KR100841596B1 - Cooling device of coil for magnetic stimulator - Google Patents

Cooling device of coil for magnetic stimulator Download PDF

Info

Publication number
KR100841596B1
KR100841596B1 KR1020070054860A KR20070054860A KR100841596B1 KR 100841596 B1 KR100841596 B1 KR 100841596B1 KR 1020070054860 A KR1020070054860 A KR 1020070054860A KR 20070054860 A KR20070054860 A KR 20070054860A KR 100841596 B1 KR100841596 B1 KR 100841596B1
Authority
KR
South Korea
Prior art keywords
coil
magnetic field
cooling device
coolant
cooling
Prior art date
Application number
KR1020070054860A
Other languages
Korean (ko)
Inventor
김인수
홍정환
송경석
Original Assignee
한국전기연구원
(주)엠알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원, (주)엠알 filed Critical 한국전기연구원
Priority to KR1020070054860A priority Critical patent/KR100841596B1/en
Application granted granted Critical
Publication of KR100841596B1 publication Critical patent/KR100841596B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue

Abstract

A cooling device of a coil for magnetic stimulator is provided to cool the heat of the coil efficiently by manufacturing the coil generating a magnetic field with a copper pipe and circulating the cooling liquid therein. A cooling device of a coil for magnetic stimulator includes a coil(200), a cooling liquid, a pump(210), and a cooling liquid storing tank(220). The coil consists of a tube that receives the power and generates magnetic field. The cooling liquid is circulated in the coil and absorbs the heat. The pump maintains the flow of the cooling liquid in a predetermined direction. The cooling liquid storing tank stores the cooling liquid. The cooling device includes a condenser(230), a temperature sensor(240) and a control portion(250) that extracts the temperature from the temperature sensor and operates a fan of the condenser.

Description

자기장 치료기의 냉각 장치{Cooling device of coil for magnetic stimulator}Cooling device of coil for magnetic stimulator

도 1은 종래의 자기장 치료기의 회로를 나타낸 도면,1 is a view showing a circuit of a conventional magnetic field therapy device,

도 2는 본 발명의 일실시예인 자기장 치료기의 구성도,2 is a block diagram of a magnetic field treatment device according to one embodiment of the present invention;

도 3은 본 발명의 일실시예인 코일의 단면도,3 is a cross-sectional view of a coil which is an embodiment of the present invention;

도 4는 본 발명의 다른 실시예에 따른 8자형 코일을 나타낸 도면,4 is a view showing an eight-shaped coil according to another embodiment of the present invention;

도 5a는 본 발명의 다른 실시예에 따른 8자형 코일의 자기장 밀도,Figure 5a is a magnetic field density of the eight-shaped coil according to another embodiment of the present invention,

도 5b는 본 발명의 다른 실시예에 따른 8자형 코일의 유도 전기장 밀도이다.5B is an induction electric field density of an 8-shaped coil according to another embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명>       <Explanation of symbols for main parts of the drawings>

200 : 코일 210 : 펌프200: coil 210: pump

220 : 냉각액저장탱크 230 : 응축기220: coolant storage tank 230: condenser

240 : 온도센서 250 : 제어부240: temperature sensor 250: control unit

260 : 압축기260: Compressor

본 발명은 자기장 치료기의 냉각 장치에 관한 것으로, 보다 자세하게는 자기장을 이용하여 환자의 신체를 자극하거나 치료하는 자기장 치료기에 있어서, 자기장을 발생시키는 코일을 냉각시키는 냉각 장치에 관한 것이다.The present invention relates to a cooling device for a magnetic field therapy device, and more particularly, to a cooling device for cooling a coil generating a magnetic field in a magnetic field therapy device for stimulating or treating a patient's body using a magnetic field.

일반적으로 자기장을 이용한 자기장 치료기는 코일에 펄스전류를 인가하여 자기장을 발생시키고, 발생된 자기장에 의한 전류가 인체조직 내에 유도되어 환부를 자극하여 치료하는 장치이다. 이러한 자기장 치료기는 자기장 발생을 위해 코일을 구비하며, 코일에 수천 A정도의 전류를 짧은 시간(50~300μs)에 흘려보내 코일 주변에 원하는 강도의 자기장을 발생시킨다.In general, a magnetic field therapy device using a magnetic field is a device that generates a magnetic field by applying a pulse current to the coil, and the current generated by the generated magnetic field is induced in the human tissue to stimulate and treat the affected part. The magnetic field therapy device includes a coil for generating a magnetic field, and generates a magnetic field having a desired intensity around the coil by flowing a current of several thousand A to the coil in a short time (50 to 300 µs).

도 1은 종래의 자기장 치료기의 회로(100)를 나타낸 도면이다.1 is a diagram illustrating a circuit 100 of a conventional magnetic field therapy device.

도 1을 참조하면, 전원측에 연결된 대용량 캐패시터(Capacitor)에 충전된 에너지

Figure 112007040960392-pat00001
는 스위칭 소자에 의해 펄스전류(I)가 자기장 유도 코일
Figure 112007040960392-pat00002
에 흐른다. 이때, 자기장의 세기를 높이기 위해서는 전원측의 캐패시턴스(C)나 전압(V)을 올리면 된다.Referring to FIG. 1, energy charged in a large capacity capacitor connected to a power supply side
Figure 112007040960392-pat00001
Is the magnetic field induction coil
Figure 112007040960392-pat00002
Flows on. At this time, in order to increase the strength of the magnetic field, the capacitance C or the voltage V on the power supply side may be increased.

따라서 캐패시터스(C)나 전압(V)을 올림으로 인해, 코일에 대전류(I)가 흐르게 되면 에너지(WL)로부터 코일에 자기장이 유도될 뿐만 아니라 WL의 일부 에너지는 Joule법칙

Figure 112007040960392-pat00003
에 의해 코일에서 열로 소모된다.Therefore, due to raising the capacitance (C) or voltage (V), when a large current (I) flows in the coil, not only a magnetic field is induced from the energy (W L ) but also some energy of W L is Joule's law.
Figure 112007040960392-pat00003
Is consumed as heat in the coil.

또한, 이렇게 계속 발생되는 열은 코일의 인덕턴스(L)를 증가시킬 뿐만 아니라, 코일의 내부저항(R)도 증가시켜, 결과적으로 코일에는 Joule법칙에 의해 더욱더 많은 열이 발생하게 된다.In addition, the heat generated continuously increases not only the inductance L of the coil, but also the internal resistance R of the coil, and as a result, more heat is generated in the coil by the Joule law.

따라서, 이러한 열을 효과적으로 냉각시키지 못하면 코일이 과열되어 인덕턴스 값이 변하게 될 뿐만 아니라, 코일을 감싸는 코일케이스가 과열되는 등의 문제점이 있다. 이러한 문제점들은 환자에게 위험할 뿐만 아니라 자기장 치료기의 오작동의 원인이 되어 자기치료를 지속적으로 수행할 수 없게 된다.Therefore, if the heat is not cooled effectively, the coil is overheated and the inductance value is changed, as well as the coil case surrounding the coil is overheated. These problems are not only dangerous to the patient, but also cause malfunction of the magnetic field therapy device, and thus cannot continuously carry out magnetic therapy.

이를 해결하기 위해 미국등록특허 등록번호 제 6,179,770에서는 하나 이상의 코일, 코일을 감싸는 코일케이스, 냉각 가스를 공급하는 도관 및 튜브를 이용하여 순환구조로 구성하고, 코일케이스 내부로 냉각 가스를 공급하여 코일에서 발생한 열을 냉각시키는 시스템을 개발하였다.In order to solve this problem, US Patent No. 6,179,770 is composed of a circulation structure using one or more coils, a coil case surrounding the coil, a conduit and a tube for supplying the cooling gas, and supplies the cooling gas into the coil case to supply the cooling gas. A system was developed to cool the generated heat.

그러나, 이러한 방식은 냉각을 위한 코일의 구조가 복잡하며, 코일에서 발생하는 열을 효율적으로 냉각시킬 수 없으며, 냉각 가스를 관리함에 있어 어려움이 있다는 문제점이 있다.However, this method has a problem in that the structure of the coil for cooling is complicated, the heat generated from the coil cannot be efficiently cooled, and there is a difficulty in managing the cooling gas.

따라서, 본 발명은 자기장을 발생시키는 코일을 동관으로 제작하고, 그 내부에 냉각액을 순환시키는 간단한 구조로 냉각 장치를 구현함으로써, 코일의 열을 효율적으로 냉각시키도록 하는 자기장 치료기의 냉각 장치를 제공함에 본 발명의 목적이 있다.Accordingly, the present invention provides a cooling device for a magnetic field therapy device to efficiently cool the heat of the coil by implementing a cooling device with a simple structure for manufacturing a coil generating a magnetic field with a copper tube and circulating a coolant therein. There is an object of the present invention.

본 발명의 상기 목적은 전원을 공급받아 자기장을 발생시키는 관으로 이루어진 코일; 상기 코일의 내부를 순환하여 열을 흡수하는 냉각액; 상기 냉각액의 흐름을 일정한 방향으로 유지시키는 펌프; 및 상기 냉각액을 저장하는 냉각액저장탱크를 포함하는 자기장 치료기의 냉각 장치에 의해 달성된다.The object of the present invention is a coil consisting of a tube for generating a magnetic field by receiving power; A coolant circulating inside the coil to absorb heat; A pump for maintaining the flow of the cooling liquid in a constant direction; And a coolant storage tank for storing the coolant.

