KR100847044B1 - Method of preparing clay nanoparticels-distributed polyol for producing urethane form - Google Patents

Method of preparing clay nanoparticels-distributed polyol for producing urethane form Download PDF

Info

Publication number
KR100847044B1
KR100847044B1 KR1020020083028A KR20020083028A KR100847044B1 KR 100847044 B1 KR100847044 B1 KR 100847044B1 KR 1020020083028 A KR1020020083028 A KR 1020020083028A KR 20020083028 A KR20020083028 A KR 20020083028A KR 100847044 B1 KR100847044 B1 KR 100847044B1
Authority
KR
South Korea
Prior art keywords
polyol
clay
producing
plate
slurry
Prior art date
Application number
KR1020020083028A
Other languages
Korean (ko)
Other versions
KR20040056527A (en
Inventor
김진태
오택수
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020020083028A priority Critical patent/KR100847044B1/en
Publication of KR20040056527A publication Critical patent/KR20040056527A/en
Application granted granted Critical
Publication of KR100847044B1 publication Critical patent/KR100847044B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

본 발명은 점토계 나노 입자가 분산된 우레탄 폼 제조용 폴리올의 제조 방법에 관한 것으로서, 이 제조 방법은 판상의 점토계 입자를 물에 분산시켜 슬러리를 제조하고, 상기 슬러리를 폴리올에 교반하면서 30분 내지 1시간 동안 적가하고, 얻어진 혼합물을 분별 증류하여 물을 제거하는 공정을 포함한다.The present invention relates to a method for producing a polyol for producing urethane foam in which clay-based nanoparticles are dispersed. The method for preparing a slurry is prepared by dispersing plate-like clay-based particles in water, and stirring the slurry in a polyol for 30 minutes to Dropwise for 1 hour and fractional distillation of the resulting mixture to remove water.

상기 제조 방법은 우레탄 제조의 원료인 폴리올에 판상의 점토 나노 입자를 균일하게 분산시켜, 폴리올을 제조함으로서 이를 이용하여 난연제를 사용하지 않고 난연성이 우수한 우레탄 폼을 제조할 수 있다.The production method by uniformly dispersing the plate-shaped clay nanoparticles in a polyol which is a raw material of the urethane production, by producing a polyol can be used to prepare a urethane foam excellent flame retardant without using a flame retardant.

우레탄,폴리올,점토나노입자,난연성Urethane, Polyol, Clay Nanoparticles, Flame Retardant

Description

점토계 나노 입자가 분산된 우레탄 폼 제조용 폴리올의 제조 방법{METHOD OF PREPARING CLAY NANOPARTICELS-DISTRIBUTED POLYOL FOR PRODUCING URETHANE FORM}METHODS OF PREPARING CLAY NANOPARTICELS-DISTRIBUTED POLYOL FOR PRODUCING URETHANE FORM}

도 1은 본 발명의 실시예 1 및 비교예 2의 폴리올의 X선 회절 측정 결과를 나타낸 그래프.1 is a graph showing the results of X-ray diffraction measurement of the polyol of Example 1 and Comparative Example 2 of the present invention.

[산업상 이용 분야][Industrial use]

본 발명은 점토계 나노 입자가 분산된 우레탄 폼 제조용 폴리올의 제조 방법에 관한 것으로서, 보다 상세하게는 난연제를 사용할 필요가 없는 점토계 나노 입자가 분산된 우레탄 폼 제조용 폴리올의 제조 방법에 관한 것이다.The present invention relates to a method for producing a polyol for producing urethane foam in which clay-based nanoparticles are dispersed, and more particularly, to a method for producing a polyol for producing urethane foam in which clay-based nanoparticles are not required to use a flame retardant.

[종래 기술][Prior art]

일반적으로 자동차 및 건축 분야에서는 충격 및 방음 등의 에너지 흡수 효과가 우수한 소재가 많이 사용된다. 에너지 흡수 소재로서 재생면과 합성 섬유의 수지 처리에 의해 만들어진 펠트를 사용하였으나, 펠트는 제조 비용이 높다는 단점이 있다. 이러한 단점에 의해 저렴하고 가공성이 용이하며, 우수한 에너지 흡수능, 복잡한 부분의 몰딩성, 저비중 및 저렴한 가공비 등의 장점을 가지고 있는 폴리우 레탄 폼이 많이 사용되고 있다. In general, a lot of materials that are excellent in energy absorption effects, such as shock and sound insulation are used in the automotive and construction fields. Although a felt made by the resin treatment of the recycled surface and the synthetic fiber is used as the energy absorbing material, the felt has a disadvantage of high manufacturing cost. Due to these drawbacks, polyurethane foams, which are inexpensive and easy to process, have advantages such as excellent energy absorption ability, molding of complex parts, low specific gravity, and low processing cost, are frequently used.

이러한 특성을 갖는 폴리우레탄 폼은 폴리올과 이소시아네이트를 혼합하고, 이 혼합물에 발포제, 난연제 등을 첨가하여 제조된다. 이때 사용되는 난연제로 인하여, 만약 화재가 발생하였을 경우 폴리우레탄 폼에 포함되어 있는 난연제로부터 인체에 유해한 독성 가스가 발생되는 문제점이 있다. 이로 인하여 최근에는 난연제 사용이 점차 규제되고 있다. Polyurethane foams having these properties are prepared by mixing a polyol and an isocyanate and adding a blowing agent, a flame retardant or the like to the mixture. At this time, due to the flame retardant used, if a fire occurs there is a problem that toxic gas harmful to the human body is generated from the flame retardant contained in the polyurethane foam. For this reason, the use of flame retardants has been gradually regulated in recent years.

본 발명은 난연제를 사용할 필요없이 난연성 우레탄 폼을 제조할 수 있는 점토계 나노 입자가 분산된 우레탄 폼 제조용 폴리올의 제조 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for producing a polyol for preparing urethane foam in which clay-based nanoparticles are dispersed, which can produce a flame retardant urethane foam without using a flame retardant.

상기 목적을 달성하기 위하여, 본 발명은 판상의 점토계 입자를 물에 분산시켜 점토계 나노 입자 슬러리를 제조하고; 상기 점토계 나노 입자 슬러리를 폴리올에 교반하면서 적가하고; 얻어진 혼합물을 분별 증류하여 물을 제거하는 공정을 포함하는 점토계 나노 입자가 분산된 우레탄 폼 제조용 폴리올의 제조 방법을 제공한다.In order to achieve the above object, the present invention is to prepare a clay-based nanoparticle slurry by dispersing the plate-shaped clay-based particles in water; Adding the clay nanoparticle slurry to the polyol dropwise with stirring; Provided is a method for producing a polyol for producing urethane foam in which clay-based nanoparticles are dispersed, including a step of fractionally distilling the obtained mixture to remove water.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 화재 발생시 인체에 유해한 독성 가스를 발생시키는 난연제를 사용하지 않으면서 난연성 우레탄 폼을 제조할 수 있는 폴리올의 제조 방법에 관한 것이다. The present invention relates to a method for producing a polyol capable of producing a flame retardant urethane foam without using a flame retardant that generates toxic gases harmful to the human body in case of fire.                     

본 발명의 제조 방법은 난연성 우레탄 폼 제조의 원료 물질인 폴리올에 판상의 점토계 입자를 나노 사이즈로 분산시켜, 폴리올과 나노 사이즈의 판상 점토계가 침전되지 않고 균일하게 분산되어 있는 점토계 나노 입자가 분산된 폴리올을 제조하는 방법이다. 즉, 무기계 입자가 첨가된 폴리올을 사용하여, 난연제를 사용하지 않고 우수한 난연성을 갖는 우레탄 폼을 제조할 수 있으며, 또한, 무기계 입자가 나노 사이즈로 분산되어 있어 무기계 입자들이 침전되는 문제점을 방지할 수 있다.The production method of the present invention is to disperse the plate-shaped clay-based particles in a nano-size polyol, which is a raw material for the production of flame-retardant urethane foam, and to disperse uniformly dispersed clay-based nano-particles without polyol and nano-sized plate-like clay-based precipitation To prepare a polyol. That is, by using the polyol to which the inorganic particles are added, it is possible to produce a urethane foam having excellent flame retardancy without using a flame retardant, and also to prevent the problem that the inorganic particles are precipitated because the inorganic particles are dispersed in nano size. have.

상기 무기계 입자로는 판상의 점토계 입자를 이용하였으며, 판상의 점토계 입자를 물에 첨가하여 교반시키면, 판상의 점토계 입자 층간층간에 물분자가 삽입되어 팽윤되면서 층간이 박리되어, 즉 물속에서 완전히 붕괴되어 두께가 나노 사이즈로 되는 성질과, 폴리올이 물속에 잘 혼합되는 성질을 이용하여 적은 양의 무기계 입자, 즉 점토계 입자를 폴리올에 첨가하여도 충분한 난연성을 폴리올에 부여할 수 있는 방법이다. 즉, 일반적으로 판상의 점토계 입자를 고분자 물질 속에 나노 크기로 분산시키기 위해서는 아민 화합물의 유기화제를 사용하였으나, 폴리올을 이용한 우레탄 제조시에는 아민 화합물이 우레탄 반응의 촉진제로 작용하여 순간적으로 반응이 일어나서 유기화제 사용을 이용할 수 없는 것을 본 발명에서는 상술한 판상의 점토계 나노 입자의 물에 대한 흡수 및 박리 특성을 이용하여 판상의 점토계 입자를 나노 크기로 폴리올 사이에 분산시킬 수 있었다. As the inorganic particles, plate-like clay-based particles were used, and when plate-like clay-based particles were added to the water and stirred, water molecules were inserted into the interlaminar layers of plate-like clay particles and swelled to remove the interlayers, that is, in water It is a method that can impart sufficient flame retardancy to polyol by adding a small amount of inorganic particles, that is, clay particles, to the polyol by using the property of completely collapsed to become nano-sized and the polyol is well mixed in water. . That is, in general, an organic agent of the amine compound was used to disperse the plate-shaped clay particles in the polymer material at a nano size, but when preparing the urethane using the polyol, the amine compound acted as an accelerator of the urethane reaction, causing an instant reaction. In the present invention, it was not possible to use the organizing agent, and the plate-like clay-based particles could be dispersed between the polyols at a nano size by using the above-described absorption and peeling properties of water of the plate-like clay-based nanoparticles.

본 발명의 제조 방법은 먼저 판상의 점토계 입자를 물에 분산시켜 점토계 입자가 나노 상태로 분산된 슬러리를 제조한다.The manufacturing method of the present invention first prepares a slurry in which clay-based particles are dispersed in a nano state by dispersing plate-shaped clay-based particles in water.

상기 판상의 점토계 입자는 Si와 Al 팔면제가 2:1의 비율로 3층 구조(Si-Al- Si)가 모여 하나의 판을 형성하는 스멕타이트(smecite)계 점토로서, 그 예로 몬모릴로나이트(montmorillonite), 헥토라이트(hectorite) 또는 벤토나이트(bentonite)를 들 수 있다. 상기 판의 하나의 두께는 약 1nm 정도이고, 판과 판 사이의 거리는 약 1nm로 알려져 있다. 또한, 이러한 하나의 판이 여러 겹으로 이루어진 층상 구조(layer structure)를 이루고 있다. 아울러, 상기 스멕타이트계 점토의 판과 판 사이에는 Na+ 또는 Ca+와 같은 교환성 양이온이 존재하고 있으며 이와 같은 교환성 양이온에 의해 스멕타이트계 클레이를 물에 첨가하면, 물을 흡수하여 팽창되거나 또는 층상 구조를 이루고 있는 각각의 판이 붕괴되는 수화 작용이 일어나게 된다. 보통 이러한 스멕타이트계 판상의 점토계 입자는 자신의 부피의 20 내지 30 배의 물을 흡수하는 것으로 알려져 있다.The plate-shaped clay particles are smectite-based clays in which a three-layer structure (Si-Al-Si) is collected at a ratio of 2: 1 of Si and Al octahedra to form a plate, for example, montmorillonite , Hectorite or bentonite. One plate is about 1 nm thick and the distance between the plates is known to be about 1 nm. In addition, such a plate forms a layer structure composed of several layers. In addition, an exchange cation such as Na + or Ca + exists between the plate of the smectite-based clay and when the smectite-based clay is added to water by such exchange cations, the water absorbs the water and expands or forms a layer. Hydration occurs when each plate in the structure collapses. Usually these smectite-based clay-based particles are known to absorb 20 to 30 times their volume.

상기 슬러리에 실란계 화합물을 더욱 첨가할 수도 있다. 실란계 화합물의 첨가량은 상기 판상의 점토계 입자 중량에 대하여 0.1 내지 5 중량%가 바람직하며, 실란계 화합물의 양이 0.1 중량% 미만인 경우에는 실란계 화합물을 더욱 첨가함에 따른 효과가 거의 없고, 5 중량%를 첨가하는 경우에는 제조된 폴리올을 이용하여 우레탄 폼을 제조할 때 물성이 저하될 우려가 있어 바람직하지 않다.You may further add a silane type compound to the said slurry. The amount of the silane compound added is preferably 0.1 to 5% by weight based on the weight of the plate-like clay particles, and when the amount of the silane compound is less than 0.1% by weight, the effect of further addition of the silane compound has little effect. In the case where the wt% is added, there is a possibility that the physical properties may decrease when the urethane foam is manufactured using the prepared polyol, which is not preferable.

상기 실란계 화합물은 상기 판상의 점토계 입자 표면에 있는 하이드록시기(-OH)에 실란이 반응을 하여 판상의 층간을 넓게 해주고, 이러한 화학적 결합에 따라 판상의 점토계 입자의 침전을 효과적으로 막아줄 수 있다. 이러한 실란계 화합물로는 가능하면 물에 혼합이 잘되는 형태의 실란이 유리하고 일반적인 실란도 가능 하다. 그 대표적인 예로 3-아미노프로필 트리에톡시 실란, 3-머캅토프로필 트리에톡시 실란, 3-머캅토프로필 트리메톡시 실란 또는 비닐트리에톡시실란 등을 사용할 수 있다.The silane-based compound is a silane reaction on the hydroxy group (-OH) on the surface of the plate-like clay particles to widen the interlaminar layer, and this chemical bond effectively prevents precipitation of the plate-like clay particles Can be. As such a silane-based compound, a silane in a form well mixed with water is advantageous if possible, and general silane is also possible. Representative examples thereof include 3-aminopropyl triethoxy silane, 3-mercaptopropyl triethoxy silane, 3-mercaptopropyl trimethoxy silane or vinyltriethoxysilane.

상기 점토계 나노 입자가 분산된 슬러리에 폴리올을 첨가한다. 폴리올의 첨가량은 폴리올과 점토계 나노 입자의 혼합 비율이 폴리올 100 중량부에 대하여 점토계 나노 입자가 0.5 내지 15 중량부가 되도록 조절한다. 폴리올 100 중량부에 대하여 점토계 나노 입자의 양이 0.5 중량부 미만인 경우에는 나노 입자의 첨가량이 너무 적어서 무기질의 첨가에 따른 효과를 얻을 수 없고, 15 중량부를 초과하는 경우에는 액상의 폴리올의 점도가 너무 많이 올라가 우레탄 제조 반응시 가공성의 어려움이 있어 바람직하지 않다.Polyol is added to the slurry in which the clay-based nanoparticles are dispersed. The addition amount of the polyol is adjusted so that the mixing ratio of the polyol and the clay-based nanoparticles is 0.5 to 15 parts by weight of the clay-based nanoparticles based on 100 parts by weight of the polyol. When the amount of the clay-based nanoparticles is less than 0.5 parts by weight with respect to 100 parts by weight of polyol, the amount of nanoparticles added is too small to obtain the effect of the addition of minerals. It is not preferable because there is difficulty in processing the urethane production reaction going up too much.

이때, 폴리올은 물과 혼합이 균일하게 잘 혼합되므로, 상기 슬러리에 폴리올을 교반하면서 적가하여 폴리올 속에 판상의 점토계 슬러리가 분산되도록 한다. 상기 적가 시간은 30분 내지 1시간이 바람직하며, 적가 시간이 30분다 짧을 경우에는 폴리올 속에 판상의 점토계 슬러리 분산이 효과적으로 발생되지 않고, 1시간이면 충분하므로 더 이상 긴 시간 동안 실시할 필요는 없다. 이 반응은 온도에는 큰 영향이 없으므로 상온에서 실시하면 된다. 이 혼합물을 6 내지 24시간 동안 고속교반기를 통해 강력하게 교반한다. 교반 시간이 6시간 미만일 경우에는 슬러리상을 이루고 있는 점토계 입자가 뭉쳐 마이크로 사이즈의 입자가 형성될 수 있어 바람직하지 않고, 24시간을 초과하여 실시하는 경우에는 폴리올이 점토계 나노입자 층간으로 충분히 삽입될 수 있지만 점토계 나노입자들끼리 계속되는 충돌로 인하여 다시 뭉쳐져 반응이 끝난 후 침전이 발생할 수 있어 바람직하지 않다.At this time, since the polyol is mixed well with water uniformly, the polyol is added dropwise to the slurry with stirring to disperse the plate-like clay slurry in the polyol. The dropping time is preferably 30 minutes to 1 hour, and when the dropping time is shorter than 30 minutes, the dispersion of plate-like clay-based slurry in the polyol does not occur effectively, and 1 hour is sufficient, so it is not necessary to carry out a longer time. . Since this reaction does not have a big influence on temperature, it is good to carry out at normal temperature. The mixture is vigorously stirred through a high speed stirrer for 6 to 24 hours. If the stirring time is less than 6 hours, the clay-based particles in the slurry phase may be agglomerated to form micro-sized particles, and in the case of more than 24 hours, the polyol is sufficiently inserted into the interlayer of the clay-based nanoparticles. However, the clay-based nanoparticles may not be preferable because of the continuous collisions, which may re-aggregate and precipitate after the reaction.

이어서, 상기 혼합물을 분별 증류하여 물을 제거한다. 얻어진 생성물에는 폴리올 속에 판상의 점토계 입자가 나노 상태로 분산되어 있게 된다. 물이 제거된 후, 기포가 많이 존재하는 경우 진공 오븐기에서 미량의 잔존 물과 기포를 제거하는 공정을 더욱 실시할 수도 있다.The mixture is then fractionally distilled to remove water. In the obtained product, plate-like clay particles are dispersed in a polyol in a nano state. After the water is removed, if there are many bubbles, a step of removing a small amount of residual water and bubbles in the vacuum oven may be further performed.

이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

판상의 점토계 몬모릴로나이트 입자 50 그램을 상온에서 물 1 리터에 분산시키고 완전히 팽창될 때까지 2시간 정도 고속교반기를 통해서 분산시켰다. 반응이 완료된 후 물 속에 판상의 점토계 무기 입자가 완전 박리가 되면 점도가 있는 점토계 나노 입자가 분산된 슬러리가 얻어진다. 50 grams of plate-based montmorillonite particles were dispersed in a liter of water at room temperature and dispersed through a high speed stirrer for about 2 hours until fully expanded. After the reaction is completed, when the plate-like clay-based inorganic particles are completely peeled off, a slurry in which viscous clay-based nanoparticles are dispersed is obtained.

상기 슬러리를 폴리올 2 리터에 약 30분 정도의 시간동안 적가하면서 고속교반기를 통해 혼합하였다. 이 혼합물을 6 시간동안 고속교반기를 통해 5000 rpm의 속도로 강력하게 교반하였다. 이어서, 이 혼합물을 분별 증류하여 물을 제거하고, 진공 오븐에서 미량의 잔존 물과 기포를 제거하여 최종적으로 폴리올에 판상 점토계 입자가 나노사이즈로 분산된 폴리올을 얻었다.The slurry was added dropwise to 2 liters of polyol for about 30 minutes while mixing through a high speed stirrer. The mixture was vigorously stirred at a speed of 5000 rpm through a high speed stirrer for 6 hours. Subsequently, the mixture was fractionally distilled to remove water, and a small amount of residual water and bubbles were removed in a vacuum oven to finally obtain a polyol in which plate-like clay particles were dispersed in a polyol in nano size.

(실시예 2)(Example 2)

실란계 화합물인 3-아미노프로필 트리에톡시 실란을 물과 판상의 점토계 나 노 입자 혼합물에 0.1 중량%의 양으로 첨가하고 6시간 반응시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다. 3-aminopropyl triethoxy silane, a silane-based compound, was added in the same manner as in Example 1 except that the mixture was added to the clay-based nanoparticle mixture in an amount of 0.1 wt% and reacted for 6 hours.

(비교예 1)(Comparative Example 1)

폴리올 2 리터에 무기계 입자인 탄산 칼슘 50 그램을 첨가하고, 이 혼합물을 고속교반기를 통해 강력하게 분산시켰다. 얻어진 혼합물을 진공 오븐기에서 잔존하는 기포를 제거하여 탄산칼슘이 분산된 폴리올을 제조하였다.To 2 liters of polyol was added 50 grams of inorganic particles calcium carbonate and the mixture was strongly dispersed through a high speed stirrer. The obtained mixture was removed in a vacuum oven to prepare a polyol in which calcium carbonate was dispersed.

(비교예 2)(Comparative Example 2)

폴리올 2 리터에 판상의 점토계 입자 50 그램을 첨가하고, 이 혼합물을 고속교반기를 통해 강력하게 분산시켰다. 얻어진 혼합물을 진공 오븐기에서 잔존하는 기포를 제거하여 판상의 점토계 입자가 분산된 폴리올 용액을 제조하였다.50 grams of platy clay particles were added to 2 liters of polyol and the mixture was strongly dispersed through a high speed stirrer. The resulting mixture was removed from the vacuum oven to prepare a polyol solution in which plate-like clay particles were dispersed.

그러나 비교예 2의 방법으로 제조된 폴리올은 판상의 점토계 입자가 층과층사이의 인력이 너무 강하게 작용하므로 폴리올 입자가 삽입되거나 판상의 점토계 입자의 박리가 발생하지 않아 반응 폴리올 속에 분산된 무기입자가 1시간 이내에 모두 침전되어 완전한 나노화가 되지 않았다.However, in the polyol prepared by the method of Comparative Example 2, since the attractive force between the layers and layers of the plate-like clay-based particles act so strongly that the polyol particles are not inserted or the separation of the plate-like clay-based particles does not occur, the inorganic dispersed in the reaction polyol The particles were all precipitated within 1 hour and did not fully nanonize.

(비교예 3)(Comparative Example 3)

아민 유기화제 처리된 판상의 점토계 입자를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다. 비교예 3의 방법에서 사용한 유기화제 처리된 판상의 점토계 입자는 물속에서 팽창되지 않아 결과적으로 목적하는 폴리올이 얻어지지 않았다.The same process as in Example 1 was carried out except that plate-like clay particles treated with an amine organizing agent were used. The organic agent-treated plate-like clay particles used in the method of Comparative Example 3 did not expand in water and as a result, the desired polyol was not obtained.

상기 실시예 1 내지 2 및 비교예 1 내지 3의 시간에 따른 침전 상태를 측정 하여 육안으로 관찰하여 그 결과를 하기 표 1에 나타내었다.The precipitation state of the Examples 1 to 2 and Comparative Examples 1 to 3 was measured and visually observed, and the results are shown in Table 1 below.

1시간1 hours 5시간5 hours 24시간24 hours 5일5 days 15일15th 30일30 days 비교예 1Comparative Example 1 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 비교예 2Comparative Example 2 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 비교예 3Comparative Example 3 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 침전Sedimentation 실시예 1Example 1 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 실시예 2Example 2 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled 침전않됨Not settled

상기 표 1에 나타낸 것과 같이, 실시예 1 및 2는 30일이 지나도 침전이 되지 않은 것에 비하여, 비교예 1 내지 3은 1시간만에 침전이 발생된 것을 알 수 있다. 따라서, 이 결과로부터 실시예 1 내지 2의 폴리올 용액에는 판상의 점토계 입자가 나노 사이즈로 분산되어 있음을 예측할 수 있다.As shown in Table 1, Examples 1 and 2 are not precipitated even after 30 days, Comparative Examples 1 to 3 it can be seen that precipitation occurred in 1 hour. Therefore, it can be estimated from this result that plate-like clay particles are dispersed in nano size in the polyol solution of Examples 1-2.

실시예 1의 폴리올에 점토계 입자가 나노 사이즈로 존재하는지를 알아보기 위하여, X-선 회절을 측정하여 그 결과를 도 1에 나타내었다. 도 1에 나타낸 것과 같이, 실시예 1의 경우에는 피크가 나타나지 않으므로 나노화되었음을 알 수 있고, 비교예 2의 경우에는 일반적인 판상의 점토계 입자의 피크(약 7°)와 비슷한 6.5-7°영역에서 피크가 나타났으므로 나노화되지 못했음을 알 수 있다.In order to determine whether the clay particles are present in the polyol of Example 1 in nano size, X-ray diffraction was measured and the results are shown in FIG. 1. As shown in FIG. 1, it can be seen that in Example 1, since no peak appears, it was nano-ized, and in Comparative Example 2, in a region of 6.5-7 ° similar to the peak (about 7 °) of a general plate-like clay particle. As the peak appeared, it can be seen that it was not nanonized.

본 발명의 제조 방법은 우레탄 제조의 원료인 폴리올에 판상의 점토 나노 입자를 균일하게 분산시켜, 난연성 폴리올을 제조함으로서 이를 이용하여 난연재를 사용하지 않고 난연성이 우수한 우레탄 폼을 제조할 수 있다.The production method of the present invention by uniformly dispersing the plate-shaped clay nanoparticles in a polyol which is a raw material for the production of urethane, by producing a flame-retardant polyol can be used to prepare a urethane foam excellent flame retardant without using a flame retardant.

Claims (6)

판상의 점토계 나노 입자를 물에 분산시켜 슬러리를 제조하고;A slurry was prepared by dispersing plate-shaped clay-based nanoparticles in water; 상기 슬러리를 폴리올에 교반하면서 적가하고;Adding the slurry to the polyol dropwise with stirring; 얻어진 혼합물을 분별 증류하여 물을 제거하는Fractional distillation of the resulting mixture to remove water 공정을 포함하는 우레탄 폼 제조용 난연성 폴리올의 제조 방법.A method for producing a flame retardant polyol for producing urethane foam comprising a step. 제 1 항에 있어서, 상기 슬러리에 실란계 화합물을 더욱 첨가하는 것인 우레탄 폼 제조용 난연성 폴리올의 제조 방법.The method for producing a flame retardant polyol for producing urethane foam according to claim 1, further comprising adding a silane compound to the slurry. 제 2 항에 있어서, 상기 슬러리에 첨가되는 실란계 화합물의 양은 0.1 내지 5 중량%인 우레탄 폼 제조용 난연성 폴리올의 제조 방법.The method of claim 2, wherein the amount of the silane compound added to the slurry is 0.1 to 5% by weight. 제 2 항에 있어서, 상기 실란계 화합물은 3-아미노프로필 트리에톡시 실란, 3-머캅토프로필 트리에톡시실란, 3-머캅토프로필 트리메톡시 실란 및 비닐트리에톡시실란으로 이루어진 군에서 선택되는 것인 우레탄 폼 제조용 난연성 폴리올의 제조 방법.The compound according to claim 2, wherein the silane compound is selected from the group consisting of 3-aminopropyl triethoxy silane, 3-mercaptopropyl triethoxysilane, 3-mercaptopropyl trimethoxy silane and vinyltriethoxysilane. Method for producing a flame retardant polyol for producing urethane foam. 제 1 항에 있어서, 상기 적가 시간은 30분 내지 1시간인 우레탄 폼 제조용 난연성 폴리올의 제조 방법.The method of claim 1, wherein the dropping time is 30 minutes to 1 hour. 제 1 항에 있어서, 상기 판상의 점토계 나노 입자는 몬모릴로나이트, 헥토라이트 및 벤토나이트로 이루어진 군에서 선택되는 것인 우레탄 폼 제조용 난연성 폴리올의 제조 방법.The method of claim 1, wherein the plate-shaped clay-based nanoparticles are selected from the group consisting of montmorillonite, hectorite and bentonite.
KR1020020083028A 2002-12-24 2002-12-24 Method of preparing clay nanoparticels-distributed polyol for producing urethane form KR100847044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020083028A KR100847044B1 (en) 2002-12-24 2002-12-24 Method of preparing clay nanoparticels-distributed polyol for producing urethane form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020083028A KR100847044B1 (en) 2002-12-24 2002-12-24 Method of preparing clay nanoparticels-distributed polyol for producing urethane form

Publications (2)

Publication Number Publication Date
KR20040056527A KR20040056527A (en) 2004-07-01
KR100847044B1 true KR100847044B1 (en) 2008-07-17

Family

ID=37349194

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020083028A KR100847044B1 (en) 2002-12-24 2002-12-24 Method of preparing clay nanoparticels-distributed polyol for producing urethane form

Country Status (1)

Country Link
KR (1) KR100847044B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071322A1 (en) 2019-10-10 2021-04-15 주식회사 경동원 Organic/inorganic composite synthetic resin using highly flame-retardant organically modified silicate and method for preparing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226070A (en) * 2020-10-19 2021-01-15 山东博顺新材料有限责任公司 High-flame-retardant polyurethane material added with expanded graphite and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971623A (en) * 1995-09-07 1997-03-18 Nisshinbo Ind Inc Dope composition for producing hard polyurethane foam
US5693696A (en) 1993-12-14 1997-12-02 Mcp Industries, Inc. Modified polyurethane including filler and method of manufacture thereof
KR20020017569A (en) * 2000-08-31 2002-03-07 구광시 Polyurethane containing organophilic clay and manufacturing method thereof
KR20040059499A (en) * 2002-12-24 2004-07-06 재단법인 포항산업과학연구원 Nano composite rigid foam composition for ice pack comprising silane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693696A (en) 1993-12-14 1997-12-02 Mcp Industries, Inc. Modified polyurethane including filler and method of manufacture thereof
JPH0971623A (en) * 1995-09-07 1997-03-18 Nisshinbo Ind Inc Dope composition for producing hard polyurethane foam
KR20020017569A (en) * 2000-08-31 2002-03-07 구광시 Polyurethane containing organophilic clay and manufacturing method thereof
KR20040059499A (en) * 2002-12-24 2004-07-06 재단법인 포항산업과학연구원 Nano composite rigid foam composition for ice pack comprising silane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071322A1 (en) 2019-10-10 2021-04-15 주식회사 경동원 Organic/inorganic composite synthetic resin using highly flame-retardant organically modified silicate and method for preparing same
KR20210042763A (en) 2019-10-10 2021-04-20 주식회사 경동원 Organic-inorganic composite resin using high flame retardant organic modified silicate and manufacturing method for the same
US11530314B2 (en) 2019-10-10 2022-12-20 Kyung Dong One Corporation Method for manufacturing both organic-inorganic composite synthetic resin containing highly flame-retardant organically modified nanoparticle and processed product thereof

Also Published As

Publication number Publication date
KR20040056527A (en) 2004-07-01

Similar Documents

Publication Publication Date Title
Gul et al. Research progress on properties and applications of polymer/clay nanocomposite
Bee et al. Characterization of silylated modified clay nanoparticles and its functionality in PMMA
CA2255488C (en) Clay/organic chemical compositions useful as additives to polymer, plastic and resin matrices to produce nanocomposites and nanocomposites containing such compositions
Wang et al. Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors
Salahuddin Layered silicate/epoxy nanocomposites: synthesis, characterization and properties
US7592387B2 (en) Clay-polyurethane nanocomposite and method for preparing the same
Das et al. Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review
SA05260377B1 (en) Clay comprising charge-balancing organic ions and nanocomposite materials comprising the same
US20230052386A1 (en) Use of geopolymeric additive in combination with non-brominated flame retardant in polymer foams
Shepelev et al. Nanotechnology based thermosets
KR20050117629A (en) Clay-polyurethane nano composite and method for preparing the same
KR20060097109A (en) Synthetic organoclay materials
Kausar Physical properties of hybrid polymer/clay composites
Agag et al. Polybenzoxazine-clay nanocomposites
Şen Effect of both silane‐grafted and ion‐exchanged organophilic clay in structural, thermal, and mechanical properties of unsaturated polyester nanocomposites
KR100847044B1 (en) Method of preparing clay nanoparticels-distributed polyol for producing urethane form
Qian et al. Preparation of sepiolite-based hybrid silica sol and its application in polyester/cotton fabric flame retardant finishing
KR101915595B1 (en) Nanoclays containing flame retardant chemicals for fire retardant applications
Someya et al. Morphology, thermal, and mechanical properties of vinylester resin nanocomposites with various organo‐modified montmorillonites
Mazrouaa Polypropylene nanocomposites
Dasan Nanoclay/polymer composites: recent developments and future prospects
Nabipour et al. Adenine as an efficient adsorbent for zinc ions removal from wastewater to in situ form bio-based metal–organic frameworks: A novel approach to preparing fire-safe polymers
KR100853441B1 (en) Clay modified with silane compound, polymer/clay nanocomposite containing the clay compound, and methods for preparing them
Gillela et al. Advancing thermoset polymer composites with nanoclay reinforcement: a comprehensive investigation within composite interfaces
Mao Impact of formulation and processing parameters on mechanical properties of magadiite/elastomer composites

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120705

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130704

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee