KR100842944B1 - Synthesis of c5 deprotected ribofuranosides - Google Patents

Synthesis of c5 deprotected ribofuranosides Download PDF

Info

Publication number
KR100842944B1
KR100842944B1 KR1020070056892A KR20070056892A KR100842944B1 KR 100842944 B1 KR100842944 B1 KR 100842944B1 KR 1020070056892 A KR1020070056892 A KR 1020070056892A KR 20070056892 A KR20070056892 A KR 20070056892A KR 100842944 B1 KR100842944 B1 KR 100842944B1
Authority
KR
South Korea
Prior art keywords
ribofuranoside
lipase
derived
beta
methyl
Prior art date
Application number
KR1020070056892A
Other languages
Korean (ko)
Inventor
정찬성
표정인
전숙진
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020070056892A priority Critical patent/KR100842944B1/en
Application granted granted Critical
Publication of KR100842944B1 publication Critical patent/KR100842944B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method for preparing ribofuranoside having a hydroxy group at C5 position is provided to save energy and be environment-friendly using an enzyme reaction, thereby being effective for constructing molecular diversity and synthesizing a precise compound. To prepare ribofuranoside having a hydroxy group at C5 position, (C1-6 alkyl)-2,3,5-tri(C1-6 alkanoyl)ribofuranoside represented by a formula(1) as a substrate is hydrolyzed at the C5 position selectively by an enzyme selected from the group consisting of lipase derived from Pseudomonas fluorescence, lipase derived from Burkholderia cepacia, lipase derived from Pseudomonas cepacia, acylase derived from Aspergillus sp., PLE(pig liver esterase), LWG(wheat germ lipase), lipase derived from Bacillus thermoleovorans, Amano lipase M and lipase derived from Alcaligenes sp., wherein the substrate is beta methyl 2,3,5-triacetyl ribofuranoside or beta methyl 2,3,5-tripropionyl ribofuranoside. In the formula(1), R^1 is C1-6 alkyl and R is C1-6 alkanoyl.

Description

5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법{Synthesis of C5 deprotected ribofuranosides}Synthesis of C5 deprotected ribofuranosides having a hydroxyl group at the 5th carbon position

도 1은 단당류의 분자구조식를 나타낸 것이다.Figure 1 shows the molecular structure of the monosaccharides.

본 발명은 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법에 관한 것으로서, 더욱 상세하게는 베타 C1~C6 알킬 트리(C1~C6 알카노일) 리보퓨라노사이드를 기질로 하고, 특정 효소로 5번 탄소 위치에서 선택적으로 가수분해하여 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드를 제조하는 방법에 관한 것이다. The present invention relates to a method for preparing ribofuranoside having a hydroxy group at the carbon position 5, and more specifically to beta C 1 ~ C 6 alkyl tri (C 1 ~ C 6 alkanoyl) ribofuranoside substrate The present invention relates to a method for producing ribofuranoside having a hydroxyl group at a carbon position by selectively hydrolyzing at a carbon position with a specific enzyme.

탄수화물은 단백질이나, 리피드, 헥산 등과 같이 자연에 풍부히 존재하는 화합물이다. 이들은 화학적으로 정밀화합물의 제조에 기초물질로 사용될 수 있을 뿐만 아니라 체내에서 세포-세포간 혹은 세포내에서 생물학적으로 활성이 있는 중 요한 역할을 한다. 특히, 탄수화물의 단당류(monosaccharides)는 생명체의 고분자 화합물을 구성하는 구성성분(building blocks)으로 역할을 하기도 한다. 이들의 예로는 글라이코-리피드, 글라이코-프로테인, 글라이코-펩타이드와 같은 글라이코-컨주게이트된 천연물 복합체의 구성성분을 이루고 있다. Carbohydrates are compounds that are abundant in nature such as proteins, lipids, and hexanes. Not only can they be used as the basis for the preparation of precise compounds chemically, but they also play an important role in the biological activity of cells within cells and between cells. In particular, the monosaccharides of carbohydrates also serve as building blocks of the polymeric compounds of life. Examples of these are constituents of glyco-conjugated natural product complexes such as glyco- lipids, glyco-proteins, glyco-peptides.

단당류의 탄수화물은 5탄당(펜토즈), 혹은 6탄당(헥소즈)의 산소를 포함하는 고리형태의 구조를 나타냄으로서 입체 구조적 특성을 가지게 된다. 또한, 이들은 여러 개의 히드록실기(hydroxyl group)를 포함하고 있고 따라서 각각의 위치적 이성체가 존재할 수 있으며 각각의 히드록실기의 반응성이 매우 유사한 특징이 있다. 이들 단당류는 글루코스, 갈락토즈, 만노즈, 알로즈, 탈로즈 등이 대표적인 헥소즈이고, 라이보즈와 같은 펜토즈를 예로 들 수 있다.Carbohydrates of monosaccharides have a three-dimensional structure by showing a ring-shaped structure containing oxygen of pentasaccharide (pentose) or hexasaccharide (hexose). In addition, they contain several hydroxyl groups, so that each positional isomer may exist and the reactivity of each hydroxyl group is very similar. These monosaccharides are representative hexose such as glucose, galactose, mannose, allose, and tarose, and examples thereof include pentoses such as ribose.

이러한 단량체들은 자체적으로 독특한 분자구조를 가지고 있기 때문에 목표지향적인 분자구조를 합성하거나 신약개발 등 분자다양성을 추국하는데 중요하게 으용되고 있다. 1992년 히르쉬만[J. Am. Chem. Soc. 114, 9217-9228] 등은 베타-디-글루코사이드(b-D-glucoside)를 출발물질로 하여 소마토스타틴 리셉터(Somatostatin receptor)를 목표로 하는 생물활성이 있는 화합물을 합성하고 분자다양성을 구축하였다. 2001년 메머르[Recent Res.Devel. Organic Chem. 5, 257-278] 등은 디-만니톨을 이용하여 아미노 슈가를 합성하여 알파- 혹은 베타-글루고시대이즈, 알파-디-만노시대이즈, 알파-엘-퓨코시대이즈 같은 여러 가지 효소의 저해제를 합성한 바 있다. 한편으로는 카발호는 2004년 디-글루코스를 이용하여 2,3,4-트리히드록시시클로헥사논을 합성하는 방법을 발표하였다[Carbohyd. Res. 339, 361-365]. 이러한 연구결과들은 매우 다양하여, 2002년 그룬더[Chem. Rev. 102, 491-514], 1993년 훼리에[Chem. Rev. 93, 2779-2831]는 방대한 자료들을 개설로 정리한 바 있다. 이러한 방대한 연구는 탄수화물의 구조적 특징이 다양한 이성체를 만들 수 있기 때문으로 설명된다. 즉, 헥소즈에서 히드록실기가 포함된 비대칭탄소의 경우 일반 화학적 방법으로는 원하는 위치의 히드록실기에 선택적으로 반응을 시키기가 어렵다[WO 00/42057]. 일부 금속촉매를 이용하여 선택성을 높이는 연구가[J. Am. Chem. Soc. 2001, 123, 6496-6502] 진행되기도 했지만 여전히 선택성을 높이는 노력은 문제로 남아있다. Since these monomers have their own unique molecular structure, they are important for synthesizing molecular structures such as target-oriented molecular structures or new drug development. 1992 Hirschmann [J. Am. Chem. Soc. 114, 9217-9228, et al. Synthesized bioactive compounds targeting somatostatin receptor and constructed molecular diversity using beta-di-glucoside as a starting material. 2001 Memer [Recent Res.Devel. Organic Chem. 5, 257-278, et al. Synthesized amino sugars using di-mannitol to inhibit inhibitors of various enzymes, such as alpha- or beta-glucosidase, alpha-di-mannose age, and alpha-el-fucosidase. Has been synthesized. On the other hand, Carvalho published a method for synthesizing 2,3,4-trihydroxycyclohexanone using di-glucose in 2004 [Carbohyd. Res. 339, 361-365. The results of these studies vary widely, and in 2002, Grunder [Chem. Rev. 102, 491-514, 1993, Ferrie [Chem. Rev. 93, 2779-2831] summarized the extensive data. This vast research is explained because the structural properties of carbohydrates can produce various isomers. That is, in the case of an asymmetric carbon containing a hydroxyl group in the hexose, it is difficult to selectively react with the hydroxyl group of the desired position by a general chemical method [WO 00/42057]. Some metal catalysts improve selectivity [J. Am. Chem. Soc. 2001, 123, 6496-6502], but efforts to increase selectivity remain a problem.

탄수화물에서의 이러한 문제점을 해결하기 위한 방안으로 효소반응을 이용하는 것이 최근 중요한 기술로 대두되고 있다. 효소반응은 일반 상온 및 상압에서도 반응이 잘 진행되고, 환경 친화적인 장점을 가지고 있다. 특히, 선택성을 필요로 하는 탄수화물에서 보호/탈보호 반응의 선택성에 효소의 반응 선택성을 이용하는 것이 매우 유리하다. 효소반응에서의 반응 선택성은 이성질체를 분리하는데 이용하는 거울상 이성질체 선택성(enantioselectivity)이 광범위하게 연구되고 있고, 탄수화물이나 다기능기에 대한 선택성을 연구하는 데는 위치 선택성(regioselectivity)이 폭넓게 이용된다. In order to solve these problems in carbohydrates, the use of enzymatic reactions has recently emerged as an important technology. The enzyme reaction proceeds well at normal temperature and pressure and has an environmentally friendly advantage. In particular, it is very advantageous to use the reaction selectivity of enzymes for the selectivity of protection / deprotection reactions in carbohydrates requiring selectivity. Reaction selectivity in enzymatic reactions is widely studied enantioselectivity used to separate isomers, and regioselectivity is widely used to study selectivity for carbohydrates and multifunctional groups.

기존에 사용되는 탄수화물의 위치선택적 보호 및 탈보호방법은 중금속화합물의 촉매적 반응에 의한 것이 많고 반응온도 낮아야 하며 반응시간이 길어지는 단점이 있다. 또한, 촉매사용으로 인한 중금속오염이라는 환경적 측면에서도 단점이 있는 것으로 알려져 있다.Location-selective protection and deprotection methods of existing carbohydrates are disadvantageous because they are often due to the catalytic reaction of heavy metal compounds, the reaction temperature must be low, and the reaction time is long. In addition, it is known that there are disadvantages in environmental aspects such as heavy metal pollution due to the use of a catalyst.

본 발명은 천연에 존재하는 자원재생 가능한 탄수화물(당)을 이용하여 인간에게 유용한 의약품 및 정밀화합물을 제조하는 기술을 개발하는 것이다. 이러한 기술을 발명함에 있어서 생체촉매를 이용하면 에너지 절약형 이며 환경 친화적인 제조방법을 발명하게 되는 것이다. 생체촉매는 화학촉매와는 다르게 반응성이 특이하여 탄수화합물의 위치 선택적 합성을 축구할 수 있다. 따라서, 생체촉매를 이용한 제조조건을 확립하는 것이 중요하고 필요에 따라서는 선택된 생체촉매를 생화학적 또는 화학적 기법을 통하여 기능이 향상된 생체촉매를 확보하여 사용할 수 있다. 한편, 생체촉매는 기질의 분자구조에 따라서 반응 특이성을 다르게 보여주기 때문에 화학적 전이반응의 필요성도 대두되어 화학적 방법과 생화학적 방법이 융합된 기술발명이 요구된다. The present invention is to develop a technology for producing pharmaceuticals and fine compounds useful to humans using natural renewable carbohydrates (sugars). In the invention, the use of a biocatalyst will invent an energy-saving and environmentally friendly manufacturing method. Biocatalysts, unlike chemical catalysts, are unique in their reactivity, allowing for the selective synthesis of carbohydrate compounds. Therefore, it is important to establish the production conditions using the biocatalyst, and if necessary, the selected biocatalyst may be used to secure an improved biocatalyst through biochemical or chemical techniques. On the other hand, since biocatalysts show different reaction specificities depending on the molecular structure of the substrate, there is a need for chemical transfer reactions, and thus, a technical invention in which chemical and biochemical methods are fused is required.

이에, 본 발명자들은 상기와 같은 탄수화합물의 위치 선택적 합성에 대해 연구 노력한 결과, 베타 C1~C6 알킬 트리(C1~C6 알카노일) 리보퓨라노사이드를 특정 효소로 가수분해 반응시켜 특정 위치에 선택적으로 화합물을 얻는 방법을 개발함으로써 본 발명을 완성하게 되었다. Accordingly, the present inventors have studied the position-selective synthesis of such carbohydrate compounds, as a result of the hydrolysis reaction of beta C 1 ~ C 6 alkyl tri (C 1 ~ C 6 alkanoyl) ribofuranoside with a specific enzyme The present invention has been completed by developing a method for obtaining a compound selectively at a position.

따라서, 본 발명은 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법을 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for preparing ribofuranoside having a hydroxyl group at the carbon position 5.

본 발명은 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법을 그 특징으로 한다.The present invention is characterized by a method for producing ribofuranoside having a hydroxyl group at the carbon position 5.

이하, 본 발명은 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail as follows.

본 발명은 베타 C1~C6 알킬 트리(C1~C6 알카노일) 리보퓨라노사이드를 기질로 하고, 특정 효소로 5번 탄소 위치에서 선택적으로 가수분해하여 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드를 제조하는 방법에 관한 것이다. The present invention is based on the beta C 1 ~ C 6 alkyl tri (C 1 ~ C 6 alkanoyl) ribofuranoside substrate, and selectively hydrolyzed at the 5 carbon position by a specific enzyme to the hydroxyl group at the 5 carbon position It relates to a method for producing ribofuranoside having.

탄수화합물의 분자구조는 다음과 같이 단당류로서 피라노이드(pyranoides)와 퓨란노이드(furanoids) 형태로 존재한다. 또한, 이당류는 이들 단당류의 결합상태로 존재한다. The molecular structure of the carbohydrate compound is present in the form of pyranoides and furanoids as monosaccharides as follows. Disaccharides also exist in the bound state of these monosaccharides.

피라노사이드 형태인 글루코스 단량체인 경우 5개의 히드록실기가 존재하여 필요에 따라서 선택적으로 반응을 시킬 필요가 있다. C1은 애너머릭(anomeric) 위치이고, C6인 경우는 일차 알콜(primary alcohol)로 다른 C2 ~ C4 위치의 이차 알콜(secondary alcohol)과 반응성에서 차이가 있다. 따라서, C2 ~ C4 위치의 이차 알콜을 선택적으로 반응시킬 필요성이 있다. 이러한 경우는 만노즈나 갈락토즈에서도 마찬가지이다. 또한, 퓨라노이드의 경우도 같은 개념으로 반응을 선택적으로 시킬 필요성이 있다.In the case of the glucose monomer in the pyranoside form, five hydroxyl groups are present, and it is necessary to selectively react as needed. C1 is an anionic position, and C6 is a primary alcohol, which is different in reactivity from secondary alcohols at other C2 to C4 positions. Therefore, there is a need to selectively react secondary alcohols at the C2 to C4 positions. The same is true of mannose and galactose. In addition, in the case of furanoids, there is a need to selectively react with the same concept.

Figure 112007042248359-pat00001
Figure 112007042248359-pat00001

상기에 나타난 바와 같이, 각 위치의 치환이 다르게 될 때 각각은 새로운 화합물이 된다. 마찬가지로 만약 각각의 히도록실기가 같은 아실주게(acyl donor)로 합성된 기질을 사용할 경우 효소반응을 통하여 각각 다른 위치에서 가수분해가 진행되어 형성된 새로운 화합물을 유용하게 이용할 수 있을 것이다. 가장 간단한 아실주게로 아세틸기(acetyl group)가 사용된다. As shown above, when the substitution at each position is different, each becomes a new compound. Similarly, if each substrate is synthesized with the same acyl donor (Hylsilyl group) will be useful to use the new compound formed by the hydrolysis at different positions through the enzymatic reaction. As the simplest acyljute, an acetyl group is used.

Figure 112007042248359-pat00002
Figure 112007042248359-pat00002

피라노이드 계통의 화합물에 대한 효소적 가수분해반응과 유사하게 퓨라노이드 계통의 화합물도 선택적으로 가수분해시킬 수 있다. 퓨라노이드의 대표적 화합물은 아라비노퓨라노이드 또는 라이보즈들이 정밀화합물에서 자주 사용된다. 본 발명에서 이용된 퓨라노이드는 아라비노퓨라노이드로 디-(D-), 혹은 엘(L-) 형태의 화합물이다. 디-퓨라노아라비노즈의 트리아세테이트 화합물을 이용한 효소적 가수분해 결과는 본 발명자에 의해 학술지에 보고한 바 있다[Tetrahedron Lett. 2005, 46, pp 607-609]. 이때 다양한 상용화된 효소를 사용했을 때 ERO(Rhizopus oryzae esterase) 및 PLE(Pig liver esterase)가 C2의 에스터 결합을 선택적으로 가수분해시키는 결과를 얻었다. 특히, ERO를 사용한 경우 반응 용매, 첨가제, 반응온도에 따라서 선택성의 결과가 많이 변함을 관찰하였다. 따라서, 기질에 대한 반응선택성을 여러 종류의 효소 중에서 확인한 후 여러 가지 변수를 변화시켜 효소반응의 최적조건을 찾는 것 또한 중요하다. Similar to enzymatic hydrolysis of compounds of the pyranoid family, compounds of the furanoid family can also be selectively hydrolyzed. Representative compounds of furanoids are arabinofuranoids or riboses frequently used in precision compounds. The furanoids used in the present invention are arabinofuranoids which are compounds in the form of di- (D-) or el (L-). Enzymatic hydrolysis results using triacetate compounds of di-furanoarabinose have been reported in the journal by the inventor [Tetrahedron Lett. 2005, 46, pp 607-609. At this time, ERO (Rhizopus oryzae esterase) and PLE (Pig liver esterase) selectively hydrolyzed ester bonds of C2 when various commercialized enzymes were used. In particular, it was observed that the results of selectivity vary depending on the reaction solvent, additives, and reaction temperature when ERO is used. Therefore, it is also important to find the optimal conditions for the enzyme reaction by confirming the reaction selectivity of the substrate among various enzymes and then changing various variables.

본 발명에서는 탄수화물 중 베타 C1~C6 알킬 트리(C1~C6 알카노일) 리보퓨라노사이드를 기질로 하고, 슈도모나스 플루오레센스 유래 리파아제(LAK), 버크홀데리아 세파시아 유래 리파아제(LAH), 슈도모나스 세파시아 유래 리파아제(PCL), 아실라아제(aspergillus sp.), 돼지 간 유래 에스터라아제(PLE, pig liver esterase), 밀배아 유래 리파아제(LWG, Lipase of wheat germ), 바실러스 터몰레오바란스(Bacillus thermoleovarans) 유래 리파아제, 열안정성의 바실러스 유래 리파아제, 뮤코 자바니쿠스속 유래 리파아제(Amano lipase M) 및 알칼리지네스 속 유래 리파아제 중에서 선택된 효소로 선택적으로 가수분해하여 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드를 제조하는 방법을 특징으로 한다.In the present invention, beta C 1 ~ C 6 alkyl tri (C 1 ~ C 6 alkanoyl) ribofuranoside in the carbohydrate as a substrate, Pseudomonas fluorescein-derived lipase (LAK), Berkholderia Sephacia-derived lipase (LAH) ), Pseudomonas Sephacia lipase (PCL), acylase (aspergillus sp.), Pig liver esterase (PLE, pig liver esterase), wheat germ-derived lipase (LWG, Lipase of wheat germ), Bacillus turmoleo Hydrolysis of the hydroxy group at position 5 by selective hydrolysis with an enzyme selected from Bacillus thermoleovarans- derived lipase, thermostable Bacillus-derived lipase, Muco Javanica lipase-derived lipase (Amano lipase M), and alkaline genus-derived lipase It is characterized by a method of producing ribofuranoside having.

본 발명에 따른 위치 선택적 화합물의 제조방법의 일례로 다음 반응식 1을 나타낸다. As an example of a method for preparing a regioselective compound according to the present invention, the following Scheme 1 is shown.

[반응식 1]Scheme 1

Figure 112007042248359-pat00003
Figure 112007042248359-pat00003

상기 반응식 1에서, R은 아세틸기 또는 프로피오닐기이다.In Scheme 1, R is an acetyl group or propionyl group.

다른 퓨라노사이드인 리보퓨라노이드의 트리아세테이트(상기 반응식 1에서 R이 아세틸기임)에 대한 가수분해를 시도해 본 결과, PLE(porcine liver), LWG(wheat germ), 바실러스 터몰레오바란스(Bacillus thermoleovarans) 유래 리파아제 또는 열안정성의 바실러스 유래 리파아제에서 C5에서 선택적으로 가수분해가 50% 이상 진행되었음을 확인할 수 있었다.As a result of attempting hydrolysis of triacetate of ribofuranoid, which is another furanoside (wherein R is an acetyl group in Scheme 1), PLE (porcine liver), LWG (wheat germ), and Bacillus thermoleovarans ( Bacillus thermoleovarans ) In the lipase derived or thermostable Bacillus-derived lipase it was confirmed that 50% or more of the hydrolysis proceeds selectively at C5.

특히, 가수분해 반응은 pH 7 ~ 7.5의 인산 완충용액으로 10 ~ 35 ℃에서 수행하며, 상기 리보퓨라노이드의 트리아세테이트의 가수분해 반응은 유기용매로 디메틸술폭사이드 또는 에탄올을 함께 사용한다.In particular, the hydrolysis reaction is carried out with a phosphate buffer of pH 7 ~ 7.5 at 10 ~ 35 ℃, the hydrolysis of the triacetate of the ribofuranoid is used together with dimethyl sulfoxide or ethanol as an organic solvent.

한편, 아세틸기 대신 프로피오닐기를 사용하여 pH 7 ~ 7.5의 인산 완충용액으로 10 ~ 35 ℃에서 가수분해를 수행한 결과, 슈도모나스 플루오레센스 유래 리파아제(LAK), 버크홀데리아 세파시아 유래 리파아제(LAH), 슈도모나스 세파시아 유래 리파아제(PCL), 아실라아제(aspergillus sp.), 돼지 간 유래 에스터라아제(PLE, pig liver esterase), 밀배아 유래 리파아제(LWG, Lipase of wheat germ), 바실러스 터몰레오바란스(Bacillus thermoleovarans) 유래 리파아제, 열안정성의 바실러스 유래 리파아제, 뮤코 자바니쿠스속 유래 리파아제(Amano lipase M) 또는 알칼리지네스 속 유래 리파아제에서 C5에서 선택적으로 가수분해가 50% 이상 진행되었음을 확인할 수 있었다.Meanwhile, hydrolysis was performed at 10 to 35 ° C. with a phosphate buffer solution having a pH of 7 to 7.5 using propionyl group instead of an acetyl group. As a result, Pseudomonas fluorescens-derived lipase (LAK) and Berkholderia sephasia lipase (LAH) were obtained. ), Pseudomonas Sephacia lipase (PCL), acylase (aspergillus sp.), Pig liver esterase (PLE, pig liver esterase), wheat germ-derived lipase (LWG, Lipase of wheat germ), Bacillus turmoleo It was confirmed that 50% or more of hydrolysis proceeded selectively in C5 from Bacillus thermoleovarans- derived lipase, thermostable Bacillus-derived lipase, Muco Javanicus-derived lipase (Amano lipase M), or alkaline genus-derived lipase.

본 발명은 천연물로 얻어진 자원순환형 탄수화물을 이용하여 인간에게 유용한 정밀화합물의 제조에 관한 것이다. 이때 제조방법 중 목표 화합물을 제조하기 위한 중간체를 생체촉매반응을 통하여 반응선택성을 찾아내고 이렇게 함으로써 환경 친화적이고 에너지절약형 제조방법을 구축하는 것이다. 생체촉매를 사용함에 있어서 일반 상용화된 것을 중심으로 하였다. The present invention relates to the preparation of fine compounds useful to humans using resource-cycle carbohydrates obtained from natural products. At this time, the intermediate for preparing the target compound of the manufacturing method to find the reaction selectivity through the biocatalytic reaction, thereby to build an environment-friendly and energy-saving manufacturing method. In the use of biocatalysts, the general commercialization was focused.

본 발명에 사용된 효소명칭 및 제조사Name and manufacturer of enzyme used in the present invention 효소 명명Enzyme naming 효소 제조사Enzyme manufacturers 슈도모나스 플루오레센스 유래 리파아제(LAK), 버크홀데리아 세파시아 유래 리파아제(LAH), 슈도모나스 세파시아 유래 리파아제(PCL), Acylase(aspergillus sp.),  Pseudomonas fluorescens-derived lipase (LAK), Berkholderia sephasia lipase (LAH), Pseudomonas sephasia lipase (PCL), Acylase (aspergillus sp.), amano Pharmaceutical Coamano Pharmaceutical Co 뮤코 자바니쿠스속 유래 리파제(Amano lipase M) 돼지 간 유래 에스터라아제 Muco Jabonicus-derived lipase (Amano lipase M) Porcine liver-derived esterase sigmasigma 밀배아 유래 리파아제(LWG) Wheat germ-derived lipase (LWG) FlukaFluka L Bacillus thermoleovarans, L thermostable Bacillus,  L Bacillus thermoleovarans, L thermostable Bacillus, GenofocusGenofocus L Alcaligines sp. (L-10)  L Alcaligines sp. (L-10) ChirazymeChirazyme

본 발명에 따른 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법은, 기존의 제조방법에 비해 반응온도를 상온에서 수행하고, 선택성이 화학적방법보다 높으며, 폐기물의 방출이 낮은 면에서 현저한 효과를 가짐으로써 환경친화적이며, 에너지 절약형 제조방법에 매우 유용하리라 기대된다.Ribofuranoside having a hydroxyl group at the carbon position 5 according to the present invention, the reaction temperature is carried out at room temperature compared to the conventional production method, the selectivity is higher than the chemical method, in terms of low waste discharge It is expected to be very useful for the environment-friendly and energy-saving manufacturing method by having a remarkable effect.

이하, 실시예를 들어 본 발명을 상세히 기술할 것이나 본 발명의 범위를 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited to these Examples.

참고예 1: 가수분해방법 AReference Example 1 Hydrolysis Method A

기질(50 mg)을 pH 인산 완충용액이나, 유기용매가 혼합된 인산 완충 용액에 섞었다. 여기에 효소(mass eq.)를 넣어주고 30 ℃에서 254 rpm으로 흔들어주었다. 일정 간격으로 반응하는 용액에서 일부를 분취하여 추출하고, 건조시켰다. 이 추출된 유기층을 메탄올에 녹여 HPLC로 분석하였다. The substrate (50 mg) was mixed in pH phosphate buffer solution or phosphate buffer solution mixed with organic solvent. An enzyme (mass eq.) Was added thereto and shaken at 30 ° C. at 254 rpm. A portion of the solution was reacted at regular intervals, extracted and dried. The extracted organic layer was dissolved in methanol and analyzed by HPLC.

참고예 1: 가수분해방법 BReference Example 1 Hydrolysis Method B

디이소프로필 에테르에 10% 아세톤을 포함한 물을 포화시켰다. 이 용액에 기질과 효소를 넣고 30 ℃에서 254 rpm으로 흔들어주었다. 이 반응은 효소를 여과를 통해 제거함으로써 반응을 종결시켰다. 일정 간격으로 반응하는 용액에서 일부를 분취하여 HPLC로 분석하였다. Saturated water with 10% acetone in diisopropyl ether. Substrate and enzyme were added to the solution and shaken at 30 ° C. at 254 rpm. This reaction was terminated by removing the enzyme through filtration. A portion of the solution was reacted at regular intervals and analyzed by HPLC.

실시예 1: 메틸 2,3,5-트리아세틸-베타-디-리보퓨라노사이드(Methyl 2,3,5-Triacetyl-β-D-ribofuranoside)Example 1: Methyl 2,3,5-triacetyl-beta-di-ribofuranoside (Methyl 2,3,5-Triacetyl-β-D-ribofuranoside)

상업화되어있는 메틸 D-리보오스를 피리딘에 녹이고, 여기에 아세틱 앤하이드라이드를 넣고 24시간동안 실온에서 교반하였다. 반응 종결 후 피리딘을 감압 증류하여 제거하고, 물과 에틸아세테이트를 이용해서 추출하였다. 유기 층을 5% HCl과 물과 소금물로 유기층을 씻어준 다음 무수 마그네슘 설페이트로 수분을 제거하고 감압 하에서 건조하였다.Commercially available methyl D-ribose was dissolved in pyridine, and acetic anhydride was added thereto and stirred at room temperature for 24 hours. After completion of the reaction, pyridine was removed by distillation under reduced pressure, and extracted with water and ethyl acetate. The organic layer was washed with 5% HCl, water and brine, dried over anhydrous magnesium sulfate, and dried under reduced pressure.

1H NMR (CDCl3,) δ 2.04(s, 3 H, acetyl), 2.07 (s, 3 H, acetyl), 2.12 (s, 3 H, acetyl), 3.44 (s, 3 H, OCH3), 3.58-3.73 (m, 1 H, H5), 3.75-3.88 (m, 1 H, H5'), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz), 5.37 (dd, 1 H, H3, J1 = Jz = 5.4Hz); 13C NMR (CDCl3) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm 1 H NMR (CDCl 3 ,) δ 2.04 (s, 3 H, acetyl), 2.07 (s, 3 H, acetyl), 2.12 (s , 3 H, acetyl), 3.44 (s, 3 H, OCH 3 ), 3.58-3.73 (m, 1H, H5), 3.75-3.88 (m, 1H, H5 '), 4.19-4.28 (m, 1H, H4), 4.92 (s, 1H, Hl), 5.24 (d , 1 H, H 2, J = 5.4 Hz), 5.37 (dd, 1 H, H 3, J 1 = Jz = 5.4 Hz); 13 C NMR (CDCl 3 ) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm

실시예 2: 메틸 2,3-디아세틸-베타-디-리보퓨라노사이드(Methyl 2,3-Diacetyl-β-D-ribofuranoside)Example 2 Methyl 2,3-Diacetyl-beta-di-ribofuranoside

참고예 1에서 설명한 바와 같이 기질인 2,3,5-트리아세틸-베타-디-리보퓨라노사이드를 효소반응시켜 반응의 진행정도를 박막층크로마토그래피(TLC)로 측정한 후 분리하여 반응의 진행정도를 측정하였다. As described in Reference Example 1, 2,3,5-triacetyl-beta-di-ribofuranoside, which is a substrate, was subjected to enzymatic reaction to measure the progress of the reaction by thin layer chromatography (TLC), followed by separation. The degree was measured.

1H NMR (CDCl3,) δ 2.07 (s, 3 H, acetyl), 2.12 (s, 3 H, acetyl), 3.44 (s, 3 H, OCH3), 3.58-3.73 (m, 1 H, H5), 3.75-3.88 (m, 1 H, H5'), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz), 5.37 (dd, 1 H, H3, J1 = Jz = 5.4Hz); 13C NMR (CDCl3) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm 1 H NMR (CDCl 3 ,) δ 2.07 (s, 3 H, acetyl), 2.12 (s , 3 H, acetyl), 3.44 (s, 3 H, OCH 3 ), 3.58-3.73 (m, 1 H, H5 ), 3.75-3.88 (m, 1 H, H5 '), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz ), 5.37 (dd, 1 H, H 3, J 1 = Jz = 5.4 Hz); 13 C NMR (CDCl 3 ) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm

실시예 3: 메틸 2,5-디아세틸-베타-디-리보퓨라노사이드(Methyl 2,5-Diacetyl-β-D-ribofuranoside)Example 3: Methyl 2,5-Diacetyl-beta-di-ribofuranoside

참고예 1에서 설명한 바와 같이 기질인 2,3,5-트리아세틸-베타-디-리보퓨라노사이드를 효소반응시켜 반응의 진행정도를 박막층크로마토그래피(TLC)로 측정한 후 메틸 2,5-디아세틸-베타-디-리보퓨라노사이드를 분리하여 반응의 진행정도를 측정하였다. As described in Reference Example 1, the progress of the reaction was measured by thin layer chromatography (TLC) by enzymatic reaction of 2,3,5-triacetyl-beta-di-ribofuranoside as a substrate, followed by methyl 2,5- Diacetyl-beta-di-ribofuranoside was separated to measure the progress of the reaction.

1H NMR (CDCl3,) δ 2.07 (s, 3 H, acetyl), 2.12 (s, 3 H, acetyl), 3.44 (s, 3 H, OCH3), 3.58-3.73 (m, 1 H, H5), 3.75-3.88 (m, 1 H, H5'), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz), 5.37 (dd, 1 H, H3, J1 = Jz = 5.4Hz); 13C NMR (CDCl3) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm 1 H NMR (CDCl 3 ,) δ 2.07 (s, 3 H, acetyl), 2.12 (s , 3 H, acetyl), 3.44 (s, 3 H, OCH 3 ), 3.58-3.73 (m, 1 H, H5 ), 3.75-3.88 (m, 1 H, H5 '), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz ), 5.37 (dd, 1 H, H 3, J 1 = Jz = 5.4 Hz); 13 C NMR (CDCl 3 ) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm

실시예 4: 메틸 3,5-디아세틸-베타-디-리보퓨라노사이드(Methyl 3,5-Diacetyl-β-D-ribofuranoside)Example 4 Methyl 3,5-Diacetyl-beta-di-ribofuranoside

참고예 1에서 설명한 바와 같이 기질인 2,3,5-트리아세틸-베타-디-리보퓨라노사이드를 효소반응시켜 반응의 진행정도를 박막층크로마토그래피(TLC)로 측정한 후 메틸 3,5-디아세틸-베타-디-리보퓨라노사이드를 분리하여 반응의 진행정도를 측정하였다. As described in Reference Example 1, the reaction progress was measured by thin layer chromatography (TLC) by enzymatic reaction of 2,3,5-triacetyl-beta-di-ribofuranoside, which is a substrate, and methyl 3,5-. Diacetyl-beta-di-ribofuranoside was separated to measure the progress of the reaction.

1H NMR (CDCl3,) δ 2.07 (s, 3 H, acetyl), 2.12 (s, 3 H, acetyl), 3.44 (s, 3 H, OCH3), 3.58-3.73 (m, 1 H, H5), 3.75-3.88 (m, 1 H, H5'), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz), 5.37 (dd, 1 H, H3, J1 = Jz = 5.4Hz); 13C NMR (CDCl3) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm 1 H NMR (CDCl 3 ,) δ 2.07 (s, 3 H, acetyl), 2.12 (s , 3 H, acetyl), 3.44 (s, 3 H, OCH 3 ), 3.58-3.73 (m, 1 H, H5 ), 3.75-3.88 (m, 1 H, H5 '), 4.19-4.28 (m, 1 H, H4), 4.92 (s, 1 H, Hl), 5.24 (d, 1 H, H2, J = 5.4 Hz ), 5.37 (dd, 1 H, H 3, J 1 = Jz = 5.4 Hz); 13 C NMR (CDCl 3 ) 20.61 (2 C), 55.78, 62.87, 71.23, 75.24, 82.43, 106.49, 169.68, 170.08 ppm

실시예 5: 메틸 2,3,5-트리프로피오닐-베타-디-리보퓨라노사이드(Methyl 2,3,5-tripropionyl β-D-ribofuranoside)Example 5: Methyl 2,3,5-tripropionyl-beta-di-ribofuranoside (Methyl 2,3,5-tripropionyl β-D-ribofuranoside)

상업화되어있는 메틸 D-리보오스를 피리딘에 녹이고, 여기에 프로피오닐 앤하이드란이드를 넣고 24시간동안 실온에서 교반하였다. 반응 종결 후 피리딘을 감압 증류하여 제거하고, 물과 에틸아세테이트를 이용해서 추출하였다. 유기 층을 5% HCl과 물과 소금물로 유기층을 씻어준 다음 무수 마그네슘 술페이트로 수분을 제거하고 감압 하에서 건조하였다.Commercially available methyl D-ribose was dissolved in pyridine, and propionyl anhydride was added thereto and stirred at room temperature for 24 hours. After completion of the reaction, pyridine was removed by distillation under reduced pressure, and extracted with water and ethyl acetate. The organic layer was washed with 5% HCl, water and brine, dried over anhydrous magnesium sulfate, and dried under reduced pressure.

1H NMR (CDCl3) δ 1.11-1.19 (m, 9 H, propionyl-CH 3 ), 2.31-2.42 (m, 6 H, propionyl-CH 2 -), 3.38 (s, 3 H, OCH3), 4.13 (dd, 1 H, H5, J = 11.8, 5.3Hz), 4.28-4.39 (m, 2 H, H4, H5'), 4.91 (s, 1 H, H1), 5.26 (dd, 1 H, H2, J = 5.5, 0.7Hz), 5.34 (dd, 1 H, H3, J = 6.5, 4.9 Hz) ; 13C NMR (CDCl3) δ 8.8, 8.9, 9.0, 27.1, 27.2, 27.3, 55.2, 64.2, 71.4, 74.4, 78.6, 106.2, 173.0, 174.0 ppm 1 H NMR (CDCl 3 ) δ 1.11-1.19 (m, 9 H, propionyl-C H 3 ), 2.31-2.42 (m, 6 H, propionyl-C H 2- ), 3.38 (s, 3 H, OCH 3 ), 4.13 (dd, 1 H, H5, J = 11.8, 5.3 Hz), 4.28-4.39 (m, 2 H, H4, H5 '), 4.91 (s, 1 H, H1), 5.26 (dd, 1 H , H 2, J = 5.5, 0.7 Hz), 5.34 (dd, 1 H, H 3, J = 6.5, 4.9 Hz); 13 C NMR (CDCl 3 ) δ 8.8, 8.9, 9.0, 27.1, 27.2, 27.3, 55.2, 64.2, 71.4, 74.4, 78.6, 106.2, 173.0, 174.0 ppm

실시예 6: 메틸 2,3-디프로피오닐-베타-디-리보퓨라노사이드(Methyl 2,3-dipropionyl-β-D-ribofuranoside)Example 6: Methyl 2,3-dipropionyl-beta-di-ribofuranoside (Methyl 2,3-dipropionyl-β-D-ribofuranoside)

실시예 5 에서 얻어진 기질을 사용하여 방법 A 혹은 B의 효소반응을 수행하여 상기 반응결과물을 얻었다.The enzymatic reaction of Method A or B was carried out using the substrate obtained in Example 5 to obtain the reaction product.

1H NMR (CDCl3) δ 1.11-1.19 (m, 6 H, propionyl-CH 3 ), 2.29-2.43 (m, 4 H, propionyl-CH 2 -), 3.44 (s, 3 H, OCH3), 3.66 (dd, 1 H, H5, J = 12.1, 4.2Hz), 3.81 (dd, 1 H, H5', J = 12.1, 3.4 Hz), 4.23 (m, 1 H, H4), 4.92 (s, 1 H, H1), 5.27 (dd, 1 H, H2, J = 5.1, 0.8Hz), 5.38 (t, 1 H, H3, J = 5.7 Hz) ; 13C NMR (CDCl3) δ 8.9, 9.0, 27.2, 27.3, 55.7, 62.9, 71.2, 75.1, 77.2, 82.5, 106.6, 173.0, 173.4 ppm 1 H NMR (CDCl 3 ) δ 1.11-1.19 (m, 6 H, propionyl-C H 3 ), 2.29-2.43 (m, 4 H, propionyl-C H 2- ), 3.44 (s, 3 H, OCH 3 ), 3.66 (dd, 1 H, H5, J = 12.1, 4.2 Hz), 3.81 (dd, 1 H, H5 ', J = 12.1, 3.4 Hz), 4.23 (m, 1 H, H4), 4.92 (s , 1 H, H1), 5.27 (dd, 1 H, H2, J = 5.1, 0.8 Hz), 5.38 (t, 1 H, H3, J = 5.7 Hz); 13 C NMR (CDCl 3 ) δ 8.9, 9.0, 27.2, 27.3, 55.7, 62.9, 71.2, 75.1, 77.2, 82.5, 106.6, 173.0, 173.4 ppm

실시예 7: 메틸 2,5-디프로피오닐-베타-디-리보퓨라노사이드(Methyl 2,5-dipropionyl-β-D-ribofuranoside)Example 7: Methyl 2,5-dipropionyl-beta-di-ribofuranoside (Methyl 2,5-dipropionyl-β-D-ribofuranoside)

실시예 5 에서 얻어진 기질을 사용하여 방법 A 혹은 B의 효소반응을 수행하여 상기 반응결과물을 얻었다.The enzymatic reaction of Method A or B was carried out using the substrate obtained in Example 5 to obtain the reaction product.

1H NMR (CDCl3) δ 1.11-1.19 (m, 6 H, propionyl-CH 3 ), 2.29-2.43 (m, 4 H, propionyl-CH 2 -), 3.44 (s, 3 H, OCH3), 3.66 (dd, 1 H, H5, J = 12.1, 4.2Hz), 3.81 (dd, 1 H, H5', J = 12.1, 3.4 Hz), 4.23 (m, 1 H, H4), 4.92 (s, 1 H, H1), 5.27 (dd, 1 H, H2, J = 5.1, 0.8Hz), 5.38 (t, 1 H, H3, J = 5.7 Hz) ; 13C NMR (CDCl3) δ 8.9, 9.0, 27.2, 27.3, 55.7, 62.9, 71.2, 75.1, 77.2, 82.5, 106.6, 173.0, 173.4 ppm 1 H NMR (CDCl 3 ) δ 1.11-1.19 (m, 6 H, propionyl-C H 3 ), 2.29-2.43 (m, 4 H, propionyl-C H 2- ), 3.44 (s, 3 H, OCH 3 ), 3.66 (dd, 1 H, H5, J = 12.1, 4.2 Hz), 3.81 (dd, 1 H, H5 ', J = 12.1, 3.4 Hz), 4.23 (m, 1 H, H4), 4.92 (s , 1 H, H1), 5.27 (dd, 1 H, H2, J = 5.1, 0.8 Hz), 5.38 (t, 1 H, H3, J = 5.7 Hz); 13 C NMR (CDCl 3 ) δ 8.9, 9.0, 27.2, 27.3, 55.7, 62.9, 71.2, 75.1, 77.2, 82.5, 106.6, 173.0, 173.4 ppm

실시예 8: 메틸 3,5-디프로피오닐-베타-디-리보퓨라노사이드(Methyl 2,3-dipropionyl-β-D-ribofuranoside)Example 8: Methyl 2,3-dipropionyl-beta-D-ribofuranoside

실시예 5 에서 얻어진 기질을 사용하여 방법 A 혹은 B의 효소반응을 수행하여 상기 반응결과물을 얻었다.The enzymatic reaction of Method A or B was carried out using the substrate obtained in Example 5 to obtain the reaction product.

1H NMR (CDCl3) δ 1.11-1.19 (m, 6 H, propionyl-CH 3 ), 2.29-2.43 (m, 4 H, propionyl-CH 2 -), 3.44 (s, 3 H, OCH3), 3.66 (dd, 1 H, H5, J = 12.1, 4.2Hz), 3.81 (dd, 1 H, H5', J = 12.1, 3.4 Hz), 4.23 (m, 1 H, H4), 4.92 (s, 1 H, H1), 5.27 (dd, 1 H, H2, J = 5.1, 0.8Hz), 5.38 (t, 1 H, H3, J = 5.7 Hz) ; 13C NMR (CDCl3) δ 8.9, 9.0, 27.2, 27.3, 55.7, 62.9, 71.2, 75.1, 77.2, 82.5, 106.6, 173.0, 173.4 ppm 1 H NMR (CDCl 3 ) δ 1.11-1.19 (m, 6 H, propionyl-C H 3 ), 2.29-2.43 (m, 4 H, propionyl-C H 2- ), 3.44 (s, 3 H, OCH 3 ), 3.66 (dd, 1 H, H5, J = 12.1, 4.2 Hz), 3.81 (dd, 1 H, H5 ', J = 12.1, 3.4 Hz), 4.23 (m, 1 H, H4), 4.92 (s , 1 H, H1), 5.27 (dd, 1 H, H2, J = 5.1, 0.8 Hz), 5.38 (t, 1 H, H3, J = 5.7 Hz); 13 C NMR (CDCl 3 ) δ 8.9, 9.0, 27.2, 27.3, 55.7, 62.9, 71.2, 75.1, 77.2, 82.5, 106.6, 173.0, 173.4 ppm

실시예 9 Example 9

실시예 1에서 합성한 방법으로 메틸 2,3,5-트리아세틸-베타-디-리보퓨라노사이드를 기질로 사용하여 참고예 1 또는 2의 가수분해반응의 방법으로 효소 반응시킨 결과를 다음 표 2에 표시하였다.The result of enzymatic reaction by the method of hydrolysis of Reference Example 1 or 2 using methyl 2,3,5-triacetyl-beta-di-ribofuranoside as a substrate by the method synthesized in Example 1 is shown in the following table. 2 is shown.

실시예 10Example 10

실시예 5에서 합성된 메틸 2,3,5-트리프로피오닐-베타-디-리보퓨라노사이드를 기질로 사용하여 참고예 1 또는 2의 가수분해반응의 방법으로 효소 반응시킨 결과를 다음 표 2에 표시하였다.The result of enzymatic reaction by the method of hydrolysis of Reference Example 1 or 2 using methyl 2,3,5-tripropionyl-beta-di-ribofuranoside synthesized in Example 5 as a substrate is shown in Table 2 below. Marked on.

효소 (mg)Enzyme (mg) 시간time 기질temperament 용매menstruum 출발물질Starting material (%)(%) 3-OH3-OH (%)(%) 2-OH2-OH (%)(%) 5-OH5-OH (%)(%) 돼지 간 유래 에스터라아제(PLE)Porcine liver-derived esterase (PLE) 0.50.5 베타-메틸 트리아세틸 리보퓨라노사이드Beta-methyl triacetyl ribofuranoside DMSODMSO 0.20.2 2.52.5 3.63.6 9393 밀배아 유래 리파아제(LWG)Wheat germ-derived lipase (LWG) 55 베타-메틸 트리아세틸 리보퓨라노사이드Beta-methyl triacetyl ribofuranoside DMSODMSO 5.95.9 10.510.5 11.511.5 7272 밀배아 유래 리파아제(LWG)Wheat germ-derived lipase (LWG) 2.82.8 베타-메틸 트리아세틸 리보퓨라노사이드Beta-methyl triacetyl ribofuranoside 에탄올ethanol -- 6.16.1 3.63.6 8484 L Bacillus thermoleovarans  L Bacillus thermoleovarans 4.54.5 베타-메틸 트리아세틸 리보퓨라노사이드Beta-methyl triacetyl ribofuranoside DMSODMSO 14.114.1 4.54.5 5.15.1 76.376.3 L Bacillus thermoleovarans L Bacillus thermoleovarans 55 베타-메틸 트리아세틸 리보퓨라노사이드Beta-methyl triacetyl ribofuranoside 에탄올ethanol 2.92.9 94.694.6 L Thermostable bacillusL Thermostable bacillus 5656 베타-메틸 트리아세틸 리보퓨라노사이드Beta-methyl triacetyl ribofuranoside 에탄올ethanol 7.27.2 8.38.3 5.65.6 78.978.9 AcylaseAcylase 4.54.5 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 34.634.6 64.464.4 슈도모나스 플루오레센스 유래 리파아제(LAK)Pseudomonas fluorescens derived lipase (LAK) 16.516.5 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 7.57.5 92.592.5 슈도모나스 세파시아 유래 리파아제(PCL)Pseudomonas Sephacia Derived Lipase (PCL) 7474 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 3.63.6 93.593.5 버크홀데리아 세파시아 유래 리파아제(LAH)Berkholderia Sephacia Derived Lipase (LAH) 2626 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 4.24.2 91.291.2 L-10L-10 2626 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 5.35.3 90.590.5 뮤코 자바니쿠스속 유래 리파제(Amano lipase M) Muco Jabonicus-derived lipase (Amano lipase M) 100100 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 36.136.1 2.42.4 2.52.5 57.857.8 L Bacillus thermoleovarans L Bacillus thermoleovarans 1.51.5 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 9.19.1 90.990.9 L Thermostable bacillus L Thermostable bacillus 33 베타-메틸 트리프로피오닐 리보퓨라노사이드Beta-methyl tripropionyl ribofuranoside -- 4.14.1 91.791.7

이상에서 설명한 바와 같이, 본 발명에 따른 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법은 기존의 제조방법에 비해 에너지 절약형, 환경적 제조방법 면에서 현저한 효과를 가짐으로써 분자다양성 구축과 정밀화합물의 제조에 큰 효과에 매우 유용하리라 기대된다.As described above, the method for preparing ribofuranoside having a hydroxyl group at the carbon position 5 according to the present invention has a significant effect in terms of energy-saving and environmental manufacturing methods compared to the conventional manufacturing method, thereby building molecular diversity. It is expected to be very useful for the big effect in the preparation of and fine compounds.

Claims (2)

기질인 다음 화학식 1의 베타 (C1~C6 알킬)-2,3,5-트리(C1~C6 알카노일) 리보퓨라노사이드를,Beta (C 1 ~ C 6 alkyl) -2,3,5-tri (C 1 ~ C 6 alkanoyl) ribofuranoside of the following formula 1 as a substrate, 슈도모나스 플루오레센스 유래 리파아제, 버크홀데리아 세파시아 유래 리파아제, 슈도모나스 세파시아 유래 리파아제, 아실라아제(Aspergillus sp.), 돼지 간 유래 에스터라아제(PLE, pig liver esterase), 밀배아 유래 리파아제(LWG, wheat germ lipase), 바실러스 터몰레오바란스(Bacillus thermoleovarans) 유래 리파아제, 뮤코 자바니쿠스속 유래 리파제(Amano lipase M) 및 알칼리지네스 속 유래 리파아제 중에서 선택된 효소로 5번 탄소 위치에서 선택적으로 가수분해하여 5번 탄소 위치에 하이드록시기를 갖는 리보퓨라노사이드의 제조방법;Pseudomonas fluorescens-derived lipases, Berkholderia sepacia-derived lipases, Pseudomonas sephasia-derived lipases, asylases ( Aspergillus sp.), Pig liver-derived esterases (PLE, pig liver esterase), wheat germ-derived lipases (LWG) selective hydrolysis at the carbon position 5, enzyme selected from lipase derived from wheat germ lipase, Bacillus thermoleovarans , lipase derived from Muco Javanicus and lipase derived from the genus Alkali genus. A method for producing ribofuranoside having a hydroxy group at the carbon position; [화학식 1][Formula 1]
Figure 112008039909013-pat00005
Figure 112008039909013-pat00005
상기 R1은 C1~C6 알킬기를 나타내고, 상기 R은 C1~C6 알카노일기를 나타낸다.R 1 represents a C 1 to C 6 alkyl group, and R represents a C 1 to C 6 alkanoyl group.
제 1 항에 있어서, 상기 기질은 베타 메틸 2,3,5-트리아세틸 리보퓨라노사이드 또는 베타 메틸 2,3,5-트리프로피오닐 리보퓨라노사이드인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the substrate is beta methyl 2,3,5-triacetyl ribofuranoside or beta methyl 2,3,5-tripropionyl ribofuranoside.
KR1020070056892A 2007-06-11 2007-06-11 Synthesis of c5 deprotected ribofuranosides KR100842944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070056892A KR100842944B1 (en) 2007-06-11 2007-06-11 Synthesis of c5 deprotected ribofuranosides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070056892A KR100842944B1 (en) 2007-06-11 2007-06-11 Synthesis of c5 deprotected ribofuranosides

Publications (1)

Publication Number Publication Date
KR100842944B1 true KR100842944B1 (en) 2008-07-02

Family

ID=39823460

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070056892A KR100842944B1 (en) 2007-06-11 2007-06-11 Synthesis of c5 deprotected ribofuranosides

Country Status (1)

Country Link
KR (1) KR100842944B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084988A (en) * 1996-09-12 1998-04-07 Takasago Internatl Corp Production of (d)-3(2h)-furanone compounds
KR0163962B1 (en) * 1989-02-17 1998-11-16 안네 제케르 Process for producing methyl glycoside esters
US6355453B1 (en) * 1998-09-18 2002-03-12 Forschungszentrum Julich Gmbh Method for making fluorinated sugars having a side chain and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163962B1 (en) * 1989-02-17 1998-11-16 안네 제케르 Process for producing methyl glycoside esters
JPH1084988A (en) * 1996-09-12 1998-04-07 Takasago Internatl Corp Production of (d)-3(2h)-furanone compounds
US6355453B1 (en) * 1998-09-18 2002-03-12 Forschungszentrum Julich Gmbh Method for making fluorinated sugars having a side chain and use thereof

Similar Documents

Publication Publication Date Title
EP0560408B1 (en) Enantio- and regioselective syntheses of organic compounds using enol esters as irreversible transacylation reagents
CN107011391B (en) Method for producing sophorose
CN102449157A (en) Process for the preparation of (3R)-hydr0xybutyl (3R) -hydroxybutyrate by enzymatic enantioselective reduction employing lactobacillus brevis alcohol dehydrogenase
WO2006069175A2 (en) Antifungal properties of various forms of sophorolipids
Aldrich et al. Biochemical investigation of pikromycin biosynthesis employing native penta-and hexaketide chain elongation intermediates
Ren et al. Progress on selective acylation of carbohydrate hydroxyl groups
JP2019512521A (en) Glycosylated mono (2-hydroxyethyl) terephthalic acid and glycosylated bis (2-hydroxyethyl) terephthalic acid
WO2004044216A1 (en) Antimicrobial properties of various forms of sophorolipids
Carr et al. Enzyme-catalyzed regioselective transesterification of peracylated sophorolipids
Amann et al. (Chemo) enzymatic synthesis of dTDP-activated 2, 6-dideoxysugars as building blocks of polyketide antibiotics
Zhu et al. A systematic strategy for preparation of uncommon sugars through enzymatic resolution and ring-closing metathesis
Iribarren et al. An update of biocatalytic selective acylation and deacylation of monosaccharides
KR100842944B1 (en) Synthesis of c5 deprotected ribofuranosides
Mastihubová et al. Two efficient ways to 2-O-and 5-O-feruloylated 4-nitrophenyl α-L-arabinofuranosides as substrates for differentiation of feruloyl esterases
Villalobos et al. A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-D-glucopyranoside using a fermented solid containing lipases produced by Burkholderia contaminans LTEB11
JP5667050B2 (en) Enzymatic synthesis of acetoacetate esters and derivatives
Dudíková et al. Exploration of transfructosylation activity in cell walls from Cryptococcus laurentii for production of functionalised β-D-fructofuranosides
JP2009033970A (en) Process for producing fucoxanthinol
D’Antona et al. Enzymatic procedures in the preparation of regioprotected D-fructose derivatives
Prodanović et al. Synthesis of hydroquinone-α-glucoside by α-glucosidasefrom baker’s yeast
Zhu et al. A divergent synthesis of uncommon sugars from furanaldehyde
NAKAGAWA et al. Structure and biosynthesis of a new antifungal antibiotic, phthoramycin
Mastihubová et al. The acetates of p-nitrophenyl α-L-arabinofuranoside—Regioselective preparation by action of lipases
Wu et al. Highly anomer-and regio-selective transesterification catalyzed by alkaline protease from Bacillus subtilis in organic media
Junot et al. Regioselective acylation of 1, 6-anhydro-β-D-manno and galactopyranose catalysed by lipases

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee