KR100843839B1 - Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim - Google Patents

Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim Download PDF

Info

Publication number
KR100843839B1
KR100843839B1 KR1020060137512A KR20060137512A KR100843839B1 KR 100843839 B1 KR100843839 B1 KR 100843839B1 KR 1020060137512 A KR1020060137512 A KR 1020060137512A KR 20060137512 A KR20060137512 A KR 20060137512A KR 100843839 B1 KR100843839 B1 KR 100843839B1
Authority
KR
South Korea
Prior art keywords
combustion
silicon oxide
precursor
burner
corrosion resistance
Prior art date
Application number
KR1020060137512A
Other languages
Korean (ko)
Inventor
이동열
김태엽
박상훈
남경훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060137512A priority Critical patent/KR100843839B1/en
Application granted granted Critical
Publication of KR100843839B1 publication Critical patent/KR100843839B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A CCVD(Combustion Chemical Vapor Deposition) method that can enhance corrosion resistance of the metal surface by densely forming a silicon oxide film on a metal surface by using CCVD techniques is provided. In a combustion chemical vapor deposition method for transferring a vapor phase of a precursor to a burner by a carrier gas and depositing the vapor phase of the precursor onto a substrate by a flame of combustion heat, a combustion chemical vapor deposition method of a silicon oxide film with excellent corrosion resistance comprises: controlling the injection ratio of an oxidation gas to a combustion gas to a range of 10:190 to 10:210 to secure the combustion heat in the burner; using HMDSO(hexamethyldisiloxane), and controlling the injection amount ratio of the carrier gas containing the vapor phase of the precursor to the oxidation gas to a range of 210:0.8 to 210:2.4; and adjusting the distance from the burner to the substrate to less than 10 mm, thereby depositing the vapor phase of the precursor onto the substrate in a blue bright zone of the flame, wherein the silicon oxide film has a deposition coating thickness of 4 to 35 nm.

Description

내식성 우수한 실리콘 산화피막의 연소화학 기상증착 방법{Method for Combustion Chemical Vapor Deposition to enhance corrosion resisitance of silicon oxide flim}Method for Combustion Chemical Vapor Deposition to enhance corrosion resisitance of silicon oxide flim

도 1은 본 발명이 적용되는 연소화학 기상증착 장치의 개략도이다. 1 is a schematic diagram of a combustion chemical vapor deposition apparatus to which the present invention is applied.

유럽특허공보 737729European Patent Publication 737729

미국특허공보 5449414United States Patent Publication 5449414

미국특허공보 4364731United States Patent Publication 4364731

미국특허공보 5652021United States Patent Publication 5652021

미국특허공보 4600390United States Patent Publication 4600390

본 발명은 연소화학기상증착법에 의해 유기실란을 실리콘 산화피막으로 증착하는 방법에 관한 것이다. 보다 상세하게는, HMDSO(Hexamethyldisiloxane)의 전구체를 이용하여 실리콘 산화피막의 내식성을 개선하는 방법에 관한 것이다. The present invention relates to a method for depositing an organosilane into a silicon oxide film by combustion chemical vapor deposition. More specifically, the present invention relates to a method of improving the corrosion resistance of a silicon oxide film using a precursor of hexamethyldisiloxane (HMDSO).

일반적인 금속제품의 표면은 내식성, 내구성 향상을 목적으로 화학처리를 실시하고, 이런 화학처리에 의해 형성된 도막은 그 자체의 베리어(barrier) 특성은 물론, 화학처리 피막 상부에 추가적으로 형성되는 유기,무기코팅과의 물리적 화학적 결합에 의해 금속제품의 표면을 부식으로부터 보호하는 특성을 가져야 한다. The surface of general metal products is chemically treated for the purpose of improving corrosion resistance and durability, and the coating film formed by these chemical treatments has organic barrier coatings, as well as organic and inorganic coatings formed on top of the chemically treated film. It must have the property of protecting the surface of metal products from corrosion by physical and chemical bonding with.

기존에는 이러한 금속표면의 내식성 및 상부코팅과의 결합을 위해 인산염이나 크로메이트 처리를 실시 하였다. 크로메이트 처리 흑은 금속 인산염 처리를 하는 경우 크롬 혹은 금속인산염을 함유한 화학처리액을 이용해 표면처리를 하는 것으로 피착제의 표면에 산화크롬 혹은 인산염의 부동태 피막을 형성하여 내식성 뿐만 아니라 기타 표면 특성부여를 위해서 많이 사용되고 있다. 특히, 크로메이트처리의 경우, 내식성과 상부코팅에 대한 접착성 개질 특성이 매우 우수하며, 처리비용도 매우 경제적으로 가장 널리 사용되는 금속의 표면처리법으로 이용되고 있다. Conventionally, phosphate or chromate treatments have been carried out for the corrosion resistance of the metal surface and the bonding with the top coating. Chromate treatment Black silver metal phosphate treatment is a surface treatment using a chemical treatment solution containing chromium or metal phosphate to form a passivation film of chromium oxide or phosphate on the surface of the adherend to provide corrosion resistance and other surface characteristics. It is used a lot for. In particular, in the case of chromate treatment, it is very excellent in corrosion resistance and adhesive modification properties for the top coating, and the treatment cost is very economically used as the most widely used metal surface treatment method.

그러나 크로메이트에 의한 금속의 표면처리는 처리원액과 처리 후, 화학피막 자체에 인체에 매우 유해한 크롬6가를 함유하며, 처리 폐액이 발생하게 되고 이 폐액은 심각한 환경공해를 유발하는 물질로 인식되어 최근 유럽을 비롯한 선진국에서 2007년 6월부터 크롬사용에 대한 전면적인 규제운동이 있을 계획이며, 또한 전기 및 전 자기에 대한 RoHS(Restriction of Hazardous Substances, 위험물질 규제)법에 의해 2006년 7월부터 크롬물질 폐기에 대한 전면적인 규제가 시행될 예정이다. 이에 따라 방청성(내식성)을 부여하기 위한 대체 처리법을 찾거나 개발 중인 추세이다.However, the surface treatment of the metal by chromate contains chromium hexavalent, which is very harmful to the human body in the chemical solution itself after treatment, and the treatment waste liquid is generated, and this waste liquid is recognized as a substance causing serious environmental pollution. In June, 2007, there will be a full-scale regulatory movement on chromium use in developed countries, as well as chromium materials from July 2006 under the Restriction of Hazardous Substances (RoHS) Act on electricity and electronics. Full regulations on disposal will be implemented. Accordingly, there is a trend to find or develop an alternative treatment for providing corrosion resistance (corrosion resistance).

크로메이트 처리 외에 인산염이나 다른 금속산화물을 이용한 대체처리법이 개발 중이나 모두 액상의 처리용액을 이용하는 것으로 여전히 폐수에 의한 2차 환경오염의 문제점을 잠재적으로 가지고 있으며, 아직 크로메이트 처리와 동등한 수준의 내식성을 발현하지는 못하고 있는 실정이며, 경제적으로도 크로메이트 처리 대비 고가이다. 따라서, 크로메이트와 금속인산염 화학처리를 대체할 수 있는 처리법을 찾거나 개발 중인 추세이다. 그 대표적인 예가 유럽특허 737729와 미국특허 5449414가 있다. In addition to chromate treatment, alternative treatments using phosphate or other metal oxides are under development, but both use liquid treatment solutions, which still have the potential for secondary environmental pollution by wastewater and do not yet exhibit the same level of corrosion resistance as chromate treatment. It is not available and economically expensive compared to chromate treatment. Therefore, there is a trend to find or develop a treatment that can replace the chromate and metal phosphate chemical treatment. Representative examples are European Patent 737729 and US Patent 5449414.

유럽특허 737729에는 수용성 Polyacrylic Acid와 이것의 가교를 위한 2가 금속수산화물(Ca(OH)2, Ba(OH)2, etc), 아민화합물 그리고 금속과의 부착력 향상을 위한 mono acid, fluoride 등으로 이루어진 조성으로 도금강판 표면에 화학처리 피막을 형성하는 기술이 제안되어 있다. 이 기술에 의한 표면처리 피막은 내수성이 매우 약하고 깨어지기 쉬운 도막을 형성하여 실제 내식성 향상의 표면화학처리법으로의 사용이 매우 힘들다. European Patent 737729 discloses a water-soluble polyacrylic acid and a divalent metal hydroxide (Ca (OH) 2 , Ba (OH) 2 , etc.) for crosslinking thereof, an amine compound and mono acid, fluoride, etc. for improving adhesion to metals. A technique for forming a chemically treated film on the surface of a plated steel sheet by a composition has been proposed. The surface treatment film by this technique forms a very weak water-resistant and fragile coating film, which makes it very difficult to use it as a surface chemical treatment method for improving the corrosion resistance.

미국특허 5449414에서는 4A족 전이금속 불소화합물 음이온과 기타 전이금속 양이온 을 이용해서 금속의 표면에 화학처리를 하여 우수한 내식성과 라커 밀착성을 확보할 수 있다고 주장하고 있다. 이 처리법은 금속표면의 에칭에 의해 표면에너지를 높이는 방법으로 화학처리액 자체와 금속표면과의 접착성(wetting)이 충분하지 않아 피막형성이 힘들어 내식성 개선을 위한 화학처리제로는 사용에 어려움이 있다.U.S. Patent 5449414 claims that the Group 4A transition metal fluoride compound anion and other transition metal cations can be chemically treated on the surface of the metal to ensure excellent corrosion resistance and lacquer adhesion. This treatment is a method of increasing the surface energy by etching the metal surface, and due to insufficient adhesion between the chemical treatment liquid and the metal surface, it is difficult to form a film, which makes it difficult to use as a chemical treatment agent for improving corrosion resistance. .

한편, 상기한 습식코팅방법과 달리 건식코팅법을 이용하는 기술들이 알려져 있다. On the other hand, there is known a technique using a dry coating method, unlike the wet coating method described above.

건식법은 습식법과는 달리, 고체의 물질을 기화하여 피도체의 표면에 흡착을 시키거나 기상의 반응물을 열이나 플라즈마 등의 에너지를 이용해 도막을 형성시키는 방법이다. 따라서, 액상의 반응에 의한 코팅기술에 비해 도막의 결정구조나 방향, 두께 등의 조절이 가능하며, 고기능성의 피막을 얻을 수 있는 장점이 있다. Unlike the wet method, the dry method is a method in which a solid substance is vaporized to adsorb onto a surface of a subject, or a gaseous reactant is formed of energy using heat or plasma to form a coating film. Therefore, compared with the coating technology by the reaction of the liquid phase, it is possible to control the crystal structure, direction, thickness, etc. of the coating film, and there is an advantage of obtaining a highly functional film.

건식법은 크게 물리적 기상 증착 (Physical Vapor Deposition, PVD)기술과 화학적 기상 증착(Chemical Vapor Deposition, CVD) 기술로 분류될 수 있다. The dry method can be roughly classified into physical vapor deposition (PVD) technology and chemical vapor deposition (CVD) technology.

PVD는 최근 개발된 매우 진보된 형태의 획기적인 표면처리법이나 고속으로 넓은 면적을 처리하기 위한 기술개발이 아직 되어있지 않다. 따라서, 고속처리의 일반제품으로의 적용이 힘들어 고부가가치의 반도체 산업에만 쓰이고 있는 실정이다.PVD has not yet been developed with a very advanced form of breakthrough surface treatment or technology for processing large areas at high speed. Therefore, it is difficult to apply the high-speed processing as a general product and is used only in the high value-added semiconductor industry.

CVD는 목적으로 하는 박막의 구성원자를 포함하는 원료가스를 기판이 놓여진 공간에 공급하여 원료 가스분자의 화학반응 혹은 분해를 통하여 기상 및 기판 표면에서의 화학반응으로 박막을 형성하는 기술이다. CVD에서는 대기압하에서 증착하는 연소열을 에너지원으로 하여 전구체의 기화, 분해, 산화하여 증착하는 기술로 연소화 학 기상증착법(이하, 간단히 CCVD라고도 표기함)이 있다.CVD is a technique of forming a thin film by supplying a raw material gas containing a member of a target thin film to a space in which a substrate is placed, by chemical reaction or decomposition of raw material gas molecules on the gas phase and the surface of the substrate. In CVD, a combustion chemical vapor deposition method (hereinafter simply referred to as CCVD) is a technique for vaporizing, decomposing, and oxidizing a vapor deposition using a heat of combustion deposited under atmospheric pressure as an energy source.

미국특허 4364731에서는 PVD 기법 중 스퍼터링(sputtering)등의 방법을 이용해 실리카나 알루미나 등의 산화물피막을 피도체에 형성하고 유기실란을 다음에 처리하여 유기수지와의 접착을 높이는 방법이 제안되어 있다. 이 경우 진공이 요구되는 PVD 방법을 이용해 산화물피막을 형성하므로 공정이 복잡하고 제어가 힘들며, 대량생산을 위한 추가적인 장비와 공정 개발이 필요하며 경제적으로 고가의 장비와 공정비용이 들어 저가의 표면처리제품을 생산하기엔 어려움이 있다. U.S. Patent 4364731 proposes an oxide film such as silica or alumina on a substrate by sputtering or the like in a PVD technique, and then improves adhesion to an organic resin by processing an organic silane next. In this case, oxide film is formed using PVD method that requires vacuum, which makes the process complicated and difficult to control, requires additional equipment and process development for mass production, and economically expensive equipment and process cost. Difficult to produce

미국특허 5652021에서는 전구체(precursor)를 유기용매에 녹여 산소 혹은 공기와 연소시킴으로서 산화물피막을 형성하는 CCVD처리방법과 장비가 제안되어 있다. 이 방법에 의하면 다양한 형태의 산화피막을 형성할 수 있으며, 산화피막 이외 여러 물질의 코팅도 가능하다. 그러나 이 기술은 CCVD의 의해서 형성된 산화피막과 기타 코팅 자체의 특성에 초점을 두고 있어 부가적인 내식성 향상에 관해서는 문제해결 방법을 제시하지 못하고 있다. US Patent 5652021 proposes a CCVD treatment method and apparatus for forming an oxide film by melting a precursor in an organic solvent and burning it with oxygen or air. According to this method, various types of oxide films can be formed, and coating of various materials other than the oxide film is also possible. However, the technique focuses on the characteristics of the oxide film and other coatings themselves formed by CCVD, and therefore does not provide a solution to the problem of additional corrosion resistance improvement.

미국특허 4600390에서는 금속의 보철물에 유기실란을 전구체로 이용하여 CCVD에 의한 실리콘 산화물 코팅과 유기실란 처리를 하여 치과의료용 플라스틱의 접착을 향상시키는 방법에 대해서 CCVD 장비와 처리조건 등을 제시하고 있다. 그러나 이 발명은 단순히 CCVD처리에 의한 피막형성으로 보철물의 플라스틱 접착에만 한정하여 기술을 제시할 뿐 내식성에 관련한 기술이나 공정은 아직 제시되지 못하고 있다. U.S. Patent 4600390 proposes CCVD equipment and treatment conditions for a method of improving adhesion of dental plastics by performing silicon oxide coating and organosilane treatment by CCVD using organosilane as a precursor to a metal prosthesis. However, the present invention merely proposes a technique limited to plastic adhesion of a prosthesis by simply forming a film by CCVD treatment, but a technique or process related to corrosion resistance has not been proposed yet.

본 발명은 CCVD 기술을 이용해 실리콘 산화물의 피막을 치밀하게 형성하여 금속표면의 내식성을 증대시킬 수 있는 CCVD 처리방법을 제공하는데, 그 목적이 있다. An object of the present invention is to provide a CCVD treatment method capable of increasing the corrosion resistance of a metal surface by densely forming a silicon oxide film using CCVD technology.

상기 목적을 달성하기 위한 본 발명의 연소화학 기상증착 방법은, 전구체의 증기상을 캐리어 가스에 의해 버너로 이송하고 연소열의 화염에 의해 기판에 증착하는 연소화학 기상증착 방법에 있어서,In the combustion chemical vapor deposition method of the present invention for achieving the above object, in the combustion chemical vapor deposition method of transferring the vapor phase of the precursor to the burner by the carrier gas and depositing on the substrate by the flame of combustion heat,

상기 버너에서 연소열은 연소가스 대비 산화가스의 투입비를 10:190-10:210으로 하여 확보하고,The heat of combustion in the burner is secured by the input ratio of the oxidizing gas to the combustion gas as 10: 190-10: 210,

상기 전구체는 HMDSO(Hexamethyldisiloxane)이고, 상기 산화가스에 대한 전구체의 증기상을 포함하는 캐리어가스의 투입량은 210:0.8-210:2.4로 하여 The precursor is HMDSO (Hexamethyldisiloxane), and the input amount of the carrier gas including the vapor phase of the precursor to the oxidizing gas is 210: 0.8-210: 2.4

상기 화염의 블루 블라이트 영역에서 기판에 증착하는 것을 포함하여 이루어진다.And depositing on the substrate in the blue blight area of the flame.

본 발명의 일실시예에 따르면, 상기 실리콘 산화피막의 증착 처리는 2-15회 행하는 것이 바람직하다. 또한, 상기 산화가스가 공기가 가장 바람직하다. 상기 증착도막의 두께는 45nm이하가 가장 바람직하다. 본 발명의 일실시예에 따르면 블루 블라이트 영역은 상기 상기 버너에상기 기판의 거리는 10mm이하, 보다 바람직하게는 7mm이하이다. 또한, 상기 기판은 금속, 비금속, 플라스틱 등이 적용될 수 있으며, 강 판과 같은 대형 판상에 적용할 수 있다점에 그 의미가 크다. According to one embodiment of the present invention, the deposition process of the silicon oxide film is preferably performed 2-15 times. In addition, the oxidizing gas is most preferably air. The thickness of the deposited coating film is most preferably 45nm or less. According to an embodiment of the present invention, the distance of the substrate to the burner is 10 mm or less, more preferably 7 mm or less. In addition, the substrate may be applied to a metal, non-metal, plastic, and the like, and has a significant meaning in that it can be applied to a large plate such as a steel plate.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

연소화학 기상증착방법에 적용되는 장치의 개략도가 도 1에 제시되어 있다. 도 1은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 하나의 예시로서, 본 발명이 여기에 한정되는 것은 아니다. 도면에서의 형상 및 크기 등은 보다 명확한 설명을 위해 과장되어 표현된 것이다. 도 1에서 공기는 산화가스로도 이용되고, 전구체의 캐리어 가스로도 이용되도록 구성된 것이다. A schematic of the apparatus applied to the combustion chemical vapor deposition method is shown in FIG. 1. 1 is an example provided to more fully explain the present invention to those skilled in the art, and the present invention is not limited thereto. Shapes and sizes in the drawings are exaggerated for clarity. In FIG. 1, air is used as an oxidizing gas and also as a carrier gas of a precursor.

CCVD장치는 크게 원료공급부, 콘트롤부, 버너, 기판 이송부로 구성된다. The CCVD apparatus is mainly composed of a raw material supply part, a control part, a burner, and a substrate transfer part.

콘트롤부는 증착물질의 원료가 되는 전구체의 증발 그리고, 전구체 증기의 공기중 포화상태로의 공급하는 기능(캐리어가스 공급)을 한다. 또한, 전구체의 화학적 반응에너지의 원천이 되는 연소에너지의 발생을 위한 산화가스와 연소가스의 공급량을 조절하는 기능을 한다. The control unit functions to evaporate the precursor which is a raw material of the deposition material and to supply the precursor vapor to the saturated state in the air (carrier gas supply). In addition, the function of controlling the supply amount of the oxidizing gas and the combustion gas for the generation of the combustion energy that is the source of the chemical reaction energy of the precursor.

버너는 콘트롤부에서 공급되는 산화가스와 연소가스를 연소하면서 유입되는 전구체의 화학적 반응에 의해 증착물질을 생성, 증착이 이루어지게 하는 기능을 한다. The burner functions to generate and deposit a deposition material by chemical reaction of an incoming precursor while burning oxidizing gas and combustion gas supplied from a control unit.

기판 이송부는 증착이 되는 피도체를 버너의 화학반응이 일어나는 화염(flame)속으로 일정속도로 운반하여 증착이 되게 한다. 여기서 기판은 금속, 비금속, 플라스틱 등 특별히 재질에 제한이 없으며, 강판과 같은 대형의 판상도 적용될 수 있다. The substrate transfer unit transports the deposited material into a flame at which the chemical reaction of the burner occurs at a constant speed so as to be deposited. Herein, the substrate is not particularly limited in materials such as metal, nonmetal, plastic, and a large plate like a steel sheet may be applied.

이러한 CCVD공정에서 생성되는 실리콘 산화피막의 특성은 여러 가지 조업조건에 의해 결정된다. 본 발명에서는 전구체로서 HMDSO를 이용하여 실리콘 산화피막을 형성할 때 내식성에 영향을 미치는 다양한 인자의 검토를 통해 최적의 조업조건을 도출하는데 특징이 있다. 본 발명에서는 기판 특히, 금속의 표면에 CCVD기술을 이용해 수산화기(hydroxyl)를 다량 함유한 실리콘 산화물의 치밀한 피막을 형성하고, 피착체 표면에 형성된 증착피막의 배리어(barrier)특성 및 증착피막과 상부의 보호피막이나 기능성 부여를 위한 코팅과의 화학저 결합으로 금속표면의 내식성이 증대되는 연소화학기상증착(CCVD에 의한 표면처리를 행하는 것이다.  The characteristics of the silicon oxide film produced in this CCVD process are determined by various operating conditions. In the present invention, it is characterized by deriving the optimum operating conditions through the examination of various factors affecting the corrosion resistance when forming the silicon oxide film using HMDSO as a precursor. In the present invention, a dense film of silicon oxide containing a large amount of hydroxyl is formed on a surface of a substrate, particularly a metal, by using CCVD, and the barrier property of the deposited film formed on the surface of the adherend, Combustion chemical vapor deposition (CCVD surface treatment) in which the corrosion resistance of metal surfaces is increased by chemical low bonding with a protective film or a coating for imparting functionality.

본 발명에 따르면 전구체로서 HMDSO를 이용하여 수산화기(hydroxyl)를 다량 함유한 실리콘 산화피막이 형성된다. 이 피막은 피착제 표면에서 내식성이 증대되는 것이 요구된다. 본 발명은 이를 위하여 CCVD처리시 산화가스에 대한 전구체의 증기상을 포함하는 캐리어가스의 투입량, 버너에서 기판까지의 거리에 의해 제어하는 것이다. According to the present invention, a silicon oxide film containing a large amount of hydroxyl (hydroxyl) is formed using HMDSO as a precursor. This coating is required to increase the corrosion resistance on the surface of the adherend. The present invention is controlled by the input amount of the carrier gas, including the vapor phase of the precursor to the oxidizing gas during the CCVD process, the distance from the burner to the substrate.

버너에서의 연소열은 연소가스 대비 산화가스의 투입비에 의해 결정된다. 본 발명의 일실시예에 따르면 연소가스: 산화가스의 비를 10:190-10:210로 하여 연소열을 확보할 수 있다. 공급되는 산화가스의 량이 적으면 처리에 충분한 화염을 얻을 수 없으며, 너무 많으면 화염의 온도가 너무 높아 피도체의 표면에 손상을 줄 수 있다. 연소가스(LPG)의 공급량이 적으면 화염을 일으키기가 힘들고 너무 많으면 불완전 연소에 의해 불량한 처리를 가져 오거나 화염의 유지가 힘들다.The heat of combustion in the burner is determined by the input ratio of the oxidizing gas to the combustion gas. According to an embodiment of the present invention, the heat of combustion may be secured by setting the ratio of the combustion gas: oxidizing gas to 10: 190-10: 210. If the amount of oxidizing gas supplied is small, sufficient flame cannot be obtained for the treatment, and if too large, the temperature of the flame is too high, which may damage the surface of the subject. If the amount of supply of the combustion gas (LPG) is small, it is difficult to generate a flame, and if too large, it is difficult to bring about poor treatment or to maintain the flame by incomplete combustion.

CCVD에서는 전구체의 증기상을 캐리어 가스에 의해 버너로 이송한다. 이때 전구체의 증기상을 포함하는 캐리어가스의 공급량은 산화가스와의 공급비로 조절한다. 즉, 산화가스에 대한 HMDSO(Hexamethyldisiloxane)를 포함하는 캐리어가스의 공급비를 210:0.8-210:2.1로 하는 것이다. HMDSO를 포함하는 캐리어가스의 공급량이 적으면 특성을 가지는 피막두께를 얻기가 힘들다. 또한, HMDSO를 포함하는 캐리어가스의 공급량이 과다할 경우 증착입자의 거대화를 가져와서 효율적이고 치밀한 피막형성이 어려움과 동시에 피도체 표면에 증착층을 이루지 못하고 소모되는 HMDSO 의 량이 늘어나 경제적으로도 좋지 못하다. In CCVD, the vapor phase of the precursor is transferred to the burner by the carrier gas. At this time, the supply amount of the carrier gas including the vapor phase of the precursor is adjusted by the supply ratio with the oxidizing gas. That is, the supply ratio of the carrier gas containing HMDSO (Hexamethyldisiloxane) to the oxidizing gas is 210: 0.8-210: 2.1. When the supply amount of the carrier gas containing HMDSO is small, it is difficult to obtain a film thickness having characteristics. In addition, when the supply amount of the carrier gas containing HMDSO is excessive, the deposition particles are enormous, which makes it difficult to form an efficient and dense film and at the same time, the amount of HMDSO consumed that does not form a deposition layer on the surface of the object is not economically good. .

CCVD에서 화염(flame)은 색갈에 따라 크게 2개의 구역으로 나눌 수 있다. 고온의 플라즈마 상태인 블루 블라이트(blue bright) 영역과 다크 프레임(dark flame)영역으로 구분한다. 본 발명에 따라 내식성의 확보측면에서는 블루 블라이트프레임 영역에서 증착처리하는 것이 가장 바람직하다. 본 발명의 일실시예에 따르면, 버너에서 기판까지의 거리는 10mm 이하, 보다 바람직하게는 7mm 이하로 하여 증착 처리하는 것이다. 버너에서 기판까지의 거리의 조절에 의해 내식성에 좋은 피막이 얻어진다. Flame in CCVD can be divided into two zones according to the color. It is divided into a blue bright region and a dark flame region which are high temperature plasma states. According to the present invention, from the aspect of securing corrosion resistance, it is most preferable to deposit in the blue bright frame region. According to one embodiment of the present invention, the distance from the burner to the substrate is 10 mm or less, more preferably 7 mm or less, for the deposition process. By adjusting the distance from the burner to the substrate, a film having excellent corrosion resistance is obtained.

본 발명에서 캐리어가스와 산화가스는 공기가 가장 바람직하다. 또한, 연소가스는 LPG, LNG 등이 적용될 수 있다. In the present invention, the carrier gas and the oxidizing gas are most preferably air. In addition, the combustion gas may be applied to LPG, LNG and the like.

본 발명에서는 실리콘 산화피막의 증착 처리 횟수는 15회 이내 보다 바람직하게는 2-15회로 하는 것이다. 처리횟수가 15회를 초과하더라도 내식성의 증가는 그리 크지 않다. In the present invention, the number of deposition processes of the silicon oxide film is more preferably within 15 times, preferably 2 to 15 times. Even if the number of treatments exceeds 15, the increase in corrosion resistance is not so great.

상기한 본 발명의 조업조건은 300mm버너에서 산화가스의 공급유량을 180-255 l/min의 조건으로 변화시키면서 각 조업조건을 도출한 것이다. 물론, 버너의 조건이 달라지면 이러한 조건은 변화하게 된다. 따라서, 본 발명에서는 300mm버너에서 도출되는 조업조건을 상대적으로 정하여 버너의 크기가 변한다 하더라도 본 발명의 조건은 적용 가능한 것이다. The operating conditions of the present invention described above are derived from the respective operating conditions while changing the supply flow rate of the oxidizing gas in the 300mm burner to a condition of 180-255 l / min. Of course, if the burner conditions are different, these conditions will change. Therefore, in the present invention, even if the size of the burner changes by relatively operating conditions derived from the 300mm burner, the conditions of the present invention are applicable.

본 발명에서 기판은 특히, 금속판(강판)이 바람직하게 적용될 수 있다. In the present invention, in particular, a metal plate (steel plate) may be preferably applied.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

전기아연도금강판 표면에 CCVD장치의 버너와 아연전기도금강판과의 거리를 달리하면서 CCVD 처리를 실시하여 실리콘 산화피막을 형성하고 그 처리된 표면에 1액형 유기 내지문 수지를 바(bar) 혹은 롤코팅(roll coating)하고 경화 후, 내식성 평 가(SST, Salt Spray Test) 통해 거리에 따른 CCVD처리의 내식성 영향을 살펴보았다. By varying the distance between the burner of the CCVD apparatus and the zinc electroplated steel sheet on the surface of the galvanized steel sheet, the CCVD process is performed to form a silicon oxide film and the bar or roll of one-component organic anti-fingerprint resin on the treated surface. After the coating (roll coating) and curing, the effect of corrosion resistance of CCVD treatment with distance was examined through salt spray test (SST).

300mm 길이의 CCVD 버너를 기준으로 전구체(Precursor)로 HMDSO를 사용하고 CCVD 파라미터중 공기의 공급량은 210 l/min, 이에 따른 연소가스(LPG)는 10 L/min, 전구체 증기의 공급량은 0.8 L/min 즉, 공기와 연소가스 그리고 전구체 증기의 공급비율을 21:1:0.8로 공급하고, 시편의 처리속도를 60m/min으로 고정하고 4~6회 처리에 의해 실리콘옥사이드의 두께를 6~14nm로 처리할 때, CCVD처리거리를 플레임의 색갈에 따라 열플라즈마 영역인 밝은 푸른색(thermal plasma region, bright flame region), 어두운 푸른색(dark flame region) 그리고 불꽃의 끝단으로 나누어 처리하여 CCVD 장치의 버너로부터 시편까지의 거리(처리거리)에 따른 내식성 영향을 살펴 보았다.HMDSO is used as the precursor (precursor) based on a 300mm long CCVD burner, and the air supply is 210 l / min in the CCVD parameters, thus the combustion gas (LPG) is 10 L / min, and the precursor vapor is 0.8 L / min. min, that is, supply ratio of air, combustion gas and precursor vapor is 21: 1: 0.8, and the processing speed of specimen is fixed at 60m / min, and the thickness of silicon oxide is 6 ~ 14nm by 4 ~ 6 treatments. When processing, the CCVD treatment distance is divided into the thermal plasma region, the thermal plasma region, the bright flame region, the dark flame region, and the flame end, depending on the color of the flame. The effect of corrosion resistance on the distance from the specimen to the specimen (treatment distance) was investigated.

처리횟수Processing count 0회0 times 4회4 times 6회6th 처리거리(mm)Processing distance (mm) -- 77 4040 끝단Tip 77 4040 끝단Tip 두께(nm)Thickness (nm) -- 7.97.9 77 77 11.711.7 1111 1010 내식성 (SST)Corrosion Resistance (SST) 72hrs72hrs WR 20%WR 20% No rustNo rust No rustNo rust WR ~3%WR ~ 3% No rustNo rust No rustNo rust WR ~3%WR ~ 3% 144hrs144hrs RR 70%RR 70% WR 5%WR 5% WR 5~7%WR 5-7% WR 7%WR 7% WR 5%WR 5% WR 5~7%WR 5-7% WR ~7%WR ~ 7% RR : Red Rust, WR : White RustRR: Red Rust, WR: White Rust

표 1에 나타난 바와 같이, CCVD처리하지 않은 시편은 SST 72시간부터 백청이 발생하여 144시간에서는 표면의 70%이상이 적청이 발생 하였다. 그러나, CCVD처리 시편의 경우는 72시간까지 발청이 없었으며, 144시간 이후에 백청이 발생하였다. 처리거리에 따른 영향은 열플라즈마 영역인 밝은 푸른색(bright flame region), 어두운 푸른색(dark flame region) 그리고 불꽃의 끝단 순으로 처리효과가 떨어지는데, 열플라즈마 영역인 10mm이하에서는 화학반응에 의한 미세입자가 바로 표면에 증착되어 치밀한 도막을 형성하고, 거리가 멀어질수록 화학반응물 생성 후, 피도체 표면까지의 도달하는 도중에 미세입자끼리의 뭉침에 의해 상대적으로 큰 입자가 증착되어 증착도막의 치밀성이 저하되고 내식성이 저하된다.As shown in Table 1, the specimen which was not subjected to CCVD was white blue from SST 72 hours, and more than 70% of the surface was red blue at 144 hours. However, in the case of CCVD treated specimens, there was no rust until 72 hours, and white rust occurred after 144 hours. The effect of treatment distance is decreased in order of the bright plasma region, the dark flame region, and the end of the flame, which are the thermal plasma regions. The particles are deposited directly on the surface to form a dense coating film. As the distance increases, relatively large particles are deposited by agglomeration of fine particles on the way to the surface of the subject after the formation of the chemical reactant. It lowers and corrosion resistance falls.

[실시예 2]Example 2

전기아연도금강판 표면에 CCVD 전구체증기의 공급량과 처리횟수(증착도막 두께)를 달리하면서 CCVD 처리를 실시하여 실리콘 산화피막을 형성하고, 그 처리된 표면에 유기수지를 코팅하여 내식성 평가(SST, Salt Spray Test) 통해 CCVD처리의 내식성 영향을 살펴보았다. CCVD treatment was carried out on the surface of the galvanized steel sheet by varying the supply amount of CCVD precursor vapor and the number of treatments (deposition film thickness) to form a silicon oxide film, and the organic resin was coated on the treated surface to evaluate corrosion resistance (SST, Salt Spray Test) examined the corrosion resistance of CCVD.

300mm 길이의 CCVD 버너를 기준으로 전구체로 HMDSO를 사용하고 CCVD 파라미터중 공기의 공급량은 210 l/min, 이에 따른 연소가스(LPG)는 10 L/min 즉, 공기와 연소가스의 비율을 21:1로 공급하고, 시편의 처리속도를 60m/min, 처리거리는 7mm(열플라즈마 영역)로 고정한 후, 처리횟수와 전구체 증기의 공급량을 변경하면서 아연도금강판에 CCVD처리에 의해 실리콘 산화피막 증착도막을 형성하였다. 그 표면에 1액형 유기 내지문 수지를 bar 혹은 roll coating코팅, 경화 후, 내식성 평가(SST, Salt Spray Test) 통해 전구체의 증기의 공급량과 처리횟수(증착도막 두께)에 따른 CCVD처리의 내식성 영향을 살펴보았다.HMDSO is used as a precursor based on a 300mm long CCVD burner, and the air supply is 210 l / min in the CCVD parameters, and thus the combustion gas (LPG) is 10 L / min. After the sample was fixed at 60m / min and the processing distance was set at 7mm (thermal plasma region), the silicon oxide film-deposited coating film was formed on the galvanized steel sheet by CCVD while changing the number of treatments and the amount of precursor vapor. It was. After coating or curing one-component organic anti-fingerprint resin on the surface and curing it, the corrosion resistance evaluation (SST, Salt Spray Test) was used to determine the effect of corrosion on the CCVD treatment according to the amount of precursor vapor supply and the number of treatments (deposition film thickness). I looked at it.

..

처리횟수 (Cylces)Cycles (Cylces) 도막두께 (nm)Coating thickness (nm) 전구체 flow (L/min)Precursor flow (L / min) 내식성(SST)Corrosion Resistance (SST) 72시간72 hours 144시간144 hours 00 -- -- WR 20%WR 20% RR 75%RR 75% 1One 1.71.7 0.40.4 WR 7%WR 7% RR 70%RR 70% 22 0.80.8 WR 5%WR 5% RR 70%RR 70% 2.22.2 1.61.6 No RustNo rust WR 20%WR 20% 2.52.5 2.12.1 No RustNo rust RR 5%RR 5% 2.72.7 3.03.0 No RustNo rust WR 15%WR 15% 22 3.43.4 0.40.4 No RustNo rust RR 15%RR 15% 44 0.80.8 No RustNo rust RR 5%RR 5% 4.34.3 1.61.6 No RustNo rust WR 10%WR 10% 4.94.9 2.12.1 No RustNo rust WR < 5% WR <5% 5.15.1 3.03.0 WR 5%WR 5% WR < 5%WR <5% 44 6.56.5 0.40.4 No RustNo rust WR 15%WR 15% 7.97.9 0.80.8 No RustNo rust WR 5%WR 5% 9.79.7 1.61.6 No RustNo rust WR 5%WR 5% 8.48.4 2.12.1 No RustNo rust WR 10%WR 10% 9.99.9 3.03.0 No RustNo rust WR 15%WR 15% 66 10.210.2 0.40.4 No RustNo rust WR 7%WR 7% 11.711.7 0.80.8 No RustNo rust WR 5%WR 5% 12.412.4 1.61.6 No RustNo rust WR < 5% WR <5% 14.114.1 2.12.1 No RustNo rust WR 5%WR 5% 15.015.0 3.03.0 WR 5%WR 5% WR 10%WR 10% 1010 16.416.4 0.40.4 No RustNo rust WR 5%WR 5% 19.919.9 0.80.8 No RustNo rust WR 5%WR 5% 21.121.1 1.61.6 No RustNo rust WR < 5%WR <5% 23.323.3 2.12.1 No RustNo rust No RustNo rust 24.924.9 3.03.0 No RustNo rust WR 10%WR 10% 1515 24.624.6 0.40.4 No RustNo rust WR < 5%WR <5% 29.929.9 0.80.8 No RustNo rust WR < 5%WR <5% 31.731.7 1.61.6 No RustNo rust WR < 5%WR <5% 34.934.9 2.12.1 No RustNo rust WR < 5%WR <5% 37.337.3 3.03.0 No Rust No rust WR 10%WR 10% 2020 32.832.8 0.40.4 No RustNo rust WR < 5%WR <5% 39.839.8 0.80.8 No RustNo rust WR 10%WR 10% 42.242.2 1.61.6 No RustNo rust WR 10%WR 10% 46.646.6 2.12.1 No RustNo rust WR 20%WR 20% 49.849.8 3.03.0 WR 5%WR 5% RR 10%RR 10%

CCVD 처리횟수가 늘어갈수록 즉, CCVD 처리에 의한 치밀한 산화실리콘 도막이 두꺼워지고 배리어(Barrier) 효과에 의해 내식성이 우수해 지는 것을 볼 수 있는데, 60m/min의 처리속도조건에서 2 cycles부터 15cycles까지의 처리를 통해 4nm~35nm두께의 산화실리콘 도막의 형성으로 내식성이 증대 하나 15회(45nm) 이상에서는 내식성 향상이 둔화되는 현상을 보였으며, 20회 이상의 처리에 의한 산화실리콘 도막의 두께가 45nm이상일 때 는 거대입자 형성에 의한 치밀성 약화로 내식성이 감소되는 현상을 나타내었다. 전구체 증기의 유량이 0.4L/min 이하에서는 도막형성이 너무 느려서 내식성을 위한 충분한 두께의 도막을 얻기에 많은 처리시간이 요구되었고, 0.4L/min 에서 2.1L/min까지 전구체 증기의 유량이 높아질수록 증착도막의 형성이 빨라져 내식성이 향상 되었으나 2.1L/min 이상에서는 입자의 거대화에 의해서 증착도막의 치밀성이 약화되고 특히 처리횟수가 많아져 45nm이상의 두꺼운 도막이 형성될 때는 치밀성이 매우 약해져 내식성의 향상을 기대하기 힘들었다. As the number of CCVD treatments increases, that is, the dense silicon oxide coating film by CCVD treatment becomes thicker and the corrosion resistance is improved by the barrier effect. Corrosion resistance is increased by forming silicon oxide coating film of 4nm ~ 35nm thickness, but the improvement of corrosion resistance is slowed down more than 15 times (45nm). Corrosion resistance is reduced due to the weakening of compactness caused by the formation of macroparticles. When the flow rate of the precursor vapor was 0.4L / min or less, the film formation was too slow, requiring much processing time to obtain a film of sufficient thickness for corrosion resistance. Corrosion resistance is improved due to the rapid formation of the deposited film, but the density of the deposited film is weakened by the enlarging of particles at 2.1L / min or more. It was hard to do.

이상의 실시 예에서 살펴본 바와 같이 전구체로 HMDSO를 이용하고 처리횟수 2~15회, 시편과 burner사이의 처리거리가 flame의 열플라즈마 영역인 ~ 10mm, 공기공급량에 대한 전구체의 투입량비가 0.8:210~2.1:210L/min인 CCVD를 이용한 금속의 표면처리법이 내식성의 개선효과가 뛰어나 금속의 표면처리 등의 산업분야 적용에 매우 유용함을 알 수 있다.As described in the above embodiments, HMDSO is used as the precursor, the number of treatments is 2 to 15 times, the processing distance between the specimen and the burner is ~ 10 mm, which is the thermal plasma region of the flame, and the input ratio of the precursor to the air supply is 0.8: 210 to 2.1. The surface treatment method of metal using CCVD of: 210 L / min is excellent in improving the corrosion resistance, and thus it is very useful for industrial applications such as metal surface treatment.

본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다. The present invention is not limited by the above-described embodiment and the accompanying drawings, but is intended to be limited by the appended claims, and various forms of substitution, modification, and within the scope not departing from the technical spirit of the present invention described in the claims. It will be apparent to those skilled in the art that changes are possible.

상술한 바와 같이, 본 발명은 내식성성의 개선효과가 뛰어나 특히, 금속표면의 코팅 등의 산업분야의 적용에 매우 유용함을 알 수 있다.As described above, the present invention is excellent in the effect of improving the corrosion resistance, in particular, it can be seen that very useful in the application of industrial fields, such as coating of the metal surface.

Claims (6)

전구체의 증기상을 캐리어 가스에 의해 버너로 이송하고 연소열의 화염에 의해 기판에 증착하는 연소화학 기상증착 방법에 있어서,In the combustion chemical vapor deposition method in which the vapor phase of the precursor is transferred to a burner by a carrier gas and deposited on a substrate by a flame of combustion heat, 상기 버너에서 연소열은 연소가스 대비 산화가스의 투입비를 10:190-10:210으로 하여 확보하고,The heat of combustion in the burner is secured by the input ratio of the oxidizing gas to the combustion gas as 10: 190-10: 210, 상기 전구체는 HMDSO(Hexamethyldisiloxane)이고, 상기 산화가스에 대한 전구체의 증기상을 포함하는 캐리어가스의 투입량은 210:0.8-210:2.4로 하고,The precursor is HMDSO (Hexamethyldisiloxane), and the input amount of the carrier gas including the vapor phase of the precursor to the oxidizing gas is 210: 0.8-210: 2.4, 버너에서 기판까지의 거리를 10mm 이내로 하여 상기 화염의 블루 블라이트 영역에서 기판에 증착하는 것을 포함하여 실리콘 산화피막을 형성하되,Forming a silicon oxide film including depositing on the substrate in the blue blight area of the flame with a distance from the burner to the substrate within 10 mm, 상기 실리콘 산화피막의 증착도막 두께는 4 내지 35nm임을 특징으로 하는 내식성이 우수한 실리콘 산화피막의 연소화학 기상증착방법. The deposition coating thickness of the silicon oxide film is a combustion chemical vapor deposition method of the silicon oxide film excellent corrosion resistance, characterized in that 4 to 35nm. 삭제delete 제 1항에 있어서, 상기 실리콘 산화피막의 증착 처리는 2-15회 행하는 것을 특징으로 하는 내식성이 우수한 실리콘 산화피막의 연소화학 기상증착방법. The method of claim 1, wherein the deposition process of the silicon oxide film is performed 2-15 times. 제 1항에 있어서, 상기 산화가스는 공기임을 특징으로 하는 내식성이 우수한 실리콘 산화피막의 연소화학 기상증착방법. The method of claim 1, wherein the oxidizing gas is air. 제 1항에 있어서, 상기 기판은 금속판임을 특징으로 하는 내식성이 우수한 실리콘 산화피막의 연소화학 기상증착방법. The combustion chemical vapor deposition method of claim 1, wherein the substrate is a metal plate. 삭제delete
KR1020060137512A 2006-12-29 2006-12-29 Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim KR100843839B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060137512A KR100843839B1 (en) 2006-12-29 2006-12-29 Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060137512A KR100843839B1 (en) 2006-12-29 2006-12-29 Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim

Publications (1)

Publication Number Publication Date
KR100843839B1 true KR100843839B1 (en) 2008-07-03

Family

ID=39823730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060137512A KR100843839B1 (en) 2006-12-29 2006-12-29 Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim

Country Status (1)

Country Link
KR (1) KR100843839B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350151B1 (en) 2011-01-20 2014-01-23 한밭대학교 산학협력단 Metal treated corrosion protection using atmosphere pressure plasma
CN104024468A (en) * 2011-12-27 2014-09-03 Posco公司 Zn-Mg alloy-coated steel sheet with excellent blackening resistance and excellent adhesion and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185729A (en) 2004-12-27 2006-07-13 Fj Composite:Kk Surface treatment method of fuel cell separator and fuel cell separator
KR100742857B1 (en) * 2005-12-26 2007-07-25 주식회사 포스코 Method for Combustion Chemical Vapor Deposition to enhance wetting of silicon oxide flim

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185729A (en) 2004-12-27 2006-07-13 Fj Composite:Kk Surface treatment method of fuel cell separator and fuel cell separator
KR100742857B1 (en) * 2005-12-26 2007-07-25 주식회사 포스코 Method for Combustion Chemical Vapor Deposition to enhance wetting of silicon oxide flim

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350151B1 (en) 2011-01-20 2014-01-23 한밭대학교 산학협력단 Metal treated corrosion protection using atmosphere pressure plasma
CN104024468A (en) * 2011-12-27 2014-09-03 Posco公司 Zn-Mg alloy-coated steel sheet with excellent blackening resistance and excellent adhesion and method for manufacturing same
JP2016040413A (en) * 2011-12-27 2016-03-24 ポスコ Zn-Mg ALLOY-COATED STEEL PLATE EXCELLENT IN RESISTANCE TO BLACKING AND ADHESION FORCE, AND MANUFACTURING METHOD OF THE SAME
US9441302B2 (en) 2011-12-27 2016-09-13 Posco Method for manufacturing Zn—Mg alloy-coated steel sheet having high blackening resistance and coating adhesion
US9982342B2 (en) 2011-12-27 2018-05-29 Posco Zn—Mg alloy-coated steel sheet with excellent blackening resistance and excellent adhesion

Similar Documents

Publication Publication Date Title
EP2921534B1 (en) Inorganic paint composition, and method for forming inorganic paint film by using same
US8053072B2 (en) Method of reducing porosity in thermal spray coated and sintered articles
DE102008060923B4 (en) Use of a layer
Felts Transparent gas barrier technologies
KR101359259B1 (en) Zn-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING RESISTANCE AND COATING ADHESION, AND METHOD FOR MANUFACTURING THE SAME
JP2007023353A (en) Non-chromium reactive chemical conversion treatment of galvanized member
Czerwiec et al. On the occurrence of dual diffusion layers during plasma-assisted nitriding of austenitic stainless steel
CN109355641B (en) Method for modifying surface of inorganic pigment
CN109023335A (en) A kind of metal material surface conversion film at film liquid and application thereof
CN106947963A (en) A kind of method for preparing super-hydrophobic film on ultra-low-carbon steel surface
Carta et al. A comparative study of Cr2O3 thin films obtained by MOCVD using three different precursors
Forsich et al. Influence of the deposition temperature on mechanical and tribological properties of aC: H: Si coatings on nitrided and postoxidized steel deposited by DC-PACVD
KR100843839B1 (en) Method for combustion chemical vapor deposition to enhance corrosion resisitance of silicon oxide flim
Kuo et al. Carbon-free SiOx ultrathin film using atmospheric pressure plasma jet for enhancing the corrosion resistance of magnesium alloys
KR100742857B1 (en) Method for Combustion Chemical Vapor Deposition to enhance wetting of silicon oxide flim
Treverton et al. The structures and surface composition of chromate conversion coatings: an XPS and SEM study
Zhao et al. Influence of N concentration on structure and properties of (AlCrMoTiV) Nx films by co-filter cathodic vacuum arc deposition
Mendez et al. A review on atmospheric pressure plasma jet and electrochemical evaluation of corrosion
Wang et al. Study on the corrosion resistance of sulfonated graphene/aluminum phosphate composites in waterborne polyurethane coatings
KR100742858B1 (en) Method for Combustion Chemical Vapor Deposition to enhance adhesion of silicon oxide flim
d'Agostino et al. Protection of Silver‐Based Alloys from Tarnishing by Means of Plasma‐Enhanced Chemical Vapor Deposition
Zhou et al. Effect of substrate surface modification on alumina composite sol–gel coatings
Chang et al. Effects of metal film coatings on surface properties of laser-textured stainless steel
KR20010085362A (en) Metal plate excellent in corrosion resistance, paint application property, finger-print resistance and workability, and method for manufacturing the same
EP2034052A1 (en) A method for treating a silica-coated substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160627

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 11