KR100844579B1 - The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method - Google Patents

The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method Download PDF

Info

Publication number
KR100844579B1
KR100844579B1 KR1020070060673A KR20070060673A KR100844579B1 KR 100844579 B1 KR100844579 B1 KR 100844579B1 KR 1020070060673 A KR1020070060673 A KR 1020070060673A KR 20070060673 A KR20070060673 A KR 20070060673A KR 100844579 B1 KR100844579 B1 KR 100844579B1
Authority
KR
South Korea
Prior art keywords
phosphor
precursor solution
precursor
solvent evaporation
red light
Prior art date
Application number
KR1020070060673A
Other languages
Korean (ko)
Inventor
이종택
이동규
이진화
전상배
Original Assignee
충북대학교 산학협력단
(주)마이크로켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단, (주)마이크로켐 filed Critical 충북대학교 산학협력단
Priority to KR1020070060673A priority Critical patent/KR100844579B1/en
Application granted granted Critical
Publication of KR100844579B1 publication Critical patent/KR100844579B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/779Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

A method for preparing a red light emitting phosphor by using a solvent evaporation process is provided to obtain an oxide phosphor useful for a display device, having a uniform shape and small size and showing excellent light emitting characteristics via a simple and cost-efficient process. A method for preparing a red light emitting phosphor by using a solvent evaporation process comprises the steps of: (i) mixing yttrium chloride hydrate(YCl3.6H2O) with gadolinium chloride hydrate(GdCl3.6H2O) and dissolving the mixture in distilled water to provide a precursor solution; (ii) adding an activating agent dissolved in nitric acid to the precursor solution of step (i) to form a precursor solution; (iii) stirring the precursor solution of step (ii) and carrying out solvent evaporation to form a precursor; and (iv) heat treating the precursor of step (iii) to obtain a phosphor.

Description

용매증발법에 의한 적색발광용 형광체의 제조방법{The process of fluorescent substance based on YGd2O3:Eu using solvent evaporation method}The process of fluorescent substance based on YGd2O3: Eu using solvent evaporation method}

도 1a, 1b, 1c 및 1d는 본 발명에 의해 제조된 형광체 입자의 주사전자 현미경 사진이고,1a, 1b, 1c and 1d are scanning electron micrographs of the phosphor particles produced by the present invention,

도 2는 본 발명에 의해 제조된 형광체의 X선 회절분석 결과 그래프이고Figure 2 is a graph of the results of X-ray diffraction analysis of the phosphor prepared by the present invention

도 3은 본 발명에 의해 제조된 형광체의 발광 특성 결과 그래프이다.Figure 3 is a graph of the luminescence properties of the phosphor prepared by the present invention.

본 발명은 용매증발법에 의한 산화물계 형광체의 제조방법에 관한 것으로서, 보다 상세하게는 용매증발법에 의한 PDP용 YGd2O3 : Eu3+적색 발괄용 형광체의 제조방법에 관한 것이다.The present invention relates to a method for producing an oxide-based phosphor by a solvent evaporation method, and more particularly to a method for producing a YGd 2 O 3 : Eu 3+ red color phosphor for PDP by a solvent evaporation method.

현재 다성분 산화물 형광체는 대부분 고상 반응법에 의하여 제조되고 있는데, 고상 반응법에서는 각각의 구성 성분들의 산화물들을 혼합하고 반복되는 고온에서의 열처리 및 분쇄공정을 거쳐 최종적으로 원하는 다성분 산화물 형광체를 얻게 된다. 그러나 상기 고상 반응법에서 순수한 조성을 얻기 위해서는 고온에서 장 시간의 공정을 거쳐야 하며 이때 반복되는 열처리 및 분쇄과정을 거쳐야 하므로 형광체 입자에 불순물이 유입될 수 있어서 발광 특성이 저하될 수 있다는 문제점이 있어왔다. 또한 상기 고상 반응법에 의해 제조되는 입자들은 일반적으로 수마이크론 크기를 가지면서 표면이 거칠고 형태가 불균일한 단점을 지니고 있다.Currently, multicomponent oxide phosphors are mostly manufactured by a solid phase reaction method. In the solid phase reaction, the desired multicomponent oxide phosphors are finally obtained by mixing oxides of respective components and subjecting them to repeated heat treatment and grinding at high temperatures. . However, in order to obtain a pure composition in the solid phase reaction method, it has to go through a long time process at a high temperature and has to undergo a repeated heat treatment and pulverization process, so that impurities may be introduced into the phosphor particles, thereby degrading luminescence properties. In addition, the particles produced by the solid-phase reaction method has a disadvantage that the surface is rough and irregular in shape while having a size of several microns.

상기한 바와 같은 고상반응법의 문제점을 해결하기 위하여 액상반응법과 기상반응법이 많이 연구되어 왔다. 이 중 졸겔법이나 페치니법과 같은 액상반응법은 고상반응법과는 달리 매우 낮은 온도에서 원하는 다성분의 형광체를 제조할 수 있다는 장점과, 분자수준에서 도핑물질의 혼합이 가능하기 때문에 보다 낮은 열처리 온도에서 좋은 형광 특성을 기대할 수 있다는 장점도 갖고 있다. 그러나 종래의 액상반응법에 의해 제조된 형광체는 입자의 형태가 불균일하기 때문에 균일한 크기와 형태를 요구하는 디스플레이용으로 사용하기 어렵다는 단점을 갖고 있다. 또한 초음파 분무 열분해법과 같은 기상법으로 제조하는 형광체는 속이 빈 형태와 높은 다공성으로 인해 열적 안정성이 문제되고 있다.In order to solve the problems of the solid state reaction method as described above, the liquid phase reaction method and the gas phase reaction method have been studied a lot. Among them, the liquid phase reaction method such as sol-gel method or pechini method has the advantage of producing the desired multi-component phosphor at a very low temperature, unlike the solid phase reaction method, and the lower heat treatment temperature because the doping material can be mixed at the molecular level. It also has the advantage of expecting good fluorescence properties. However, the phosphor prepared by the conventional liquid phase reaction method has a disadvantage that it is difficult to use for displays requiring a uniform size and shape because the shape of the particles are non-uniform. In addition, the phosphor prepared by the gas phase method such as ultrasonic spray pyrolysis method has a problem of thermal stability due to the hollow form and high porosity.

따라서 보다 간단한 공정으로 디스플레이용으로 유용하게 사용될 수 있는 크기와 형태가 균일하게 우수한 발광 특성을 갖는 산화물 형광체의 제조 방법이 요구된다.Therefore, there is a need for a method of manufacturing an oxide phosphor having uniformly excellent luminescence properties that can be usefully used for a display in a simpler process.

본 발명은 따라서 상기와 같은 종래 기술의 문제점을 극복하고 보다 간단한 공정으로 디스플레이용으로 유용하게 사용할 수 있으며 우수한 발광 특성을 갖는 산화물 형광체의 제조방법을 제공하기 위한 것으로서, 본 발명의 목적은 이트리윰 클로라이드 수화물(YCl3·6H2O), 가돌리늄 클로라이드 수화물(GdCl3·6H2O), 그리고 산화유로피움(Eu2O3)의 분말을 출발 물질로 하여 용매증발법에 의해 크기가 작고 구형의 응집이 없이 균일한 형태를 갖고 있고 발광 특성이 향상 되면서도 보다 경제적으로 제조할 수 있는, 용매증발법에 의한 산화물계 형광체, 특히 적색형광체의 제조방법과 이에 의해 제조된 형광체를 제공함에 있다.The present invention is therefore to overcome the problems of the prior art as described above and to provide a method for producing an oxide phosphor having excellent light emission characteristics and can be usefully used for display in a simpler process, the object of the present invention is Small and spherical solvent evaporation method using chloride hydrate (YCl 3 · 6H 2 O), gadolinium chloride hydrate (GdCl 3 · 6H 2 O), and europium oxide (Eu 2 O 3 ) as a starting material The present invention provides a method for preparing an oxide-based phosphor, particularly a red phosphor, by the solvent evaporation method, which has a uniform form without aggregation, and can be manufactured more economically while improving luminescence properties, and a phosphor produced thereby.

본 발명의 상기와 같은 목적을 달성하기 위하여, 본 발명은, 이트리윰 클로라이드 수화물(YCl3·6H2O), 가돌리늄 클로라이드 수화물(GdCl3·6H2O)을 혼합하여 증류수에 용해시켜 전구용액을 제조하는 단계(S1);In order to achieve the above object, the invention, by mixing the tree ium chloride hydrate (YCl 3 · 6H 2 O) , gadolinium chloride hydrate (GdCl 3 · 6H 2 O) was dissolved in distilled water to precursor solution Preparing (S1);

질산에 용해된 활성제를 상기단계(S2)에서의 전구용액에 첨가하여 전구체 용액을 만드는 단계(S2);Adding an active agent dissolved in nitric acid to the precursor solution in step S2 to form a precursor solution (S2);

상기단계(S2)에서의 전구체용액을 교반하여 용매를 증발 시켜 전구체를 제조하는 단계(S3); 그리고Preparing a precursor by stirring the precursor solution in the step (S2) and evaporating the solvent (S3); And

상기단계(S3)에서의 전구체를 열처리하여 형광체를 얻는 단계(S4)를 포함하는, 용매증발법에 의한 적색 발광용 형광체의 제조 방법을 제공한다.It provides a method for producing a red light-emitting phosphor by the solvent evaporation method comprising the step (S4) of obtaining a phosphor by heat-treating the precursor in the step (S3).

상기에서 단계(S1)에서의 YCl3·6H2O와 GdCl3·6H2O의 혼합비는 양론비로 2:3으로 함이 바람직하다. 이는 최대 발광특성을 나타내기 위한 비율이다.In the above (S1), the mixing ratio of YCl 3 .6H 2 O and GdCl 3 .6H 2 O is preferably in a ratio of 2: 3. This is a ratio for showing the maximum light emission characteristics.

또한 상기단계(S2)에서의 활성제는 산화유로피움(Eu2O3)을 사용함이 바람직하 고 활성제의 첨가량은 전구체 용액에 포함되는 모체인 YCl3·6H2O와 GdCl3·6H2O의 전체 중량의 1~7wt%로 조성되게 함이 바람직하다.In addition, the active agent in the step (S2) is preferably using europium oxide (Eu 2 O 3 ) and the amount of the active agent is added to the base of the YCl 3 · 6H 2 O and GdCl 3 · 6H 2 O It is preferable to make it 1-7 wt% of the total weight.

또한 상기단계(S3)에서의 전구체 제조는 단계(S2)에서의 전구체 용액을 60℃에서 2시간 교반하여 용매를 증발시킨 다음 80℃에서 24시간 소성하는 것이 바람직하다. 그 이유는 60℃이상에서는 용매증발이 급격히 일어나고 그 이하에서는 반응시간이 너무 길어지기 때문이며, 건조조건은 일반적인 조건이다.In addition, the precursor preparation in step (S3) is preferably stirred for 2 hours at 60 ℃ precursor solution in step (S2) to evaporate the solvent and then calcined at 80 ℃ 24 hours. The reason for this is that solvent evaporation occurs rapidly above 60 ° C. and the reaction time becomes too long below, and drying conditions are general conditions.

또한 상기단계(S4)에서의 열처리는 900~1100℃에서 5시간 행함이 바람직하다. In addition, the heat treatment in the step (S4) is preferably performed for 5 hours at 900 ~ 1100 ℃.

또한 본 발명에서는 분산제로 폴리비닐알콜(PVA)을 사용할 수도 있다. 상기 PVA는 단계(S2)에서 첨가할 수 있으며 용매증발로 만들어지는 입자크기 조절 및 분산성 향상을 위해 첨가할 수도 있는 것이다.In the present invention, polyvinyl alcohol (PVA) may be used as a dispersant. The PVA may be added in step (S2) and may be added for controlling particle size and improving dispersibility made by solvent evaporation.

이하에서는 바람직한 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

본 발명의 실시를 위해 PDP용 YGd2O3 : Eu3+ 적색 발광용 형광체를 다음과 같이 제조하였다.For the practice of the present invention, YGd 2 O 3 : Eu 3+ red phosphor for PDP was prepared as follows.

먼저 전구체 용액은 YCl3·6H2O 과 GdCl3·6H2O를 양론비인 2:3으로 혼합하여 증류수에 용해시킨 다음, 질산에 용해된 Eu2O3을 첨가하여 제조하였고 여기서 분산제로는 폴리비닐알콜(PVA)을 사용하였다. 그 다음 혼합된 전구체 용액을 60℃에서 교반하여 용매를 증발시켜 얻은 전구체를 80℃에서 24시간 건조하고 소성하여 형광 체를 제조하였다.First, the precursor solution was prepared by mixing YCl 3 · 6H 2 O and GdCl 3 · 6H 2 O in a ratio of 2: 3, dissolved in distilled water, and then adding Eu 2 O 3 dissolved in nitric acid. Vinyl alcohol (PVA) was used. Then, the mixed precursor solution was stirred at 60 ° C., and the precursor obtained by evaporating the solvent was dried at 80 ° C. for 24 hours and calcined to prepare a phosphor.

활성제의 도핑농도에 따른 형광체의 발광특성을 살펴 보기 위해 Eu2O3의 양을 1wt%에서 7wt%까지 변화시켜 실시하였다. 또한 열처리 온도에 따른 변화를 살펴보기 위해 900℃에서 1300℃까지 100℃씩 상승시키면서 실시하여 1100℃에서 입자의 결정성 및 발광특성이 가장 우수하여 최적의 열처리 조건임을 확인하였다.In order to examine the luminescence properties of the phosphor according to the doping concentration of the active agent, the amount of Eu 2 O 3 was changed from 1wt% to 7wt%. In addition, in order to examine the change according to the heat treatment temperature was carried out by increasing the temperature from 900 ℃ to 1300 ℃ by 100 ℃ it was confirmed that the optimum heat treatment conditions of the excellent crystallinity and luminescence properties of the particles at 1100 ℃.

제조된 PDP용 YGd2O3 : Eu3+ 적색 발광용 형광체를 X-선 회절장치(XPD; X-ray diffractometer)로 결정성 및 결정구조를 확인하였고, 주사전자현미경(FE-SEM; field emission scanning electron microscope)과 입도 분석기(PSA; partice size analyzer)를 통해 각각의 입자 크기와 형태 및 크기 분포를 확인하였다. 형광체 입자의 광학적 성질은 분광 광도계(spectrophotometer)를 이용하여 발광특성(PL)을 확인하였고, 입자를 여기시키기 위하여 크세논 램프(xenon lamp)를 사용하여 VUV를 발생시켰다.Crystallinity and crystal structure of the prepared YGd 2 O 3 : Eu 3+ red luminescent phosphor for PDP were confirmed by X-ray diffractometer (XPD; X-ray diffractometer), and scanning electron microscope (FE-SEM; field emission) Particle size, shape, and size distribution were determined by scanning electron microscope (PSA) and particle size analyzer (PSA). The optical properties of the phosphor particles were confirmed by using a spectrophotometer (PL) to confirm the light emission characteristics (PL), and to excite the particles using a xenon lamp (xenon lamp) to generate a VUV.

(실시예1)Example 1

전구체 용액은 상기한 바와 같이 YCl3·6H2O 와 GdCl3·6H2O를 양론비인 2:3으로 혼합하여 증류수에 용해시킨 다음, 활성제인 Eu2O3를 모체의 함량에 대해 3wt% 첨가하여 질산용액에 완전히 용해시켰다. 제조된 전구체 용액을 80℃에서 24시간 교반시켜 용매를 증발시켰다. 얻어진 전구체를 900℃로 5시간 열처리하여 형광체를 제조한 후 상기의 SEM, XRD 및 PL 분석을 하였고 그 결과를 도1a, 1b, 1c, 1d, 도2 및 도3에 각각 나타내었다.As described above, YCl 3 · 6H 2 O and GdCl 3 · 6H 2 O are mixed in a ratio of 2: 3 in a stoichiometric ratio, and dissolved in distilled water. Then, 3 wt% of the active agent Eu 2 O 3 is added to the parent content. The solution was completely dissolved in nitric acid solution. The prepared precursor solution was stirred at 80 ° C. for 24 hours to evaporate the solvent. The obtained precursor was heat-treated at 900 ° C. for 5 hours to prepare a phosphor, and the SEM, XRD, and PL analyzes were performed. The results are shown in FIGS. 1A, 1B, 1C, 1D, 2, and 3, respectively.

(실시예2)Example 2

전구체 용액 제조와 용매 증발은 상기 실시예1과 같이 하고, 얻어진 전구체를 1000℃로 5시간 열처리하여 형광체를 제조한 후 SEM, XRD 및 PL 분석을 하고 그 결과를 실시예1에서와 같이 도1a, 1b, 1c, 1d, 도2 및 도3에 각각 나타내었다.Precursor solution preparation and solvent evaporation were carried out as in Example 1, and the resulting precursor was heat-treated at 1000 ° C. for 5 hours to prepare a phosphor, followed by SEM, XRD, and PL analysis. 1b, 1c, 1d, FIG. 2 and FIG. 3, respectively.

(실시예3)Example 3

상기 실시예1에서와 같이 하여 얻어진 전구체를 1100℃로 5시간 동안 열처리하여 형광체를 제조한 후 SEM, XRD 및 PL 분석하여 그 결과를 실시예1에서와 같이 도1a, 1b, 1c, 1d, 도2 및 도3에 각각 나타내었다.The precursor obtained as in Example 1 was heat-treated at 1100 ° C. for 5 hours to prepare a phosphor, and then SEM, XRD, and PL analysis was performed, and the results are shown in FIGS. 1A, 1B, 1C, 1D, and FIG. 2 and 3, respectively.

(실시예4)Example 4

상기 실시예1에서와 같이하여 얻어진 전구체를 1200℃로 5시간 동안 열처리하여 형광체를 제조한 후 SEM, XRD 및 PL 분석하여 그 결과를 실시예1에서와 같이 도1a, 1b, 1c, 1d, 도2 및 도3에 각각 나타내었다.The precursor obtained as in Example 1 was heat-treated at 1200 ° C. for 5 hours to prepare a phosphor, followed by SEM, XRD, and PL analysis, and the results are obtained as shown in FIGS. 1A, 1B, 1C, 1D, and FIG. 2 and 3, respectively.

상기 실시예에 의한 결과를 분석한 결과, 도1a, 1b, 1c 및 1d에 나타낸대로 열처리 온도를 변화시켜 제조된 YGd2O3 : Eu3+ 형광체 입자의 SEM 사진에서 확인할 수 있듯이, 열처리 온도가 900℃인 경우 입자크기는 100㎚이하의 입자들로 형성되어 있었고(도1a 참조), 1000℃로 열처리온도를 증가시켰을 때는 입자크기는 증가하였고 입자는 비교적 균일해졌고(도1b 참조), 도1c에서와 같이 1100℃에서 소성한 형광체는 150㎚정도의 입자 크기를 나타냈으나, 도1d에서와 같이 1200℃이상에서 열처리하는 경우 입자들 표면에서 응집이 일어나 입자들이 서로 엉켜 붙어 있는 모습을 보였다.As a result of analyzing the results according to the above embodiment, as shown in SEM pictures of YGd 2 O 3 : Eu 3+ phosphor particles prepared by changing the heat treatment temperature as shown in FIGS. 1A, 1B, 1C, and 1D, the heat treatment temperature was At 900 ° C, the particle size was formed with particles below 100 nm (see Figure 1a), and when the heat treatment temperature was increased to 1000 ° C, the particle size increased and the particles became relatively uniform (see Figure 1b), Figure 1c. As shown in FIG. 1D, the phosphor fired at 1100 ° C. exhibited a particle size of about 150 nm. However, when heat-treated at 1200 ° C. or more, as shown in FIG.

또한 도2의 X선 회절 분석 결과에서 확인할 수 있듯이 상기 실시예에 따라 제조된 YGd2O3 : Eu3+ 형광체는 900℃에서 결정성이 나타나는 것을 확인할 수 있고, 1100℃까지 열처리 온도가 증가함에 따라 결정성 역시 증가하는 것을 확인하였다. 따라서 본 발명의 용매증발법으로 제조되는 형광체는 1500℃이상의 고온에서 열처리하는 고상반응법에 비해 상대적으로 낮은 온도에서도 결정성이 우수하고 단일상이 형성됨을 확인할 수 있다.In addition, as can be seen in the X-ray diffraction analysis results of FIG. 2, the YGd 2 O 3 : Eu 3+ phosphor prepared according to the above embodiment was found to exhibit crystallinity at 900 ° C., and the heat treatment temperature increased to 1100 ° C. As a result, it was confirmed that the crystallinity also increased. Therefore, it can be seen that the phosphor prepared by the solvent evaporation method of the present invention has excellent crystallinity and a single phase even at a relatively low temperature compared to the solid phase reaction method of heat treatment at a high temperature of 1500 ° C. or higher.

도3은 본 발명에 의해 제조된 YGd2O3 : Eu3+ 형광체 입자의 발광특성결과그래프이다. 도3에서 확인할 수 있듯이 본 발명에 의한 형광체의 발광스펙트럼은 열처리 온도에 관계없이 최대피크가 Eu3+5DO→7F2 전이에 의한 612㎚에서 확인되었다. 또한 열처리 온도가 900℃에서 1100℃까지 증가함에 따라 발광 강도 역시 증가하였는데, 이는 열처리 온도가 증가함에 따라 광학적 천이 확률을 높여주는 결정성의 증가뿐만 아니라 표면에서의 산란이 감소되기 때문으로 판단된다. 일반적으로 발광 효율을 결정하는 중요한 요인은 화학적 구성, 입자의 크기와 배열, 입자모양의 최적화를 들 수 있는데, 따라서 열처리 온도가 증가함에 따라 입자가 커지고 일정한 구조를 가지는 형태가 나타나며, 크고 일정한 구조를 가지는 입자가 더 높은 입자 충전 밀도 외에도 산란이 감소되는 것에 대하여 중요한 요인으로 작용하나, 도1에서와 같이 1200℃이상의 너무 높은 온도에서 열처리하면 입자표면에서 응집이 일어나 입자들이 서로 엉켜 붙을 수 있으므로 바람직한 열처리 온도는 1200℃이하가 바람직하다.Figure 3 is a graph showing the emission characteristics of the YGd 2 O 3 : Eu 3+ phosphor particles produced by the present invention. As can be seen from FIG. 3, the luminescence spectrum of the phosphor according to the present invention was observed at 612 nm due to the 5 DO → 7 F 2 transition of Eu 3+ regardless of the heat treatment temperature. In addition, as the heat treatment temperature increases from 900 ° C to 1100 ° C, the luminescence intensity also increases, which is believed to be due to the decrease in scattering on the surface as well as the increase in crystallinity which increases the optical transition probability as the heat treatment temperature increases. In general, important factors for determining luminous efficiency include chemical composition, particle size and arrangement, and optimization of particle shape. Therefore, as the heat treatment temperature increases, the particles become larger and have a uniform structure. The branched particles act as an important factor for the scattering is reduced in addition to the higher particle packing density, but heat treatment at too high a temperature of more than 1200 ℃ as shown in Figure 1 may cause the particles to entangle with each other due to agglomeration at the surface of the desirable heat treatment As for temperature, 1200 degrees C or less is preferable.

상기한 바와 같이 본 발명에 의하면 작고 균일한 형태를 갖고 있어서 발광특성이 우수한 다성분계 복합 형광체를 제공할 수가 있고 고상반응법에서보다 낮은 열처리 온도로 제조되므로 경제적으로도 유리하게 형광체를 제조할 수 있는 효과를 기대할 수 있게 된다.As described above, according to the present invention, it is possible to provide a multi-component complex phosphor having a small and uniform shape and excellent in luminescence properties, and is manufactured at a lower heat treatment temperature than in the solid phase reaction method, thereby economically advantageously producing the phosphor. You can expect the effect.

Claims (5)

용매 증발법에 의한 적색발광용 형광체의 제조 방법으로서, YCl3·6H2O 과 GdCl3·6H2O를 혼합하여 증류수에 용해시켜 전구용액을 제조하는 단계(S1);A method for producing a red light-emitting phosphor by a solvent evaporation method, comprising: dissolving YCl 3 · 6H 2 O and GdCl 3 · 6H 2 O in distilled water to prepare a precursor solution (S1); 질산에 용해된 활성제를 상기단계(S1)에서의 전구 용액에 첨가하여 전구체 용액을 만드는 단계(S2);Adding an active agent dissolved in nitric acid to the precursor solution in step S1 to form a precursor solution (S2); 상기단계(S2)에서의 전구체 용액을 교반하여 용매를 증발시켜 전구체를 제조하는 단계(S3); 그리고Stirring the precursor solution in step S2 to evaporate the solvent to prepare a precursor (S3); And 상기단계(S3)에서의 전구체를 열처리하여 형광체를 얻는 단계(S4)를 포함하는, 적색 발광용 형광체의 제조방법.Comprising a step (S4) of obtaining a phosphor by heat-treating the precursor in the step (S3), the manufacturing method of the red light-emitting phosphor. 제 1항에 있어서, 상기단계(S1)에서의 YCl3·6H2O 과 GdCl3·6H2O의 혼합은 양론비로 2:3으로 함을 포함하는, 적색 발광용 형광체의 제조방법.According to claim 1, YCl 3 · 6H 2 O with GdCl 3 · 6H 2 O 2 ratio of mixing of stoichiometric in the above step (S1): 3 to hereinafter, the method for producing a red light-emitting phosphor comprising a. 제 1항에 있어서, 상기단계(S2)에서의 활성제는 Eu2O3이고, 첨가량은 전구체 용액에 포함되는 모체인 YCl3·6H2O 와 GdCl3·6H2O 전체중량의 3~7wt%임을 포함하는, 적색 발광용 형광체의 제조방법.According to claim 1, wherein the active agent in the step (S2) is Eu 2 O 3 , the addition amount is 3 ~ 7wt% of the total weight of the YCl 3 · 6H 2 O and GdCl 3 · 6H 2 O as the parent contained in the precursor solution Method of producing a red light-emitting phosphor comprising a. 제 1항에 있어서, 상기단계(S3)에서의 전구체 제조는 상기 단계(S2)에서의 전구체 용액을 60℃에서 2시간 교반하여 용매를 증발시킨 다음 80℃에서 24시간 건조하는 것임을 포함하는, 적색 발광용 형광체의 제조방법.The method according to claim 1, wherein the precursor preparation in step (S3) comprises the precursor solution in step (S2) is stirred for 2 hours at 60 ℃ to evaporate the solvent and then dried for 24 hours at 80 ℃ Method for producing a phosphor for luminescence. 제 1항에 있어서, 상기단계(S4)에서의 열처리는 900~1100℃에서 5시간 행하는 것임을 포함하는, 적색 발광용 형광체의 제조방법.The method of claim 1, wherein the heat treatment in step S4 is performed at 900 to 1100 ° C. for 5 hours.
KR1020070060673A 2007-06-20 2007-06-20 The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method KR100844579B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070060673A KR100844579B1 (en) 2007-06-20 2007-06-20 The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070060673A KR100844579B1 (en) 2007-06-20 2007-06-20 The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method

Publications (1)

Publication Number Publication Date
KR100844579B1 true KR100844579B1 (en) 2008-07-09

Family

ID=39824000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070060673A KR100844579B1 (en) 2007-06-20 2007-06-20 The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method

Country Status (1)

Country Link
KR (1) KR100844579B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010926A (en) * 1995-08-31 1997-03-27 윤종용 New red phosphor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010926A (en) * 1995-08-31 1997-03-27 윤종용 New red phosphor

Similar Documents

Publication Publication Date Title
Peng et al. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles
Hou et al. Facile template free synthesis of KLa (MoO 4) 2: Eu 3+, Tb 3+ microspheres and their multicolor tunable luminescence
CN100378192C (en) Luminescent material converted in nano level with yttrium oxide as matrix and preparation method
Li et al. Energy transfer and luminescence properties of Ba2CaMoO6: Eu3+ phosphors prepared by sol–gel method
Hong et al. Novel polygonal structure Mn 4+ activated In 3+-based Elpasolite-type hexafluorides red phosphor for warm white light-emitting diodes (WLEDs)
Li et al. Facile synthesis, growth mechanism and luminescence properties of uniform La (OH) 3: Ho3+/Yb3+ and La 2 O 3: Ho3+/Yb3+ nanorods
Fan et al. Enhanced luminescence intensity of Sr3B2O6: Eu2+ phosphor prepared by sol–gel method
Xinyu et al. Photoluminescence enhancement of YAG: Ce3+ phosphor prepared by co-precipitation-rheological phase method
TW201529802A (en) Method for producing fluorescent substance
Tao et al. Hydrothermal synthesis and luminescence properties of YF3: Ln (Ln= Sm, Dy, Tb and Pr) nano-/microcrystals
JP2007284304A (en) Europium-activated yttrium phosphate nano-particles, europium-activated yttrium vanadate nano-particles, phosphor made of these particles, and method for producing them
Jia et al. Monodisperse micro-spherical Sr2–zMg1+ yYzAl22–xO36: xMn4+ red phosphors
KR100792279B1 (en) Preparation Method of Nano Size Red Phosphor by Milling and Calcination of Gel Powder obtained by Sol-Gel Method and Heat Treatment
WO2000001784A1 (en) Small particle blue emitting lanthanum phosphate based phosphors for display and lamp applications and method of making
KR100844579B1 (en) The process of fluorescent substance based on ygd2o3:eu using solvent evaporation method
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
Zhang et al. Shape-controlled synthesis and luminescence properties of yttria phosphors
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
KR20000018337A (en) Process for production of green luminescent, phosphorescent composition
Zeng et al. Multicolor properties and applications of Ln 3+ doped hierarchical NaY (WO 4) 2 via a facile solvothermal process
Shimomura et al. Synthesis of Y (P, V) O4: Eu3+ red phosphor by spray pyrolysis without postheating
KR20030083839A (en) Preparation method of a nano-size red phosphor
Singh et al. Combustion Synthesis and Optical Properties of Eu 3+-Doped BaGd 2 ZnO 5 f–f Transition Nanophosphor for White LED
CN101029227A (en) Production of superfine fluorescent powder
Ji et al. Luminescence characterization and synthesis of γ-LiAlO 2: Eu 3+ by gel combustion

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120622

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130412

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150702

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee