KR100847554B1 - Improved process for preparing cis-dithiocyanato-N,N'-bis2,2'-bipyridyl-4,4'-dicarboxylic acidruthenium(II) - Google Patents

Improved process for preparing cis-dithiocyanato-N,N'-bis2,2'-bipyridyl-4,4'-dicarboxylic acidruthenium(II) Download PDF

Info

Publication number
KR100847554B1
KR100847554B1 KR1020060119502A KR20060119502A KR100847554B1 KR 100847554 B1 KR100847554 B1 KR 100847554B1 KR 1020060119502 A KR1020060119502 A KR 1020060119502A KR 20060119502 A KR20060119502 A KR 20060119502A KR 100847554 B1 KR100847554 B1 KR 100847554B1
Authority
KR
South Korea
Prior art keywords
reaction
ruthenium
dicarboxylic acid
dye
dimethylformamide
Prior art date
Application number
KR1020060119502A
Other languages
Korean (ko)
Other versions
KR20080049197A (en
Inventor
김경곤
박남규
이소하
김동찬
정세진
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020060119502A priority Critical patent/KR100847554B1/en
Publication of KR20080049197A publication Critical patent/KR20080049197A/en
Application granted granted Critical
Publication of KR100847554B1 publication Critical patent/KR100847554B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pyridine Compounds (AREA)

Abstract

본 발명은 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)의 개선된 제조방법에 관한 것으로서, 더욱 상세하게는 디메틸포름아미드(DMF) 또는 디메틸포름아미드(DMF) 수용액을 반응용매로 사용하고, 반응물질로서 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 한꺼번에 반응용기에 넣고 마이크로파를 조사하는 조건에서 환류 반응시켜 제조하며, 반응이 완결되면 반응용액에 염산 또는 황산의 무기산 수용액을 첨가하여 반응용액의 pH를 2 내지 5로 조절하는 간단한 분리공정을 수행하여 염료감응 태양전지용 N3 염료로 잘 알려져 있는 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)을 고체 상으로 수득하는 방법에 관한 것이다.The present invention relates to an improved process for the preparation of cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II). Specifically, an aqueous dimethylformamide (DMF) or dimethylformamide (DMF) solution is used as a reaction solvent, ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and It is prepared by putting the thiocyanate alkali metal salt into the reaction vessel at once and refluxing under conditions irradiated with microwaves.When the reaction is completed, the pH of the reaction solution is adjusted to 2 to 5 by adding an inorganic acid solution of hydrochloric acid or sulfuric acid to the reaction solution. Cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium, a well known N3 dye for dye-sensitized solar cells, is carried out by a simple separation process. A method for obtaining (II) in the solid phase.

N3 염료, 염료감응 태양전지, 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ), 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산, 티오시안산 알칼리금속염 N3 dye, dye-sensitized solar cell, cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II), ruthenium (III) Chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid, thiocyanate alkali metal salt

Description

시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)의 개선된 제조방법{Improved process for preparing cis-di(thiocyanato)-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(Ⅱ)}Improved process for preparing cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II)}

본 발명은 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)의 개선된 제조방법에 관한 것으로서, 더욱 상세하게는 디메틸포름아미드(DMF) 또는 디메틸포름아미드(DMF) 수용액을 반응용매로 사용하고, 반응물질로서 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 한꺼번에 반응용기에 넣고 마이크로파를 조사하는 조건에서 환류 반응시켜 제조하며, 반응이 완결되면 반응용액에 염산 또는 황산의 무기산 수용액을 첨가하여 반응용액의 pH를 2 내지 5로 조절하는 간단한 분리공정을 수행하여 염료감응 태양전지용 N3 염료로 잘 알려져 있는 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)을 고체 상으로 수득하는 방법에 관한 것이다.The present invention relates to an improved process for the preparation of cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II). Specifically, an aqueous dimethylformamide (DMF) or dimethylformamide (DMF) solution is used as a reaction solvent, ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and It is prepared by putting the thiocyanate alkali metal salt into the reaction vessel at once and refluxing under conditions irradiated with microwaves.When the reaction is completed, the pH of the reaction solution is adjusted to 2 to 5 by adding an inorganic acid solution of hydrochloric acid or sulfuric acid to the reaction solution. Cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium, a well known N3 dye for dye-sensitized solar cells, is carried out by a simple separation process. A method for obtaining (II) in the solid phase.

1991년 그래첼(Michael Graetzel)이 염료 감응 태양전지에 관한 논문이 발표 된 이래로 포르피린 유도체(porphyrins), 프탈로시아나이드 유도체(phthalocyanines), 쿠마린 유도체(coumarines), 폴리엔 유도체(polyenes), C60 유도체, 여러 염료의 혼합 염료, 폴리(p-페닐렌 비닐렌) (PPV), CN-PPV, 폴리(설퍼 나이트라이드) (SNx) 등의 고분자계, 테트라티아풀바렌 (TTF)계 화합물 및 루테늄 염료 등 다양한 염료들이 합성되고 개발되었다. 현재까지 발표된 염료로서 물리화학적인 안정성과 햇빛에 대한 안정성이 가장 좋은 화합물은 루테늄 착체 염료인 것으로 알려져 있다.Since the publication of Michael Graetzel's paper on dye-sensitized solar cells in 1991, porphyrins, phthalocyanines, coumarines, polyenes, C 60 Derivatives, mixed dyes of various dyes, polymers such as poly (p-phenylene vinylene) (PPV), CN-PPV, poly (sulfur nitride) (SNx), tetrathiafulbarene (TTF) compounds and ruthenium Various dyes, including dyes, have been synthesized and developed. It is known that ruthenium complex dyes have the best physicochemical stability and sunlight stability.

또한, 최근까지 개발된 루테늄 착체 염료 중 가장 대표적인 염료는 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ) (이하, "N3"라 함)이다. 이에, N3 염료로부터 보다 높은 효율의 감응 유기 태양전지 용 염료를 개발하고자하는 연구는 계속 있어왔다. 나지루딘(Nazeeruddin) 등이 발표한 논문에 따르면, 다른 조건이 똑같고 1.5 AM 조건에서 N3는 7.4%, N719 (시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)(테트라부틸 암모니움 하이드록사이드)2)는 8.4%, N712 (시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)(테트라부틸 암모니움 하이드록사이드)4)는 8.2%, N3[TBA]3 (시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)(테트라부틸 암모니움 하이드록사이드)3)는 9.3%, N3[TBA] (시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)(테트라부틸 암모니움 하이드록사이드))는 7.7%의 효율을 보여주었다 (J. Phys. Chem. B 2003, 107, 8981-8987).Also, the most representative of the ruthenium complex dyes developed until recently is cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) ) (Hereinafter referred to as "N3"). Accordingly, there have been studies to develop higher efficiency dyes for sensitized organic solar cells from N3 dyes. According to a paper published by Nazeeruddin et al., Under the same conditions, N3 is 7.4% at 1.5 AM, N719 (cis-di (thiocyanato) -N, N'-bis (2,2'-ratio). Pyridyl-4,4'-dicarboxylic acid) ruthenium (II) (tetrabutyl ammonium hydroxide) 2 ) was 8.4%, N712 (cis-di (thiocyanato) -N, N'-bis (2, 2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) (tetrabutyl ammonium hydroxide) 4 ) was 8.2%, N 3 [TBA] 3 (cis-di (thiocyanato) -N , N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) (tetrabutyl ammonium hydroxide) 3 ) is 9.3%, N 3 [TBA] (cis-di (Thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) (tetrabutyl ammonium hydroxide)) has an efficiency of 7.7%. ( J. Phys. Chem. B 2003 , 107 , 8981-8987).

염료감응 태양전지 제조를 위한 N3 염료의 대표적인 제조방법으로는 다음과 같은 방법이 알려져 있다.As a representative method for producing a N3 dye for producing a dye-sensitized solar cell is known as follows.

RuCl3수화물과 디메틸설폭사이드(DMSO)의 반응으로 약 72%의 수율로 RuCl2(Me2SO)4 (J. Chem Soc., Dalton 1973, 204-209)를 제조하고; 디메틸포름아미드(DMF) 하에서 RuCl2(Me2SO)4 2,2'-비피리딘-4,4'-디카르복시산의 반응으로 시스-디클로로-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ) 클로라이드 (Inorganica. Chimica Acta 2000, 308, 73-79)를 제조하고; 디메틸포름아미드(DMF)와 NaOH 용액 하에서 시스-디클로로-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ) 클로라이드와 NaSCN의 반응 (J. Am. Chem. Soc. 1993, 115(14), 6382-6390)으로 원하는 N3 염료를 제조한다.Reaction of RuCl 3 hydrate with dimethylsulfoxide (DMSO) to prepare RuCl 2 (Me 2 SO) 4 ( J. Chem Soc. , Dalton 1973 , 204-209) in a yield of about 72%; RuCl 2 (Me 2 SO) 4 and dimethylformamide (DMF) Cis-dichloro-N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) by reaction of 2,2'-bipyridine-4,4'-dicarboxylic acid Chloride ( Inorganica. Chimica Acta 2000 , 308 , 73-79); Reaction of cis-dichloro-N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) chloride with NaSCN under dimethylformamide (DMF) and NaOH solution ( J. Am. Chem. Soc. 1993 , 115 (14), 6382-6390) to prepare the desired N3 dye.

다른 제조방법으로서, 디메틸포름아미드(DMF) 및 환류 하에서 RuCl3수화물과 2,2'-비피리딘-4,4'-디카르복시산의 반응으로 시스-디클로로-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ) 클로라이드를 제조 (J. Am. Chem. Soc. 1988, 110, 3686-3687)하고; 디메틸포름아미드(DMF)와 NaOH 수용액 하에서 시스-디클로로-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ) 클로라이드와 NaSCN의 반응으로 N3 염료를 제조한다.As another process, the reaction of cis-dichloro-N, N'-bis (2,2) by reaction of RuCl 3 hydrate with 2,2'-bipyridine-4,4'-dicarboxylic acid under dimethylformamide (DMF) and reflux '-Bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) chloride is prepared ( J. Am. Chem. Soc. 1988 , 110 , 3686-3687); N3 dye by reaction of cis-dichloro-N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) chloride with NaSCN under aqueous dimethylformamide (DMF) and NaOH To prepare.

하지만, 상기한 공지 제조방법은 공정 자체가 복잡하고 다단계로 구성되어 있고, 티오시안산 나트륨(NaSCN)를 첨가하는 과정에서는 수산화나트륨 등의 특정 염기를 사용하여 반응조건을 조절하여야 하는 등의 공정상의 번잡함으로 인하여 N3염료를 공업적으로 대량생산하는 방법으로 적용하기에는 수율 면에서 한계가 있는 것으로 지적되고 있다.However, the above-described known production method is complicated in the process itself and is composed of a multi-step process, and in the process of adding sodium thiocyanate (NaSCN), the reaction conditions must be controlled using a specific base such as sodium hydroxide. Due to its complexity, it is pointed out that there is a limit in yield to apply N3 dye as an industrial mass production method.

본 발명은 염료감응 태양전지에 필요한 N3 염료의 효율적인 제조방법을 제공하는데 그 목적이 있다. An object of the present invention is to provide an efficient method for producing N3 dyes required for dye-sensitized solar cells.

본 발명은 N3 염료의 개선된 제조방법 발명으로, 본 발명의 제조방법을 이용하여 수율을 크게 향상시킬 수 있으므로 N3 염료의 공업적인 대량생산이 가능하도록 하는 효과를 얻고 있다.The present invention is an improved method for producing N3 dyes, and since the yield can be greatly improved by using the method of the present invention, industrial mass production of N3 dyes is possible.

본 발명은 디메틸포름아미드(DMF) 또는 디메틸포름아미드(DMF) 수용액을 반응용매로 사용하고, 마이크로파를 조사하는 반응조건하에서, The present invention uses a dimethylformamide (DMF) or dimethylformamide (DMF) aqueous solution as a reaction solvent, under reaction conditions for irradiating microwaves,

루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 한꺼번에 반응기에 넣고 환류 반응시키는 일용기 반응(one-pot reaction)을 수행하여 하기 화학식 1로 표시되는 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ) ("N3 염료")을 제조하는 방법을 그 특징으로 한다.The ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and thiocyanate alkali metal salt were put in a reactor and subjected to a one-pot reaction to perform a reflux reaction. To prepare cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) represented by 1 ("N3 dye") The method is characterized by that.

Figure 112006088814649-pat00001
Figure 112006088814649-pat00001

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

기존 N3 염료의 제조방법이 다단계 제조과정으로 구성되고, 각 과정별로 별도의 반응조건을 갖추어야 하는 등의 공정상 번거러움이 있었는데 반하여, 본 발명에 따른 제조방법은 디메틸포름아미드(DMF) 또는 디메틸포름아미드(DMF) 수용액을 반응용매로 사용하고, 마이크로파를 조사하는 반응조건을 만족시키는 새로운 일용기 반응계(one-pot reaction system)를 구축함으로써, 목적하는 N3 염료의 수율을 크게 향상시켜 염료 감응형 태양전지에 사용하는 N3 염료의 대량생산이 가능하다.While the conventional N3 dye manufacturing method is composed of a multi-step manufacturing process, and has a cumbersome process, such as having to have separate reaction conditions for each process, the manufacturing method according to the present invention is dimethylformamide (DMF) or dimethylformamide. By using a (DMF) aqueous solution as a reaction solvent and constructing a new one-pot reaction system that satisfies the reaction conditions for irradiating microwaves, the dye-sensitized solar cell is greatly improved by increasing the yield of the desired N3 dye. Mass production of N3 dyes for use is possible.

또한, 본 발명에 따른 제조방법은 생성물의 분리 수득방법에도 특징이 있는 바, 상기 반응이 완결되면 반응용액에 염산 또는 황산의 무기산 수용액을 첨가하여 반응용액의 pH를 2 내지 5로 조절하게 되면 목적물이 고체상으로 생성되므로, 간단한 여과과정을 수행하여 목적물을 효율적으로 수득하는 것이 가능하다.In addition, the preparation method according to the present invention is also characterized by the method of obtaining and separating the product. When the reaction is completed, the pH of the reaction solution is adjusted to 2 to 5 by adding an inorganic acid solution of hydrochloric acid or sulfuric acid to the reaction solution. Since this is produced in the solid phase, it is possible to perform the simple filtration process to efficiently obtain the target product.

상기한 바와 같은 본 발명에 따른 제조방법을 보다 구체적으로 설명하면 다음과 같다.Referring to the manufacturing method according to the present invention as described above in more detail.

본 발명의 제조방법은 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 반응물질로 사용하여 일용기 반응(one-pot reaction)으로 진행한다. 즉, 반응물질로서 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 동시에 반응기에 투입하여 하나의 용기내에서 반응을 완결시키는 일용기 반응(one-pot reaction)에 의해 직접 목적하는 상기 화학식 1로 표시되는 N3 염료를 고수율로 제조할 수 있다. 본 발명에 따른 제조방법에 사용되는 반응물질의 사용량에 있어서는, 루테늄(Ⅲ) 클로라이드 수화물 1 몰을 기준으로 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염은 각각 2 내지 10 몰 범위로 사용하며, 바람직하기로는 2 내지 5 몰 범위로 사용하며, 특히 바람직하기로는 2 내지 2.5 몰 범위로 사용하는 것이 경제적성이 있다. The preparation method of the present invention is a one-pot reaction using ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and alkali thiocyanate alkali metal salt as reactants. Proceed. That is, a single vessel that completes the reaction in one vessel by injecting ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and alkali thiocyanate alkali metal salt as the reactants at the same time. By the one-pot reaction, the desired N3 dye represented by Chemical Formula 1 may be prepared in high yield. In the amount of the reactants used in the production method according to the present invention, based on 1 mole of ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and thiocyanate alkali metal salts are respectively used. It is used in the range of 2 to 10 moles, preferably in the range of 2 to 5 moles, and particularly preferably in the range of 2 to 2.5 moles is economical.

본 발명의 제조방법을 수행하는데 사용되는 반응용매로서 디메틸포름아미드 또는 디메틸포름아미드 수용액의 선택 사용에 그 특징이 있다. 기존의 제조방법이 디메틸포름아미드(DMF) 또는 디메틸설폭사이드(DMSO)의 단독 유기용매를 사용하여 다단계 제조과정을 거쳐 N3 염료를 수득함으로써 목적물의 수율이 매우 저조하였다. 이에 반하여 본 발명에서는 반응용매로 디메틸포름아미드 또는 디메틸포름아미드 수용액을 사용하는 일용기 반응(one-pot reaction)에 의해 고 수율로 N3 염료를 수득하는 것이 가능해졌다. 본 발명에 따른 반응용매로서 디메틸포름아미드(DMF) 수용액은 디메틸포름아미드가 물에 5 내지 95 부피% 농도, 바람직하기로는 50 내지 95 부피% 농도, 특히 바람직하기로는 70 내지 95 부피% 농도로 포함된 수용액일 수 있다. It is characterized by the selective use of dimethylformamide or dimethylformamide aqueous solution as the reaction solvent used to carry out the preparation method of the present invention. Existing production method using a single organic solvent of dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) through a multi-step manufacturing process to obtain the N3 dye yield was very low yield. In contrast, in the present invention, it is possible to obtain N3 dye in a high yield by a one-pot reaction using dimethylformamide or an aqueous solution of dimethylformamide as a reaction solvent. As a reaction solvent according to the present invention, the aqueous dimethylformamide (DMF) solution contains dimethylformamide in water at a concentration of 5 to 95% by volume, preferably at a concentration of 50 to 95% by volume, particularly preferably at a concentration of 70 to 95% by volume. May be an aqueous solution.

또한, 본 발명의 반응계를 구성하는데 있어 반응용매의 선택이외에도 마이크로파를 조사함으로써 보다 효율적으로 반응을 완결시킬 수 있었다. 보다 효율적으로 반응을 완결하기 위해서는 30W의 마이크로파가 조사되는 마이크로 웨이브 반응기를 이용하여 환류 조건으로 반응시키면, 보다 반응시간을 단축시키는 효과를 얻을 수 있다.In addition, in the constituting the reaction system of the present invention, the microwave irradiation was able to complete the reaction more efficiently in addition to the selection of the reaction solvent. In order to complete the reaction more efficiently, the reaction time can be shortened by using a microwave reactor irradiated with microwaves of 30 W under reflux conditions.

한편, 본 발명은 반응용액으로부터 생성된 N3 염료를 효율적으로 수득하는 방법에도 그 특징이 있다. 반응 혼합물 중에 포함된 N3 염료를 염석(salting out)하는 방법으로 과염소산과 같은 산 용액을 첨가하여 용액의 pH를 4 내지 5 범위로 조절하는 방법이 알려져 있기도 하지만, 이 방법은 과염소산의 폭발위험 및 비용 등이 다른 산에 비해 비싼 점이 있어 개선의 여지가 있다. 그러나, 본 발명에서는 값이 싸고 상업적으로 쉽게 적용이 가능한 염산 또는 황산의 무기산 수용액을 첨가하여 용액의 pH를 2 내지 5 범위로 조절함으로써 목적하는 N3 염료를 보다 효과적으로 분리 수득하는 것이 가능해졌다. 상기한 무기산 수용액은 1 내지 30 부피% 농도, 바람직하기로는 1 내지 10 부피%의 묽은 산용액을 사용하는 것이 보다 바람직하다.On the other hand, the present invention is also characterized by a method for efficiently obtaining the N3 dye generated from the reaction solution. Although it is known to salt out the N3 dye contained in the reaction mixture by adding an acid solution such as perchloric acid to adjust the pH of the solution in the range of 4 to 5, this method is an explosion risk and cost of perchloric acid. The back is expensive compared to other mountains, so there is room for improvement. However, in the present invention, it is possible to more effectively separate and obtain the desired N3 dye by adjusting the pH of the solution in the range of 2 to 5 by adding an aqueous solution of inorganic acid of hydrochloric acid or sulfuric acid which is inexpensive and easily applicable. The inorganic acid aqueous solution described above is more preferably used at a concentration of 1 to 30% by volume, preferably 1 to 10% by volume of a dilute acid solution.

상기한 바와 같은 본 발명에 따른 제조방법은 반응 공정이 비교적 간단하고 일용기내에서 반응을 완결시키며, N3 염료의 수율 향상 효과도 매우 크다.The production method according to the present invention as described above is a relatively simple reaction process and completes the reaction in a daily container, the effect of improving the yield of N3 dye is also very large.

이상에서 설명한 바와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following examples, but the present invention is not limited thereto.

실시예 1. 반응용매에 따른 N3 염료의 제조 효율 비교Example 1 Comparison of Production Efficiency of N3 Dye According to Reaction Solvent

마이크로 웨이브 반응기 (Model : CEM Discover, 30W)에 하기 표 1에 나타낸 바와 같은 반응용매 30 ㎖와 2,2'-비피리딘-4,4'-디카르복시산 (100 ㎎, 0.41 mmol)과 루테늄(Ⅲ) 클로라이드 수화물 (41.5 ㎎, 0.2 mmol), 티오시안산 나트륨 (33.2 ㎎, 0.41 mmol)를 넣고 가열 환류하였다. 출발물질이 모두 반응한 후, 실온으로 식혀 소량의 트리스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)을 여과한 후, 여액은 증류기를 사용하여 용매를 제거하고, 생성된 고체를 소량의 물로 녹인 다음, 5% 묽은 염산 수용액으로 pH를 4.5로 맞추어 고체를 생성시켰다. 생성된 고체를 물과 아세톤-에테르 혼합용액(1:10, v/v)을 사용하여 여과 및 건조하여 N3 염료를 얻었다. In a microwave reactor (Model: CEM Discover, 30W), 30 ml of reaction solvent, 2,2'-bipyridine-4,4'-dicarboxylic acid (100 mg, 0.41 mmol) and ruthenium (III) as shown in Table 1 below ) Chloride hydrate (41.5 mg, 0.2 mmol) and sodium thiocyanate (33.2 mg, 0.41 mmol) were added and heated to reflux. After all of the starting materials had reacted, the mixture was cooled to room temperature and filtered with a small amount of tris (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II), and then the filtrate was removed using a distiller to remove the solvent. The resulting solid was dissolved in a small amount of water, and then the pH was adjusted to 4.5 with 5% dilute aqueous hydrochloric acid solution to produce a solid. The resulting solid was filtered and dried using water and acetone-ether mixed solution (1:10, v / v) to obtain N3 dye.

1H NMR (300 ㎒, D2O-NaOH) δ 9.41 (d, J = 5.7 ㎐, 2H), 8.81 (s, 2H), 8.65 (s, 2H), 8.09 (d, J = 5.1 ㎐, 2H), 7.68 (d, J = 5.5 ㎐, 2H), 7.39 (d, J = 7.7 ㎐, 2H); IR (KBr) 3438, 2111, 1719 ㎝-1. 1 H NMR (300 MHz, D 2 O-NaOH) δ 9.41 (d, J = 5.7 Hz, 2H), 8.81 (s, 2H), 8.65 (s, 2H), 8.09 (d, J = 5.1 Hz, 2H ), 7.68 (d, J = 5.5 μs, 2H), 7.39 (d, J = 7.7 μs, 2H); IR (KBr) 3438, 2111, 1719 cm <-1> .

반응용매Reaction solvent 반응시간Reaction time 수율yield 디메틸포름아미드 단독 용매Dimethylformamide Solvent 20 분20 minutes 70%70% 75 부피% 디메틸포름아미드 수용액75 volume% dimethylformamide aqueous solution 20 분20 minutes 90%90% 50 부피% 디메틸포름아미드 수용액50 volume% dimethylformamide aqueous solution 20 분20 minutes 65%65% 25 부피% 디메틸포름아미드 수용액25 volume% dimethylformamide aqueous solution 20 분20 minutes 55%55% 디메틸설폭사이드 단독 용매Dimethylsulfoxide Solvent 20 분20 minutes 50%50% 75 부피% 디메틸설폭사이드 수용액75 volume% dimethyl sulfoxide aqueous solution 20 분20 minutes 47%47% 50 부피% 디메틸설폭사이드 수용액50 volume% dimethyl sulfoxide aqueous solution 20 분20 minutes 30%30% 25 부피% 디메틸설폭사이드 수용액25 volume% dimethyl sulfoxide aqueous solution 20 분20 minutes 5%5% 물 단독 용매Water sole solvent 20 분20 minutes 반응하지않음Not responding

상기 표 1의 결과에 의하면, 반응용매로서 디메틸포름아미드 또는 디메틸포름아미드 수용액을 사용하는 조건에서는 짧은 반응시간에 고 수율로 N3 염료를 수득할 수 있음을 확인할 수 있었다. 이에 반하여, 디메틸설폭사이드, 디메틸설폭사이드 수용액, 또는 물 용매를 사용하는 조건에서는 반응시간이 길어지고, 또한 생성된 N3 염료의 수율이 저조한 결과를 초래하고 있음을 확인할 수 있다.According to the results of Table 1, it was confirmed that N3 dye can be obtained in high yield in a short reaction time under the conditions using dimethylformamide or dimethylformamide aqueous solution as a reaction solvent. On the contrary, it can be seen that the reaction time is long under the conditions of using dimethyl sulfoxide, dimethyl sulfoxide aqueous solution, or water solvent, and the yield of N3 dye produced is poor.

실시예 2. 염석에 사용되는 산용액에 따른 N3 염료의 제조 효율 비교Example 2 Comparison of Manufacturing Efficiency of N3 Dye According to Acid Solution Used in Salting

상기 실시예 1과 동일한 방법으로 마이크로 웨이브 반응기 (Model : CEM Discover, 30W)와 75 부피% 디메틸포름아미드 수용액을 사용하는 조건에서 N3 염료를 제조하였다. 다만, 반응 혼합물로부터 N3 염료를 고체상으로 생성시켜 수득하는 과정에서 사용되는 산 용액의 종류를 달리하였으며, 그 결과는 다음 표 2에 나타내었다.N3 dye was prepared in the same manner as in Example 1 using a microwave reactor (Model: CEM Discover, 30W) and 75% by volume dimethylformamide aqueous solution. However, the type of acid solution used in the process of obtaining the N3 dye in the solid phase from the reaction mixture was different, the results are shown in Table 2 below.

산 용액Acid solution 수율yield 5 부피% 염산 수용액5% by volume aqueous hydrochloric acid solution 90%90% 5 부피% 황산 수용액5% by volume aqueous sulfuric acid solution 87%87% 5 부피% 과염소산 수용액5% by volume aqueous perchloric acid solution 85%85%

상기 표 2의 결과에 의하면, 5% 염산 수용액을 사용하였을 경우 가장 좋은 수율을 주었다.According to the results of Table 2, the best yield was obtained when 5% aqueous hydrochloric acid solution was used.

비교예 1. Comparative Example 1.

마이크로파를 조사하지 않는 조건에서 상기 실시예 1과 동일한 방법으로 N3 염료를 제조하였다.N3 dye was prepared in the same manner as in Example 1 under the condition that microwaves were not irradiated.

즉, 마이크로 웨이브 반응기 대신에 둥근 삼구 플라스크를 사용하고, 디메틸포름아미드와 물의 혼합용매(3:1 v/v)를 사용하여, 오일 중탕에서 가열 환류하였다. 그 결과, 반응시간은 8 시간 이상 소요되었으며, N3 염료 246 mg(수율 85%)를 얻었다.That is, a round three-necked flask was used instead of the microwave reactor and heated and refluxed in an oil bath using a mixed solvent of dimethylformamide and water (3: 1 v / v). As a result, the reaction time was taken over 8 hours, yielding 246 mg (85% yield) of N3 dye.

비교예 2. Comparative Example 2.

종래 제조방법으로서, 다단계 제조과정을 수행하여 N3 염료를 제조하였다.As a conventional manufacturing method, N3 dye was prepared by performing a multi-step manufacturing process.

즉, 둥근 삼구 플라스크 (50 ㎖)에 2,2'-비피리딘-4,4'-디카르복시산 (113 ㎎, 0.46 mmol)과 루테늄(Ⅲ) 클로라이드 수화물 (60 ㎎, 0.229 mmol)를 넣고, 디메틸포름아미드 20 ㎖를 넣은 다음, 어두운 곳에서 질소 분위기, 오일 중탕(oil bath)에서 8시간 가열 환류하였다. 출발물질이 모두 반응한 후, 이 용액에 티오시안산 나트륨 (154 ㎎, 1.9 mmol)과 0.1M 수산화나트륨 (8.4 ㎖)를 넣은 다음, 어두운 곳에서 질소 분위기, 오일 중탕(oil bath)에서 8 시간 가열 환류하였다. 반응물이 모두 반응한 후, 실온으로 식혀 소량의 트리스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)을 여과한 후, 여액을 증류기를 사용하여 용매를 제거하고, 생성된 고체를 소량의 물로 녹인 다음, 5% 묽은 과염소산 수용액으로 pH를 5.5로 맞추어 고체를 생성시켰다. 생성된 고체를 물과 아세톤-에테르의 혼합용액(1:10, v/v)을 사용하여 여과 및 건조하여 N3 염료 (130 ㎎ 수율 40%)를 얻었다.In a round three-necked flask (50 ml), 2,2'-bipyridine-4,4'-dicarboxylic acid (113 mg, 0.46 mmol) and ruthenium (III) chloride hydrate (60 mg, 0.229 mmol) were added, and dimethyl 20 ml of formamide was added, and the mixture was heated to reflux for 8 hours in a nitrogen atmosphere and an oil bath in a dark place. After all of the starting materials had reacted, sodium thiocyanate (154 mg, 1.9 mmol) and 0.1 M sodium hydroxide (8.4 mL) were added to the solution, followed by a nitrogen atmosphere in a dark place for 8 hours in an oil bath. Heated to reflux. After all the reactants had reacted, the mixture was cooled to room temperature, and a small amount of tris (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) was filtered, and then the filtrate was removed using a distiller to remove the solvent. The resulting solid was dissolved in a small amount of water, and then the pH was adjusted to 5.5 with 5% dilute aqueous solution of perchloric acid to produce a solid. The resulting solid was filtered and dried using a mixed solution of water and acetone ether (1:10, v / v) to obtain an N3 dye (130 mg yield 40%).

상기 비교예 2로 예시된 종래방법은 다단계 공정으로 이루어져 있고, 반응시간도 8시간 이상으로 장시간 소요되며, 또한 수율이 낮은 단점이 있다.The conventional method illustrated in Comparative Example 2 consists of a multi-step process, the reaction time also takes a long time to 8 hours or more, and also has a low yield.

비교예 3. Comparative Example 3.

상기 비교예 2에 예시된 바와 같이, 다단계 제조과정을 수행하여 N3 염료를 제조하였고, 반응 진행 중에 마이크로파를 조사하였다.As illustrated in Comparative Example 2, an N3 dye was prepared by performing a multi-step preparation process, and microwaves were irradiated during the reaction.

즉, 마이크로 웨이브 반응기 (Model : CEM Discover, 30W)에 2,2'-비피리딘-4,4'-디카르복시산 (113 ㎎, 0.46 mmol)과 루테늄(Ⅲ) 클로라이드 수화물 (60 ㎎, 0.229 mmol)를 넣고, 디메틸포름아미드 20 ㎖를 넣은 다음, 20 분 동안 가열 환류하였다. 출발물질이 모두 반응한 후, 이 용액에 티오시안산 나트륨 (154 ㎎, 1.9 mmol)과 0.1M 수산화나트륨 (8.4 ㎖)를 넣은 다음, 계속해서 20 분 가열 환류하였다. 반응물이 모두 반응한 후, 실온으로 식혀 소량의 트리스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)을 여과한 후, 여액을 증류기를 사용하여 용매를 제거하고, 생성된 고체를 소량의 물로 녹인 다음, 5% 묽은 과염소산 수용액으로 pH를 5.5로 맞추어 고체를 생성시켰다. 생성된 고체를 물과 아세톤-에테르의 혼합용액(1:10, v/v)을 사용하여 여과 및 건조하여 N3 염료 (163 ㎎ 수율 50%)를 얻었다.Namely, 2,2'-bipyridine-4,4'-dicarboxylic acid (113 mg, 0.46 mmol) and ruthenium (III) chloride hydrate (60 mg, 0.229 mmol) in a microwave reactor (Model: CEM Discover, 30W) Was added, and 20 ml of dimethylformamide was added thereto, followed by heating to reflux for 20 minutes. After all of the starting materials had reacted, sodium thiocyanate (154 mg, 1.9 mmol) and 0.1 M sodium hydroxide (8.4 mL) were added to the solution, followed by heating to reflux for 20 minutes. After all the reactants had reacted, the mixture was cooled to room temperature, and a small amount of tris (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) was filtered, and then the filtrate was removed using a distiller to remove the solvent. The resulting solid was dissolved in a small amount of water, and then the pH was adjusted to 5.5 with 5% dilute aqueous solution of perchloric acid to produce a solid. The resulting solid was filtered and dried using a mixed solution of water and acetone ether (1:10, v / v) to obtain an N3 dye (163 mg yield 50%).

상기 비교예 3은 다단계로 구성된 종래 제조과정에 단순히 마이크로파를 조사한 것으로, 수율이 역시 낮은 단점이 있다.Comparative Example 3 is simply a microwave irradiation in the conventional manufacturing process consisting of a multi-step, there is a disadvantage that the yield is also low.

이상에서 살펴본 바와 같이, 본 발명에 따른 제조방법에 의하면 디메틸포름아미드(DMF) 또는 디메틸포름아미드(DMF) 수용액을 반응용매로 사용하고, 30W 마이크로파를 조사하는 새로운 반응계를 구성함으로써 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 한꺼번에 하나의 반응기에 넣고 반응을 수행하는 일용기 반응(one-pot reaction)으로 짧은 시간동안 고수율로 목적물을 수득하는 것이 가능하여, N3 염료 [시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)]의 대량생산 방법으로 특히 유용하다. As described above, according to the production method according to the present invention by using a dimethylformamide (DMF) or dimethylformamide (DMF) aqueous solution as a reaction solvent and constructing a new reaction system irradiated with 30W microwave ruthenium (III) chloride Hydrate, 2,2'-bipyridine-4,4'-dicarboxylic acid and thiocyanate alkali metal salts are put into one reactor at a time to carry out the reaction. It is possible to obtain the desired product, thereby producing an N3 dye [cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II)]. Especially useful as a mass production method.

Claims (5)

디메틸포름아미드(DMF) 또는 디메틸포름아미드(DMF) 수용액을 용매로 사용하고, 30W 마이크로파를 조사하는 반응조건하에서, Under reaction conditions using dimethylformamide (DMF) or dimethylformamide (DMF) aqueous solution as a solvent and irradiating 30W microwave, 루테늄(Ⅲ) 클로라이드 수화물, 2,2'-비피리딘-4,4'-디카르복시산 및 티오시안산 알칼리금속염을 한꺼번에 반응기에 넣고 환류 반응시키는 일용기 반응(one-pot reaction)으로 이루어지는 것을 특징으로 하는 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복시산)루테늄(Ⅱ)의 제조방법.Ruthenium (III) chloride hydrate, 2,2'-bipyridine-4,4'- dicarboxylic acid and thiocyanate alkali metal salts in a reactor at the same time characterized in that it consists of a one-pot reaction (reflux reaction) A method for producing cis-di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II). 제 1 항에 있어서, 상기 반응이 완결되면 반응용액에 염산 또는 황산의 무기산 수용액을 첨가하여 반응용액의 pH를 2 내지 5로 조절하여 고체상 목적물을 생성시키는 과정이 추가되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein, when the reaction is completed, adding a hydrochloric acid or sulfuric acid inorganic acid aqueous solution to the reaction solution to adjust the pH of the reaction solution to 2 to 5 to produce a solid target product. 제 1 항에 있어서, 상기 디메틸포름아미드 수용액은 디메틸포름아미드가 5 내지 95 부피% 농도로 함유된 것을 특징으로 하는 제조방법.The method of claim 1, wherein the dimethylformamide aqueous solution contains dimethylformamide in a concentration of 5 to 95% by volume. 제 2 항에 있어서, 상기 무기산 수용액의 농도가 1 내지 10 부피%인 것을 특징으로 하는 제조방법. The method of claim 2, wherein the concentration of the inorganic acid aqueous solution is 1 to 10% by volume. 삭제delete
KR1020060119502A 2006-11-30 2006-11-30 Improved process for preparing cis-dithiocyanato-N,N'-bis2,2'-bipyridyl-4,4'-dicarboxylic acidruthenium(II) KR100847554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060119502A KR100847554B1 (en) 2006-11-30 2006-11-30 Improved process for preparing cis-dithiocyanato-N,N'-bis2,2'-bipyridyl-4,4'-dicarboxylic acidruthenium(II)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060119502A KR100847554B1 (en) 2006-11-30 2006-11-30 Improved process for preparing cis-dithiocyanato-N,N'-bis2,2'-bipyridyl-4,4'-dicarboxylic acidruthenium(II)

Publications (2)

Publication Number Publication Date
KR20080049197A KR20080049197A (en) 2008-06-04
KR100847554B1 true KR100847554B1 (en) 2008-07-21

Family

ID=39805005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060119502A KR100847554B1 (en) 2006-11-30 2006-11-30 Improved process for preparing cis-dithiocyanato-N,N'-bis2,2'-bipyridyl-4,4'-dicarboxylic acidruthenium(II)

Country Status (1)

Country Link
KR (1) KR100847554B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205922B1 (en) * 2010-08-30 2012-11-28 나노캠텍주식회사 Ruthenium Complex Compound And Dye-sensitized Solar Cells Comprising The Same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324504B2 (en) 2009-12-02 2016-04-26 Sfc Co., Ltd. Organic metal dye, and photoelectric element and dye-sensitized solar cell using the organic metal dye
KR101297258B1 (en) 2010-07-09 2013-08-16 삼성에스디아이 주식회사 Dyes for dye-sensitive solar cells, manufacturing method thereof and solar cells using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139587A (en) 1999-11-16 2001-05-22 Kojima Kagaku Yakuhin Kk Method for production of ruthenium complex
EP1178084A1 (en) * 2000-07-31 2002-02-06 Neomat S.A. Processes for the preparation of carboxylate and phosphonate ruthenium polypyridine dyes and intermediates
JP2006143646A (en) 2004-11-19 2006-06-08 Koei Chem Co Ltd Method for producing ruthenium complex
JP2007009927A (en) * 2006-10-23 2007-01-18 Hitachi Ltd Variable valve gear for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139587A (en) 1999-11-16 2001-05-22 Kojima Kagaku Yakuhin Kk Method for production of ruthenium complex
EP1178084A1 (en) * 2000-07-31 2002-02-06 Neomat S.A. Processes for the preparation of carboxylate and phosphonate ruthenium polypyridine dyes and intermediates
JP2006143646A (en) 2004-11-19 2006-06-08 Koei Chem Co Ltd Method for producing ruthenium complex
JP2007009927A (en) * 2006-10-23 2007-01-18 Hitachi Ltd Variable valve gear for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205922B1 (en) * 2010-08-30 2012-11-28 나노캠텍주식회사 Ruthenium Complex Compound And Dye-sensitized Solar Cells Comprising The Same

Also Published As

Publication number Publication date
KR20080049197A (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP5165369B2 (en) Method for producing glycoluril and cucurbituril using microwaves
CN105153085B (en) Derivative of dibenzofuran and preparation method and application thereof
US11056287B2 (en) Isodiketopyrrolopyrrole dye and use thereof
KR100847554B1 (en) Improved process for preparing cis-dithiocyanato-N,N&#39;-bis2,2&#39;-bipyridyl-4,4&#39;-dicarboxylic acidruthenium(II)
US20140046064A1 (en) Process for the Synthesis of Precursor Complexes of Titanium Dioxide Sensitization Dyes Based on Ruthenium Polypyridine Complexes
CN106978158A (en) D π A type di-thiofuran ethylene photochromic compounds and preparation method thereof
CN110923744A (en) Method for constructing secondary amine compound through reductive amination reaction of electrochemical aldehyde
Motaung et al. Ru (II) and Co (II) complexes of bis (pyrazolyl) pyridine and pyridine-2, 6-dicarboxylic acid: synthesis, photo physical studies and evaluation of solar cell conversion efficiencies
CN108997591B (en) Visible-light response hafnium-based metal organic framework material and preparation method thereof
Morozkov et al. Ruthenium (II) complexes with phosphonate-substituted phenanthroline ligands as reusable photoredox catalysts
Tortelli et al. Property tuning in unsymmetrical alkoxy zinc phthalocyanines by introduction of perfluoro-tert-butoxy end groups
Peng et al. Simultaneous enhancement of fluorescence and solubility by N-alkylation and functionalization of 2-(2-thienyl) imidazo [4, 5-f][1, 10]-phenanthroline with heterocyclic bridges
CN104231001A (en) Symmetrical binuclear ruthenium complex and preparation method utilizing microwave
KR101569098B1 (en) Method for synthesizing heteroleptic ruthenium complex compounds
Zhang et al. Benzotrithiophene-based sp2 carbon-conjugated microporous polymers for green light-triggered oxidation of amines to imines
Malig et al. Synthesis and characterization of novel" Clicked" dimers of unsymmetrically substituted tetraphenylporphyrins
CN110452139B (en) Preparation method of 2-methyl-3-bromo-6-methylsulfonyl benzonitrile
CN115806677B (en) Ruthenium polymer with photo-thermal conversion performance and preparation method thereof
TW201229054A (en) Solar sensitive dye and synthetic methods thereof
Senapoti et al. Copper (I) and silver (I) complexes of 1-alkyl-2-(methyl)-4-(arylazo) imidazole. Synthesis, spectral studies and electrochemistry
KR101233806B1 (en) Improved method for manufacturing 2,2&#39;-bipyridine-4,4&#39;-dicarboxylic acid
Thathong et al. Two Ruthenium Complexes with Phenanthroline Ligand for Dye-Sensitized Solar Cells
CN102898479A (en) Microwave-assisted synthesis method for dual-core ruthenium (II) arene compound
Erdoğan et al. Synthesis of pyrene-based Fe (II)-complex and its photovoltaic properties
Goh Development of new heterogeneous vanadium photocatalysts for CC activation reactions

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 10