KR100846837B1 - Process for recovering basic zinc carbonate with high purity - Google Patents

Process for recovering basic zinc carbonate with high purity Download PDF

Info

Publication number
KR100846837B1
KR100846837B1 KR1020070033553A KR20070033553A KR100846837B1 KR 100846837 B1 KR100846837 B1 KR 100846837B1 KR 1020070033553 A KR1020070033553 A KR 1020070033553A KR 20070033553 A KR20070033553 A KR 20070033553A KR 100846837 B1 KR100846837 B1 KR 100846837B1
Authority
KR
South Korea
Prior art keywords
zinc
carbonate
sulfate
filtrate
ammonia
Prior art date
Application number
KR1020070033553A
Other languages
Korean (ko)
Inventor
공도영
김수태
Original Assignee
서안켐텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서안켐텍 주식회사 filed Critical 서안켐텍 주식회사
Priority to KR1020070033553A priority Critical patent/KR100846837B1/en
Application granted granted Critical
Publication of KR100846837B1 publication Critical patent/KR100846837B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A process for recovering basic zinc carbonate with high purity is provided to obtain a basic carbonate with a high purity which hardly contains an iron component, and obtain a final target material at a low temperature as compared with a conventional method by applying a small amount of sodium carbonate or sodium hydroxide when forming ammonia. A process for recovering a basic zinc carbonate comprises: dissolving zinc sulfate in which iron sulfate is present into water; applying a zinc powder to the zinc sulfate solution; filtering the mixed solution to obtain a filtrate; adding carbonate to the filtrate to form a precipitate; recovering the formed precipitate; adding ammonia water to the precipitate to obtain a zinc carbonate-ammonia complex in a liquid phase; filtering the zinc carbonate-ammonia complex to obtain a filtrate; adding sodium carbonate or sodium hydroxide to the filtrate; and pyrolyzing the mixture to precipitate a basic zinc carbonate. The zinc powder is added in the amount of 1 to 5 weight parts based on the total weight of iron sulfate and zinc sulfate. The sodium carbonate or sodium hydroxide is added to the filtrate in the amount of 1 to 5 weight parts with respect to 100 weight parts of the filtrate before pyrolyzing the mixture. The pyrolysis is performed at a temperature of less than 100 deg.C.

Description

고순도 염기성 탄산아연의 회수방법 {PROCESS FOR RECOVERING BASIC ZINC CARBONATE WITH HIGH PURITY}Recovery method of high purity basic zinc carbonate {PROCESS FOR RECOVERING BASIC ZINC CARBONATE WITH HIGH PURITY}

본 발명은 아연재, 아연 스크랩, 전기로 더스트 등의 아연 화합물을 함유하는 혼합물을 황산이나 염산에 가한 후, 이를 여과하여 얻은 여액에 아연말을 가하여 황산제2철이나 염화제2철을 환원시키고, 여기에 탄산염을 반응시켜 얻어진 반응 혼합물을 여과하여 얻어진 침전물에 암모니아수와 반응시켜 탄산아연 암모니아 착염이나 염산아연 암모니아 착염으로 한 후, 여기에 소량의 탄산나트륨 또는 수산화나트륨을 첨가하여 저온에서 가열하여 암모니아를 구축시켜 염기성 탄산아연을 회수하는 방법에 관한 것이다. In the present invention, a mixture containing zinc compounds such as zinc material, zinc scrap, and electric dust is added to sulfuric acid or hydrochloric acid, and then zinc powder is added to the filtrate obtained by filtration to reduce ferric sulfate or ferric chloride. The reaction mixture obtained by reacting the carbonate with this is reacted with ammonia water in a precipitate obtained by filtration to form zinc ammonia complex salt or zinc hydrochloride ammonia complex salt, and then a small amount of sodium carbonate or sodium hydroxide is added thereto and heated at low temperature to ammonia. And to recover basic zinc carbonate.

염기성 탄산아연은 방부제, 안료, 도자기, 고무 첨가제나 화장료, 동물 사료 첨가용 무기 미네랄 또는 이를 가열하여 산화아연을 얻는 데 사용할 수 있다. 특히, 아연화합물은 전량 수입에 의존하고 있기 때문에 상기 아연 스크랩, 아연재, 아연도금 스크랩 등으로부터 탄산아연을 분리하여 제공하는 것은 수입대체 효과가 있을 뿐 아니라, 산업폐기물을 재활용하게 되어 경제적으로 유익하고, 환경을 보존 할 수 있게 된다. Basic zinc carbonate can be used to obtain preservatives, pigments, ceramics, rubber additives or cosmetics, inorganic minerals for the addition of animal feed or zinc oxide by heating them. In particular, since zinc compounds rely entirely on imports, providing zinc carbonate separately from zinc scraps, zinc materials, zinc-plated scraps, etc. is not only an import substitution effect but also economically beneficial as it recycles industrial wastes. In this way, the environment can be preserved.

최근 국내외에서 도금 스크랩 중에서 발생하는 아연재, 아연합금 등에서 발생하는 황동 산화재 스크랩 등 아연재 스크랩이 다량 발생되고 있다. 이러한 아연재는 평균 55% 내지 79%의 아연을 함유하고 있으며, 전기로 더스트는 약 30%의 아연을 함유하고 있다. Recently, a large amount of zinc scraps such as zinc oxide and zinc oxide, which are generated from plating scraps at home and abroad, are generated. These zinc materials contain an average of 55% to 79% zinc, and the electric dust contains about 30% zinc.

이러한 상태의 아연재 또는 전기로 더스트로부터 순수한 탄산아연을 회수하여 고순도 염기성 탄산아연을 그대로 상품화하는 방법이 알려져 있다. 여기서, 채용되는 정제방법으로서는 고농도 염화암모늄 수용액의 암모늄 착염법, 황산암모늄 암모니아 착염법 등이 알려져 있다. It is known to recover pure zinc carbonate from dust of zinc material or electricity in such a state and commercialize high purity basic zinc carbonate as it is. As the purification method employed here, the ammonium complex salt method of the high concentration ammonium chloride aqueous solution, the ammonium sulfate ammonium complex salt method, etc. are known.

또한, 불순한 아연재 또는 전기로 더스트에 암모니아수 및 중탄산암모늄 수용액을 첨가, 교반하여 탄산아연 암모니아로 착염화하고, 이를 여과하여 얻어진 여액을 가열하여 암모니아를 회수하고, 침전하는 탄산아연을 회수하는 방법이 알려져 있다.In addition, a method of recovering ammonia by recovering ammonia by heating the filtrate obtained by adding and stirring aqueous ammonia and ammonium bicarbonate aqueous solution to an impure zinc material or electric dust and stirring. Known.

또 다른 방법으로는 아연재 또는 전기로 더스트에 황산 또는 염산을 가하여 황산아연 또는 염화아연으로 하고, 생성된 용액을 정제하고, 여기에 탄산나트륨 수용액을 가하여 탄산아연 및 황산나트륨, 염화나트륨 염을 형성한 후, 이 염이 함유된 액을 가열하여 탄산아연을 침전시키고, 여과 분리하여 탄산아연을 얻는다. 그런 다음 이를 수세, 건조하여 최종 제품으로 하는 것이 알려져 있다. As another method, sulfuric acid or hydrochloric acid is added to zinc dust or electric dust to make zinc sulfate or zinc chloride, the resulting solution is purified, and an aqueous sodium carbonate solution is added thereto to form zinc carbonate, sodium sulfate, and sodium chloride salt. The liquid containing this salt is heated to precipitate zinc carbonate, and it is separated by filtration to obtain zinc carbonate. It is then known to wash with water and dry it to the final product.

그러나, 이러한 공정 및 정제 방법들은 많은 폐수를 발생하고, 또한 황산 및 염산 등의 무기산을 사용한 후, 이를 중화하기 위해 다량의 염기성 화합물을 사용 하여야 하며, 중화 및 수세에 의해 실질적으로 고순도의 염기성 탄산아연을 얻는 것이 어려운 것 등 여러 가지의 문제점이 있다. However, these processes and purification methods generate a lot of wastewater, and also after the use of inorganic acids such as sulfuric acid and hydrochloric acid, a large amount of basic compounds must be used to neutralize them, and substantially high purity basic zinc carbonate by neutralization and washing with water. There are several problems, including the difficulty of obtaining.

더욱이 최종 제품인 염기성 탄산아연은 그의 백색도가 순도를 좌우할 정도로 중요한데, 미량 존재하는 철분(Fe2O3), 망간, 망간 산화물, 납, 산화납, 동, 산화동 등의 불순물의 유입으로 인하여 제품의 상품적 가치를 저하시키고, 특히 일본에서는 동물 사료용 미네랄로서 염기성 탄산아연이 급증하고 있으나, 유색화된 탄산아연의 사용하지 않고 있어, 고순도 백색의 염기성 탄산아연의 제공이 요망되고 있다. Moreover, basic zinc carbonate, which is the final product, is so important that its whiteness influences purity. The product of the product is due to the influx of trace impurities such as iron (Fe 2 O 3 ), manganese oxide, lead, lead oxide, copper and copper oxide. Although deterioration of product value, especially in Japan, basic zinc carbonate is rapidly increasing as a mineral for animal feed, but the use of colored zinc carbonate is not used, and it is desired to provide high purity white basic zinc carbonate.

특히, 전기로, 아연재, 아연 스크랩 등에서 발생하는 다량의 아연 성분의 혼합물을 황산이나 염산(이하, 황산의 경우만으로 설명한다.)으로 처리하여 황산아연이나 염화아연 등의 수용성 염을 만든 후에, 여과하여 얻은 여액을 탄산나트륨과 같은 탄산알카리 수용액을 당량비로 첨가하여 염기성 탄산아연을 만든다. In particular, a mixture of a large amount of zinc components generated in an electric furnace, a zinc material, a zinc scrap, and the like is treated with sulfuric acid or hydrochloric acid (hereinafter, only sulfuric acid) to form a water-soluble salt such as zinc sulfate or zinc chloride. The filtrate obtained by filtration is added with an aqueous alkaline carbonate solution such as sodium carbonate in an equivalent ratio to form basic zinc carbonate.

ZnSO4+Na2CO3→ ZnCO3 +Na2SO4 ZnSO 4 + Na 2 CO 3 → ZnCO 3 + Na 2 SO 4

상기에서와 같이 탄산아연을 생성한 후, 여과하여 여액을 버리고, 반고형 상태의 탄산아연을 회수한 후, 여기에 암모니아를 첨가하여 탄산아연의 착염[Zn(NH3)4CO3] 용액을 형성시킨다. 이를 여과하여 철 등의 중금속을 제거한다. 그러나, 최종 제품 중에 미량의 철성분이 존재하여 경시적으로 유색화되어 상품성이 저하된다. 이와 같은 철성분을 제거하기 위하여 종래, 황산아연이나 염화아연 수용액중에 과산화수소, 과망간산칼륨 등의 산화제를 첨가하여 황산철[FeSO4, Fe2(SO4)3], 염화철(FeCl2, Fe2Cl3)는 산화되어 산화철(FeO, Fe2O3)의 수불용성 염으로 전환시킨 후, 이를 여과하여 제거하고, 또한, 상기 수용액중의 기타 중금속, 예컨대, 납, 구리, 니켈 등은 아연말을 첨가하여 치환 반응시키면, 금속 상태의 단체로 변하여 침강하므로 이를 제거하고, 상기 방법에 의해 정제된 용액을 탄산나트륨을 반응시켜 최종제품인 탄산아연을 제조하여 왔다. 그러나, 이러한 제품 중의 철함량이 5 ppm이하인 것이 요구되나, 실제적으로는 50ppm 이하로 제조하는 것은 용이하지 않으며, 이로 인해 탄산아연의 색상이 경시적으로 유색으로 변하여 상품성이 상실된다. 이러한 문제점을 해결하기 위하여 암모니아 착염법을 선택하여 사용하여 왔으나, 이러한 암모니아 착염법에 의해서도 최종제품중의 철이온이 약 30∼60ppm 검출되어 상기 산화법의 문제점을 만족할 만큼 개선한 방법이라 할 수 없었다. After producing zinc carbonate as described above, the filtrate was discarded by filtration, semi-solid zinc carbonate was recovered, and then ammonia was added thereto to prepare a zinc carbonate complex [Zn (NH 3 ) 4 CO 3 ] solution. To form. It is filtered to remove heavy metals such as iron. However, a small amount of iron component is present in the final product and colored over time, resulting in deterioration of the commerciality. In order to remove such iron components, conventionally, oxidizing agents such as hydrogen peroxide and potassium permanganate are added to zinc sulfate or zinc chloride aqueous solution to remove iron sulfate [FeSO 4 , Fe 2 (SO 4 ) 3 ], iron chloride (FeCl 2 , Fe 2 Cl). 3 ) is oxidized and converted to water insoluble salts of iron oxides (FeO, Fe 2 O 3 ), and then filtered and removed, and other heavy metals in the aqueous solution, such as lead, copper, nickel, etc. When the substitution reaction by addition, it is changed into a single metal state and settled, so as to remove it, and the solution purified by the above method was reacted with sodium carbonate to produce zinc carbonate, the final product. However, the iron content in such a product is required to be 5 ppm or less, but in practice it is not easy to produce less than 50ppm, which leads to the color change of zinc carbonate with time and loss of commerciality. In order to solve this problem, the ammonia complexation method has been selected and used. However, the ammonia complexation method also detects about 30 to 60 ppm of iron ions in the final product, and thus cannot be said to be an improved method to satisfy the problem of the oxidation method.

본 발명자는 이러한 방법에 의한 최종 제품 중의 철성분이 잔존하는 이유를 면밀하게 검토한 결과, 현재까지 중금속중 암모니아와 착염을 형성하는 것이 니켈, 동, 아연 만인 것으로 알려져 왔으나, 본 발명자가 실험한 바에 의하면, 철화합물 중, 2가의 철(황산제1철)의 암모니아와 착염을 형성하지 않으나, 3가의 철(황산제2철)은 암모니아수와 착염을 형성하고, 이로 인해 암모니아 착염법을 이용하여 얻은 최종 제품인 탄산아연에 철성분이 잔류하게 되는 것을 확인하였다. The present inventors have carefully investigated the reason for the remaining iron component in the final product by such a method, and until now, it has been known that only complexes of ammonia and heavy metals in heavy metals are nickel, copper, and zinc. According to the present invention, the iron compound does not form a complex salt with ammonia of divalent iron (ferrous sulfate), but the trivalent iron (ferric sulfate) forms a complex salt with ammonia water, which is obtained by the ammonia complexing method. It was confirmed that the iron component remained in the final product zinc carbonate.

이를 해결하기 위하여는 우선 제2철을 강한 환원제로 환원시켜 제1철로 하여야 하고, 이를 탄산염과 반응시켜 얻은 탄산아연 및 탄산철 등의 혼합물을 얻은 후에, 암모니아수를 반응시켜 염기성 탄산아연 암모늄 착염을 형성하고, 이를 열분해하여 고순도의 염기성 탄산아연을 얻을 수 있음을 발견하였다. 또한, 이렇게 얻은 탄산아연 암모늄 착염을 종래에는 100∼110℃ 이상의 수증기에 의해 열분해시켜 염기성 탄산아연을 얻었으나(참조: 일본국 특개평 6-107415호), 이러한 방법은 수증기를 과잉 투입하는 것으로 에너지 손실이 큰 문제점이 있다. 따라서 본 발명자는 이를 해결하고자, 염기성 탄산아연 암모늄 수용액의 열분해시에 비증발성인 강알카리성인 수산화나트륨 또는 탄산나트륨을 소량 첨가하여 100℃미만에서 열분해하여 암모니아수를 구축하여 탄산아연을 에너지 효율 높게 회수할 수 있음을 발견하였다. In order to solve this problem, first ferric iron is reduced with a strong reducing agent to ferrous iron, and a mixture of zinc carbonate and iron carbonate obtained by reacting it with carbonate is obtained, followed by reaction with ammonia water to form a basic zinc ammonium complex salt. It was found that pyrolysis of the resin yielded basic zinc carbonate with high purity. In addition, zinc ammonium carbonate complex salt thus obtained was conventionally thermally decomposed by steam of 100 to 110 ° C. or more to obtain basic zinc carbonate (see Japanese Patent Application Laid-Open No. 6-107415). The loss is a big problem. Therefore, in order to solve this problem, the present inventors add a small amount of non-evaporable strongly alkaline sodium hydroxide or sodium carbonate during thermal decomposition of an aqueous basic zinc ammonium carbonate to pyrolyze at less than 100 ° C. to build ammonia water to recover zinc carbonate with high energy efficiency. It was found.

본 발명은 상기의 발견에 기초로 하여 이루어진 것이다. The present invention has been made based on the above findings.

즉, 본 발명은 탄산아연을 에너지 효율 높게 고순도로 제조하는 방법을 제공하는 것이다. That is, the present invention provides a method for producing zinc carbonate with high purity with high energy efficiency.

이하, 본 발명의 구성 및 작용을 상세히 설명한다. 다만 설명중, 아연과 반응하는 염산은 황산과 반응기구가 거의 유사하므로 황산만을 예로 들어 설명하여도 당분야에 통상의 지식을 가진 자는 염산을 사용하여 동일한 구성 및 작용으로 반응시킬 수 있음을 알 수 있으므로 염산으로 반응시키는 것은 그 설명을 생략한다. Hereinafter, the configuration and operation of the present invention will be described in detail. However, in the description, hydrochloric acid reacting with zinc is almost similar to sulfuric acid and a reactor, so even if only sulfuric acid is described as an example, those skilled in the art can use hydrochloric acid to react with the same composition and action. Therefore, the reaction with hydrochloric acid is omitted.

염기성 탄산아연을 제조하는 방법에 있어서, 우선 아연 자원이 풍부한 전기 로 더스트를 일단 무수 황산으로 처리하며, 이 때, 일반적으로 더스트의 성분 즉, 철 30%, 아연 30%인 경우, 황산철, 황산아연의 성분비가 비슷한 수준으로 생성된다. 이러한 반응에서 황산아연만을 선택적으로 반응시키기 위하여 황산의 첨가량을 아연 함유량에 대해 당량비로 하여 활성도가 큰 아연 만을 회수할 수 있다고 하나, 이는 일반화학에서 언급하는 정도의 지식 수준이며, 실제로는 아연 성분이외에 철, 납과 같은 중금속도 함께 반응하여 황산철, 황산납으로 나오며, 황산이 다량 첨가되는 경우에는 황산철, 황산아연이 거의 비슷한 수준으로 회수된다. 황산납은 침전하여 더 이상의 반응을 일으키지 아니하나, 황산철은 제1황산철과 제2황산철로 이루어져 있으며, 이들은 다음 반응의 탄산나트륨과 같은 탄산염과 반응하여 제1탄산철 및 제2탄산철로 되며, 이중, 제2탄산철은 추후 탄산아연을 용해시키기 위하여 암모니아와 반응시킬 때, 암모니아와 착염을 형성하기 때문에 최종 제품인 염기성 탄산아연 중의 철분이 존재하게 된다. 이를 피하기 위하여 반응액의 온도를 약 60∼80℃로 유지하면서 아연말을 소량, 예컨대 1∼5중량부를 가하여 제2황산철을 제1황산철과 황산아연으로 만든다. 즉, 이를 화학식으로 표현하면 아래와 같다. In the method for producing basic zinc carbonate, first, an electric furnace rich in zinc resources is first treated with anhydrous sulfuric acid, and in general, iron sulfate, sulfuric acid in the case of dust 30% and zinc 30% The proportion of zinc is produced at similar levels. In order to selectively react only zinc sulfate in this reaction, only zinc having a high activity can be recovered by using the equivalent amount of sulfuric acid as the equivalent ratio to the zinc content. Heavy metals such as iron and lead also react to form iron sulfate and lead sulfate. When a large amount of sulfuric acid is added, iron sulfate and zinc sulfate are recovered to almost the same level. Lead sulfate precipitates and does not cause any further reaction, but iron sulfate consists of ferrous sulfate and ferric sulfate, which react with carbonates such as sodium carbonate in the following reactions to form ferrous carbonate and ferric carbonate, Of these, the second iron carbonate forms a complex salt with ammonia when it is subsequently reacted with ammonia to dissolve the zinc carbonate, so iron in the final product, basic zinc carbonate, is present. To avoid this, a small amount of zinc powder, such as 1 to 5 parts by weight, is added while maintaining the temperature of the reaction solution at about 60 to 80 ° C. to make ferric sulfate into ferrous sulfate and zinc sulfate. That is, expressed as a chemical formula is as follows.

Fe2(SO4)3 + Zn → 2FeSO4 + ZnSO4 Fe 2 (SO 4 ) 3 + Zn → 2FeSO 4 + ZnSO 4

이러한 환원반응이 이루어지면, 반응기내에는 황산제1철, 황산아연만이 존재하게 된다. 이 혼합물에 물을 가하여 교반한 후, 여과하여 얻어진 여액에 탄산나트륨, 탄산칼륨과 같은 탄산염 수용액을 가하여 반응시키면 탄산아연과 탄산제1철이 형성된다. 이를 화학식으로 표시하면 아래와 같다. When such a reduction reaction is carried out, only ferrous sulfate and zinc sulfate are present in the reactor. Water is added to the mixture, the mixture is stirred, and then the resulting filtrate is reacted with an aqueous solution of carbonate such as sodium carbonate or potassium carbonate to form zinc carbonate and ferrous carbonate. This is represented by the chemical formula below.

ZnSO4 + Na2CO3 → ZnCO3↓+ Na2SO4 ZnSO 4 + Na 2 CO 3 → ZnCO 3 ↓ + Na 2 SO 4

FeSO4 + Na2CO3 → FeCO3 + Na2SO4 FeSO 4 + Na 2 CO 3 → FeCO 3 + Na 2 SO 4

이를 여과하여 얻은 침전물에 암모니아수를 가하면, 탄산제1철은 침전물 형태로 그대로 존재하고, 탄산아연은 암모니아와 반응하여 탄산아연 암모늄 착염을 형성하여 용해된다. 상기 반응에서 얻어진 침전물을 여과, 분리한 후, 암모니아수를 반응시키면, 탄산아연은 탄산아연 암모늄 착염을 형성하여 용해되고, 탄산철은 반응하지 않고 침전 상태로 존재하게 되므로 이를 여과하여 탄산아연 암모늄 착염의 여액을 얻는다. When ammonia water is added to the precipitate obtained by filtration, ferrous carbonate is present as it is in the form of precipitate, and zinc carbonate reacts with ammonia to form a zinc ammonium carbonate complex to be dissolved. After filtering and separating the precipitate obtained in the above reaction and reacting with ammonia water, zinc carbonate forms and dissolves zinc ammonium carbonate complex, and iron carbonate is present in a precipitated state without reaction. Get the filtrate.

ZnCO3 + 4NH4OH → [Zn(NH3)4]CO3 + 4H2OZnCO 3 + 4NH 4 OH → [Zn (NH 3 ) 4 ] CO 3 + 4H 2 O

상기에서 얻어진 탄산아연 암모니아 착염을 열분해 결정 석출공정을 거치면 염기성 탄산아연이 생성된다. 즉,Basic zinc carbonate is produced when the zinc carbonate ammonia complex salt obtained above is subjected to a pyrolytic crystallization step. In other words,

5[Zn(NH3)4]CO3 → 3Zn(OH)2·2ZnCO3↓ + 3CO2↑ + 20NH35 [Zn (NH 3 ) 4 ] CO 3 → 3Zn (OH) 2 · 2ZnCO 3 ↓ + 3CO 2 ↑ + 20NH 3

그러나, 이러한 반응은 열분해조를 이용하는 경우 시설비가 고가이고, 또한 고온에서 반응시켜야 하므로 에너지가 다량 요구된다. 이를 해결하기 위하여 탄산아연 암모니아 착염 수용액의 열분해시에 비증발성인 수산화나트륨 또는 탄산나트륨과 같은 강알카리성 화합물을 착염 수용액의 1∼5중량부를 첨가하여 평균 수용액 온도를 100℃ 미만의 온도, 바람직하기로는 약 90∼95℃ 정도에서 열분해시켜 염기성 탄산아연을 회수할 수 있다. 또한 필요에 따라, 암모니아수를 공지의 방법으로 회수하여 재활용할 수 있다. 즉, 암모니아나 암모니아수는 증발성 알카리이고, 탄산나트륨 및 수산화나트륨은 강알카리성 비증발성이므로, 이를 암모니아수에 1∼5중량부를 첨가하면 탄산나트륨 및 수산화나트륨에 의해 분해활성도가 증가하여 암모니아, 암모니아수는 동일 알카리 수용액에 촉매작용 및 비증발성 알카리에 의하여 분해활성도가 크게 증가하여 암모니아가 물과의 결합력이 약해져 수용액중에서 분해속도가 증가하여 100℃미만의 저온에서 암모니아가 떨어져 나온다. 이러한 물성을 이용하여 염기성 탄산아연 암모니아 착염에서 암모니아를 저온에서 구축하여 염기성 탄산아연을 낮은 에너지로 제조할 수 있다. However, such a reaction requires a large amount of energy because the equipment cost is expensive when the pyrolysis tank is used, and the reaction must be performed at a high temperature. In order to solve this problem, 1-5 parts by weight of a non-evaporable strong alkali compound such as sodium hydroxide or sodium carbonate is added to the aqueous solution of the complex salt during thermal decomposition of the aqueous solution of zinc ammonia complex salt. Basic zinc carbonate can be recovered by thermal decomposition at about 90 to 95 ° C. If necessary, the ammonia water can be recovered and recycled by a known method. That is, ammonia or ammonia water is evaporative alkali, and sodium carbonate and sodium hydroxide are strongly alkaline non-evaporative. Therefore, if 1 to 5 parts by weight of ammonia water is added, the decomposition activity is increased by sodium carbonate and sodium hydroxide. Decomposition activity is greatly increased by catalysis and non-evaporable alkali, so that the ammonia is weakly bound to water, and the decomposition rate increases in aqueous solution. By using such physical properties, basic zinc carbonate can be produced at low temperature in basic zinc carbonate ammonia complex salt to produce basic zinc carbonate with low energy.

이하, 실시예를 들어 본 발명을 구체적으로 설명한다. 그러나, 본 발명이 이들 실시예에 의해 제한되는 것은 아니다. Hereinafter, an Example is given and this invention is demonstrated concretely. However, the present invention is not limited by these examples.

실시예 1Example 1

철분이 약 3% 존재하는 황산아연 1수염 1 kg을 준비하였다. 여기에 물 3리터를 가하고, 70℃로 가열한 후, 아연말 10g을 첨가하여 30분간 가열 교반한 후, 여과하여 얻어진 액체에 대해 탄산나트륨 10% 수용액을 당량비로 첨가하여 탄산아연을 얻었다. 이를 여과하여 반고형의 탄산아연(수분 함량: 약 50∼60%)을 얻고, 여기에 25% 암모니아수 2.5리터를 첨가하고, 교반하면서 다시 물 2리터를 가하였다. 이를 여과하여 얻은 여액을 5리터로 한 후, 이 여액을 10리터용 스테인레스 스틸제 용기에 넣고, 탄산나트륨 30g을 넣고, 내온 93℃로 가열하여 암모니아를 구축하여 염기성 탄산아연을 얻었다. 이를 수세하고, 135℃ 오븐에서 건조하여 염기성 탄산 아연 [3Zn(OH)2·2ZnCO3] 530g(순도: 아연함량 57%)을 얻었다. 1 kg of zinc sulfate monohydrate, containing about 3% iron, was prepared. 3 liters of water was added thereto, heated to 70 ° C., 10 g of zinc powder was added thereto, and the mixture was heated and stirred for 30 minutes. Then, a 10% aqueous solution of sodium carbonate was added to the liquid obtained by filtration to obtain zinc carbonate. This was filtered to obtain semi-solid zinc carbonate (water content: about 50 to 60%), and 2.5 liters of 25% ammonia water was added thereto, followed by addition of 2 liters of water while stirring. The filtrate obtained by filtration was 5 liters, and the filtrate was placed in a 10 liter stainless steel container, 30 g of sodium carbonate was added, and heated to an internal temperature of 93 ° C. to form ammonia to obtain basic zinc carbonate. It was washed with water and dried in an oven at 135 ° C. to obtain 530 g of basic zinc carbonate [3Zn (OH) 2 · 2ZnCO 3 ] (purity: 57% zinc).

또한, 얻어진 염기성 탄산아연을 분석하여 본 결과, 철분 함량은 약 5ppm이었다. Also, the obtained basic zinc carbonate was analyzed and found to have an iron content of about 5 ppm.

이상에서와 같이 본 발명에 의하면, 전기로 더스트나 아연재를 황산(무기산)과 반응시켜 황산아연 및 황산철을 얻은 후, 여기에 소량의 아연말을 첨가하여 제2황산철을 환원시켜 제1황산철로 하고, 이를 탄산염과 반응시켜 탄산아연 및 탄산철을 만든 후, 암모니아수와 반응시켜 탄산아연 암모니아 착염을 얻고, 이를 여과하여 철성분을 분리한 후, 열분해에 의해 암모니아를 구축시켜 고순도의 염기성 탄산아연을 얻는 새로운 방법을 제공한다. 이 방법에 의하여 철성분이 거의 함유되지 않는 고순도의 염기성 탄산염을 얻을 수 있으며, 또한 암모니아를 구축할 때, 소량의 탄산나트륨이나 수산화나트륨을 가하여 종래의 방법보다 저온에서 최종 목적물을 얻을 수 있다. As described above, according to the present invention, after the dust or zinc material is electrically reacted with sulfuric acid (inorganic acid) to obtain zinc sulfate and iron sulfate, a small amount of zinc powder is added thereto to reduce the second iron sulfate. It is made of iron sulfate and reacted with carbonate to form zinc carbonate and iron carbonate, followed by reaction with ammonia water to obtain zinc carbonate ammonia complex. It provides a new way of obtaining zinc. By this method, it is possible to obtain a high-purity basic carbonate containing almost no iron component, and when constructing ammonia, a small amount of sodium carbonate or sodium hydroxide can be added to obtain the final target at a lower temperature than the conventional method.

Claims (5)

황산철이 존재하는 황산아연을 물에 용해한 후, 여기에 아연말을 가하고, 여과하여 얻어진 여액에 탄산염을 가하여 형성된 침전물을 회수하고, 여기에 암모니아수를 가하여 탄산아연 암모니아 착염을 액상으로 얻은 후, 이를 여과하여 얻어진 여액을 탄산나트륨 또는 수산화나트륨을 첨가하여 열분해하여 석출시킴을 특징으로 하는 염기성 탄산아연의 제조방법. Zinc sulfate containing iron sulfate was dissolved in water, zinc powder was added thereto, and the precipitate formed by adding carbonate to the filtrate obtained by filtration was recovered. A method of producing basic zinc carbonate, characterized in that the filtrate obtained by thermal decomposition is precipitated by adding sodium carbonate or sodium hydroxide. 제 1항에 있어서, 첨가되는 아연말의 함량이 황산철과 황산아연 합계의 1∼5중량부임을 특징으로 하는 방법. The method according to claim 1, wherein the amount of zinc powder added is 1 to 5 parts by weight of the total of iron sulfate and zinc sulfate. 제 1항에 있어서, 얻어진 여액 100중량부에 대해 탄산나트륨 또는 수산화나트륨을 1∼5중량부를 첨가하여 열분해함을 특징으로 하는 방법. The method according to claim 1, wherein 1 to 5 parts by weight of sodium carbonate or sodium hydroxide are added to 100 parts by weight of the filtrate to be thermally decomposed. 제 1항 또는 제 3항에 있어서, 열분해를 100℃ 미만에서 수행함을 특징으로 하는 방법. 4. Process according to claim 1 or 3, characterized in that the pyrolysis is carried out at less than 100 ° C. 제 4항에 있어서, 열분해를 90∼95℃에서 수행함을 특징으로 하는 방법. 5. Process according to claim 4, characterized in that the pyrolysis is carried out at 90 to 95 ° C.
KR1020070033553A 2007-04-05 2007-04-05 Process for recovering basic zinc carbonate with high purity KR100846837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070033553A KR100846837B1 (en) 2007-04-05 2007-04-05 Process for recovering basic zinc carbonate with high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070033553A KR100846837B1 (en) 2007-04-05 2007-04-05 Process for recovering basic zinc carbonate with high purity

Publications (1)

Publication Number Publication Date
KR100846837B1 true KR100846837B1 (en) 2008-07-16

Family

ID=39824691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070033553A KR100846837B1 (en) 2007-04-05 2007-04-05 Process for recovering basic zinc carbonate with high purity

Country Status (1)

Country Link
KR (1) KR100846837B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186170B1 (en) * 2012-04-13 2012-10-08 주식회사 황조 The method of withdrawing zinc oxide from waste powder of steel making

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191843A (en) * 1992-12-28 1994-07-12 Kawasaki Steel Corp Production of zinc carbonate
KR19990080650A (en) * 1998-04-20 1999-11-15 문상우 Recovery method of zinc carbonate and sodium carbonate
KR20020014079A (en) * 2000-08-16 2002-02-25 문상우 Method for manufacturing high purity zing carbonate from dust in electric furnace
KR20020020318A (en) * 2000-09-08 2002-03-15 문상우 Method for manufacturing sulfate zinc and manganese sulfate, ferrous sulfate from electric furnace dust of tin and zinc coatingplant and ferromanganese
KR20030026691A (en) * 2001-09-26 2003-04-03 문상우 A process for producing zinc sulfate, manganese sulfate and ferrous sulfate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191843A (en) * 1992-12-28 1994-07-12 Kawasaki Steel Corp Production of zinc carbonate
KR19990080650A (en) * 1998-04-20 1999-11-15 문상우 Recovery method of zinc carbonate and sodium carbonate
KR20020014079A (en) * 2000-08-16 2002-02-25 문상우 Method for manufacturing high purity zing carbonate from dust in electric furnace
KR20020020318A (en) * 2000-09-08 2002-03-15 문상우 Method for manufacturing sulfate zinc and manganese sulfate, ferrous sulfate from electric furnace dust of tin and zinc coatingplant and ferromanganese
KR20030026691A (en) * 2001-09-26 2003-04-03 문상우 A process for producing zinc sulfate, manganese sulfate and ferrous sulfate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186170B1 (en) * 2012-04-13 2012-10-08 주식회사 황조 The method of withdrawing zinc oxide from waste powder of steel making

Similar Documents

Publication Publication Date Title
CN103922416B (en) A kind of method of Separation and Recovery iron from red mud
KR102246670B1 (en) Treatment of the first cobalt sulfate/dithionate solution derived from a cobalt source
CN102127657B (en) Comprehensive recovery method for extracting ferrovanadium from stone coal acid immersion liquid
CN102634673B (en) Method for deeply removing iron ions from chromium-containing waste residue pickle liquor
CN102424914B (en) Method for comprehensively recovering aluminum and potassium from vanadium extraction from stone coal
CA2618326C (en) Method for manufacturing scorodite
CN108707748B (en) Method for purifying stone coal pickle liquor and recovering aluminum, potassium and iron
CN105219969B (en) Utilize vanadium wastewater and the method for tailings in vanadium extraction extraction manganese metal
US8956583B2 (en) Method for separating rhenium and arsenic, and method for purification of rhenium
CN105803199B (en) A kind of method that hydroxide precipitation method prepares low-sulfur rare earth oxide
CN102336437A (en) Process for producing vanadium pentoxide by vanadium-contained solution
CN102101732A (en) Method for recovering hydrazine sulfate and chromium hydroxide from chromium-containing waste acid
CN108728649B (en) Method for resource utilization of stone coal acidic wastewater
CN112374550A (en) Comprehensive recovery method for waste lithium iron phosphate and nickel cobalt lithium manganate lithium battery anode material
CN110627179B (en) Method for treating arsenic-containing wastewater by using recyclable composite salt precipitator
CN111876601A (en) Method for treating arsenic-lead-containing anode mud by using low-grade magnesium oxide-containing soot through circulating alkaline leaching
CN101545050A (en) A method to comprehensively recover the solid material containing copper and vanadium
KR100846837B1 (en) Process for recovering basic zinc carbonate with high purity
JP2004285368A (en) Method for refining cobalt aqueous solution
CN108675498B (en) Method for resource utilization of stone coal acidic wastewater
CN115216633A (en) Method for separating copper and arsenic from black copper sludge and directly solidifying arsenic
KR101060934B1 (en) Manufacturing method of high purity zinc oxide using secondary dust
CN108754142B (en) Method for separating bismuth and iron and producing pure bismuth hydroxide by extraction-ammonia decomposition in bismuth and iron mixed solution
WO2012068621A1 (en) For recovering zinc and/or zinc oxide i
CN102828027A (en) Dechlorination method for indium raffinate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120709

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee