하게 된다. 이것이 전기도금의 가장 기본적인 원리이다.Generally, the surface treatment method of plating can be divided into wet method and dry method. The wet method is a method of reducing plating metal ions from a liquid electrolyte at a base to be plated, and there are various wet surface treatment methods such as electroplating and electroless plating, and also sputtering, Although it is used by dry plating such as ion plating, vacuum deposition, deposition coating, melt plating, electrodeposition coating, etc., the electroplating method is used in the present invention. Electroplating is a method of plating a metal on the surface of an anode using an external power source. When two electrodes are put in an aqueous electrolyte solution and a voltage is applied, electrons carry charges along with external circuits and ions carry charges in the electrolyte. In order for current to flow continuously, charge transfer should occur at the interface between the electrode and the aqueous electrolyte solution. At this time, the metal ions in the aqueous electrolyte solution are reduced at the cathode interface and the anions are oxidized at the anode. This is the most basic principle of electroplating.

상기와 같은 전기도금은 비교적 장비가 간단하고 도금액의 수명이 길며 관리가 쉽고 도금 속도가 빠르고 기지와의 밀착력이 좋은 장점이 있는 반면, 기지 층이 전도체이어야 하고 전류 밀도의 영향으로 기지 층이 표면 형상에 따라 두께가 불균일하고 복잡한 형상에는 균일한 도금이 어렵다는 단점도 갖고 있다.Electroplating as described above has the advantages of relatively simple equipment, long life of plating solution, easy management, fast plating speed and good adhesion to the base, while the base layer should be a conductor and the base layer has the surface shape under the influence of current density. Therefore, there is a disadvantage in that uniform plating is difficult in a non-uniform thickness and a complicated shape.

또한 현재 국내에서 통상사용하는 표면처리방법인 증착(Evaporation) 식으로 표면처리를 하는 경우에는 밀착력 향상을 위해 니켈을 증착하기 전에 또 하나의 메탈층을 형성시켜줌으로써 실리콘과 니켈의 밀착력을 보완하는 방법을 사용하고 있으나, 이러한 처리과정에서 사용되는 니켈, 코발트 등의 원재료는 거의 불용성 금속으로서 보통 습식법으로 처리하는 도금액과 비교하여 비용 측면에서 상당히 부담스러운 것이 사실이다.In addition, when surface treatment is performed by evaporation, a surface treatment method commonly used in Korea, a method of supplementing the adhesion between silicon and nickel by forming another metal layer before depositing nickel to improve adhesion. Although the raw materials such as nickel and cobalt used in such a process are almost insoluble metals, it is a fact that it is considerably burdensome in terms of cost compared to the plating solution usually treated by wet method.

따라서 상기와 같은 증착(Evaporation)법 대신 전기니켈/코발트도금이 양산성 및 비용 면에서 상대적 우수성을 갖고 있어 제일 많이 사용되나 제품의 형상에 따라 도금 두께가 균일하지 못하다는 단점을 보이고 있다. 따라서 이들 문제를 해결하고자 본 발명에서는 이후 공정인 전기코발트도금을 용이하게 할 수 있게, 실리콘웨이퍼 상에 전기니켈도금을 하는 방법 및 그 도금액을 제공한다.Therefore, instead of the above-mentioned evaporation method, electronickel / cobalt plating has a relative superiority in terms of mass production and cost, and thus is most frequently used, but the plating thickness is not uniform depending on the shape of the product. Therefore, in order to solve these problems, the present invention provides a method for electroplating nickel on a silicon wafer and a plating solution thereof so as to facilitate electrocobalt plating, which is a subsequent process.

본 발명을 실시하는 과정에서 상기 에칭 후 바로 전기니켈도금을 실시하였으나 니켈도금 층이 불균일하게 형성되는 것이 관찰되어 본 발명에서는 실리콘 층에 니켈도금을 하기 전에 예비 처리하는 방법을 택하였다. 상기 예비처리는 균일한 니켈도금 증착 및 최적의 니켈도금을 위한 것으로 표5의 공정으로 행한다.In the process of carrying out the present invention, electro-nickel plating was performed immediately after the etching, but it was observed that the nickel plating layer was formed unevenly, and thus, in the present invention, the pretreatment method was selected before nickel plating on the silicon layer. The pretreatment is carried out in the process of Table 5 for uniform nickel plating deposition and optimum nickel plating.

표5.Table 5.

NoNo .. ProcessProcess TempTemp TimeTime PurposePurpose 1One Pre-Treatment 1Pre-Treatment 1 30℃~50℃30 ℃ ~ 50 ℃ 60sec~300sec60sec ~ 300sec 계면활성제Surfactants 22 RinseRinse 20℃~50℃20 ℃ ~ 50 수 세Washing 33 Pre-Treatment 2Pre-Treatment 2 20℃~40℃20 ℃ ~ 40 ℃ 100sec~240sec100sec ~ 240sec Activation 1용액에 적용Applied to Activation 1 solution 44 Activation 1Activation 1 30℃~60℃30 ℃ ~ 60 ℃ 100sec~300sec100sec ~ 300sec 도금이온의 최적화Optimization of Plating Ion 55 RinseRinse 30℃~50℃30 ℃ ~ 50 수 세Washing 66 Activation 2Activation 2 20℃~50℃20 ℃ ~ 50 ℃ 60sec~180sec60sec ~ 180sec 활성화Activation 77 RinseRinse 20℃~50℃20 ℃ ~ 50 ℃ 수 세Washing

상기와 같이 예비처리한 알터네이터-웨이퍼를 전기니켈 도금한다. 전기니켈도금은 표6과 같은 조건에서 행하였다.The pre-treated alternator-wafer is electronickel plated. Electro-nickel plating was performed under the conditions shown in Table 6.

표6.Table 6.

NoNo .. ReagentReagent MakeMake -- upup TempTemp PHPH CurrentCurrent densitydensity 1One NiCl2·6H2ONiCl 2 · 6H 2 O 200g/ℓ~400g/ℓ200g / ℓ ~ 400g / ℓ 20℃~50℃  20 ℃ ~ 50 ℃ 0.5~2.0 0.5-2.0 3A/d㎡~10A/d㎡ 3A / dm㎡ ~ 10A / dm㎡ Hydrochloride AcidHydrochloride acid 100㎖/ℓ~300㎖/ℓ100ml / l ~ 300ml / l 22 Ni(NH2SO3)2·4H2ONi (NH 2 SO 3 ) 2 4H 2 O 300㎖/ℓ~600㎖/ℓ300ml / l ~ 600ml / l 40℃~70℃  40 ℃ ~ 70 ℃ 3.0~5.5 3.0-5.5 2A/d㎡~8A/d㎡ 2A / dm㎡ ~ 8A / dm㎡ NiCl2·6H2ONiCl 2 · 6H 2 O 20g/ℓ~40g/20g / ℓ ~ 40g / H3BO3 H 3 BO 3 30g/ℓ~50g30g / ℓ ~ 50g 33 Ni(NH2SO3)2·4H2ONi (NH 2 SO 3 ) 2 4H 2 O 300㎖/ℓ~600㎖/ℓ300ml / l ~ 600ml / l 40℃~70℃   40 ℃ ~ 70 ℃ 3.0~5.5  3.0-5.5 2A/d㎡~8A/d㎡  2A / dm㎡ ~ 8A / dm㎡ NiCl2·6H2ONiCl2, 6H2O 20g/ℓ~40g/ℓ20g / ℓ ~ 40g / ℓ H3BO3 H 3 BO 3 30g/ℓ~50g/ℓ30g / ℓ ~ 50g / ℓ 광택제-1Polisher-1 10㎖/ℓ~30㎖/ℓ10ml / l ~ 30ml / l 반광택제-2Semi-gloss-2 1㎖/ℓ~5㎖/ℓ1ml / l ~ 5ml / l 핏트 방지제Anti-fit 1㎖/ℓ~7㎖/ℓ1ml / l ~ 7ml / l

상기 표6에서 조건 3번의 니켈도금액에서 양호한 도금 층 및 적응력, 밀착력이 우수한 것으로 관찰되어 최적의 니켈도금액인 것으로 판단하고 테스트를 진행하였다. 알터네이터-웨이퍼는 상기에서와 같이 인과 붕소가 확산되어 있기 때문에 N면과 P면의 석출속도가 다르게 나타나는 것으로 관찰되었다. 실질적으로 N면의 석출속도가 P면보다 다소 떨어지는 것으로 나타났는데, 이은 N면의 표면 저항치(0.15 ~ 0.35Ω/㎝)보다 P면의 표면 저항치(0.10 ~ 0.20Ω/㎝)가 약 1.5 ~ 3배가량 높기 때문에 도금석출속도가 다르게 나타나는 것으로 판단된다. 따라서 본 발명에서는 전해니켈도금 시 음극 위치를 N면 쪽으로 가까이하여 이러한 문제를 극복하였다.In Table 6, the nickel plating solution under condition No. 3 was observed to have a good plating layer, adaptability, and adhesion. In the alternator-wafer, since the phosphorus and boron were diffused as described above, it was observed that precipitation rates of the N and P surfaces were different. Substantially, the precipitation rate of the N plane was slightly lower than that of the P plane, which is 1.5 to 3 times higher than the surface resistance of the N plane (0.15 to 0.35 kW / cm). It is judged that the deposition precipitation rate appears to be different because it is about high. Therefore, the present invention overcomes this problem by bringing the cathode position closer to the N plane side during electrolytic nickel plating.

전기니켈도금을 실시한 후 니켈도금 측정결과를 표7에 나타내었다. Table 6 shows the results of nickel plating after electro-nickel plating.

표 7. Table 7.

1One 22 33 44 55 66 77 88 N N SideSide (㎛)(Μm) 0.2370.237 0.1830.183 0.1370.137 0.1850.185 0.2420.242 0.1750.175 0.1760.176 0.2450.245 P Side(㎛)P Side (㎛) 0.2220.222 0.1540.154 0.1340.134 0.1710.171 0.2240.224 0.1730.173 0.1690.169 0.2190.219

니켈도금의 두께 사양은 0.05 ~ 0.25㎛이다. 니켈도금 층이 너무 두껍게 형성되면 하가레가 발생하기 때문이다.The thickness specification of nickel plating is 0.05-0.25 micrometer. This is because if the nickel-plated layer is formed too thick, a hagare will occur.

본 발명에서의 도금 두께 측정 위치는 도2a, 도2b 및 도2c에서와 같이 모서리 쪽과 중심부분을 측정하였고, 측정 장비는 본사 소유의 XRF(SEIKO SEA 5120)을 이용하였다.In the present invention, the plating thickness measurement position was measured at the edge and the center portion as shown in Figures 2a, 2b and 2c, the measurement equipment used XRF (SEIKO SEA 5120) owned by the company.

상기 표에서 알 수 있듯이 본 발명의 니켈도금 층은 표준 두께 사양을 만족하고 있다.As can be seen from the above table, the nickel plated layer of the present invention satisfies the standard thickness specification.

상기와 같은 본 발명에 따르면 알터네이트-다이오드 실리콘웨이퍼의 표면처리 과정에서 금속 층인 니켈 층과 하지 층인 실리콘 부분의 접촉 면적을 확장시켜 웨이퍼의 인장강도를 강화할 수 있는 에칭 액이 제공되고 또한, 전처리 후 예비처리하여 실리콘 웨이퍼상에 균일한 니켈 층을 형성시킬 수 있고 이후의 코발트도금을 원활히 할 수 있게 하는 도금액 및 이를 이용한 표면처리방법이 제공되므로 경제적으로 알터네이터-다이오드 실리콘웨이퍼를 제공할 수 있게 된다.According to the present invention as described above in the surface treatment process of the alternating-diode silicon wafer is provided with an etching solution that can enhance the tensile strength of the wafer by expanding the contact area between the nickel layer of the metal layer and the silicon portion of the underlying layer, and after the pretreatment It is possible to economically provide an alternator-diode silicon wafer by providing a plating solution and a surface treatment method using the same, which can form a uniform nickel layer on the silicon wafer by pretreatment and facilitate the subsequent cobalt plating.

Claims (2)

알터네이터-다이오드 실리콘웨이퍼 상에 전해니켈 층을 형성시키는 방법으로서, 다이오드 구조를 형성한 다음 덩어리웨이퍼를 분리하고 표면의 소스를 제거한 다음 잔존 소스 제거 후 열처리하여 특성안정화 시키고 산화 막을 제거하는 에칭 후 니켈 층을 도금하는 방법에 있어서, 상기 산화 막 제거를 위한 에칭액으로서 질산(200㎖/ℓ~400㎖/ℓ), 불산(5㎖/ℓ~20㎖/ℓ)을 혼합하여 10℃~40℃에서 60sec~150sec 행하고, 상기 니켈 층을 형성시키기 전에 예비처리한 다음 Ni(NH2SO3)2 · 4H2O 300㎖/ℓ~600㎖/ℓ에 대해 NiCl2 · 6H2O 20g/ℓ~40g/ℓ, H3BO3 30g/ℓ~50g/ℓ와 광택제 10㎖/ℓ~30㎖/ℓ, 반광택제 1㎖/ℓ~5㎖/ℓ 및 핏트방지제 1㎖/ℓ~7㎖/ℓ를 전해액으로 하여 40℃~70℃에서 PH 3.0~PH 5.5, 전압 2A/d㎡~8A/d㎡으로 전기니켈도금 함을 특징으로 하는, 알터네이터-다이오드 실리콘웨이퍼 상에 전해니켈 층을 형성방법.A method of forming an electrolytic nickel layer on an alternator-diode silicon wafer, wherein after forming a diode structure, the agglomerate wafer is separated, the source of the surface is removed, the remaining source is removed, the heat treatment is performed to stabilize the characteristics, and the etching is performed to remove the nickel layer. In the plating method, nitric acid (200 ml / l to 400 ml / l) and hydrofluoric acid (5 ml / l to 20 ml / l) are mixed as an etching solution for removing the oxide film, and 60 sec at 10 ° C to 40 ° C. Pre-treatment before forming the nickel layer, followed by NiCl 2 · 6H 2 O 20 g / l to 40 g / to 300 mL / L to 600 mL / L of Ni (NH 2 SO 3 ) 2 · 4H 2 O. l, H 3 BO 3 30g / l-50g / l, 10ml / l-30ml / l varnish, 1ml / l-5ml / l semi-gloss and 1ml / l-7ml / l anti-pitching agent Alternator-diode silicon, characterized in that the electroplated nickel at pH 3.0 to PH 5.5, voltage 2 A / dm 2 to 8 A / dm 2 at 40 ° C. to 70 ° C. A method of forming an electrolytic nickel layer on a cone wafer. 올터네이터-다이오드 실리콘웨이퍼 상에 표면처리되는 전해니켈 전해액으로서, Ni(NH2SO3)2 · 4H2O 300㎖/ℓ~600㎖/ℓ에 대해 NiCl2 · 6H2O 20g/ℓ~40g/ℓ, H3BO3 30g/ℓ~50g/ℓ와 광택제 10㎖/ℓ~30㎖/ℓ, 반광택제 1㎖/ℓ~5㎖/ℓ 및 핏트방지제 1㎖/ℓ~7㎖/ℓ를 포함함을 특징으로 하는 전해니켈 전해액.An electrolytic nickel electrolyte surface-treated on an alternator-diode silicon wafer, containing 20 g / l to 40 g of NiCl 2 · 6H 2 O to 300 ml / l to 600 ml / l of Ni (NH 2 SO 3 ) 2 · 4H 2 O 30 g / l to 50 g / l of H 3 BO 3 , 10 ml / l to 30 ml / l of polish, 1 ml / l to 5 ml / l of semi-gloss, and 1 ml / l to 7 ml / l of anti-pitching agent Electrolytic nickel electrolyte characterized in that it comprises.
KR1020070038177A 2007-04-19 2007-04-19 Electro ni plating solution and method on the alternater-diode silicon wafer KR100850502B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070038177A KR100850502B1 (en) 2007-04-19 2007-04-19 Electro ni plating solution and method on the alternater-diode silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070038177A KR100850502B1 (en) 2007-04-19 2007-04-19 Electro ni plating solution and method on the alternater-diode silicon wafer

Publications (1)

Publication Number Publication Date
KR100850502B1 true KR100850502B1 (en) 2008-08-05

Family

ID=39881216

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070038177A KR100850502B1 (en) 2007-04-19 2007-04-19 Electro ni plating solution and method on the alternater-diode silicon wafer

Country Status (1)

Country Link
KR (1) KR100850502B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192988A (en) 1997-09-18 1999-04-06 Mayuzumi Denka Kogyosho:Kk Nickel plating method for small sized electric parts, or the like
KR20040036951A (en) * 2002-10-25 2004-05-04 이용철 Nickel foil and the production method thereof
KR20050028449A (en) * 2003-09-18 2005-03-23 한국원자력연구소 Method for electroplating ni-p-b alloy and its plating solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192988A (en) 1997-09-18 1999-04-06 Mayuzumi Denka Kogyosho:Kk Nickel plating method for small sized electric parts, or the like
KR20040036951A (en) * 2002-10-25 2004-05-04 이용철 Nickel foil and the production method thereof
KR20050028449A (en) * 2003-09-18 2005-03-23 한국원자력연구소 Method for electroplating ni-p-b alloy and its plating solution

Similar Documents

Publication Publication Date Title
TWI223678B (en) Process for applying a metal structure to a workpiece, the treated workpiece and a solution for electroplating copper
US9105696B1 (en) Method of coating surface of substrate hole with layer of reduced graphene oxide
KR20160135771A (en) Electrochemical plating methods
TWI642815B (en) Electroplating methods for semiconductor substrates
KR101270770B1 (en) Electroplating method for printed circuit board
US6402592B1 (en) Electrochemical methods for polishing copper films on semiconductor substrates
US20120028073A1 (en) Process for electroplating of copper
JP2013540205A (en) Electroless metal deposition using highly alkaline plating bath
KR100850502B1 (en) Electro ni plating solution and method on the alternater-diode silicon wafer
KR101014839B1 (en) Electrochemical polishing and plating method for manufacturing of through via and bumps in 3D SiP
KR20090110712A (en) Method for forming a through-hole electrode and structure therefore
Wang et al. Growing process and reaction mechanism of electroless Ni–Mo–P film on SiO2 substrate
Wang et al. High-definition conductive silver patterns on polyimide film via an ion exchange plating method
CN101840883B (en) Forming method of copper film
CN104979276B (en) A kind of manufacture method of semiconductor devices
KR101493358B1 (en) Method of fabricating copper plating layer using electroless copper plating solution
Li et al. Metallization process of a polyimide surface with palladium-free activation for electronic field applications
TWI617699B (en) Manufacturing method of wiring structure, copper-substituted plating liquid, and wiring structure
EP1418599A1 (en) Aluminum foil for electrolytic capacitor
KR20080100944A (en) Electro co plating solution and method on the alternater-diode silicon wafer
Ohta et al. All-wet TSV filling with highly adhesive displacement plated Cu seed layer
KR101219586B1 (en) Method for decreasing resistance of copper coating layer using annealing
CN115652382A (en) Electroplated diamond wire and preparation method thereof
KR101100084B1 (en) Method for forming copper interconnection layer
CN117107309A (en) Silver-cobalt-nickel electroplating solution, preparation method thereof and electroplating method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120525

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130510

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee