KR100839363B1 - Method for Preparing Biodiesel Using Supercritical Alcohol and Solvent - Google Patents

Method for Preparing Biodiesel Using Supercritical Alcohol and Solvent Download PDF

Info

Publication number
KR100839363B1
KR100839363B1 KR1020060133916A KR20060133916A KR100839363B1 KR 100839363 B1 KR100839363 B1 KR 100839363B1 KR 1020060133916 A KR1020060133916 A KR 1020060133916A KR 20060133916 A KR20060133916 A KR 20060133916A KR 100839363 B1 KR100839363 B1 KR 100839363B1
Authority
KR
South Korea
Prior art keywords
oil
supercritical
biodiesel
solvent
alcohol
Prior art date
Application number
KR1020060133916A
Other languages
Korean (ko)
Other versions
KR20070068292A (en
Inventor
황종식
유기풍
Original Assignee
주식회사 에코솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코솔루션 filed Critical 주식회사 에코솔루션
Publication of KR20070068292A publication Critical patent/KR20070068292A/en
Application granted granted Critical
Publication of KR100839363B1 publication Critical patent/KR100839363B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/12Regeneration of a solvent, catalyst, adsorbent or any other component used to treat or prepare a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

본 발명은 초임계 알코올을 이용한 식물성 오일로부터 바이오디젤을 제조하는 방법에 관한 것으로, 보다 상세하게는, 초임계 알코올 및 상기 알코올과 비점이 유사한 초임계 용매 존재하에 식물성 오일을 에스테르화 시키는 것을 특징으로 하는 지방산 알킬 에스테르(바이오디젤)의 제조방법에 관한 것이다.The present invention relates to a method for producing biodiesel from vegetable oils using a supercritical alcohol, and more particularly, to esterifying a vegetable oil in the presence of a supercritical alcohol and a supercritical solvent having a boiling point similar to that of the alcohol. It relates to a method for producing a fatty acid alkyl ester (biodiesel).

본 발명에 따르면, 메탄올 함량을 획기적으로 낮출 수 있고, 비교적 낮은 오도 및 압력하에서도 높은 반응 수율을 얻을 수 있으며, 초임계 반응에 사용된 용매를 회수하기 위한 별도의 장비가 필요 없어, 경제적으로 바이오디젤을 제조하는 것이 가능하다.According to the present invention, the methanol content can be drastically lowered, high reaction yield can be obtained even under relatively low misleading pressure and pressure, and no separate equipment for recovering the solvent used in the supercritical reaction is required. It is possible to manufacture diesel.

초임계, 알코올, 오일, 바이오디젤, 용매, 균일상, 지방산 알킬 에스테르 Supercritical, Alcohol, Oil, Biodiesel, Solvent, Homogeneous, Fatty Acid Alkyl Ester

Description

초임계 알코올 및 용매를 이용한 바이오디젤의 제조방법{Method for Preparing Biodiesel Using Supercritical Alcohol and Solvent}Method for Preparing Biodiesel Using Supercritical Alcohol and Solvent

도 1은 본 발명에 따른 바이오디젤 제조방법을 나타내는 모식도이다.1 is a schematic diagram showing a biodiesel manufacturing method according to the present invention.

도 2는 본 발명에 따른 바이오디젤 제조 공정도이다.2 is a biodiesel manufacturing process according to the present invention.

도 3은 본 발명에 따른 제조방법으로 제조된 바이오디젤의 지방산 조성을 나타낸 그래프이다.Figure 3 is a graph showing the fatty acid composition of the biodiesel prepared by the manufacturing method according to the present invention.

도 4는 본 발명에 따른 제조방법으로 제조된 공용매 첨가 전·후의 바이오디젤의 지방산 메틸에스테르의 수율을 나타낸 그래프이다.Figure 4 is a graph showing the yield of fatty acid methyl ester of biodiesel before and after the cosolvent prepared by the production method according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1: 원료 탱크(palm oil) 2: 펌프1: palm oil 2: pump

3: 예열관 전기로 4: 반응기3: preheating tube furnace 4: reactor

5: 반응기 전기로 6: 역압력 조절기5: reactor furnace 6: reverse pressure regulator

7: 생성물 탱크 8: 알코올 탱크7: product tank 8: alcohol tank

9: 공용매 탱크 V1~V12: 밸브9: cosolvent tank V1-V12: valve

PI: 압력계 PC: 압력조절기PI: Pressure gauge PC: Pressure regulator

TI: 온도계 TIC: 온도계 및 조절기TI: Thermometers TIC: Thermometers and Regulators

발명의 분야Field of invention

본 발명은 초임계 알코올을 이용한 식물성 오일로부터 바이오디젤을 제조하는 방법에 관한 것으로, 보다 상세하게는 초임계 알코올 및 상기 알코올과 비점이 유사한 초임계 용매 존재하에 식물성 오일을 에스테르화 시키는 것을 특징으로 하는 지방산 알킬 에스테르(바이오디젤)의 제조방법에 관한 것이다.The present invention relates to a method for producing biodiesel from a vegetable oil using a supercritical alcohol, and more particularly, to esterifying the vegetable oil in the presence of a supercritical alcohol and a supercritical solvent similar in boiling point to the alcohol. It relates to a process for producing fatty acid alkyl esters (biodiesel).

발명의 배경Background of the Invention

20세기의 급격한 인구증가와 산업발전으로 말미암아 화석연료의 사용이 급속도로 증가함으로써, 에너지의 공급 및 수요의 균형이 무너지는 에너지 부족문제가 점차 현실화되고 있다. 세계적으로 석탄 및 석유자원이 점차 고갈되어감에 따라 대체에너지의 개발에 대한 관심이 증가하고 있으며, 재배를 통하여 대량으로 얻을 수 있는 천연자원 및 폐기름을 재활용하여 에너지원으로 이용하고자 하는 연구가 최근 새로운 관심을 끌고 있다.The rapid increase in population and industrial development of the twentieth century has led to the rapid increase in the use of fossil fuels, resulting in an energy shortage problem that is disrupting the balance of energy supply and demand. As coal and petroleum resources are gradually depleted in the world, interest in the development of alternative energy is increasing, and researches on recycling natural resources and waste oil obtained through cultivation and using them as energy sources have recently been made. It is attracting new attention.

바이오디젤(bio-diesel)은 이러한 연구의 결과 등장한 대안으로, 콩기름, 유채기름, 폐식물기름, 해조유(海藻油) 등의 식물성 기름을 원료로 해서 만든 무공해 연료의 총칭이다. 경유와 비슷한 물성을 가지고 있기 때문에, 경유를 주로 사용하 는 디젤자동차의 경유 첨가제 또는 그 자체로 차량 연료로 사용된다.Bio-diesel is an alternative that emerged as a result of these studies and is a generic term for pollution-free fuels made from vegetable oils such as soybean oil, rapeseed oil, waste vegetable oil and seaweed oil. Because of its properties similar to diesel, it is used as a fuel additive in diesel vehicles, which are mainly diesel, or as a vehicle fuel.

일반적으로, 바이오디젤은 촉매(산, 알칼리, 리파아제 등)의 존재하에서, 식물성 기름과 알코올간의 에스테르화 반응에 의해 생성된다 (반응식 1).Generally, biodiesel is produced by esterification reaction between vegetable oil and alcohol in the presence of a catalyst (acid, alkali, lipase, etc.) (Scheme 1).

Figure 112006096404452-pat00001
Figure 112006096404452-pat00001

메탄올을 이용하는 에스테르 교환방법에도 알칼리를 촉매로 이용하는 방법, 리파아제 지방분해효소 또는 초임계 유체(예를 들어, 메탄올)를 이용하는 방법 등 여러 가지가 있지만, 현재 알칼리 촉매법이 가장 일반화되어 있다. 하지만, 기존의 알칼리 촉매를 이용하여 지방산 알킬 에스테르를 제조하는 방법은 촉매가 유리 지방산과 결합하여 지방산 비누가 부산물로 생성되어 알칼리 촉매가 과잉으로 필요하고, 수율의 저하를 일으킨다. 또한 부산물로 생성된 지방산 비누 때문에 지방산 알킬 에스테르층과 글리세린층과의 분리가 곤란해지며, 촉매와 지방산 비누의 제거를 위한 추가 공정이 필요하게 된다.Although there are various methods of transesterification using methanol, a method of using alkali as a catalyst, a method of using lipase lipolytic enzyme or a supercritical fluid (for example, methanol), the alkali catalyst method is the most common. However, the method for producing fatty acid alkyl esters using the conventional alkali catalysts requires that the catalyst is combined with free fatty acids to produce fatty acid soaps as by-products, resulting in excessive alkali catalysts, resulting in lower yields. In addition, the fatty acid soap produced as a by-product makes it difficult to separate the fatty acid alkyl ester layer from the glycerin layer and requires an additional process for removing the catalyst and fatty acid soap.

이러한 문제점들을 해결하기 위한 일 방편으로 촉매를 이용하지 않고 초임계 또는 아임계 상태의 알코올을 이용한 초임계 공정이 개발되었는데, 압력 25MPa이하의 초임계 상태에서 유지 및/또는 알코올을 이용한 바이오디젤의 제조방법(US 6,187,939), 초임계 상태에서 C1~C5인 저급 알코올의 에스테르화 반응에 의한 지방산 알킬 에스테르의 제조방법(US 6,288,251), 초임계 또는 아임계 상태에서 C1~C24인 알코올의 에스테르교환 반응 또는 탈수 반응에 의한 모노 에스테르의 제조방법(JP 2000204392A2) 등을 예로 들 수 있다.In order to solve these problems, a supercritical process using a supercritical or subcritical alcohol without a catalyst has been developed. The production of biodiesel using alcohol and / or alcohol in a supercritical state of 25 MPa or less is used. Method (US 6,187,939), preparation of fatty acid alkyl esters by esterification of lower alcohols of C 1 to C 5 in supercritical state (US 6,288,251), of alcohols of C 1 to C 24 in supercritical or subcritical state The manufacturing method of the mono ester by a transesterification reaction or a dehydration reaction (JP 2000204392A2), etc. are mentioned, for example.

초임계유체는 임계 온도 및 압력 이상에서 존재하는 유체로, 밀도를 이상기체에 가까운 희박상태에서부터 액체 밀도에 가까운 고밀도 상태까지 연속적으로 변화시킬 수 있기 때문에, 유체의 평형 물성(용해도, entrainer 효과), 전달물성(점도, 확산계수, 열전도도) 뿐만 아니라, 용매화 및 분자 클러스터링(clustering) 상태까지 조절할 수 있다. 이러한 물성 조절의 용이성을 반응과 분리 등의 공정에 이용하면 단일 용매로 여러 종류의 액체용매에 상응하는 용매 특성을 얻을 수 있다. 즉, 압력과 온도를 변화시킴으로써 물성을 원하는 상태로 조율할 수 있다.Supercritical fluids are fluids that exist above the critical temperature and pressure, and because they can continuously change their density from a lean state close to the ideal gas to a high density near the liquid density, the equilibrium properties of the fluid (solubility, entrainer effect), Not only transfer properties (viscosity, diffusion coefficient, thermal conductivity) but also solvation and molecular clustering can be controlled. When such physical property control is easily used in processes such as reaction and separation, solvent properties corresponding to various liquid solvents can be obtained with a single solvent. That is, the physical properties can be tuned to a desired state by changing the pressure and temperature.

또한, 초임계유체는 액체와 기체의 중간적인 성격을 지닌 물질이다. 초임계유체는 액체상이 가지는 용해력과 기체상이 가지는 확산성을 동시에 지니고 있어서, 추출 시스템의 용매나 크로마토그래피의 유동상(mobile phase)으로서 이상적일 뿐 아니라, 고온, 고압에서, 특히 고압일수록, 더 큰 용해능력을 지니는 압력 의존성 용해능력을 가지기 때문에, 분리, 정제, 추출, 분별 및 다양한 재료의 재결정화 등에 사용되고 있다. 따라서, 초임계 공정은 균일상을 형성하여 반응속도가 증가하고, 유리 지방산의 전처리 공정이 불필요하며, 후처리 공정을 단순화할 수 있다는 장점이 있다고 알려져 있다.In addition, supercritical fluids are substances with intermediate properties between liquids and gases. Supercritical fluids have both dissolving power in liquid phase and diffusivity in gas phase, making them ideal for solvents in extraction systems or mobile phases in chromatography, but also at higher temperatures and pressures, especially at higher pressures. Due to its pressure-dependent dissolving ability, it has been used for separation, purification, extraction, fractionation and recrystallization of various materials. Therefore, it is known that the supercritical process has the advantage of increasing the reaction rate by forming a uniform phase, eliminating the need for pretreatment of free fatty acids, and simplifying the aftertreatment process.

특히 Saka Shiro(이하 'Saka 공정'이라 한다)에 의하면 초임계 메탄올과 오일을 반응시키는데, 온도 270~350℃, 압력 17~43MPa의 조건에서 메탄올:오일의 몰비가 42:1인 경우에 지방산 알킬 에스테르의 수율이 가장 높다고 한다 (Fuel, 80:693, 2001; Bioresource Tech ., 91:289, 2004; WO 2004/108873). In particular, according to Saka Shiro (hereinafter referred to as the 'Saka process'), supercritical methanol and oil are reacted, and fatty acid alkyl is produced when the molar ratio of methanol to oil is 42: 1 under the conditions of temperature of 270 to 350 ° C and pressure of 17 to 43 MPa Highest yields of esters ( Fuel , 80: 693, 2001; Bioresource Tech . , 91: 289, 2004; WO 2004/108873).

한편, 초임계 공정을 이용한 바이오디젤의 제조시, 초임계 메탄올과 오일이 단일상을 형성하는 것으로 알려져 있지만, 비교적 낮은 온도와 압력하에서는 균일상을 이루지 못하는 문제점이 있다. 따라서, 초임계 메탄올과 오일이 균일상을 유지하도록 하기 위해서는 압력과 온도를 높여야하고, 메탄올을 다량 첨가해야 한다. 상기 Saka 공정에 따르면, 메탄올:오일의 몰비가 42:1로, 메탄올 사용량이 너무 많아, 메탄올의 증발·회수 과정에서 많은 에너지가 소모될 뿐만 아니라, 전체적인 공정설비가 커지게 되어 투자비가 너무 많이 소요된다는 단점이 있다. 또한, 에스테르화 반응의 수율을 높이기 위하여 압력과 온도를 높게 유지해야만 하고, 이로 인해 부반응이 발생할 여지가 많다.On the other hand, in the production of biodiesel using a supercritical process, supercritical methanol and oil are known to form a single phase, but there is a problem that does not achieve a uniform phase under relatively low temperature and pressure. Therefore, in order to keep the supercritical methanol and oil in a homogeneous phase, the pressure and temperature must be increased and a large amount of methanol must be added. According to the Saka process, the molar ratio of methanol to oil is 42: 1, the amount of methanol used is too high, not only a lot of energy is consumed during the evaporation and recovery of methanol, but the overall process equipment becomes large, and the investment cost is too high. It has the disadvantage of being. In addition, in order to increase the yield of the esterification reaction, the pressure and the temperature must be kept high, which causes a lot of side reactions.

상기와 같은 Saka 공정을 개선하기 위하여, CO2나 프로판과 같은 초임계 공용매(co-solvent)를 이용하는 방안이 제시되었다 (Fuel, 84:347, 2005; JP 2005-053871A2). 이 방안에 따르면, 메탄올:오일의 몰비를 24:1 정도로 낮출 수 있어 에너지 소모를 상당히 줄일 수 있다. 그러나, CO2나 프로판과 같은 공용매는 폐기시 다양한 환경문제를 유발하므로 회수하여 재사용하여야 하는데, 그 비점이 낮아 메탄올 회수과정 이외에 별도의 압축 및 응축설비를 필요로 한다.In order to improve the Saka process as described above, a method of using a supercritical co-solvent such as CO 2 or propane has been proposed (Fuel, 84: 347, 2005; JP 2005-053871A2). According to this approach, the molar ratio of methanol to oil can be reduced to around 24: 1, which significantly reduces energy consumption. However, co-solvents such as CO 2 and propane have to be recovered and reused because they cause various environmental problems in disposal, and the boiling point requires a separate compression and condensation facility in addition to the methanol recovery process.

이에, 본 발명자들은 상기와 같은 종래기술의 문제점을 해결하고자 예의 노력한 결과, 저급알코올과 비점이 유사한 용매를 이용하여 초임계 상태에서 식물성 오일을 에스테르화시킨 결과, 저급알코올 사용량을 획기적으로 줄일 수 있고, 비교적 낮은 온도 및 압력 하에서도 높은 반응수율을 얻을 수 있으며, 용매의 회수를 위한 별도의 설비가 필요없어 경제적으로 바이오디젤을 제조할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.Thus, the present inventors have made efforts to solve the problems of the prior art as a result, as a result of esterifying the vegetable oil in a supercritical state using a solvent similar to the lower alcohol and boiling point, it is possible to drastically reduce the lower alcohol consumption The present invention was completed by confirming that a high reaction yield can be obtained even at a relatively low temperature and pressure, and that biodiesel can be produced economically since a separate facility for the recovery of the solvent is not required.

결국, 본 발명의 목적은 초임계 저급알코올 및 상기 저급알코올과 비점이 유사한 초임계 용매 존재하에 식물성 오일을 에스테르화 시키는 것을 특징으로 하는 지방산 알킬 에스테르(바이오디젤)의 제조방법을 제공하는데 있다.After all, it is an object of the present invention to provide a method for producing a fatty acid alkyl ester (biodiesel), characterized in that the esterification of a vegetable oil in the presence of supercritical lower alcohol and a supercritical solvent similar in boiling point to the lower alcohol.

상기 목적을 달성하기 위하여, 본 발명은 (a) 초임계 저급알코올 및 저급알코올과 비점이 유사한 초임계 용매 존재하에 식물성 오일을 에스테르화 시키는 단계; 및 (b) 상기 에스테르화된 반응액으로부터 지방산 알킬 에스테르(바이오디젤)를 회수하는 단계를 포함하는 지방산 알킬 에스테르(바이오디젤)의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) esterifying a vegetable oil in the presence of a supercritical lower alcohol and a supercritical solvent similar in boiling point to the lower alcohol; And (b) recovering a fatty acid alkyl ester (biodiesel) from the esterified reaction solution.

본 발명에 있어서, 상기 저급알코올과 비점이 유사한 초임계 용매는 CFC 계열, HCFC 계열 및 HFC 계열로 구성된 그룹에서 선택되는 것을 특징으로 할 수 있 다.In the present invention, the supercritical solvent similar in boiling point to the lower alcohol may be selected from the group consisting of CFC series, HCFC series and HFC series.

본 발명에 있어서, 상기 저급알코올은 메탄올인 것을 특징으로 할 수 있다.In the present invention, the lower alcohol may be characterized in that methanol.

본 발명에 있어서, 상기 식물성 오일은 팜유, 대두유, 유채유, 카놀라유, 홍화유, 옥수수유, 평지유, 아마인유, 해바라기유, 양귀비유, 호두유, 땅콩유, 면실유, 미강유, 동백유 및 피마자유 및 올리브유로 구성된 그룹에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the vegetable oil is palm oil, soybean oil, rapeseed oil, canola oil, safflower oil, corn oil, rapeseed oil, linseed oil, sunflower oil, poppy oil, walnut oil, peanut oil, cottonseed oil, rice bran oil, camellia oil and castor oil and olive oil It may be characterized in that selected from the group consisting of.

본 발명에 있어서, 상기 (a) 단계는 교반 수단을 가지는 반응기에서 수행하는 것을 특징으로 할 수 있다.In the present invention, step (a) may be performed in a reactor having a stirring means.

본 발명에 있어서, 상기 (a) 단계는 유동층 반응기에서 수행하는 것을 특징으로 할 수 있다.In the present invention, step (a) may be performed in a fluidized bed reactor.

본 발명에 있어서, 상기 (a) 단계는 식물성 오일과 저급알코올을 1:5~1:20의 몰비로 에스테르화 시키는 것을 특징으로 할 수 있다.In the present invention, the step (a) may be characterized by esterifying the vegetable oil and lower alcohol in a molar ratio of 1: 5 to 1:20.

본 발명에 있어서, 상기 (b) 단계 후에, 저급알코올과 용매를 회수하여 에스테르화 공정으로 재순환시키는 단계를 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, after the step (b), it may be characterized in that it further comprises the step of recovering the lower alcohol and the solvent to recycle to the esterification process.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 초임계 공정에서 알코올의 사용량을 줄이기 위해 공용매를 사용하되, 사용된 공용매를 회수하기 위한 별도의 설비가 필요 없도록 하기 위하여, 메탄올과 비점이 유사한 공용매를 착안하였다. In the present invention, while using a co-solvent to reduce the amount of alcohol used in the supercritical process, in order to avoid the need for a separate facility for recovering the used co-solvent, a co-solvent similar in boiling point to methanol was devised.

본 발명에 따른 바이오디젤의 제조방법은 도 1에 나타난 바와 같이, 초임계 저급알코올 및 저급알코올과 비점이 유사한 초임계 용매 존재하에 식물성 오일을 에스테르화하고, 상기 에스테르화된 반응액으로부터 지방산 알킬 에스테르를 회수한다.In the method for preparing biodiesel according to the present invention, as shown in FIG. 1, a vegetable oil is esterified in the presence of a supercritical low alcohol and a supercritical solvent having a boiling point similar to that of a lower alcohol, and a fatty acid alkyl ester is obtained from the esterified reaction solution. Recover.

본 발명에 사용되는 식물성 오일은 팜유, 유채유, 카놀라유, 홍화유, 대두유, 옥수수유, 평지유, 아마인유, 해바라기유, 양귀비유, 호두유, 땅콩유, 면실유, 미강유, 동백유, 피마자유, 올리브유 중에서 선택된 어느 하나를 사용할 수 있으나, 이에 국한되지는 않는다.Vegetable oils used in the present invention are palm oil, rapeseed oil, canola oil, safflower oil, soybean oil, corn oil, rapeseed oil, linseed oil, sunflower oil, poppy oil, walnut oil, peanut oil, cottonseed oil, rice bran oil, camellia oil, castor oil, olive oil Any one selected may be used, but is not limited thereto.

또한, 알코올은 메탄올, 에탄올 등과 같은 C1~C5인 저급알코올류를 사용할 수 있고, 바람직하게는 메탄올을 사용한다. 상기 메탄올과 비점이 유사한 공용매는 CFC, HCFC 또는 HFC 계열의 물질로서, CCl3F, CClF2CCl2F, CHClCF2, CH3CCl2F, CF3CF2CHCl2, CClF2CF2CHClF, CHF2CF3, 및 CH2CH2OH으로 구성된 그룹으로 선택된 어느 하나 이상을 사용하는 것이 바람직하나, 이에 국한되지는 않는다.In addition, alcohol is used a C 1 ~ C 5 which may be a lower alcohol, preferably methanol, such as methanol, ethanol. Cosolvents similar in boiling point to methanol are CFC, HCFC or HFC-based materials, and include CCl 3 F, CClF 2 CCl 2 F, CHClCF 2 , CH 3 CCl 2 F, CF 3 CF 2 CHCl 2 , CClF 2 CF 2 CHClF, Preference is given to using one or more selected from the group consisting of CHF 2 CF 3 , and CH 2 CH 2 OH, but is not limited thereto.

한편, 본 발명에 사용되는 반응기는 유동층을 가지는 회분식 반응기, 관형 반응기, 연속 교반 탱크반응기 등을 이용한 회분식 공정 및 연속시 공정을 사용할 수 있고, 또한 상기 반응기들은 교반 수단을 가져, 짧은 시간에 높은 수율을 얻을 수 있다. Meanwhile, the reactor used in the present invention may use a batch process and a continuous process using a batch reactor having a fluidized bed, a tubular reactor, a continuous stirred tank reactor, and the like, and the reactors have a stirring means, so that a high yield in a short time Can be obtained.

도 2에 나타난 바와 같이, 본 발명에 따른 바이오디젤의 제조 공정은 식물성 오일, 알코올 및 공용매를 각각의 밸브 V2, 밸브 V8 및 밸브 V11을 열어 각각의 탱크(1, 8 및 9)에 주입시키고, 주입 완료된 다음, 상기 밸브 V2, V8 및 V11을 닫는다. 각각의 탱크에 주입된 반응물 중 알코올 및 공용매를 먼저 송액 펌프(2)를 사용하여 반응기(4)에 주입한다. 반응기에 알코올 및 공용매가 주입완료된 후, 식물성 오일 또한, 송액 펌프(2)를 사용하여 반응기(4)에 주입시킨다. 이때 식물성 오일의 응고 방지와 점도를 유지하기 위하여 식물성 오일의 온도는 50~70℃로 유지시킨다. 반응기(4) 내로 상기 식물성 오일의 주입이 완료되면, 역압력 조절기(6)로 반응기(4) 내의 압력을 증가시키는 동시에 예열관 전기로(3) 및 반응기 전기로(5)를 이용하여 온도를 증가시킨다. 반응기(4) 내 온도는 300℃~500℃이고, 바람직하게는 350℃~400℃이다. 또한, 반응 압력은 20~60MPa이고, 가장 바람직하게는 35MPa이다. 정해진 온도와 압력에 도달한 후, 온도와 압력이 안정되면 반응물의 정상상태가 될 때까지 20~50분 동안 반응시키고, 정상상태가 도달되면 생성물 탱크(7)에서 시료를 취하여 분별증류한다. As shown in FIG. 2, the biodiesel manufacturing process according to the present invention opens vegetable valves, alcohols, and cosolvents in each of the tanks 1, 8, and 9 by opening the valves V2, V8, and V11. After the injection is completed, the valves V2, V8 and V11 are closed. Alcohol and co-solvent of the reactants injected into each tank are first injected into the reactor 4 using the feed pump 2. After the alcohol and the cosolvent have been injected into the reactor, the vegetable oil is also injected into the reactor 4 using the feed pump 2. At this time, the temperature of the vegetable oil is maintained at 50 ~ 70 ℃ in order to prevent the coagulation and viscosity of the vegetable oil. When the injection of the vegetable oil into the reactor 4 is completed, the pressure in the reactor 4 is increased with the back pressure regulator 6 while the temperature is increased by using the preheater tube furnace 3 and the reactor furnace 5. Increase. The temperature in reactor 4 is 300 degreeC-500 degreeC, Preferably it is 350 degreeC-400 degreeC. The reaction pressure is 20 to 60 MPa, most preferably 35 MPa. After reaching the predetermined temperature and pressure, if the temperature and pressure is stable, react for 20 to 50 minutes until the steady state of the reactants, and when the steady state is reached, the sample is taken from the product tank (7) and fractionated.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1:  One: 초임계Supercritical 알코올 및  Alcohol and 공용매를Common solvent 이용한 바이오디젤 제조 Biodiesel Manufacturing

1-1 출발물질 및 제조장치의 준비1-1 Preparation of Starting Material and Manufacturing Equipment

출발물질은 시판되는 팜올레인유(필마, 로하스 에프엔비 주식회사) 및 메탄올(99.5% 대성공업 주식회사)을 사용하고, 공용매는 HCFC-141(99.5%, 울산화학 주 식회사)를 사용하였다. 한편, 바이오디젤 제조장치는 도 2에 도시된 장치를 이용하였다. 상기 장치의 반응관은 내경 4.35mm, 길이 12m의 코일상으로 감긴 316L sus 재질의 관형 반응기(프리메트 테크놀로지사)를 사용하였다.Commercial starting materials were palm olein oil (Film, Lohas F & B Co., Ltd.) and methanol (99.5% Daesung Industrial Co., Ltd.), and co-solvent used HCFC-141 (99.5%, Ulsan Chemical Co., Ltd.). On the other hand, the biodiesel manufacturing apparatus used the apparatus shown in FIG. The reaction tube of the apparatus used a tubular reactor made of 316L sus (Premet Technology Co., Ltd.) wound on a coil having an inner diameter of 4.35 mm and a length of 12 m.

1-2 1-2 초임계Supercritical 알코올 및  Alcohol and 공용매를Common solvent 이용한 바이오디젤 제조 Biodiesel Manufacturing

상기 1-1의 팜올레인유(2.77ml/min)는 응고 방지와 점도 유지를 위하여 60℃로 유지시킨 후 원료 탱크에 주입하고, 팜올레인유가 주입된 원료 탱크를 250℃로 가열하였다. 메탄올(2.48ml/min) 및 공용매인 HCFC-141(0.12ml/min)도 각각 원료 탱크에 주입하고, 메탄올 및 HCFC-141가 주입된 원료 탱크를 각각 300℃ 및 55℃로 가열시켰다. 상기 메탄올 및 HCFC-141(20:1)을 HPLC 펌프를 사용하여 원료 탱크에서 5.25ml/min로 220℃로 예열된 반응기로 먼저 주입시킨 후, 동일 유량으로 팜올레인유를 주입하였다. 상기 팜올레인유가 반응기내로 주입이 완료되면, 350℃ 및 35MPa로 온도 및 압력을 조절한 다음, 40분 동안 반응시킨 후에 생성물을 채취하였다. 채취한 상기 시료는 70℃로 중탕시킨 후 진공 증류하여 과잉메탄올, 글리세린 및 바이오디젤을 분리하였다.The palm olein oil (1.77 ml / min) of 1-1 was maintained at 60 ° C. in order to prevent coagulation and maintain viscosity, and was injected into a raw material tank, and the raw material tank in which palm olein oil was injected was heated to 250 ° C. Methanol (2.48 ml / min) and co-solvent HCFC-141 (0.12 ml / min) were also injected into the raw material tanks, respectively, and the raw material tanks into which methanol and HCFC-141 were injected were heated to 300 deg. C and 55 deg. The methanol and HCFC-141 (20: 1) were first injected into a reactor preheated to 220 ° C. at 5.25 ml / min in a feed tank using an HPLC pump and then palm olein oil at the same flow rate. When the palm olein oil was injected into the reactor, the temperature and pressure were adjusted to 350 ° C. and 35 MPa, and the reaction was performed for 40 minutes, and then the product was collected. The collected sample was heated to 70 ° C. and then vacuum distilled to separate excess methanol, glycerin and biodiesel.

비교예Comparative example 1:  One: 공용매를Common solvent 첨가하지 않은 바이오디젤 제조 Biodiesel Preparation without Addition

상기 공용매를 이용한 바이오디젤의 제조방법과 동일한 방법으로 제조하되, 공용매를 첨가하지 않았다.It was prepared in the same manner as the method for producing biodiesel using the cosolvent, but the cosolvent was not added.

실험예Experimental Example 1:  One: 초임계Supercritical 알코올 및 용매를 이용한 바이오디젤의 특성분석 Characterization of Biodiesel Using Alcohol and Solvent

실시예 1에서 분리된 바이오디젤은 가스크로마토그래피(gas chromatograph, HP6890)를 통하여 성분을 분석하였다. 분석결과, 하기 표 1에 나타난 바와 같이, 각종 지방산 메틸 에스테르가 60중량%이고, 모노아실글리세롤이 20중량%이며, 디아실글리세롤이 15중량%이고, 그외 지방족 화합물이 4중량%이며, 트리아실글리세롤 및 글리세린이 각각 1중량% 미만이였다. 도 3에 나타난 바와 같이, 바이오디젤의 지방산 메틸 에스테르의 지방산 조성은 중쇄 지방산류(C12:0) 0.1 중량%, 미리스트산(C14:0) 0.8 중량%, 팔미트산류(C16:0) 30.02 중량%, 스테아르산(C18:0) 3.29 중량%, 올레산(C18:1) 34.04 중량%, 리놀레산(C18:2) 15.14 중량%, 리놀레닌산(C18:3) 0.13 중량% 및 아이코산류(C20:1) 0.34 중량%으로 나타났다.Biodiesel isolated in Example 1 was analyzed by gas chromatography (gas chromatograph, HP6890). As a result of the analysis, as shown in Table 1, 60% by weight of various fatty acid methyl esters, 20% by weight of monoacylglycerol, 15% by weight of diacylglycerol, 4% by weight of other aliphatic compounds, and triacyl Glycerol and glycerin were less than 1% by weight, respectively. As shown in Figure 3, the fatty acid composition of the fatty acid methyl ester of biodiesel is 0.1% by weight of heavy chain fatty acids (C12: 0), 0.8% by weight of myristic acid (C14: 0), 30.02 of palmitic acid (C16: 0) Wt%, stearic acid (C18: 0) 3.29 wt%, oleic acid (C18: 1) 34.04 wt%, linoleic acid (C18: 2) 15.14 wt%, linolenic acid (C18: 3) 0.13 wt% and icosanes (C20 : 1) 0.34 wt%.

조성Furtherance 중량%weight% 지방산 메틸 에스테르Fatty acid methyl ester 6060 모노아실글리세롤Monoacylglycerol 2020 디아실글리세롤Diacylglycerol 1515 그외 지방족 화합물Other aliphatic compounds 44 트리아실글리세롤 & 글리세린Triacylglycerol & Glycerin 1 이하1 or less

또한, 세탄가는 JIS K2280 측정법으로 수행하였고, 유동점, 동점도 및 인화점은 각각 JIS K2269, JIS K2283 및 JIS K2265에 규정된 방법으로 측정하였다. 측정결과, 세탄가가 52이고, 인화점(PMCC)은 134℃이며, 동점도는 15.50mm2/sec이고, 유동점은 -6.5℃로서, 일반적인 바이오디젤 연료와 유사하였다.In addition, cetane number was measured by JIS K2280 measuring method, and the pour point, kinematic viscosity, and flash point were measured by the method prescribed | regulated to JIS K2269, JIS K2283, and JIS K2265, respectively. As a result, the cetane number was 52, the flash point (PMCC) was 134 ° C, the kinematic viscosity was 15.50mm 2 / sec, and the pour point was -6.5 ° C, which was similar to the general biodiesel fuel.

실험예Experimental Example 2:  2: 공용매Common solvent 첨가 바이오디젤과  With added biodiesel 공용매Common solvent 무첨가 바이오디젤의 수율 측정  Yield measurement of no additive biodiesel

실시예 1에서 제조된 공용매가 첨가된 바이오디젤과 비교예 1에서 제조된 공용매가 첨가되지 않은 바이오디젤을 메탄올/팜올레인유의 조성에 따라 비교분석 하였다.The biodiesel added with the co-solvent prepared in Example 1 and the biodiesel without the co-solvent prepared in Comparative Example 1 were compared and analyzed according to the composition of methanol / palm olein oil.

그 결과, 도 4에 나타난 바와 같이, 공용매가 첨가된 바이오디젤과 공용매를 첨가하지 않은 바이오디젤 모두 메탄올의 몰비가 10 이상일 때, 지방산 메틸에스테르(FAME)의 수율이 향상되었고, 메탄올의 몰비가 증가하여도 수율은 일정하게 유지되었다. 또한, 공용매가 첨가된 경우가 공용매가 첨가되지 않은 경우보다 전반적으로 지방산 메틸에스테르(FAME)의 수율이 향상되었고, 특히, 메탄올/팜올레인유의 몰비가 5일 때 수율의 증가가 확실히 나타났다. 이에, 바이오디젤의 제조에 있어서 공용매의 첨가는 지방산메틸에스테르(FAME)의 수율을 향상시킬 수 있을 뿐만 아니라, 메탄올/팜올레인유의 몰비를 낮출 수 있음을 알 수 있다.As a result, as shown in FIG. 4, when the molar ratio of methanol was greater than 10 for both the biodiesel added with the cosolvent and the biodiesel without the cosolvent, the yield of fatty acid methyl ester (FAME) was improved, and the molar ratio of methanol was increased. The yield remained constant even as it increased. In addition, the yield of fatty acid methyl ester (FAME) was improved in general when the co-solvent was added than when the co-solvent was not added. In particular, when the molar ratio of methanol / palm olein oil was 5, the yield was clearly observed. Therefore, it can be seen that addition of cosolvent in the production of biodiesel can not only improve the yield of fatty acid methyl ester (FAME) but also lower the molar ratio of methanol / palm olein oil.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

이상 상세히 기술한 바와 같이, 본 발명은 초임계 저급알코올 및 저급알코올과 비점이 유사한 초임계 용매를 이용한 바이오디젤의 제조방법을 제공하는 효과가 있다. 본 발명에 따르면, 메탄올 함량을 획기적으로 낮출 수 있고, 비교적 낮은 온도 및 압력하에서도 높은 반응 수율을 얻을 수 있으며, 초임계 반응에 사용된 용매를 회수하기 위한 별도의 장비가 필요 없어, 경제적으로 바이오디젤을 제조하는 것이 가능하다.As described in detail above, the present invention has an effect of providing a method for producing biodiesel using a supercritical low alcohol and a supercritical solvent similar in boiling point to lower alcohol. According to the present invention, methanol content can be drastically lowered, high reaction yield can be obtained even at relatively low temperature and pressure, and there is no need for a separate equipment for recovering the solvent used in the supercritical reaction. It is possible to manufacture diesel.

Claims (8)

다음 단계를 포함하는 지방산 알킬 에스테르(바이오디젤)의 제조방법:Method for preparing fatty acid alkyl ester (biodiesel) comprising the following steps: (a) 초임계 저급알코올 및 저급알코올과 비점이 유사한 초임계 용매 존재하에 식물성 오일을 에스테르화 시키는 단계; 및(a) esterifying the vegetable oil in the presence of a supercritical lower alcohol and a supercritical solvent similar in boiling point to the lower alcohol; And (b) 상기 에스테르화된 반응액으로부터 지방산 알킬 에스테르(바이오디젤)를 회수하는 단계.(b) recovering fatty acid alkyl esters (biodiesel) from the esterified reaction solution. 제1항에 있어서, 상기 저급알코올과 비점이 유사한 초임계 용매는 CFC 계열, HCFC 계열 및 HFC 계열로 구성된 그룹에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the supercritical solvent having a boiling point similar to that of the lower alcohol is selected from the group consisting of CFC series, HCFC series and HFC series. 제1항에 있어서, 상기 저급알코올은 메탄올인 것을 특징으로 하는 방법.The method of claim 1, wherein the lower alcohol is methanol. 제1항에 있어서, 상기 식물성 오일은 팜유, 대두유, 유채유, 카놀라유, 홍화유, 옥수수유, 평지유, 아마인유, 해바라기유, 양귀비유, 호두유, 땅콩유, 면실유, 미강유, 동백유 및 피마자유 및 올리브유로 구성된 그룹에서 선택되는 것을 특징으로 하는 방법. According to claim 1, wherein the vegetable oil is palm oil, soybean oil, rapeseed oil, canola oil, safflower oil, corn oil, rapeseed oil, linseed oil, sunflower oil, poppy oil, walnut oil, peanut oil, cottonseed oil, rice bran oil, camellia oil and castor oil and Characterized in that it is selected from the group consisting of olive oil. 제1항에 있어서, 상기 (a) 단계는 교반 수단을 가지는 반응기에서 수행하는 것을 특징으로 하는 방법.The method of claim 1, wherein step (a) is performed in a reactor having a stirring means. 제1항에 있어서, 상기 (a) 단계는 유동층 반응기에서 수행하는 것을 특징으로 하는 방법. The method of claim 1 wherein step (a) is performed in a fluidized bed reactor. 제1항에 있어서, 상기 (a) 단계는 식물성 오일과 저급알코올을 1:5 ~ 1:20의 몰비로 에스테르화 시키는 것을 특징으로 하는 방법.The method of claim 1, wherein step (a) comprises esterifying the vegetable oil and the lower alcohol in a molar ratio of 1: 5 to 1:20. 제1항에 있어서, 상기 (b) 단계 후에, 저급알코올과 용매를 회수하여 에스테르화 공정으로 재순환시키는 단계를 추가로 포함하는 것을 특징으로 하는 방법.The method of claim 1, further comprising, after step (b), recovering the lower alcohol and the solvent and recycling them to an esterification process.
KR1020060133916A 2005-12-26 2006-12-26 Method for Preparing Biodiesel Using Supercritical Alcohol and Solvent KR100839363B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050129631 2005-12-26
KR20050129631 2005-12-26

Publications (2)

Publication Number Publication Date
KR20070068292A KR20070068292A (en) 2007-06-29
KR100839363B1 true KR100839363B1 (en) 2008-06-20

Family

ID=38366729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060133916A KR100839363B1 (en) 2005-12-26 2006-12-26 Method for Preparing Biodiesel Using Supercritical Alcohol and Solvent

Country Status (1)

Country Link
KR (1) KR100839363B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031306A (en) 2015-09-10 2017-03-21 성균관대학교산학협력단 Method for producing bio-heavy oil from sewage sludge and bio-heavy oil produced by the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550349A (en) * 2008-03-31 2009-10-07 西安市宝润实业发展有限公司 Method for preparing biodiesel by supercritical technology
KR101726972B1 (en) * 2016-02-16 2017-04-13 성균관대학교산학협력단 Conversion method of rag layer using supercritical alcohols
KR102350370B1 (en) * 2021-06-21 2022-01-14 김진성 Method for regenerating spent bleaching earth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187939B1 (en) 1998-09-09 2001-02-13 Sumitomo Chemical Company, Limited Method for preparing fatty acid esters and fuel comprising fatty acid esters
US6288251B1 (en) 1998-10-06 2001-09-11 Lonford Development Limited Process for preparing alkyl esters of fatty acids from fats and oils
JP2004307543A (en) 2003-04-02 2004-11-04 Yoshihara Oil Mill Ltd Method and equipment for manufacturing fatty acid ester from oil cake
JP2005350628A (en) 2004-06-14 2005-12-22 Electric Power Dev Co Ltd Method for producing fatty acid alkyl ester composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187939B1 (en) 1998-09-09 2001-02-13 Sumitomo Chemical Company, Limited Method for preparing fatty acid esters and fuel comprising fatty acid esters
US6288251B1 (en) 1998-10-06 2001-09-11 Lonford Development Limited Process for preparing alkyl esters of fatty acids from fats and oils
JP2004307543A (en) 2003-04-02 2004-11-04 Yoshihara Oil Mill Ltd Method and equipment for manufacturing fatty acid ester from oil cake
JP2005350628A (en) 2004-06-14 2005-12-22 Electric Power Dev Co Ltd Method for producing fatty acid alkyl ester composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031306A (en) 2015-09-10 2017-03-21 성균관대학교산학협력단 Method for producing bio-heavy oil from sewage sludge and bio-heavy oil produced by the method

Also Published As

Publication number Publication date
KR20070068292A (en) 2007-06-29

Similar Documents

Publication Publication Date Title
Biktashev et al. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol
Elsheikh et al. Brønsted imidazolium ionic liquids: synthesis and comparison of their catalytic activities as pre-catalyst for biodiesel production through two stage process
Man et al. A Brønsted ammonium ionic liquid-KOH two-stage catalyst for biodiesel synthesis from crude palm oil
Warabi et al. Biodiesel fuel from vegetable oil by various supercritical alcohols
Deng et al. Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process
Saka et al. A new process for catalyst-free production of biodiesel using supercritical methyl acetate
Silva et al. Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol
Gui et al. Supercritical ethanol technology for the production of biodiesel: process optimization studies
Sun et al. Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions
Lee et al. Optimum process and energy density analysis of canola oil biodiesel synthesis
He et al. Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol
Patil et al. Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes
Gomes et al. Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane
Guan et al. Synthesis of biodiesel from sunflower oil at room temperature in the presence of various cosolvents
Santana et al. Continuous production of biodiesel using supercritical fluids: a comparative study between methanol and ethanol
Earle et al. Green synthesis of biodiesel using ionic liquids
Encinar et al. Transesterification of rapeseed oil in subcritical methanol conditions
Sawangkeaw et al. Biofuel production from palm oil with supercritical alcohols: Effects of the alcohol to oil molar ratios on the biofuel chemical composition and properties
US9725664B2 (en) Integrated multistage supercritical technology to produce high quality vegetable oils and biofuels
CA2607931A1 (en) Production of biodiesel using expanded gas solvents
Kwon et al. Non-catalytic heterogeneous biodiesel production via a continuous flow system
KR20060037430A (en) Process for non-catalytically producing biodiesel fuel without yielding by-product
Sakdasri et al. Continuous production of biofuel from refined and used palm olein oil with supercritical methanol at a low molar ratio
Santana et al. Continuous production of biodiesel from vegetable oil using supercritical ethanol/carbon dioxide mixtures
Niza et al. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130610

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150610

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170612

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 11