KR100845531B1 - Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors - Google Patents
Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors Download PDFInfo
- Publication number
- KR100845531B1 KR100845531B1 KR1020070064839A KR20070064839A KR100845531B1 KR 100845531 B1 KR100845531 B1 KR 100845531B1 KR 1020070064839 A KR1020070064839 A KR 1020070064839A KR 20070064839 A KR20070064839 A KR 20070064839A KR 100845531 B1 KR100845531 B1 KR 100845531B1
- Authority
- KR
- South Korea
- Prior art keywords
- mobile robot
- anisotropic
- ultrasonic sensor
- anisotropic ultrasonic
- microprocessor
- Prior art date
Links
- 238000003032 molecular docking Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/005—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/026—Acoustical sensing devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0225—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0255—Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
도 1은 범용초음파센서를 사용하였을 경우 로봇의 인식 범위를 보인 개략도.Figure 1 is a schematic diagram showing the recognition range of the robot when using a universal ultrasonic sensor.
도 2는 본 발명에 사용한 이방성초음파센서를 사용하였을 경우 로봇의 인식 범위를 보인 개략도. Figure 2 is a schematic diagram showing the recognition range of the robot when using the anisotropic ultrasonic sensor used in the present invention.
도 3은 본 발명에 사용되는 이동로봇과 충전장치의 구성을 보인 블럭도. Figure 3 is a block diagram showing the configuration of a mobile robot and a charging device used in the present invention.
도 4는 본 발명의 충전장치와 이동로봇의 입체도 Figure 4 is a three-dimensional view of the charging device and the mobile robot of the present invention
도 5는 본 발명에 사용되는 이동로봇의 동작 흐름도.5 is an operation flowchart of a mobile robot used in the present invention.
도 6은 본 발명에 사용되는 충전장치의 동작 흐름도.6 is an operation flowchart of a charging device used in the present invention.
도 7은 본 발명에 사용되는 이동로봇이 거리를 계산하는 방법을 보인 계략도.Figure 7 is a schematic diagram showing how the mobile robot used in the present invention to calculate the distance.
********도면의주요부분에 대한 부호의 설명**************** Description of the symbols for the main parts of the drawing ********
10 충전장치 11 마이크로프로세서10 Charging Unit 11 Microprocessor
12 송신전압증폭부 13 트리거신호 수신장치12
14 송신용 이방성초음파센서 1 15 송신용 이방성초음파센서 214 Anisotropic ultrasonic sensor for transmission 1 15 Anisotropic ultrasonic sensor for transmission 2
20 이동로봇 21 마이크로 프로세서20
22 수신이득증폭부 23 모터구동회로22
24 트리거신호 송신장치 25 수신용 이방성초음파센서124
26 수신용 이방성초음파센서2 27 구동모터26 Anisotropic Ultrasonic Sensor for Reception 2 27 Driving Motor
본 발명은 이동로봇이 주행 중 충전장치로의 복귀 방법에 관한 것으로, 보다 상세하게는 이방성 센서를 사용하여 이동로봇과 충전장치간의 거리를 계산하는 방법과, 계산된 거리를 사용하여 충전장치로의 정밀한 복귀 방법과 이동로봇과 충전장치의 교신을 위하여 트리거신호를 사용하는 방법, 그리고 그 장치에 관한 것이다.The present invention relates to a method of returning a mobile robot to a charging device while driving. More particularly, the present invention relates to a method for calculating a distance between a mobile robot and a charging device using an anisotropic sensor, and to a charging device using the calculated distance. The present invention relates to a precise return method, a method of using a trigger signal for communication between a mobile robot and a charging device, and a device.
종래의 이동로봇의 자동 충전기술은 마그네틱, 적외선, 초음파를 사용하는 방법이 있다. The automatic charging technology of the conventional mobile robot has a method using magnetic, infrared, and ultrasonic waves.
마그네틱을 사용하는 방법은 이동로봇이 벽면을 따라 주행하다가 마그네틱 유도수단을 발견하면 충전장치에 접속하는 방법이나 이는 필요이상의 시간을 소비하는 경우가 발생한다.The method of using magnetic is to connect the charging device when the mobile robot runs along the wall and finds the magnetic induction means, but it takes more time than necessary.
적외선을 사용하는 방법은 이동로봇이 자율주행을 하다가 적외선 신호를 발견하게 되면 충전장치에 접속하는 방법이나 이 또한 필요이상의 시간을 소비하는 경우가 발생하며, 조명기구나 자연광선의 영향으로 적외선 수광부가 포화되어 동작 되지 않는 경우가 발생한다.In the case of using infrared light, when the mobile robot detects infrared signal while autonomous driving, it connects to the charging device, but it also consumes more time than necessary. It may not work.
범용 초음파센서를 사용할 방법은 전면 방사각이 60~70도밖에 되지 않아 소량으로 설치하였을 경우 도 1과 같이 접속을 위해 유도시 초음파센서가 정확한 값을 인식하지 못하는 경우가 발생하며, 또한 충전장치를 인식하지 못하는 사각지대도 많이 발생한다. In the case of using a general-purpose ultrasonic sensor, when the front radiation angle is only 60 ~ 70 degrees, when installed in a small amount, the ultrasonic sensor may not recognize the correct value during induction for connection as shown in FIG. Many blind spots occur.
상기와 같은 문제점을 해결하기 위하여 본 발명은 도 2와 같이 가로 방향으로 150~180도의 광지향 특성을 가지며, 세로 방향으로는 불필요한 신호를 수신하지 않도록 30~60도로 제한된 이방성 초음파센서를 사용하여 3~4개의 센서만으로도 사각지대 없이 넓은 범위에 걸쳐 송/수신 센서간의 인식이 가능하며 또한, 이동로봇과 충전장치간의 접속을 위한 거리 측정 및 알고리즘을 제공하여 이동로봇이 어느 위치에서도 충전장치로의 자동복귀가 가능하도록 한 것을 특징으로 한다.In order to solve the above problems, the present invention has a light directing characteristic of 150 to 180 degrees in the horizontal direction as shown in Figure 2, 3 using an anisotropic ultrasonic sensor limited to 30 to 60 degrees in order not to receive unnecessary signals in the vertical direction It is possible to recognize transmission / reception sensors over a wide range without blind spots with only 4 sensors, and also provides a distance measurement and algorithm for connection between the mobile robot and the charging device. It is characterized by enabling the return.
본 발명의 바람직한 실시 형태에 따르면, 도 3에 도시한 바와 같이 이동로봇의 소정의 위치에 부착되어 일정시간 간격으로 특정한 코드를 가지는 트리거신호를 발신하는 트리거신호 송신장치(24); 충전장치의 소정의 위치에 부착되어 상기 트리거신호 송신장치(24)에서 발신된 트리거신호를 수신하는 트리거신호 수신장치(13); 상기 트리거신호 수신장치(13)에서 수신된 코드를 가지는 트리거신호를 해석하여 송신용 이방성초음파센서를 선택적으로 동작시키기 위한 동작신호를 발생시키는 마이크로프로세서(11); 충전장치의 소정의 위치에 부착되어 상기 마이크로프로세서(11)에서 발생한 동작신호를 받아 이방성초음파센서를 구동시키기 위하여 전압 승압 및 구동신호를 발생시키는 송신전압 증폭부(12); 상기 송신전압 증폭부(12)의 구동신호를 받아 초음파 신호를 송신하는 송신용 이방성초음파센서1(14) 및 송신용 이방성초음파센서2(15); 상기 송신용 이방성초음파센서(14~15)로부터 송출된 초음파 신호를 수신하는 수신용 이방성초음파센서1(25), 수신용 이방성초음파센서2(26); 상기 수신용 이방성초음파센서(25~26)에서 수신된 초음파신호를 증폭하여 마이크로프로세서가 인식할 수 있는 신호로 변환해주는 수신이득 증폭부(22); 이동로봇에 내장되어 상기 수신이득 증폭부(22)로부터 받은 신호를 사용하여 초음파의 도달시간을 계산하고, 초음파의 도달 시간을 이용하여 현재 이동로봇과 충전장치 사이의 거리를 계산하는 마이크로프로세서(21); 이동로봇을 이동시키기 위한 모터구동회로(23)와 모터(27); 상기 송/수신용 이방성초음파센서는 가로 방향으로 150~180도의 광지향 특성을 가지며, 세로 방향으로는 불필요한 신호를 수신하지 않도록 30~60도로 제한된 지향특성을 갖는 것을 포함하는 구조로 구성된 것을 특징으로 한다.According to a preferred embodiment of the present invention, as shown in Figure 3 is attached to a predetermined position of the mobile robot trigger
이하, 첨부한 도면을 참조로 본 발명의 바람직한 실시 예에 대해 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도 4는 본 발명의 바람직한 실시 예에 따른 이방성초음파센서를 이용한 이동로봇의 자동충전을 위한 접속장치의 입체도를 보인다.Figure 4 shows a three-dimensional view of the connection device for the automatic charging of the mobile robot using the anisotropic ultrasonic sensor according to an embodiment of the present invention.
도 5,6은 본 발명에 사용되는 이동로봇 및 충전장치의 동작 흐름도를 보인다.5 and 6 show an operation flowchart of the mobile robot and the charging device used in the present invention.
먼저 상기 이동로봇(20)은 배터리가 소모되었거나, 상기 충전장치(10)로의 복귀가 필요시 자율충전모드로 전환한다. First, when the battery is exhausted or needs to return to the
상기 이동로봇(20)의 마이크로프로세서(21)에서 상기 충전장치(10)의 송신용 이방성초음파센서1(14) 또는 송신용 이방성초음파센서2(15)를 동작을 요청하기위한 코드를 일정 간격으로 트리거신호 송신장치(24)로 보낸다. 트리거신호 송신장치는 입력받은 신호를 공중으로 발산한다.(S110,S113) In the
상기 충전장치(10)에 구성되어진 트리거신호 수신장치(13)는 트리거신호를 받아 이를 마이크로프로세서(11)로 전달한다.(S200) The trigger
상기 충전장치(10)의 마이크로프로세서(11)에서는 송신용 이방성초음파센서(14, 15)의 동작 요청 코드를 확인하고(S201,S202) 송신용 이방성초음파센서(14, 15)를 선택하여 동작시킨다.(S203,204)The
상기 수신용 이방성초음파센서(25,26)에 초음파신호가 수신되면, 수신이득증폭부(22)를 거처 이동로봇의 마이크로프로세서(21)에 맞게 변환되어 마이크로프로 세서(21)로 전달된다.(S111,S114)When an ultrasonic signal is received by the receiving anisotropic
상기 이동로봇(20)의 마이크로프로세서(21)는 도 7과 같이 상기 트리거신호 송신장치(24)에서 트리거신호를 발산했을 때부터 수신용 이방성초음파센서1,2(25,26)에 도달한 시간을 측정하여 거리(d1~d4)를 계산한다.(S112,S115)The time when the
여기서, 상기 이동로봇(20)의 마이크로프로세서(21)는 하기 수학식에 의해, 상기 충전장치(10)와 상기 각 수신용 이방성초음파센서(25, 26)까지의 거리를 계산한다.Here, the
T : 초음파 신호를 수신한 시간T: time of receiving ultrasonic signal
t : 트리거신호를 송신한 시간t: time when trigger signal is transmitted
각각의 센서간의 거리값 d1,d2,d3,d4가 구해졌으면 d1과 d4 값을 비교해서는 충전장치와 이동로봇과 평행인가를 판단하여 로봇의 자세를 수정한다(S121,S122). d1이 d4보다 큰 경우 이동로봇을 우회전(S123), d4가 d1보다 큰경우는 좌회전(S124)을 해서 이동로봇과 충전장치는 항상 평행이되도록 유지하여 충 전장치에 이동로봇이 정확이 접속하도록한다. If the distance values d1, d2, d3, and d4 between the sensors are obtained, the attitude of the robot is corrected by comparing the values of d1 and d4 to determine whether they are parallel to the charging device and the mobile robot (S121 and S122). If d1 is greater than d4, turn the mobile robot to the right (S123), if d4 is greater than d1, turn to the left (S124) so that the mobile robot and the charging device are always in parallel so that the mobile robot can be correctly connected to the charging device. do.
d2와 d3 두 값을 비교하여 이동로봇이 진행하려는 방향을 판단한다(S127). d2가 d3보다 큰 경우 이동로봇은 좌회전을(S129), d3가 d2보다 큰 경우는 우회전을(S128), 두 값이 같을 경우(S125) 이동로봇을 전진을(S126) 하여 충전장치까지 찾아간다. By comparing two values of d2 and d3, the mobile robot determines the direction to proceed (S127). If d2 is greater than d3, the mobile robot makes a left turn (S129), if d3 is greater than d2, makes a right turn (S128). .
이동로봇이 충전장치에 접속하여 충전전압을 공급받거나 d1과 d4값이 0이 되는 순간에(S130) 이동로봇은 충전장치에 접속한 것으로 간주하고 이동을 정지한다.(S131) When the mobile robot is connected to the charging device to receive the charging voltage or the d1 and d4 values become 0 (S130), the mobile robot is considered to be connected to the charging device and stops the movement (S131).
이상과 같이, 본 발명은 이동로봇 및 충전장치에 가로 방향으로 150~180도의 광지향 특성을 가지며, 세로 방향으로는 불필요한 신호를 수신하지 않도록 30~60도로 제한된 이방성초음파센서를 사용하여 3~4개의 센서만으로도 사각지대 없이 넓은 범위에 걸쳐 송/수신 센서간의 인식이 가능하며 또한, 이동로봇과 충전장치간의 접속을 위한 거리 측정 및 알고리즘을 제공하여 이동로봇이 어느 위치에서도 충전장치로의 자동복귀가 가능하도록 하였다.As described above, the present invention has a light directing characteristic of 150 to 180 degrees in the horizontal direction to the mobile robot and the charging device, 3 to 4 using an anisotropic ultrasonic sensor limited to 30 to 60 degrees in order not to receive unnecessary signals in the vertical direction It is possible to recognize transmission / reception sensors over a wide range without blind spots with only two sensors. Also, it provides distance measurement and algorithm for connection between mobile robot and charging device. It was made possible.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070064839A KR100845531B1 (en) | 2007-06-29 | 2007-06-29 | Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070064839A KR100845531B1 (en) | 2007-06-29 | 2007-06-29 | Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100845531B1 true KR100845531B1 (en) | 2008-07-10 |
Family
ID=39824297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070064839A KR100845531B1 (en) | 2007-06-29 | 2007-06-29 | Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100845531B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101080366B1 (en) * | 2009-01-30 | 2011-11-04 | (주)하기소닉 | Localization Method of Mobile Robots using Ultrasonic Sensors and Device Thereby |
KR101193950B1 (en) | 2010-11-09 | 2012-10-24 | 재단법인대구경북과학기술원 | group robot and location control method of group robot |
KR101280563B1 (en) | 2011-03-24 | 2013-07-02 | (주)하기소닉 | Transmitting /Receiving Integrated Chip for Mobile robot and Mobile robot using the same |
CN103507067A (en) * | 2012-06-15 | 2014-01-15 | 华硕电脑股份有限公司 | Robot device and method for guiding robot to return base station |
US8761939B2 (en) | 2010-11-09 | 2014-06-24 | Samsung Electronics Co., Ltd. | Robot system and control method thereof |
CN106130136A (en) * | 2016-08-19 | 2016-11-16 | 北京兆维电子(集团)有限责任公司 | A kind of robot automatic butt charging system and automatic butt charging method |
KR20180043086A (en) * | 2016-10-19 | 2018-04-27 | 동국대학교 산학협력단 | Smart table |
CN109223562A (en) * | 2018-08-02 | 2019-01-18 | 宣城东创信息科技有限公司 | A kind of self-charging mechanism and its robot |
WO2019206282A1 (en) * | 2018-04-27 | 2019-10-31 | 苏州宝时得电动工具有限公司 | Automatic return device and system, and automatic return method for automatic walking apparatus |
CN111555399A (en) * | 2020-05-21 | 2020-08-18 | 天赋智能科技研究院(南京)有限公司 | Self-adaptive charging system of robot |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050063538A (en) * | 2003-12-22 | 2005-06-28 | 엘지전자 주식회사 | Position recognition apparatus and method for mobile robot |
KR20060100971A (en) * | 2005-03-16 | 2006-09-22 | 박희재 | Automatic traveling robot system having outer recharger and controlling method thereof |
JP2006323618A (en) | 2005-05-19 | 2006-11-30 | Sanyo Electric Co Ltd | Self-propelled robot |
KR20060127904A (en) * | 2004-01-21 | 2006-12-13 | 아이로보트 코퍼레이션 | Method of docking an autonomous robot |
-
2007
- 2007-06-29 KR KR1020070064839A patent/KR100845531B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050063538A (en) * | 2003-12-22 | 2005-06-28 | 엘지전자 주식회사 | Position recognition apparatus and method for mobile robot |
KR20060127904A (en) * | 2004-01-21 | 2006-12-13 | 아이로보트 코퍼레이션 | Method of docking an autonomous robot |
KR20060100971A (en) * | 2005-03-16 | 2006-09-22 | 박희재 | Automatic traveling robot system having outer recharger and controlling method thereof |
JP2006323618A (en) | 2005-05-19 | 2006-11-30 | Sanyo Electric Co Ltd | Self-propelled robot |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101080366B1 (en) * | 2009-01-30 | 2011-11-04 | (주)하기소닉 | Localization Method of Mobile Robots using Ultrasonic Sensors and Device Thereby |
KR101193950B1 (en) | 2010-11-09 | 2012-10-24 | 재단법인대구경북과학기술원 | group robot and location control method of group robot |
US8761939B2 (en) | 2010-11-09 | 2014-06-24 | Samsung Electronics Co., Ltd. | Robot system and control method thereof |
KR101280563B1 (en) | 2011-03-24 | 2013-07-02 | (주)하기소닉 | Transmitting /Receiving Integrated Chip for Mobile robot and Mobile robot using the same |
CN103507067A (en) * | 2012-06-15 | 2014-01-15 | 华硕电脑股份有限公司 | Robot device and method for guiding robot to return base station |
CN103507067B (en) * | 2012-06-15 | 2016-01-20 | 华硕电脑股份有限公司 | Robot device and guiding robot return the method for base station |
CN106130136A (en) * | 2016-08-19 | 2016-11-16 | 北京兆维电子(集团)有限责任公司 | A kind of robot automatic butt charging system and automatic butt charging method |
KR20180043086A (en) * | 2016-10-19 | 2018-04-27 | 동국대학교 산학협력단 | Smart table |
KR101871924B1 (en) * | 2016-10-19 | 2018-06-27 | 동국대학교 산학협력단 | Smart table |
WO2019206282A1 (en) * | 2018-04-27 | 2019-10-31 | 苏州宝时得电动工具有限公司 | Automatic return device and system, and automatic return method for automatic walking apparatus |
CN112823320A (en) * | 2018-04-27 | 2021-05-18 | 苏州宝时得电动工具有限公司 | Automatic returning device, system and automatic returning method of automatic walking equipment |
CN109223562A (en) * | 2018-08-02 | 2019-01-18 | 宣城东创信息科技有限公司 | A kind of self-charging mechanism and its robot |
CN111555399A (en) * | 2020-05-21 | 2020-08-18 | 天赋智能科技研究院(南京)有限公司 | Self-adaptive charging system of robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100845531B1 (en) | Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors | |
US9520731B2 (en) | Control method for cleaning robots | |
KR100845528B1 (en) | Self-charge docking system and obstacle avoidance of a robot using anisotropic ultrasonic sensors | |
EP3599962B1 (en) | Cleaner and method of controlling the same | |
KR100769910B1 (en) | Moving robot and operating method for same | |
KR20130014105A (en) | User following robot | |
KR102081352B1 (en) | Wireless mouse, mouse pad and wireless mouse apparatus | |
EP3858208A3 (en) | Docking station for autonomous floor cleaner | |
RU2005114218A (en) | AUTOMATED CLEANING SYSTEM AND METHOD FOR ITS CHARGING FROM EXTERNAL CHARGING DEVICE | |
EP3569125B1 (en) | Cleaner and method for controlling same | |
JP2013168151A (en) | Cleaning robot and charging system | |
EP1731979A1 (en) | System and method for automatically returning self-moving robot to charger | |
CN107465277B (en) | Magnetic resonance type automatic charging robot and charging method thereof | |
KR20160048347A (en) | An automatic docking system of mobile robot charging station and the method thereof | |
EP3130938B1 (en) | Object detection device and object detection method | |
CN108390441B (en) | Charging seat, mobile robot and automatic charging system | |
US7365512B2 (en) | System for directing moving object | |
GB2548461A (en) | Method of determining a vehicle position | |
CN111366942B (en) | Lidar system, apparatus and method for increasing lidar sensing distance | |
KR102033676B1 (en) | Charging System for Mobile Robot and Method thereof | |
CN111766589A (en) | Detection assembly, floor sweeping robot and method and system for detecting walking road conditions of floor sweeping robot | |
KR20060034327A (en) | Docking guide apparatus for robot cleaner system and docking method thereof | |
KR20120113585A (en) | Intelligent linetracing robot and method for driving the same | |
KR101427391B1 (en) | robot cleaner | |
KR101056054B1 (en) | Wireless acoustic emission sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130430 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140630 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |