KR100848789B1 - Postprocessing method for removing cross talk - Google Patents
Postprocessing method for removing cross talk Download PDFInfo
- Publication number
- KR100848789B1 KR100848789B1 KR1020060105979A KR20060105979A KR100848789B1 KR 100848789 B1 KR100848789 B1 KR 100848789B1 KR 1020060105979 A KR1020060105979 A KR 1020060105979A KR 20060105979 A KR20060105979 A KR 20060105979A KR 100848789 B1 KR100848789 B1 KR 100848789B1
- Authority
- KR
- South Korea
- Prior art keywords
- signal
- sound source
- mixed
- crosstalk
- adaptive filter
- Prior art date
Links
- 238000012805 post-processing Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000003044 adaptive effect Effects 0.000 claims abstract description 41
- 238000004458 analytical method Methods 0.000 claims abstract description 18
- 238000000926 separation method Methods 0.000 claims abstract description 18
- 238000012880 independent component analysis Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000556 factor analysis Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0272—Voice signal separating
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
본 발명은 혼합신호분리 알고리즘으로 사용되고 있는 독립요소분석(ICA, Independent Component Analysis)의 성능을 더욱 향상시키기 위해 적응 필터를 사용하여 후처리를 함으로써 분리된 신호에 포함된 크로스토크신호 성분을 현저히 감소시킬 수 있는 교차채널 간섭을 제거하기 위한 후처리 방법에 관한 것이다. The present invention can significantly reduce the crosstalk signal component included in the separated signal by post-processing using an adaptive filter to further improve the performance of Independent Component Analysis (ICA), which is used as a mixed signal separation algorithm. A post-processing method for removing cross channel interference that may
본 발명은 혼합신호의 주파수영역 독립요소분석알고리즘에 의한 분리신호를 입력받는 분리신호입력단계, 상기 분리신호입력단계를 통해 분리되어 입력된 크로스토크신호가 혼합된 혼합음원신호와 추정된 후처리음원채널신호를 입력받아 적응필터 계수를 갱신하는 적응필터계수갱신단계 및 상기 크로스토크신호가 혼합된 혼합음원신호에서 상기 적응필터계수갱신단계에서 추정된 크로스토크신호를 승산하여 후처리음원채널신호를 추정하는 간섭신호제거단계로 구성된 것을 특징으로 한다.The present invention provides a separate signal input step of receiving a separated signal by a frequency domain independent element analysis algorithm of a mixed signal, a mixed sound source signal in which a crosstalk signal separated and input through the separated signal input step, and an estimated post-processing sound source. The post-processing sound source channel signal is estimated by multiplying the crosstalk signal estimated in the adaptive filter coefficient updating step from the adaptive filter coefficient updating step of receiving the channel signal and updating the adaptive filter coefficient and the mixed sound source signal mixed with the crosstalk signal. Characterized in that consisting of the interference signal removing step.
독립요소분석, 크로스토크신호, 간섭신호, 교차채널 Independent element analysis, cross talk signal, interference signal, cross channel
Description
도 1은 두 채널 신호를 주파수영역 독립요소분석알고리즘으로 분리하는 것을 나타낸 도면,1 is a diagram showing separation of two channel signals by a frequency domain independent element analysis algorithm;
도 2 및 도 3은 본 발명에 따른 독립요소분석알고리즘으로 분리된 크로스토크혼합신호로부터 크로스토크를 제거하기 위한 후처리 방법을 이용한 후처리 구성도,2 and 3 is a post-processing configuration diagram using a post-processing method for removing crosstalk from the crosstalk mixed signal separated by the independent element analysis algorithm according to the present invention,
도 4는 본 발명에 따라 크로스토크를 제거하기 위한 후처리 방법을 적용한 결과의 비교예이다.Figure 4 is a comparative example of the result of applying the post-treatment method for removing crosstalk in accordance with the present invention.
본 발명은 혼합된 신호 분리 알고리즘의 성능개선을 위한 후처리방법에 관한 것으로서, 특히 혼합신호분리 알고리즘으로 사용되고 있는 독립요소분석(ICA, Independent Component Analysis)의 성능을 더욱 향상시키기 위해 적응 필터를 사 용하여 후처리를 함으로써 분리된 신호에 포함된 크로스토크신호 성분을 현저히 감소시킬 수 있는 교차채널 간섭을 제거하기 위한 후처리 방법에 관한 것이다. The present invention relates to a post-processing method for improving the performance of a mixed signal separation algorithm. In particular, an adaptive filter is used to further improve the performance of Independent Component Analysis (ICA) used as a mixed signal separation algorithm. The present invention relates to a post-processing method for removing cross-channel interference that can significantly reduce crosstalk signal components included in a separated signal by post-processing.
통신, 생체신호 처리 및 음성처리와 같은 다양한 분야에 있어서, 복수개의 센서들, 즉 마이크로폰들로 녹음되어 중첩된 신호로부터 각 음원의 신호를 분리하는 기술은 매우 중요하다. In various fields such as communication, biosignal processing, and voice processing, a technique of separating a signal of each sound source from a signal superimposed with a plurality of sensors, that is, microphones, is very important.
음원신호 분리방법 중 암묵신호분리(BSS, Blind Source Separation) 방법은 다수의 마이크로폰으로부터 입력된 혼합신호가 주어질 때, 혼합신호에 포함된 음원들의 개수 이외의 다른 사전 정보가 제공되지 않더라도 각 마이크로폰의 입력신호들간의 차이를 이용하여 원래의 음원신호를 분리하는 방법이다. The Blind Source Separation (BSS) method of the sound source signal separation method is that when a mixed signal input from a plurality of microphones is given, even if no prior information other than the number of sound sources included in the mixed signal is provided, input of each microphone is performed. A method of separating the original sound source signal by using the difference between the signals.
일반적인 BSS 방법은 실험실에서 구축되는 시뮬레이션된 이상적 환경에서는 뛰어난 성능을 보이나, 실제 환경에서는 음원분리 성능이 만족스럽지 못하다. 왜냐하면, BSS 방법은 콘볼루션 혼합필터가 선형 유한임펄스응답 필터로서, 필터의 길이에 제한을 두는 것을 가정하고 있다. 그러나, 실제 환경은 예를 들어, 마이크로폰 신호를 수집하는 과정에서 전기적인 비선형 회로잡음이 첨가되거나, 음원들 자체가 움직이는 등 이러한 가정에 위배되기 때문이다. The general BSS method performs well in the simulated ideal environment that is built in the lab, but the sound source separation performance is not satisfactory in the real environment. This is because the BSS method assumes that the convolutional mixing filter is a linear finite impulse response filter, which limits the length of the filter. However, because the actual environment violates this assumption, for example, the addition of electrical nonlinear circuit noise in the process of collecting the microphone signal, or the sound sources themselves move.
이러한 문제를 해결하기 위하여 기존의 BSS 방법으로 완전히 분리되지 않은 나머지 크로스토크신호를 제거하기 위한 후처리방법으로서 스펙트럼 차감법(spectral subtraction)을 사용하고 있다. 스펙트럼 차감법을 이용하면, 실제의 필터와 추정된 필터간의 미세한 불일치를 효율적으로 흡수함으로써 잡음이나 간섭이 제거된 깨끗한 신호를 생성할 수 있으나, 제로 이하의 스펙트럼 성분으로 인하 여 뮤지컬 잡음이 포함되는 단점이 있다.In order to solve this problem, spectral subtraction is used as a post-processing method to remove the remaining crosstalk signal that is not completely separated by the conventional BSS method. Using the spectral subtraction method, it is possible to efficiently absorb fine inconsistencies between the actual filter and the estimated filter, thereby producing a clean signal free from noise or interference, but the disadvantage of including musical noise due to spectral components below zero. There is this.
BSS를 위하여 다양한 방법들이 있는데 최근에는 독립요소분석(ICA, Independent Component Analysis)방법이 널리 사용되고 있다. ICA는 시간영역과 주파수 영역을 나눌 수 있으며 계산량을 고려하면 주파수 영역 독립요소분석 방법이 성능이 우수한 것으로 알려져 있다. 하지만 주파수 영역 ICA에 의하여 신호를 분리하더라도 각 채널의 신호가 명료하게 분리되지 않고 각각의 크로스토크신호 성분이 잔류하여 성능이 저하되는 단점이 있다.There are various methods for BSS. Independent Component Analysis (ICA) has recently been widely used. ICA can be divided into time domain and frequency domain, and considering the calculation amount, it is known that the frequency domain independent factor analysis method is superior. However, even if the signal is separated by the frequency domain ICA, the signal of each channel is not clearly separated, and each crosstalk signal component remains, thereby degrading performance.
본 발명이 이루고자 하는 기술적 과제는 혼합신호분리 알고리즘으로 사용되고 있는 독립요소분석(ICA, Independent Component Analysis)의 성능을 더욱 향상시키기 위해 적응 필터를 사용하여 후처리를 함으로써 분리된 신호에 포함된 크로스토크신호 성분을 현저히 감소시킬 수 있는 교차채널 간섭을 제거하기 위한 후처리 방법을 제공하는데 있다.The technical problem to be achieved by the present invention is a crosstalk signal included in the separated signal by post-processing using an adaptive filter to further improve the performance of Independent Component Analysis (ICA), which is used as a mixed signal separation algorithm. It is to provide a post-processing method for removing cross-channel interference that can significantly reduce the components.
본 발명은 혼합신호의 주파수영역 독립요소분석알고리즘에 의한 분리신호를 입력받는 분리신호입력단계, 상기 분리신호입력단계를 통해 분리되어 입력된 크로스토크신호가 혼합된 혼합음원신호와 추정된 후처리음원채널신호를 입력받아 적응필터 계수를 갱신하는 적응필터계수갱신단계 및 상기 크로스토크신호가 혼합된 혼 합음원신호에서 상기 적응필터계수갱신단계에서 추정된 크로스토크신호를 승산하여 후처리음원채널신호를 추정하는 간섭신호제거단계로 구성된 것을 특징으로 한다.The present invention provides a separate signal input step of receiving a separated signal by a frequency domain independent element analysis algorithm of a mixed signal, a mixed sound source signal in which a crosstalk signal separated and input through the separated signal input step, and an estimated post-processing sound source. An adaptive filter coefficient updating step of receiving a channel signal and updating the adaptive filter coefficient and a mixed sound source signal mixed with the crosstalk signal are multiplied by the crosstalk signal estimated in the adaptive filter coefficient updating step to obtain a post-processing sound source channel signal. And estimating an interference signal removing step.
그리고, 상기 분리신호입력단계를 거친 독립요소분석알고리즘에 의한 분리신호를 아래에 나타낸 수학식 1과 같이 주파수 영역의 식에 의하여 나타내는 것을 특징으로 한다.In addition, the separated signal by the independent element analysis algorithm, which has passed through the separated signal input step, is represented by an equation of a frequency domain as shown in
<수학식 1><
(여기서, i는 각 채널, w는 주파수, t는 시간, (s)는 원하는 음원채널신호 그리고 (c)는 크로스토크신호를 나타낸다.)(Where i is each channel, w is frequency, t is time, (s) is the desired source channel signal, and (c) is crosstalk signal).
또한, 상기 적응필터계수갱신단계에서는 다음 수학식에 의하여, 적응필터 계수를 갱신하는 것을 특징으로 한다.In the adaptive filter coefficient updating step, the adaptive filter coefficient may be updated by the following equation.
<수학식 2><
(여기서, 은 시간 인덱스이며, 는 적응필터의 입력신호의 크기, 는 혼합음원신호와 추정 크로스토크신호의 오차신호 크기, 는 적응상수이며 , 는 적응계수부의 발산을 막기 위한 미소상수이다.)(here, Is the time index, Is the magnitude of the input signal of the adaptive filter, Is the magnitude of the error signal between the mixed sound source signal and the estimated crosstalk signal, Is the adaptive constant, Is a small constant to prevent the divergence of the adaptive coefficients from diverging.)
또한, 상기 간섭신호제거단계에서는 다음 수학식에 의하여, 간섭신호를 제거하는 것을 특징으로 한다.Further, in the interference signal removing step, the interference signal may be removed by the following equation.
<수학식 3><Equation 3>
(여기서, 는 혼합음원신호 그리고 는 추정 크로스토크신호를 나타낸다.)(here, Is the mixed sound source signal and Denotes an estimated crosstalk signal.)
본 발명의 또 다른 특징은 입력신호에 대하여 주파수영역 독립요소분석알고리즘에 의해 신호를 분리하는 음원분리부, 상기 음원분리부로부터 분리되어 입력된 크로스토크신호가 혼합된 혼합음원신호와 추정된 후처리음원채널신호를 입력받아 적응필터 계수를 갱신하는 적응필터계수갱신부 및 상기 크로스토크신호가 혼합된 혼합음원신호에서 상기 적응필터계수갱신단계에서 추정된 크로스토크신호를 승산하여 후처리음원채널신호를 추정하는 간섭신호제거부를 포함하는 것을 특징으로 하는 크로스토크를 제거하기 위한 후처리장치를 제공하는 데 있다.Another aspect of the present invention is a sound source separation unit for separating the signal by the frequency domain independent element analysis algorithm for the input signal, the mixed sound source signal mixed with the input crosstalk signal separated from the sound source separation unit and estimated post-processing The post-processing sound source channel signal is obtained by multiplying the crosstalk signal estimated in the adaptive filter coefficient updating step from the adaptive filter coefficient updater for receiving the sound source channel signal and updating the adaptive filter coefficient and the mixed sound source signal mixed with the crosstalk signal. It is to provide a post-processing device for removing crosstalk, characterized in that it comprises an interference signal cancellation unit for estimating.
이하에 상기한 본 발명을 바람직한 실시예가 도시된 첨부도면을 참고하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
첨부된 도 1은 두 채널 신호를 주파수영역 독립요소분석알고리즘으로 분리하는 것을 나타낸 도면, 도 2 및 도 3은 본 발명에 따른 독립요소분석알고리즘으로 분리된 크로스토크혼합신호로부터 크로스토크신호를 제거하기 위한 후처리 방법을 이용한 후처리 구성도, 도 4는 본 발명에 따라 크로스토크신호를 제거하기 위한 후처리 방법을 적용한 결과의 비교 예이다.1 is a diagram illustrating the separation of two channel signals by a frequency domain independent element analysis algorithm, and FIGS. 2 and 3 remove crosstalk signals from the crosstalk mixed signal separated by the independent element analysis algorithm according to the present invention. 4 is a comparative example of the results of applying the post-processing method for removing the crosstalk signal according to the present invention.
상기의 분리신호입력단계의 두 채널 신호를 분리하는 시스템의 구성도를 도 1을 참고하여 살펴보면, 이는 독립요소분석 방법 중에서 주파수영역 독립요소분석 방법을 기준으로 표시한 것이다. 도 1에서 나타난 , 는 각각 원신호(source signal) 들이고 , 는 두 원신호가 특정한 전달경로에 의하여 혼합된 신호이다. , 는 독립요소분석에 의하여 분리된 결과 신호이다. 이들 신호 속에 각각의 크로스토크 성분 신호들이 존재하게 된다. 즉, 원신호 의 신호성분이 에 포함되어 있고 에 의 성분이 존재하여 신호가 완전히 분리되지 않게 된다. 이를 주파수 영역의 식으로 Referring to FIG. 1, a schematic diagram of a system for separating two channel signals in the separated signal input step is displayed based on a frequency domain independent element analysis method among independent element analysis methods. Shown in FIG. , Are the source signals, respectively , Is a signal in which two original signals are mixed by a specific transmission path. , Is the result signal separated by independent factor analysis. In these signals, respective crosstalk component signals are present. That is, the original signal Signal component of Included in on The presence of the component prevents the signal from being completely separated. This is expressed in the frequency domain
(여기서, 는 각 채널을 나타내는 인자, 는 주파수, 는 시간, 는 원하는 음원채널 신호 그리고 는 크로스 토크 신호이다.)로 나타낸다.(here, Is a factor representing each channel, Is frequency, Time, Is the desired source channel signal and Is a crosstalk signal.
이와 더불어, 상기 적응필터계수갱신단계와 간섭신호제거단계를 도 2 및 도 3의 본 발명에 따른 독립요소분석알고리즘으로 분리된 크로스토크혼합신호로부터 크로스토크신호를 제거하기 위한 후처리 방법을 이용한 후처리 구성도를 참고하여 설명한다. 우선, 도 2의 는 속에 포함되어 있는 성분을 제거하기 위한 적응필터의 계수이고 는 에 포함되어 있는 성분을 제거하는 적응계수이다. 적응필터는In addition, after the adaptive filter coefficient updating step and the interference signal removing step using the post-processing method for removing the crosstalk signal from the crosstalk mixed signal separated by the independent element analysis algorithm according to the present invention of FIGS. It demonstrates with reference to a process block diagram. First of all, Is Contained in Coefficients of the adaptive filter to remove the components Is Included in Adaptive factor to remove components. Adaptive filter
(여기서, 은 시간 인덱스이며, 는 적응필터의 입력신호의 크기, 는 혼합음원신호와 추정 크로스토크신호의 오차신호 크기, 는 적응상수이며 , 는 적응계수부의 발산을 막기 위한 미소상수이다.)로 나타내어 진다. 위 식에 의하여 각 주파수 빈에 대한 각각의 적응필터에 의하여 적응계수를 산출하게 된다. 도 3에 나타난 바와 같이, 음원분리부는 입력신호에 대하여 주파수영역 독립요소분석알고리즘에 의해 신호를 분리하며, 적응필터계수갱신부는 상기 음원분리부로부터 분리되어 입력된 크로스토크신호가 혼합된 혼합음원신호와 추정된 후처리음원채널신호를 입력받아 적응필터 계수를 갱신하고, 상기 간섭신호제거부는 크로스토크신호가 혼합된 혼합음원신호에서 상기 적응필터계수갱신단계에서 추정된 크로스토크신호를 승산하여 후처리음원채널신호를 추정한다.(here, Is the time index, Is the magnitude of the input signal of the adaptive filter, Is the magnitude of the error signal between the mixed sound source signal and the estimated crosstalk signal, Is the adaptive constant, Is a microconstant to prevent divergence of the adaptive coefficient part. According to the above equation, the adaptive coefficient is calculated by each adaptive filter for each frequency bin. As shown in FIG. 3, the sound source separation unit separates the signal from the input signal by a frequency domain independent element analysis algorithm, and the adaptive filter coefficient update unit is separated from the sound source separation unit and mixed with the input crosstalk signal. And after receiving the estimated post-processing sound source channel signal, the adaptive filter coefficient is updated, and the interference signal removing unit multiplies the crosstalk signal estimated in the adaptive filter coefficient updating step from the mixed sound source signal mixed with the crosstalk signal. Estimate the sound source channel signal.
그리고, 상기 간섭신호제거단계에서는 다음 수학식In the interference signal removing step,
(여기서, 는 혼합음원신호 그리고 는 추정 크로스토크신호를 나타낸다.)에 의하여, 간섭신호를 제거한다. 본 발명은 오차신호의 크기로 정규화함으로써 이 오조정되는 것을 방지할 수 있다.(here, Is the mixed sound source signal and Denotes an estimated crosstalk signal). The present invention is normalized to the magnitude of the error signal This misalignment can be prevented.
수학식 2와 수학식 3에 의하여 적응계수의 갱신은 입력신호 의 크기 와 오차신호 의 크기로 적응된다. 적응필터가 동작하여 오차신호의 크기가 적어질 경우 수학식 2의 우측 2번째 항인 은 0에 가깝게 수렴 되어 신호로부터 크로스토크 성분의 효과적 제거가 가능하게 된다. According to equations (2) and (3), the update of the adaptive coefficient is an input signal. Magnitude and error signal Is adapted to the size of. When the adaptive filter operates to reduce the magnitude of the error signal, the second term on the right side of
또한, 도 4의 본 발명에 따라 크로스토크신호를 제거하기 위한 후처리 방법을 적용한 결과의 비교예를 통해 그 효과를 확인할 수 있는데, 실험 환경은 5.8m × 3.6m인 공간에서 두 마이크 사이의 거리를 12cm 로 두고 두 마이크 사이의 중심에서 각각 100cm 씩 떨어진 곳에 스피커를 설치하였다. 16비트로 양자화되고 16kHz로 샘플링된 남성과 여성 음성을 각각의 스피커로 출력하여 이를 분리하는 실험을 하였다. 주파수 영역으로의 변환은 1024 샘플로 하였고 64 샘플을 겹쳐서 처리하고 윈도우는 해밍 윈도우를 사용하였다. 후처리를 위한 적응필터의 탭 수는 16비트로 하였으며 적응계수는 0.2 로 둔 것이다. 신호들을 주파수 영역으로 변환하여 그 중 100 Hz 주파수 빈(bin)에 대하여 나타낸 것이다. In addition, the effect can be confirmed through a comparative example of the result of applying the post-processing method for removing the crosstalk signal according to the present invention of FIG. Set the speaker at 12cm and place the speaker 100cm away from the center between the two microphones. A male and female voice, quantized in 16 bits and sampled at 16 kHz, was output to each speaker and separated. The conversion to the frequency domain was 1024 samples, 64 samples were overlapped and the Hamming window was used. The number of taps of the adaptive filter for post processing is 16 bits and the adaptation coefficient is 0.2. The signals are transformed into the frequency domain and shown for the 100 Hz frequency bin.
결과 중, (a)와 (c)는 각각 주파수 영역 독립요소분석에 의하여 분리된 신호이다. 각각의 채널에 크로스토크신호 성분이 존재하는 것을 동그라미로 표시하였다. (b)와 (d)는 본 발명의 후처리를 한 결과이며 크로스토크신호 성분이 현저히 감소된 것을 확인할 수 있다.Among the results, (a) and (c) are signals separated by frequency domain independent element analysis, respectively. The presence of crosstalk signal components in each channel is indicated by circles. (b) and (d) are the result of the post-processing of the present invention and it can be seen that the crosstalk signal component is significantly reduced.
본 발명은 음성인식시스템의 인식성능향상, 휴대폰과 같은 음성통신시스템 및 보청기의 음질 개선 등과 같은 여러 분야에 널리 적용될 수 있다.The present invention can be widely applied to various fields such as improving the recognition performance of a voice recognition system, improving the voice quality of a voice communication system such as a mobile phone and a hearing aid.
본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기테이프, 플라피디스크, 광데이터 저장장치 등이 있으며, 또한 케리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The invention can also be embodied as computer readable code on a computer readable recording medium. The computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like, which are also implemented in the form of carrier waves (for example, transmission over the Internet). It also includes. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. And functional programs, codes and code segments for implementing the present invention can be easily inferred by programmers in the art to which the present invention belongs.
상술한 바와 같이 본 발명에 따르면, 독립요소분석알고리즘에 의한 신호분리 이후 결과신호에 잔류하고 있는 크로스토크신호 성분을 적응 필터를 사용하여 현저히 감소시킴으로써 독립요소분석알고리즘의 효과를 배가시킬 수 있다. 이는, 정적(stationary) 잡음환경뿐만 아니라 동적(non-stationary) 잡음환경에서도 적용할 수 있어 통신, 생체신호 처리 및 음성처리와 같은 다양한 분야에 있어서, 복수개의 센서들, 즉 마이크로폰들로 녹음되어 중첩된 신호로부터 각 음원의 신호를 분리하는 다양한 산업분야에 본 발명을 적용하여 많은 효과를 기대할 수 있다.As described above, according to the present invention, the crosstalk signal component remaining in the resultant signal after the signal separation by the independent element analysis algorithm is significantly reduced by using an adaptive filter, thereby increasing the effect of the independent element analysis algorithm. It can be applied not only in stationary noise environment but also in non-stationary noise environment, so that in various fields such as communication, biosignal processing, and voice processing, a plurality of sensors, that is, microphones, are recorded and overlapped. Many effects can be expected by applying the present invention to various industrial fields that separate the signal of each sound source from the received signal.
본 발명에 대해 상기 실시예를 참고하여 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명에 속하는 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to the above embodiments, it is merely illustrative, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. . Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060105979A KR100848789B1 (en) | 2006-10-31 | 2006-10-31 | Postprocessing method for removing cross talk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060105979A KR100848789B1 (en) | 2006-10-31 | 2006-10-31 | Postprocessing method for removing cross talk |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080038714A KR20080038714A (en) | 2008-05-07 |
KR100848789B1 true KR100848789B1 (en) | 2008-07-30 |
Family
ID=39647132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060105979A KR100848789B1 (en) | 2006-10-31 | 2006-10-31 | Postprocessing method for removing cross talk |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100848789B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106024001A (en) * | 2016-05-03 | 2016-10-12 | 电子科技大学 | Method used for improving speech enhancement performance of microphone array |
KR101891269B1 (en) * | 2018-03-05 | 2018-08-27 | 주식회사 이에스피 | Uwb internal change detection system and device for structural defects and inner layer change detection |
CN111696573B (en) * | 2020-05-20 | 2023-04-28 | 北京地平线机器人技术研发有限公司 | Sound source signal processing method and device, electronic equipment and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11231900A (en) | 1998-02-17 | 1999-08-27 | Nagano Japan Radio Co | Method and device for noise reduction |
KR20050115857A (en) * | 2002-12-11 | 2005-12-08 | 소프트맥스 인코퍼레이티드 | System and method for speech processing using independent component analysis under stability constraints |
KR20060015389A (en) * | 2004-08-14 | 2006-02-17 | 삼성전자주식회사 | Postprocessing apparatus and method for removing cross-channel interference and apparatus and method for separating multi-channel sources employing the same |
-
2006
- 2006-10-31 KR KR1020060105979A patent/KR100848789B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11231900A (en) | 1998-02-17 | 1999-08-27 | Nagano Japan Radio Co | Method and device for noise reduction |
KR20050115857A (en) * | 2002-12-11 | 2005-12-08 | 소프트맥스 인코퍼레이티드 | System and method for speech processing using independent component analysis under stability constraints |
KR20060015389A (en) * | 2004-08-14 | 2006-02-17 | 삼성전자주식회사 | Postprocessing apparatus and method for removing cross-channel interference and apparatus and method for separating multi-channel sources employing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20080038714A (en) | 2008-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190222691A1 (en) | Data driven echo cancellation and suppression | |
CN105788607B (en) | Speech enhancement method applied to double-microphone array | |
CN109727604A (en) | Frequency domain echo cancel method and computer storage media for speech recognition front-ends | |
KR100647286B1 (en) | Postprocessing apparatus and method for removing cross-channel interference and apparatus and method for separating multi-channel sources employing the same | |
CN111031448B (en) | Echo cancellation method, echo cancellation device, electronic equipment and storage medium | |
US20030031315A1 (en) | Echo canceller having nonlinear echo suppressor for harmonics calculations | |
US7752040B2 (en) | Stationary-tones interference cancellation | |
KR100751921B1 (en) | Method and apparatus for removing noise of multi-channel voice signal | |
Braun et al. | Task splitting for dnn-based acoustic echo and noise removal | |
JP5016581B2 (en) | Echo suppression device, echo suppression method, echo suppression program, recording medium | |
JP5153389B2 (en) | Acoustic signal processing device | |
KR100848789B1 (en) | Postprocessing method for removing cross talk | |
CN109451398A (en) | Equipment, acoustic feedback removing method, audio processing system are eliminated in acoustic feedback | |
JP7348812B2 (en) | Noise suppression device, noise suppression method, and voice input device | |
JPH04245300A (en) | Noise removing device | |
KR102033469B1 (en) | Adaptive noise canceller and method of cancelling noise | |
KR20110024969A (en) | Apparatus for filtering noise by using statistical model in voice signal and method thereof | |
JP4879195B2 (en) | Noise reduction device | |
JP3310225B2 (en) | Noise level time variation calculation method and apparatus, and noise reduction method and apparatus | |
KR20110038447A (en) | Apparatus for detecting target signal by using statistical model and its method | |
JP2007511966A (en) | Method and apparatus for reducing echo in a communication system | |
KR101082837B1 (en) | Method and apparatus for reduction of noise | |
KR100754558B1 (en) | Periodic signal enhancement system | |
Bhagat et al. | Improved audio filtering using extended high pass filters | |
KR101096091B1 (en) | Apparatus for Separating Voice and Method for Separating Voice of Single Channel Using the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130716 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140716 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150715 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170717 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 12 |