이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 일실시예인 자기장 치료기의 구성도이다.2 is a block diagram of a magnetic field treatment device according to an embodiment of the present invention.

도 2를 참조하면, 자기장 치료기의 냉각 장치는 코일(200), 펌프(210), 냉각액저장탱크(220), 응축기(230), 온도센서(240), 제어부(250) 및 압축기(260) 등으로 구성된다.Referring to FIG. 2, the cooling device of the magnetic field therapy device includes a coil 200, a pump 210, a coolant storage tank 220, a condenser 230, a temperature sensor 240, a controller 250, a compressor 260, and the like. It consists of.

코일(200)은 전류를 공급받아 자기장을 생성하는 특성을 가지고 있으며, 이러한 코일(200)에서 발생하는 자기장을 이용하여 환자를 치료할 수 있다. 또한 코일(200)은 자기장과 함께 열도 발생한다. 따라서 본 발명의 일실시예에 따른 코일(200)은 내부에 냉각액을 순환시킬 수 있는 관 형태로 제작함이 바람직하다.The coil 200 has a characteristic of generating a magnetic field by receiving a current, and may treat a patient using the magnetic field generated by the coil 200. In addition, the coil 200 generates heat together with the magnetic field. Therefore, the coil 200 according to an embodiment of the present invention is preferably manufactured in the form of a tube capable of circulating a coolant therein.

또한 코일(200)은 내식성이 크고, 열이나 전기의 전도율이 좋으며, 기계적 성질이 우수한 동관으로 제작하고, 그 모양은 안쪽에서 원을 그리며 나오는 팬케이크형으로 이루어지는 것이 가장 바람직하다.In addition, the coil 200 is made of a copper tube having high corrosion resistance, good thermal or electrical conductivity, and excellent mechanical properties, and the shape of the coil 200 is most preferably made of a pancake type that draws a circle from the inside.

또한 동관으로 이루어진 코일(200)은 팬케이크형이 아니더라도 자기장을 효율적으로 발생시킬 수 있는 어떤 모양에도 적용이 가능하다.In addition, the coil 200 made of a copper tube may be applied to any shape that can efficiently generate a magnetic field even if it is not a pancake type.

펌프(210)는 냉각액저장탱크(220)로부터 냉각액을 추출하여 코일(200)의 내부로 주입하고 순환시키는 역할을 한다.The pump 210 extracts the coolant from the coolant storage tank 220 to inject and circulate the inside of the coil 200.

냉각액저장탱크(220)는 저온의 액체 냉각액을 저장한다. 또한 냉각액저장탱크(220)는 코일(200)의 내부를 순환한 액체상태의 냉각액도 저장한다.The coolant storage tank 220 stores a low temperature liquid coolant. In addition, the coolant storage tank 220 also stores the coolant in a liquid state circulated inside the coil 200.

상기 냉각액은 코일(200)의 부식을 막기 위해 실리콘 오일 또는 변압기 오일 등의 상용화된 냉매오일을 사용한다.The coolant uses a commercially available refrigerant oil such as silicon oil or transformer oil to prevent corrosion of the coil 200.

응축기(condenser)(230)는 냉각액저장탱크(220)와 연동되며, 공냉식으로 냉각액을 저온의 상태로 유지시킨다.The condenser 230 is interlocked with the coolant storage tank 220 and maintains the coolant in a low temperature state by air cooling.

온도센서(240)는 냉각액저장탱크(220)와 응축기(230) 사이에서 자기장 발생 코일(200)로부터 순환되어 돌아온 냉각액의 이동 통로에 설치되어, 냉각액의 온도를 측정한다.The temperature sensor 240 is installed in the moving passage of the coolant circulated from the magnetic field generating coil 200 between the coolant storage tank 220 and the condenser 230 to measure the temperature of the coolant.

또한 코일(200)의 외부에 추가의 온도센서(미도시) 설치함으로써, 코일(200)에서 발생하는 열을 측정할 수 있다.In addition, by installing an additional temperature sensor (not shown) outside the coil 200, the heat generated by the coil 200 may be measured.

제어부(250)는 온도센서(240)에 의해 측정된 냉각액의 온도를 추출하며, 최초 설정된 냉각액의 온도가 초과하게 되면 응축기(230)의 팬을 동작시킨다. 일반적으로 냉각액의 온도가 43도가 넘어가게 되면, 임피던스가 커지게 되어 기기의 이상이 발생하게 되며, 자기장의 발생 효율도 떨어지게 된다. 따라서 제어부(250)의 냉각액의 설정 온도는 43도 이하로 하는 것이 가장 바람직하다.The controller 250 extracts the temperature of the coolant measured by the temperature sensor 240, and operates the fan of the condenser 230 when the temperature of the initially set coolant exceeds. In general, when the temperature of the coolant exceeds 43 degrees, the impedance increases, causing an abnormality in the device, and the generation efficiency of the magnetic field is reduced. Therefore, it is most preferable that the set temperature of the cooling liquid of the control part 250 is 43 degrees or less.

또한 제어부(250)는 코일(200)의 외부에 설치된 온도센서(미도시)의 온도를 추출하여, 냉각액 이동 통로의 온도센서(240)의 온도와 비교하여 펌프의 작동 유무를 파악할 수 있다.In addition, the controller 250 may extract the temperature of a temperature sensor (not shown) installed outside the coil 200, and determine whether the pump is operated by comparing the temperature of the temperature sensor 240 of the coolant movement passage.

압축기(compressor)(260)는 온도센서(240)에서 냉각액의 온도가 설정된 온도를 초과하게 되는 경우, 제어부(250)에 의해 동작이 된다. 압축기(260)는 응축기(230)와 연동되며, 냉매가스를 이용하여 냉각액의 온도를 저온의 상태로 유지시킨다. 상기 냉매가스는 환경오염을 고려하여, HCFC(Hydro-Chloro-Fluoro-Carbon), PFC(Per-Fluoro-Carbon), HFC(Hydro-Fluoro-Carbon) 등을 사용한다.The compressor 260 is operated by the controller 250 when the temperature of the cooling liquid in the temperature sensor 240 exceeds the set temperature. The compressor 260 is interlocked with the condenser 230 and maintains the temperature of the coolant at a low temperature by using the refrigerant gas. In consideration of environmental pollution, the refrigerant gas uses HCFC (Hydro-Chloro-Fluoro-Carbon), PFC (Per-Fluoro-Carbon), HFC (Hydro-Fluoro-Carbon), or the like.

또한, 도 2의 화살표는 상기 냉각액의 순환을 나타낸다.In addition, the arrow of FIG. 2 shows circulation of the said coolant.

도 3은 본 발명의 일실시예인 코일(300)의 단면도이다.3 is a cross-sectional view of a coil 300 which is an embodiment of the present invention.

도 3은 도 2의 코일(200)을 점선 방향으로 자른 단면도이다.3 is a cross-sectional view of the coil 200 of FIG. 2 cut in a dotted line direction.

도 3을 참조하면, 코일(300)은 동관(310), 유리섬유(320), 에폭시 수지(330) 및 하우징(340)으로 구성된다.Referring to FIG. 3, the coil 300 is composed of a copper tube 310, a glass fiber 320, an epoxy resin 330, and a housing 340.

동관(310)은 전류를 공급받아 자기장을 효율적으로 발생시키기 위한 모양으로 이루어진다. 이에 자기장을 효율적으로 발생시키기 위해 동관(310)을 복수의 층이 아닌 단층으로 구성한다. 복수의 층으로 구성할 시, 전체 임피던스가 증가하여 자기장을 효율적으로 발생시키지 못한다.The copper tube 310 has a shape for efficiently generating a magnetic field by receiving a current. In order to efficiently generate a magnetic field, the copper tube 310 is composed of a single layer rather than a plurality of layers. When composed of a plurality of layers, the overall impedance is increased, which does not generate a magnetic field efficiently.

또한 동관(310)의 모양은 타원으로 구현함으로써, 자기장의 발생 효율을 증가시키고, 유리섬유(320)의 절연막을 설치하기에도 용이하다.In addition, the shape of the copper tube 310 is implemented as an ellipse, thereby increasing the generation efficiency of the magnetic field, it is also easy to install an insulating film of the glass fiber 320.

따라서 동관(310)을 단층으로 구성하여도 치료기로써 필요한 자기장을 발생시키는데 무리가 없다.Therefore, even if the copper tube 310 is composed of a single layer, there is no problem in generating the necessary magnetic field as a treatment device.

유리섬유(320)는 전류가 흐르는 동관(310)을 절연하기 위해 설치된다. 유리섬유(320)는 동관(310)들간의 절연을 목적으로 하기에, 동관(310)의 한쪽 면에만 절연막으로 설치하여 절연시킨다. 동관(310)의 자기장이 발생하는 위, 아래 부분에는 절연막이 설치되지 않으므로, 자기장 발생에 효과적이다.Glass fiber 320 is installed to insulate the copper tube 310 through which current flows. Since the glass fiber 320 is insulated between the copper tubes 310, the glass fiber 320 is insulated from only one surface of the copper tube 310 by an insulating film. Since an insulating film is not provided above and below the magnetic field of the copper tube 310, it is effective for generating the magnetic field.

여기서 유리섬유(320)는 절연체로 상용되는 일반적인 화학물질로써, SiO2의 성질을 가진 얇은 두께의 우수한 절연막이다.Here, the glass fiber 320 is a general chemical that is commonly used as an insulator, and is an excellent insulating film having a thin thickness of SiO 2 .

에폭시 수지(330)는 하우징(340)의 내부에 주입되어 채워지며, 동관(310) 및 유리섬유(320)를 고정시키면서 코일(300)외면에서 절연체로 작용한다.The epoxy resin 330 is injected into the housing 340 to be filled, and serves as an insulator on the outer surface of the coil 300 while fixing the copper tube 310 and the glass fiber 320.

하우징(340)은 코일(300)의 외부를 감싼다.The housing 340 surrounds the outside of the coil 300.

도 3을 참조하면, 코일(300)은 동관(310)의 절연체인 유리섬유(320)를 사이에 두고 최소 반경으로 구현함으로써 전체적인 코일(300)의 크기가 감소하여 자기장을 효율적으로 발생시킬 수 있다.Referring to FIG. 3, the coil 300 may be implemented with a minimum radius with the glass fiber 320 insulated from the copper tube 310 interposed therebetween, thereby reducing the size of the entire coil 300 to efficiently generate a magnetic field. .

도 4는 본 발명의 다른 실시예에 따른 8자형(Figure of eight) 코일(400)을 나타낸 도면이다.4 is a diagram illustrating a figure of eight coil 400 according to another embodiment of the present invention.

도 4를 참조하면, 동관으로 이루어진 2개의 코일을 연결하여 8자형으로 구현함으로써, 자기장의 발생에 의한 유도 전기장을 집중할 수 있다. 자기장 치료기에서 발생한 자기장은 실제 환자에게 영향을 미치는 것은 유도 전기장이다. 따라서, 8자형 코일(400)은 머리 등과 같은 집중적인 자기장 치료를 원하는 부위에 사용하여 치료효과를 극대화할 수 있다.Referring to Figure 4, by connecting the two coils made of copper tube to implement the eight-shape, it is possible to concentrate the induction electric field by the generation of the magnetic field. The magnetic field generated by the magnetic field therapy device is an induction electric field that actually affects the patient. Therefore, the eight-shaped coil 400 can maximize the therapeutic effect by using the intensive magnetic field treatment, such as the head in the desired area.

도 5a 및 도 5b는 본 발명의 다른 실시예에 따른 8장형 코일의 자기장 및 유도 전기장을 나타낸 도면이다.5A and 5B are diagrams illustrating magnetic and induction electric fields of an eight-shaped coil according to another embodiment of the present invention.

도 5a를 참조하면, 8자형 코일에서 발생하는 자기장의 밀도는 2개의 원기둥 형태로 발생한다.Referring to Figure 5a, the density of the magnetic field generated in the eight-shaped coil occurs in the form of two cylinders.

그리고 도 5b는 상기 2개의 원기둥 형태의 자기장에서 유도되는 전기장의 밀도를 나타낸다. 상기 전기장의 밀도는 가운데 부분에 가장 집중되는 형태이고, 이러한 특성을 이용하여 좁은 부위에 강력한 치료의 효과를 기대할 수 있다.5b shows the density of the electric field induced in the two cylindrical magnetic fields. The density of the electric field is most concentrated in the center, and by using this property, a strong treatment effect can be expected in a narrow area.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been shown and described with reference to the preferred embodiments as described above, it is not limited to the above embodiments and those skilled in the art without departing from the spirit of the present invention. Various modifications and variations are possible without departing from the spirit of the present invention and equivalents of the claims to be described below.

따라서, 본 발명의 자기장 치료기의 냉각 장치는 절연막을 구비한 동관의 형태로 제작한 코일에 저온의 냉각액을 주입 및 순환시킴으로써 냉각액의 유출 가능성을 줄일 수 있는 장점이 있고, 냉각의 효율이 우수한 효과가 있다.Therefore, the cooling device of the magnetic field treatment device of the present invention has the advantage of reducing the possibility of leakage of the coolant by injecting and circulating a coolant with a low temperature to the coil manufactured in the form of a copper tube with an insulating film, the effect of excellent cooling efficiency have.

또한, 코일을 대전류가 흐르는 동시에 냉각액이 순환되는 동관의 형태로 제작함으로써, 자기장 발생 코일에 냉각을 위한 부수적 장치가 필요 없어 구조가 간단한 장점이 있다.In addition, since the coil is manufactured in the form of a copper tube through which a large current flows and the coolant is circulated, the magnetic field generating coil does not need an additional device for cooling, and thus the structure is simple.

또한, 동관의 모양이 타원형으로 구현함으로써 유리섬유를 설치하기 쉬운 장점이 있고, 자기장을 효율적으로 발생할 수 있는 효과가 있다.In addition, by implementing the shape of the copper tube elliptical has the advantage of easy to install the glass fiber, there is an effect that can efficiently generate a magnetic field.

또한, 코일의 모양을 8자형으로 구현함으로써 집중적인 자기장 치료를 할 수 있는 효과가 있다.In addition, by implementing the shape of the coil to the eight-shaped has the effect that can be intensive magnetic field treatment.

Claims (9)

전원을 공급받아 자기장을 발생시키는 관으로 이루어진 코일;A coil consisting of a tube receiving power and generating a magnetic field; 상기 코일의 내부를 순환하여 열을 흡수하는 냉각액;A coolant circulating inside the coil to absorb heat; 상기 냉각액의 흐름을 일정한 방향으로 유지시키는 펌프; 및A pump for maintaining the flow of the cooling liquid in a constant direction; And 상기 냉각액을 저장하는 냉각액저장탱크Coolant storage tank for storing the coolant 를 포함하는 자기장 치료기의 냉각 장치.Cooling device of the magnetic field treatment device comprising a. 제 1항에 있어서,The method of claim 1, 상기 냉각 장치는 상기 냉각액저장탱크와 연동하여 상기 냉각액을 저온의 상태로 유지시키는 응축기;The cooling device includes a condenser to keep the coolant at a low temperature in association with the coolant storage tank; 상기 냉각액의 온도를 측정하는 온도센서; 및A temperature sensor for measuring a temperature of the cooling liquid; And 상기 온도센서로부터 온도를 추출하여 상기 응축기의 팬을 동작시키는 제어부Control unit for extracting the temperature from the temperature sensor to operate the fan of the condenser 를 더 포함하는 자기장 치료기의 냉각 장치.Cooling device of the magnetic field treatment device further comprising. 제 2항에 있어서,The method of claim 2, 상기 제어부에 의해 동작되고 상기 응축기로 냉매 가스를 공급하는 압축기A compressor operated by the control unit and supplying refrigerant gas to the condenser 를 더 포함하는 자기장 치료기의 냉각 장치.Cooling device of the magnetic field treatment device further comprising. 제 1항에 있어서,The method of claim 1, 상기 냉각액은 상기 코일의 부식방지를 위해 실리콘 오일 또는 변압기 오일을 사용하는 자기장 치료기의 냉각 장치.The coolant is a cooling device of the magnetic field therapy device using a silicone oil or transformer oil to prevent corrosion of the coil. 제 1항에 있어서,The method of claim 1, 상기 코일은 내식성이 크고 전기 전도율이 좋으며 기계적 성질이 우수한 동관으로 이루어진 자기장 치료기의 냉각 장치.The coil is a cooling device of the magnetic field treatment device consisting of a copper tube having a high corrosion resistance, good electrical conductivity and excellent mechanical properties. 제 5항에 있어서,The method of claim 5, 상기 동관의 단면은 타원형인 자기장 치료기의 냉각 장치.Cooling device of the magnetic field treatment device of the elliptical cross section of the copper tube. 제 1항에 있어서,The method of claim 1, 상기 코일은 팬케이크형 또는 8자형인 자기장 치료기의 냉각 장치.The coil is a pancake type or eight-shaped cooling device of the magnetic field treatment device. 제 1항에 있어서,The method of claim 1, 상기 코일들의 사이에는 절연체가 존재하는 자기장 치료기의 냉각 장치.Cooling device of a magnetic field therapy device, there is an insulator between the coils. 제 8항에 있어서,The method of claim 8, 상기 코일들은 에폭시 수지에 의해 절연 및 고정되는 자기장 치료기의 냉각 장치.And the coils are insulated and fixed by an epoxy resin.
KR1020070054860A 2007-06-05 2007-06-05 Cooling device of coil for magnetic stimulator KR100841596B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070054860A KR100841596B1 (en) 2007-06-05 2007-06-05 Cooling device of coil for magnetic stimulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070054860A KR100841596B1 (en) 2007-06-05 2007-06-05 Cooling device of coil for magnetic stimulator

Publications (1)

Publication Number Publication Date
KR100841596B1 true KR100841596B1 (en) 2008-06-26

Family

ID=39772565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070054860A KR100841596B1 (en) 2007-06-05 2007-06-05 Cooling device of coil for magnetic stimulator

Country Status (1)

Country Link
KR (1) KR100841596B1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413022B1 (en) * 2012-09-14 2014-07-04 주식회사 리메드 Stimulus treatment using magnetic field
RU2617806C2 (en) * 2015-06-16 2017-04-26 ООО "НейроСофт" Device for magnetic stimulation
CN110975152A (en) * 2019-12-17 2020-04-10 华中科技大学 Magnetic stimulation device and method capable of continuously working
KR20200042298A (en) 2018-10-15 2020-04-23 전주대학교 산학협력단 Water cold type coil probe for magnetic stimulator and magnetic stimulator having the same
KR20200042301A (en) 2018-10-15 2020-04-23 전주대학교 산학협력단 Hybrid cold device and magnetic stimulator having the same
KR20200110632A (en) 2020-09-03 2020-09-24 (주)영인바이오텍 Magnetic field treatment device
CN112735728A (en) * 2020-12-22 2021-04-30 四川君健万峰医疗器械有限责任公司 Transcranial magnetic stimulation coil and manufacturing method thereof
WO2021149901A1 (en) * 2020-01-22 2021-07-29 주식회사 케이원메드 Stimulation treatment device using magnetic field
EP3316962B1 (en) 2015-07-01 2021-12-22 BTL Healthcare Technologies a.s. Magnetic stimulation devices for therapeutic treatments
KR20220016390A (en) 2020-07-31 2022-02-09 주식회사 리메드 Treatment device using magnetic field
WO2022041657A1 (en) * 2020-08-29 2022-03-03 深圳英智科技有限公司 Wire, transcranial magnetic stimulation coil and transcranial magnetic stimulator for transcranial magnetic stimulation
CN114129903A (en) * 2021-10-26 2022-03-04 北京大学(天津滨海)新一代信息技术研究院 Thermotherapy constant temperature system and equipment
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
KR20230045778A (en) 2021-09-29 2023-04-05 주식회사 리메드 Mgnetic field treatment device including a support for supporting the body
KR20230045779A (en) 2021-09-29 2023-04-05 주식회사 리메드 Treatment device using magnetic field
KR20230046654A (en) 2021-09-30 2023-04-06 주식회사 리메드 Treatment device using magnetic field with core
KR20230046655A (en) 2021-09-30 2023-04-06 주식회사 리메드 Treatment device using magnetic field with winding coil
KR20230050717A (en) 2021-10-08 2023-04-17 주식회사 리메드 Treatment device using magnetic field with round type winding coil
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
KR20230094313A (en) 2021-12-21 2023-06-28 주식회사 리메드 Treatment device using magnetic field with inclined type winding coil
KR20230134278A (en) 2022-03-14 2023-09-21 주식회사 리메드 Treatment device using magnetic field
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065126A (en) * 2002-01-31 2003-08-06 (주) 엠큐브테크놀로지 System for cooling stimulus coil for use in equipment using magnetic field
JP2006043077A (en) 2004-08-04 2006-02-16 Hitachi Medical Corp Magnetic resonance imaging system
JP2007005793A (en) 2005-06-20 2007-01-11 Siemens Ag Pulsed magnetic field generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065126A (en) * 2002-01-31 2003-08-06 (주) 엠큐브테크놀로지 System for cooling stimulus coil for use in equipment using magnetic field
JP2006043077A (en) 2004-08-04 2006-02-16 Hitachi Medical Corp Magnetic resonance imaging system
JP2007005793A (en) 2005-06-20 2007-01-11 Siemens Ag Pulsed magnetic field generator

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
KR101413022B1 (en) * 2012-09-14 2014-07-04 주식회사 리메드 Stimulus treatment using magnetic field
RU2617806C2 (en) * 2015-06-16 2017-04-26 ООО "НейроСофт" Device for magnetic stimulation
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
EP3316962B1 (en) 2015-07-01 2021-12-22 BTL Healthcare Technologies a.s. Magnetic stimulation devices for therapeutic treatments
US11883643B2 (en) 2016-05-03 2024-01-30 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including RF and electrical energy
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11691024B2 (en) 2016-05-10 2023-07-04 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11590356B2 (en) 2016-05-10 2023-02-28 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11878162B2 (en) 2016-05-23 2024-01-23 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11623083B2 (en) 2016-05-23 2023-04-11 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11896821B2 (en) 2016-05-23 2024-02-13 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11679270B2 (en) 2016-07-01 2023-06-20 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11628308B2 (en) 2016-07-01 2023-04-18 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11794029B2 (en) 2016-07-01 2023-10-24 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11524171B2 (en) 2016-07-01 2022-12-13 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11607556B2 (en) 2016-07-01 2023-03-21 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
KR20200042298A (en) 2018-10-15 2020-04-23 전주대학교 산학협력단 Water cold type coil probe for magnetic stimulator and magnetic stimulator having the same
KR20200042301A (en) 2018-10-15 2020-04-23 전주대학교 산학협력단 Hybrid cold device and magnetic stimulator having the same
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
CN110975152A (en) * 2019-12-17 2020-04-10 华中科技大学 Magnetic stimulation device and method capable of continuously working
WO2021149901A1 (en) * 2020-01-22 2021-07-29 주식회사 케이원메드 Stimulation treatment device using magnetic field
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11813451B2 (en) 2020-05-04 2023-11-14 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11679255B2 (en) 2020-05-04 2023-06-20 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
KR20230038170A (en) 2020-07-31 2023-03-17 주식회사 리메드 Treatment device using magnetic field
KR20220016390A (en) 2020-07-31 2022-02-09 주식회사 리메드 Treatment device using magnetic field
WO2022041657A1 (en) * 2020-08-29 2022-03-03 深圳英智科技有限公司 Wire, transcranial magnetic stimulation coil and transcranial magnetic stimulator for transcranial magnetic stimulation
KR20200110632A (en) 2020-09-03 2020-09-24 (주)영인바이오텍 Magnetic field treatment device
CN112735728A (en) * 2020-12-22 2021-04-30 四川君健万峰医疗器械有限责任公司 Transcranial magnetic stimulation coil and manufacturing method thereof
KR20230045778A (en) 2021-09-29 2023-04-05 주식회사 리메드 Mgnetic field treatment device including a support for supporting the body
KR20230045779A (en) 2021-09-29 2023-04-05 주식회사 리메드 Treatment device using magnetic field
KR20230046655A (en) 2021-09-30 2023-04-06 주식회사 리메드 Treatment device using magnetic field with winding coil
KR20230046654A (en) 2021-09-30 2023-04-06 주식회사 리메드 Treatment device using magnetic field with core
KR20230050717A (en) 2021-10-08 2023-04-17 주식회사 리메드 Treatment device using magnetic field with round type winding coil
CN114129903A (en) * 2021-10-26 2022-03-04 北京大学(天津滨海)新一代信息技术研究院 Thermotherapy constant temperature system and equipment
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
KR20230094313A (en) 2021-12-21 2023-06-28 주식회사 리메드 Treatment device using magnetic field with inclined type winding coil
KR20230134278A (en) 2022-03-14 2023-09-21 주식회사 리메드 Treatment device using magnetic field

Similar Documents

Publication Publication Date Title
KR100841596B1 (en) Cooling device of coil for magnetic stimulator
EP2833815B1 (en) Induction coil vapor generator
US7591776B2 (en) Magnetic stimulators and stimulating coils
US20230248990A1 (en) Wire, transcranial magnetic stimulation coil and transcranial magnetic stimulator for transcranial magnetic stimulation
JPWO2005104622A1 (en) Coil device and magnetic field generator
CN110975152A (en) Magnetic stimulation device and method capable of continuously working
CN104684358A (en) Heat dissipating system of buried electric automobile wireless charging device
BRPI1100186B1 (en) DRY DISTRIBUTION TRANSFORMER
WO2009127840A1 (en) Magnetic stimulators and stimulating coils
CN104941069A (en) High-strength uniform-induction electric field generator based on Archimedes spiral coil
CN101947359B (en) Magnetic field stimulator and cooling method thereof
CN103028193B (en) Semiconductor cooling device of transcranial magnetic stimulation coil
US10500366B2 (en) Humidification device
CN202961526U (en) Semiconductor cooling device of transcranial magnetic stimulation coil
KR20200042298A (en) Water cold type coil probe for magnetic stimulator and magnetic stimulator having the same
CN106455436A (en) Open-type liquid-nitrogen self-circulation rapid cooling system
KR20200110632A (en) Magnetic field treatment device
CN204121603U (en) Magnetic stimulating coil outer circulation chiller
KR100886951B1 (en) Cooling apparatus having thermoelectric module
CN219090863U (en) Magnetic stimulation treatment head of double-cavity cooling system
KR100575541B1 (en) Stimulating module, having improved efficiency when generating magnetic field, and stimulating device thereof
CN108174574B (en) A kind of conducting liquid active cooling method and device
CN201791260U (en) Magnetic field stimulator
CN219271959U (en) Magnetic stimulation treatment head
CN107078241A (en) Medical battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130619

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140620

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170619

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180618

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190618

Year of fee payment: 12