KR100839055B1 - Alumina-ceria catalyst comprising copper oxide - Google Patents

Alumina-ceria catalyst comprising copper oxide Download PDF

Info

Publication number
KR100839055B1
KR100839055B1 KR1020070005996A KR20070005996A KR100839055B1 KR 100839055 B1 KR100839055 B1 KR 100839055B1 KR 1020070005996 A KR1020070005996 A KR 1020070005996A KR 20070005996 A KR20070005996 A KR 20070005996A KR 100839055 B1 KR100839055 B1 KR 100839055B1
Authority
KR
South Korea
Prior art keywords
alumina
copper oxide
ceria
precursor
catalyst
Prior art date
Application number
KR1020070005996A
Other languages
Korean (ko)
Inventor
이종협
김우영
주지봉
김영훈
김필
송인규
이관영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020070005996A priority Critical patent/KR100839055B1/en
Application granted granted Critical
Publication of KR100839055B1 publication Critical patent/KR100839055B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

A mesoporous alumina-ceria composite catalyst supported with copper oxide by using copper oxide as an active material, and utilizing ceria for improving activity of an oxidation reaction and alumina for increasing structural stability of ceria is provided, and a method for selectively oxidizing carbon monoxide using the alumina-ceria composite catalyst supported with copper oxide is provided. A preparation method of a copper oxide-supported alumina-ceria composite catalyst comprises the steps of: (a) mixing an alumina precursor, a ceria precursor, and a copper oxide precursor with a mixed solvent of a surfactant and alcohol to form a micelle; (b) adding water into the solution obtained in the step(a) and agitating a mixture of water and the solution to subject the mixture to a hydrolysis reaction and a condensation reaction; and (c) drying a resulting material of the step(b) and heat-treating the dried resulting material at 350 to 550 deg.C.

Description

산화구리가 담지된 알루미나-세리아 복합 촉매 {Alumina-ceria catalyst comprising copper oxide}Copper oxide-supported alumina-ceria catalyst comprising copper oxide

도 1은 본 발명에 따른 산화구리가 담지된 알루미나-세리아 복합 촉매의 질소 흡탈착 등온선이다.1 is a nitrogen adsorption-desorption isotherm of a copper oxide-supported alumina-ceria composite catalyst according to the present invention.

도 2는 본 발명에 따른 산화구리가 담지된 알루미나-세리아 복합 촉매의 투과전자현미경 분석 이미지이다.2 is a transmission electron microscope analysis image of the copper oxide-supported alumina-ceria composite catalyst according to the present invention.

도 3은 본 발명에 따른 촉매의 일산화탄소 변환율 그래프이다.3 is a graph showing the carbon monoxide conversion rate of the catalyst according to the present invention.

본 발명은 산화구리가 담지된 알루미나-세리아 복합 촉매에 관한 것으로, 더욱 구체적으로 일산화탄소와 선택적 산화반응을 위한 기공성의 산화구리가 담지된 알루미나-세리아 복합 촉매에 관한 것이다.The present invention relates to an alumina-ceria complex catalyst on which copper oxide is supported, and more particularly, to an alumina-ceria complex catalyst on which porous copper oxide is supported for selective oxidation reaction with carbon monoxide.

순수한 수소 기체는 차세대 에너지 시스템에서 가장 이상적인 에너지원으로 알려져 있으나 안전과 저장 문제로 인하여 활용에 어려움을 겪고 있다. 따라서 가 솔린이나 알코올 등의 천연가스를 개질하여 수소를 생산 및 활용하는 연구가 활발히 진행되고 있다. 개질기를 통한 수소 생산의 경우, 필요로 하는 수소뿐만 아니라 부산물로써 연료전지 촉매를 피독시키는 일산화탄소가 발생한다. 생성된 일산화탄소는 수성가스화 반응을 통해 일부분이 이산화탄소로 전환되지만 열역학적으로 0.5 ~ 1.0 % 이하를 만들기가 어렵다. 일산화탄소에 의하여 쉽게 피독되는 백금 계열의 연료전지 촉매를 사용하기 위해서는 일산화탄소의 농도가 50 ppm 이하로 감소되어야 하므로 추가적인 선택적 일산화탄소 산화 반응이 필수적이다.Pure hydrogen gas is known as the ideal energy source in the next generation of energy systems, but it is difficult to utilize due to safety and storage problems. Therefore, research is being actively conducted to produce and utilize hydrogen by reforming natural gas such as gasoline or alcohol. In the case of hydrogen production through reformers, not only hydrogen is required but also carbon monoxide is generated which poisons the fuel cell catalyst as a byproduct. The carbon monoxide produced is partially converted to carbon dioxide through a water gasification reaction, but it is difficult to make the thermodynamic less than 0.5 to 1.0%. In order to use a platinum-based fuel cell catalyst easily poisoned by carbon monoxide, the concentration of carbon monoxide must be reduced to 50 ppm or less, so that an additional selective carbon monoxide oxidation reaction is essential.

현재 일산화탄소의 선택적 산화반응 촉매로는 알루미나에 담지된 백금 촉매가 주로 사용되고 있으나, 백금 촉매의 경우 매장량이 한정되어 있는 고가의 귀금속 촉매이므로 이를 대체할 촉매의 개발이 필요하다. 산화구리의 경우 일산화탄소 산화반응에 활성이 있음이 알려져 있으나 백금 촉매에 비하여 낮은 활성을 가진다. 또한 세리아의 경우 산소 분자를 흡착, 산소 원자로 해리시켜 산화구리와 같이 사용되었을 경우 일산화탄소 산화 반응 활성을 증가시킨다. 그러나 세리아만으로는 기상 상태의 촉매 반응에 유리한 기공성 구조를 안정하게 유지시키기 어렵다는 단점이 있다.Currently, as a selective oxidation catalyst of carbon monoxide, a platinum catalyst supported on alumina is mainly used, but in the case of platinum catalyst, an expensive precious metal catalyst having a limited reserve is required, and thus, a catalyst to replace the catalyst is required. Copper oxide is known to be active in the carbon monoxide oxidation reaction, but has a lower activity than the platinum catalyst. In the case of ceria, oxygen molecules are adsorbed and dissociated into oxygen atoms to increase the carbon monoxide oxidation activity when used together with copper oxide. However, ceria alone has a disadvantage in that it is difficult to stably maintain a porous structure that is advantageous for the catalytic reaction in a gaseous state.

이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구노력한 결과, 산화구리가 담지된 알루미나-세리아 복합 촉매를 이용하는 경우, 기존의 백금이 담지된 알루미나 촉매에 비해 일산화탄소의 선택적 산화반응효율을 높이고, 뛰어난 안정성을 가지며, 고가의 백금 대신 산화구리를 사용함으로써 경제성 및 실용성을 높일 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have diligently researched to overcome the problems of the prior arts. As a result, when using an alumina-ceria complex catalyst loaded with copper oxide, the present inventors have found that the selective oxidation reaction efficiency of carbon monoxide is better than that of the conventional platinum-supported alumina catalyst. It has been confirmed that the economic efficiency and practicality can be improved by using copper oxide instead of expensive platinum having high stability, and completed the present invention.

따라서, 본 발명의 주된 목적은 일산화탄소의 산화 반응에 활성을 보이는 산화구리를 활성 물질로 사용하고, 산소의 이동을 향상시켜 산화 반응의 활성을 향상시키는 세리아와 이의 구조 안정성 증가를 위한 알루미나를 활용하여 산화구리가 담지된 중형 기공성 알루미나-세리아 복합 촉매를 제공하는 데 있다.Therefore, the main object of the present invention is to use copper oxide showing the activity of the oxidation reaction of carbon monoxide as an active material, and to utilize ceria to improve the activity of the oxidation reaction by improving the movement of oxygen and alumina for increasing its structural stability It is to provide a medium porosity alumina-ceria complex catalyst on which copper oxide is supported.

본 발명의 다른 목적은 상기 산화구리가 담지된 알루미나-세리아 복합 촉매를 이용하여 일산화탄소를 선택적으로 산화시키는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for selectively oxidizing carbon monoxide using the alumina-ceria complex catalyst on which copper oxide is supported.

본 발명의 한 양태에 따르면, 본 발명은 일산화탄소와 선택적으로 산화반응하는 산화구리가 담지된 알루미나-세리아 복합 촉매를 제공한다.According to one aspect of the present invention, the present invention provides an alumina-ceria composite catalyst supported on copper oxide that selectively oxidizes carbon monoxide.

본 발명에 있어서, 활성성분이 담지된 복합 촉매란 담체 위에 활성 성분이 물리적 또는 화학적으로 부착되어 있는 것을 의미하며, 본 발명에서 제조된 복합 촉매의 경우는 알루미나가 중형 기공성을 가지는 주된 골격을 형성하며 세리아와 산화구리가 고르게 섞여 있음을 말한다. 본 발명의 복합 촉매는 도 2의 TEM (투과전자현미경) 사진에서 볼 수 있듯이 매우 균일한 2,5 ~ 3 nm의 기공이 고르게 분포되어 있으며, 본 발명에서 제시한 범위 안에서 금속 입자들이 매우 고르게 분산되어 있다.In the present invention, the complex catalyst carrying the active ingredient means that the active ingredient is physically or chemically attached to the carrier, and in the case of the complex catalyst prepared in the present invention, the alumina forms a main skeleton having medium porosity. Ceria and copper oxide are evenly mixed. In the composite catalyst of the present invention, as shown in the TEM (Transmission Electron Microscope) photograph of FIG. 2, very uniform 2,5 to 3 nm pores are evenly distributed, and metal particles are very evenly dispersed within the ranges of the present invention. It is.

본 발명의 복합 촉매가 일산화탄소와 선택적으로 산화 반응한다는 것은 실제 천연가스를 개질하여 수소를 생산 및 활용하는 데 있어, 연료전지에 필요한 수소와는 반응하지 않고 연료전지의 촉매를 피독시키는 일산화탄소만을 특이적으로 선택하여 산화 반응한다는 것을 의미한다.The selective oxidation of the composite catalyst with carbon monoxide of the present invention is specific to carbon monoxide that poisons the catalyst of the fuel cell without reacting with hydrogen required for the fuel cell in reforming natural gas and producing and utilizing hydrogen. This means that the oxidation reaction.

본 발명의 복합 촉매에서, 상기 산화구리는 복합 촉매의 1 ~ 15 중량%로 담지된 것이 바람직하며, 산화구리의 담지량이 1 중량% 미만일 경우에는 활성점이 너무 희석되고, 15 중량%를 초과하는 경우에는 활성점의 분산이 고르지 못하게 된다. 다시 말해서, 본 발명의 전체 복합 촉매 (산화구리+알루미나+세리아) 1g의 촉매 중 산화구리가 0.01 ~ 0.15 g 포함되어 있는 것이 바람직하다.In the composite catalyst of the present invention, the copper oxide is preferably supported by 1 to 15% by weight of the composite catalyst, and when the supported amount of copper oxide is less than 1% by weight, the active point is too diluted, and exceeds 15% by weight. There is an uneven distribution of active sites. In other words, it is preferable that 0.01-0.15 g of copper oxide is contained in the catalyst of 1 g of all the composite catalysts (copper oxide + alumina + ceria) of this invention.

본 발명의 복합 촉매에서, 상기 복합 촉매에서 알루미나와 세리아는 2:1 ~ 5:1의 중량비율로 혼합된 것이 바람직하며, 알루미나와 세리아를 혼합할 때 세리아의 양이 알루미나 100 중량부를 기준으로 20 중량부 미만일 경우에는 세리아가 너무 희석되고, 50 중량부를 초과하는 경우에는 세리아의 분산이 고르지 못할 뿐만 아니라 구조의 안정성 측면에서 바람직하지 못하다.In the composite catalyst of the present invention, the alumina and ceria in the composite catalyst are preferably mixed in a weight ratio of 2: 1 to 5: 1, and when the alumina and ceria are mixed, the amount of ceria is 20 based on 100 parts by weight of alumina. If it is less than parts by weight, the ceria is too diluted, and if it is more than 50 parts by weight, the dispersion of ceria is not only uneven but also undesirable in terms of stability of the structure.

본 발명의 다른 양태에 따르면, 본 발명은 상기 본 발명의 촉매가 충진된 반응기에 일산화탄소, 산소 및 수소를 공급하고 100 ~ 250 ℃의 온도에서 반응시켜 일산화탄소를 선택적으로 산화시키는 방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for selectively oxidizing carbon monoxide by supplying carbon monoxide, oxygen and hydrogen to the reactor filled with the catalyst of the present invention and reacted at a temperature of 100 ~ 250 ℃.

본 발명에 있어서, 상기 산화구리가 담지된 알루미나-세리아 복합 촉매를 반응기에 충전하여 100 내지 250 ℃의 온도에서 일산화탄소 가스의 선택적 산화반응을 수행할 수 있다. 반응온도가 100 ℃ 미만이면 활성이 낮고, 250 ℃를 초과하는 경우 에너지효율 측면과 촉매의 안정성 면에서 바람직하지 못하다.In the present invention, the alumina-ceramic composite catalyst loaded with copper oxide may be charged to a reactor to perform selective oxidation of carbon monoxide gas at a temperature of 100 to 250 ° C. If the reaction temperature is less than 100 ℃ activity is low, if it exceeds 250 ℃ it is not preferable in terms of energy efficiency and stability of the catalyst.

본 발명에 있어서, 상기 반응기는 산화반응에 영향을 받지 않는 스테인레스 스틸 등의 어떤 재질로 된 반응기도 사용가능하며, 본 발명에서는 본 발명자가 제작한 석영으로 된 고정층 반응기를 사용하였다.In the present invention, the reactor may be a reactor made of any material such as stainless steel is not affected by the oxidation reaction, in the present invention was used a fixed bed reactor made of quartz made by the inventors.

본 발명의 다른 양태에 따르면, 본 발명은 하기 단계를 포함하는 산화구리가 담지된 알루미나-세리아 복합 촉매 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for preparing an alumina-ceramic composite catalyst loaded with copper oxide, comprising the following steps:

a) 알루미나 전구체를 녹인 알콜 용액, 세리아 전구체 및 산화구리 전구체를 녹인 알코올 용액을 혼합하여 마이셀 (micelle)을 형성하는 단계;a) mixing the alcohol solution in which the alumina precursor is dissolved, the alcohol solution in which the ceria precursor and the copper oxide precursor are dissolved to form a micelle;

b) 상기 a)단계에서 얻어진 용액에 물을 첨가하여 교반시켜 가수분해 및 응축 반응을 일으키는 단계;b) adding water to the solution obtained in step a) and stirring to cause hydrolysis and condensation reactions;

c) 상기 b)단계에서 얻어진 결과물을 건조하고 이를 350 ~ 550 ℃로 열처리하는 단계.c) drying the resultant obtained in step b) and heat-treating it at 350 to 550 ° C.

본 발명의 복합 촉매 제조방법에서, 상기 전구체란 최종 반응 후 알루미나, 세리아 또는 산화구리가 될 수 있는 원료물질을 말하는 것이며 산화구리, 알루미나 및 세리아 등은 매우 안정한 물질로 이들을 나노 크기의 입자로 분쇄하거나 고르게 섞는 것은 매우 힘들뿐만 아니라 알코올 등의 유기용매에 녹지도 않는다. 따라서, 본 발명의 실시예에서는 이들을 직접 반응시키거나 가공하지 않고, 이들의 원료 물질인 전구체를 사용하여 혼합, 형태를 만들고 반응을 거쳐 (본 발명의 경우 고온에서 산화반응) 원하는 형태를 가지는 촉매를 만들게 된다. 또한, 본 발명의 전구체는 상기 산화구리, 알루미나 및 세리아를 유기용매에 녹일 수 있는 한 예컨대 수화물, 산화물 등 어떤 전구체도 사용할 수 있다.In the method of preparing a composite catalyst of the present invention, the precursor refers to a raw material that may be alumina, ceria, or copper oxide after the final reaction, and copper oxide, alumina, and ceria are very stable materials and pulverized them into nano-sized particles. Mixing evenly is very difficult and does not dissolve in organic solvents such as alcohol. Therefore, in the embodiments of the present invention, a catalyst having a desired form is prepared by mixing, forming, and reacting (precursively oxidizing at a high temperature in the case of the present invention) by using precursors which are their raw materials, without reacting or processing them directly. Will be made. In addition, the precursor of the present invention may be used any precursor such as hydrate, oxide, as long as the copper oxide, alumina and ceria can be dissolved in an organic solvent.

이하, 본 발명의 산화구리가 담지된 다공성 알루미나-세리아 복합 촉매를 제조하고 이를 사용하여 일산화탄소를 선택적으로 산화시키는 방법을 단계별로 설명하면,Hereinafter, a method of preparing a porous alumina-ceramic composite catalyst carrying copper oxide of the present invention and selectively oxidizing carbon monoxide using the same, will be described.

(A) 적정한 양의 알루미나 전구체, 세리아 전구체, 산화구리 전구체를 부탄올 용액에 녹인 용액을 섞어 수화시키는 단계(A) hydrating by mixing a solution of an appropriate amount of alumina precursor, ceria precursor and copper oxide precursor in a butanol solution

(B) 상기 단계에서 얻어진 결과물을 공기 조건에서 350 ~ 550 ℃로 열처리하는 단계(B) heat-treating the resultant obtained in the step at 350 ~ 550 ℃ under air conditions

(C) 상기 단계에서 얻어진 결과물을 반응기에 충진시킨 후 반응기의 온도를 반응온도까지 일정한 속도로 증가시키는 단계(C) after filling the reactor with the result obtained in the step to increase the temperature of the reactor at a constant rate to the reaction temperature

(D) 일정한 조성의 수소, 산소, 일산화탄소 조건에서 반응온도를 일정하게 유지하면서 일산화탄소를 선택적으로 산화시키는 단계를 포함하는 것을 특징으로 한다. (D) selectively oxidizing carbon monoxide while maintaining a constant reaction temperature in a hydrogen, oxygen, carbon monoxide conditions of a constant composition.

본 발명은 일산화탄소를 선택적으로 산화시키는데 있어서 기존의 백금 촉매에 비하여 저가의 비금속을 사용하여 보다 경제적이며 세리아 첨가로 인하여 높은 활성을 보일 뿐만 아니라 알루미나 구조로 인하여 매우 안정적일 뿐만 아니라 활성 금속 고분산이 용이한 넓은 표면적을 가지고 있다.The present invention is more economical by using low-cost base metals to selectively oxidize carbon monoxide, and exhibits high activity due to the addition of ceria, and is very stable due to the alumina structure, and facilitates high dispersion of active metals. It has a large surface area.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

먼저 일산화탄소의 선택적인 산화를 위한 산화구리가 담지된 알루미나-세리아 복합 촉매를 제조하는 단계로써 알코올 용매하에 알루미나 전구체를 녹인 용액과 세리아와 산화구리의 전구체를 녹인 용액을 섞은 후 교반시켜 수화시킨다. First, a step of preparing an alumina-ceramic composite catalyst carrying copper oxide for the selective oxidation of carbon monoxide is hydrated by mixing a solution in which an alumina precursor is dissolved in an alcohol solvent and a solution of a precursor of ceria and copper oxide are mixed.

상기 단계의 수화 반응 후 결과물을 80 ~ 120 ℃로 열처리하여 용매를 증발 시킨 후, 공기 조건하에서 300 ~ 550 ℃에서 금속 전구체를 산화시킨다. 산화온도가 300 ℃ 미만이면 금속 전구체의 불순물이 제거되지 못하는 문제점이 발생하며, 550 ℃ 초과 시 금속 입자의 소결 현상이 발생하여 일산화탄소의 선택적 산화반응을 위한 활성면적이 감소하여 적당하지 않다.After the hydration reaction of the above step, the resultant is heat-treated at 80 ~ 120 ℃ to evaporate the solvent, and then oxidize the metal precursor at 300 ~ 550 ℃ under air conditions. If the oxidation temperature is less than 300 ℃, there is a problem that the impurities of the metal precursor can not be removed, the sintering phenomenon of the metal particles occurs when the temperature is above 550 ℃ to reduce the active area for the selective oxidation of carbon monoxide is not suitable.

처리되는 일산화탄소와 산소 가스의 농도는 처리되는 가스 중 약 5 v/v% 이하인 것이 적절하며, 운반기체로서 질소, 헬륨 또는 아르곤 기체 등과 혼합하여 농도를 적절하게 조절할 수 있다. The concentration of carbon monoxide and oxygen gas to be treated is suitably about 5 v / v% or less of the gas to be treated, and the concentration can be properly adjusted by mixing with nitrogen, helium or argon gas as a carrier gas.

본 발명에 따른 촉매를 사용하여 일산화탄소의 선택적 산화반응을 수행하면, 촉매 표면에서 일산화탄소와 산소가 선택적으로 반응하여 이산화탄소가 생성되며 이는 추가의 제거 공정이 필요치 않다.When the selective oxidation of carbon monoxide is carried out using the catalyst according to the present invention, carbon monoxide and oxygen are selectively reacted on the surface of the catalyst to generate carbon dioxide, which does not require an additional removal process.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. 산화구리가 담지된 알루미나-세리아 복합 촉매 제조Example 1 Preparation of Alumina-Ceria Composite Catalyst Supported with Copper Oxide

산화구리 전구체로는 커퍼 나이트레이트 2,5 하이드레이트 (Copper(II) nitrate 2,5 hydrate)(Aldrich사 제품)을 세리아 전구체로는 세륨 헥사하이드레이트 (cerium(III) hexahydrate)(Aldrich사 제품)을, 알루미나 전구체로는 알루미늄 sec-부톡사이드 (aluminum sec-butoxide)(Fluka 제품)을 사용하였다. 먼저 계면활 성제로서 라우르 산 (lauric acid)(Aldrich 사 제품) 2 g 및 sec-부틸알콜 용액 12 ml를 혼합한 용액에 커퍼 나이트레이드 2,5 하이드레이트를 0.2 g, 세륨 헥사하이드레이트 2.1 g을 혼합하여 마이셀 (micelle)이 형성된 용액을 제조하였다. 또한 알루미나 전구체인 알루미늄 sec-부톡사이드 12g을 sec-부틸알콜 용액 12 ml에 녹인 용액을 제조한 후 이 용액을 상기 마이셀이 형성된 용액에 부가하였다.Copper oxide precursors include Copper (II) nitrate 2,5 hydrate (manufactured by Aldrich), and cerium (III) hexahydrate (made by Aldrich) as the ceria precursor. Aluminum sec-butoxide (Fluka) was used as the alumina precursor. First, 0.2 g of cupper nitrate 2,5 hydrate and 2.1 g of cerium hexahydrate were mixed with a solution of 2 g of lauric acid (manufactured by Aldrich) and 12 ml of sec-butyl alcohol as a surfactant. To prepare a solution in which micelles were formed. In addition, a solution prepared by dissolving 12 g of alumina precursor aluminum sec-butoxide in 12 ml of sec-butyl alcohol solution was added to the solution in which the micelle was formed.

이후 물 12 ml를 상기 교반된 용액에 부가하여 상온에서 24시간 동안 교반시키면서 가수분해 및 응축반응을 수행하였다. 반응후 반응액을 건조기에서 건조하여 얻어진 샘플을 550 ℃에서 6시간 소성한 뒤 최종적으로 비표면적이 200 m2/g 이상이고 기공의 직경이 3.5 nm인 산화구리가 담지된 기공성 알루미나-세리아 복합 촉매를 제조하였다. Thereafter, 12 ml of water was added to the stirred solution, followed by hydrolysis and condensation with stirring at room temperature for 24 hours. After the reaction, the reaction solution was dried in a drier, and the sample obtained was calcined at 550 ° C. for 6 hours, and finally, a porous alumina-ceramic composite loaded with copper oxide having a specific surface area of 200 m 2 / g or more and a pore diameter of 3.5 nm Catalyst was prepared.

실시예 2. 산화구리 전구체와 세리아 전구체 첨가량에 따른 복합 촉매제조Example 2 Preparation of Complex Catalyst According to Copper Oxide Precursor and Ceria Precursor

상기 실시예 1에서 산화구리 전구체의 양과 세리아 전구체의 양을 달리하여 산화구리가 담지된 기공성 알루미나-세리아 복합 촉매를 제조하였다. 즉, 산화구리 전구체의 양을 0.2 g 대신 1, 2, 3, 4, 5 g을 첨가하여 촉매를 제조하였으며 세리아 전구체를 3.5 g 대신 2.1 , 2.625, 5.25 g을 첨가하여 촉매를 제조하였다. In Example 1, the amount of the copper oxide precursor and the amount of the ceria precursor were changed to prepare a porous alumina-ceria composite catalyst loaded with copper oxide. That is, the catalyst was prepared by adding 1, 2, 3, 4, 5 g of copper oxide precursor instead of 0.2 g, and 2.1, 2.625, 5.25 g of ceria precursor was added instead of 3.5 g.

비교예 1. 종래의 백금 담지 촉매 제조Comparative Example 1. Preparation of conventional platinum supported catalyst

상업용 알루미나 (Degussa사 제품, 표면적 100 m2/g) 및 백금전구체인 염화 백금을 사용하여 통상적인 함침법을 이용하여 1 중량%의 백금 담지 촉매를 제조하였다.A 1 wt% platinum supported catalyst was prepared using a conventional impregnation method using commercial alumina (Degussa, surface area 100 m 2 / g) and platinum precursor, platinum chloride.

실시예 3. 산화구리가 담지된 알루미나-세리아 복합 촉매의 질소 흡탈착 분석Example 3 Analysis of Nitrogen Adsorption and Desorption of Copper Oxide Supported Alumina-Ceria Composite Catalyst

도 1(a) 및 도 1(b)는 실시예 1 및 실시예 2에서 제조한 촉매의 질소의 흡탈착 등온선이다. 본 발명에서는 질소 흡탈착 실험 장치인 Micromeritics사의 ASAP 2010 장치를 사용하여 측정하였다. 등온선에서 나타나듯이 본 발명에서 제시한 산화구리 전구체의 중량% 및 세리아의 혼합비 범위 안에서 균일한 기공을 가지는 산화구리가 담지된 알루미나-세리아 복합 촉매가 제조되었음을 확인할 수 있다. 1 (a) and 1 (b) are adsorption-desorption isotherms of nitrogen of the catalysts prepared in Examples 1 and 2. In the present invention, it was measured using the ASAP 2010 device of Micromeritics, a nitrogen adsorption and desorption experiment. As shown in the isotherm, it can be confirmed that the alumina-ceramic composite catalyst carrying copper oxide having uniform pores within the mixing ratio of the weight percentage of the copper oxide precursor and the ceria presented in the present invention was prepared.

실시예 4. 산화구리가 담지된 알루미나-세리아 복합 촉매의 투과전자현미경 분석Example 4 Transmission Electron Microscopy Analysis of Alumina-Ceria Composite Catalyst Supported with Copper Oxide

도 2는 산화구리가 담지된 알루미나-세리아 복합 촉매의 투과전자현미경 분석으로 얻은 이미지이다. 그림에서 볼 수 있는 바와 같이 산화구리와 세리아 전구체의 비가 4:1 ~ 10:1인 경우 균일한 기공과 고른 금속 입자의 분산을 보이는 촉매가 제조되었음을 확인할 수 있다.2 is an image obtained by transmission electron microscopic analysis of the alumina-ceria complex catalyst loaded with copper oxide. As can be seen in the figure, when the ratio of copper oxide and ceria precursor is 4: 1 to 10: 1, it can be seen that a catalyst having uniform pores and uniform metal particle dispersion was prepared.

실시예 5. 일산화탄소의 선택적 산화 반응 특성Example 5 Selective Oxidation of Carbon Monoxide

실시예 1, 실시예 2 및 비교예 1에서 제조된 촉매를 사용하여 선택적 산화 반응을 수행하였다. 먼저 상기 촉매를 반응기에 충진하고 1000 ℃까지 온도를 조절할 수 있는 가열로 내부에 촉매가 충진된 반응기를 설치하였다. 그리고, 반응기의 온도측정을 위한 열전대와 온도조절을 위한 전원 공급 장치를 반응기에 연결하였다. 상기와 같이 일산화탄소의 선택적 산화반응 분해 시스템을 구성하고, 일산화탄소의 선택적 산화반응을 수행하였다. Selective oxidation was carried out using the catalysts prepared in Examples 1, 2 and Comparative Example 1. First, the catalyst was charged into the reactor, and a reactor filled with a catalyst was installed in a heating furnace capable of controlling the temperature to 1000 ° C. Then, a thermocouple for measuring the temperature of the reactor and a power supply for temperature control were connected to the reactor. As described above, a selective oxidation reaction of carbon monoxide was constituted, and a selective oxidation reaction of carbon monoxide was performed.

한편, 일산화탄소, 산소 및 수소를 운반기체인 질소, 헬륨 또는 아르곤 등과 혼합하여 각각 1 부피%, 1 부피%, 50 부피%가 되도록 농도를 조절하고 반응기의 온도를 서서히 높이면서 일산화탄소의 선택적 산화반응을 수행하였다.Meanwhile, carbon monoxide, oxygen, and hydrogen are mixed with nitrogen, helium, or argon, which are carrier gases, to adjust the concentration to 1% by volume, 1% by volume, and 50% by volume, respectively, and perform selective oxidation of carbon monoxide while gradually increasing the temperature of the reactor. It was.

일산화탄소와 촉매가 반응기에서 산화반응을 거친 후 배출되는 배기가스의 농도를 측정하기 위해 시료를 채취하여 효율을 관찰하였다. 도 3은 각각 촉매의 선택적 산화반응을 온도 vs 일산화탄소 변환율 그래프로 나타낸 것이다. 도3의 일산화탄소 변환율은 공급 기체가 반응기를 통과하여 모든 반응이 끝난 후 배기되는 기체를 분석하여 얻었다. 이 때, 반응기를 통과하여 나온 배기가스의 O2, CO, H2, CO2의 농도를 가스 크로마토그래피 (GC)를 사용하여 분석하였다. 배기가스를 분리하기 위하여 Shin carbon과 molecular sieve 13X 두 종류 컬럼을 사용하였으며, GC의 검출기로는 TCD, HID를 사용하였다. 도 3에서 나타난 바와 같이, 본 발명의 산화구리가 담지된 알루미나-세리아 복합 촉매는 일산화탄소를 선택적으로 산화시키는 특성이 있으며, 상용의 백금 촉매에 비해 더욱 높은 활성을 보이는 것이 확인되었다. 또한 실험 결과, 반응 온도가 100 ℃ 미만이면 활성이 낮아서 바람직하지 못하고, 250 ℃를 초과하는 경우 에너지효율 측면과 촉매의 안정성 면에서 바람직하지 못하다.After the carbon monoxide and the catalyst undergoes oxidation in the reactor, samples were taken to measure the concentration of the exhaust gas, and the efficiency was observed. Figure 3 shows the selective oxidation of the catalyst in the graph of temperature vs. carbon monoxide conversion, respectively. The carbon monoxide conversion rate of FIG. 3 was obtained by analyzing the gas exhausted after the feed gas passed through the reactor and all the reactions were completed. At this time, the concentrations of O 2 , CO, H 2 , and CO 2 in the exhaust gas passed through the reactor were analyzed using gas chromatography (GC). Shin carbon and molecular sieve 13X columns were used to separate the exhaust gases, and TCD and HID were used as detectors for GC. As shown in FIG. 3, the copper oxide-supported alumina-ceria composite catalyst has a characteristic of selectively oxidizing carbon monoxide, and it was confirmed to show higher activity than commercial platinum catalysts. In addition, as a result of the experiment, if the reaction temperature is less than 100 ℃ low activity is not preferred, if it exceeds 250 ℃ in terms of energy efficiency and stability of the catalyst is not preferable.

이상 설명한 바와 같이, 본 발명에 따르면 본 발명의 복합 촉매는 일산화탄소의 선택적 산화반응을 수행함에 있어, 기존의 상용 백금이 담지된 알루미나 촉매보다 더욱 높은 활성을 보인다. 또한 백금에 비해 저가의 비금속을 사용하여 보다 경제적이며 세리아 첨가로 인하여 높은 활성을 보일 뿐만 아니라 알루미나 구조로 인하여 매우 안정적이고 활성 금속의 고분산이 용이한 넓은 표면적을 가지고 있다. 또한 상기 촉매를 활용하여 일산화탄소를 선택적으로 산화함에 있어 본 발명의 방법은 우수한 성능을 보이고 있다.As described above, according to the present invention, the composite catalyst of the present invention exhibits higher activity than conventional commercial platinum-supported alumina catalysts in performing selective oxidation of carbon monoxide. In addition, it is more economical than non-platinum, and has high activity due to ceria addition, and is very stable due to the alumina structure, and has a large surface area for high dispersion of active metals. In addition, the method of the present invention has shown excellent performance in selectively oxidizing carbon monoxide using the catalyst.

Claims (5)

하기 단계를 포함하는 산화구리가 담지된 알루미나-세리아 복합 촉매 제조방법:Copper oxide-supported alumina-ceria composite catalyst production method comprising the following steps: a) 계면활성제 및 알콜 혼합 용매에 알루미나 전구체, 세리아 전구체 및 산화구리 전구체를 혼합하여 마이셀 (micelle)을 형성하는 단계;a) mixing an alumina precursor, a ceria precursor and a copper oxide precursor with a surfactant and an alcohol mixed solvent to form a micelle; b) 상기 a)단계에서 얻어진 용액에 물을 첨가하여 교반시켜 가수분해 및 응축 반응을 일으키는 단계;b) adding water to the solution obtained in step a) and stirring to cause hydrolysis and condensation reactions; c) 상기 b)단계에서 얻어진 결과물을 건조하고 이를 350 ~ 550 ℃로 열처리하는 단계.c) drying the resultant obtained in step b) and heat-treating it at 350 to 550 ° C. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070005996A 2007-01-19 2007-01-19 Alumina-ceria catalyst comprising copper oxide KR100839055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070005996A KR100839055B1 (en) 2007-01-19 2007-01-19 Alumina-ceria catalyst comprising copper oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070005996A KR100839055B1 (en) 2007-01-19 2007-01-19 Alumina-ceria catalyst comprising copper oxide

Publications (1)

Publication Number Publication Date
KR100839055B1 true KR100839055B1 (en) 2008-06-19

Family

ID=39771664

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070005996A KR100839055B1 (en) 2007-01-19 2007-01-19 Alumina-ceria catalyst comprising copper oxide

Country Status (1)

Country Link
KR (1) KR100839055B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097944B1 (en) 2009-10-27 2011-12-22 고려대학교 산학협력단 Mesoporous nickel-alumina composite catalyst preparing mehtod using cationic surfactant as a structure-directing agent
WO2019142989A1 (en) * 2018-01-22 2019-07-25 엘지전자 주식회사 Catalyst and electrochemical cell comprising catalyst
KR20210155507A (en) * 2020-06-16 2021-12-23 연세대학교 산학협력단 Low concentration carbon monoxide adsorbent, its manufacturing method and carbon monoxide removal module comprising the carbon monoxide adsorbent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025A (en) * 1987-06-11 1990-01-05 Asahi Optical Co Ltd Device for detecting eye direction of camera
US6913739B2 (en) 2000-09-25 2005-07-05 Engelhard Corporation Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
KR20070081847A (en) * 2006-02-14 2007-08-20 삼성에스디아이 주식회사 Catalyst for oxidizing carbon monoxide for reformer used in for fuel cell, method of preparing same and fuel cell system comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025A (en) * 1987-06-11 1990-01-05 Asahi Optical Co Ltd Device for detecting eye direction of camera
US6913739B2 (en) 2000-09-25 2005-07-05 Engelhard Corporation Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
KR20070081847A (en) * 2006-02-14 2007-08-20 삼성에스디아이 주식회사 Catalyst for oxidizing carbon monoxide for reformer used in for fuel cell, method of preparing same and fuel cell system comprising same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 2005*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097944B1 (en) 2009-10-27 2011-12-22 고려대학교 산학협력단 Mesoporous nickel-alumina composite catalyst preparing mehtod using cationic surfactant as a structure-directing agent
WO2019142989A1 (en) * 2018-01-22 2019-07-25 엘지전자 주식회사 Catalyst and electrochemical cell comprising catalyst
KR20210155507A (en) * 2020-06-16 2021-12-23 연세대학교 산학협력단 Low concentration carbon monoxide adsorbent, its manufacturing method and carbon monoxide removal module comprising the carbon monoxide adsorbent
KR102388768B1 (en) * 2020-06-16 2022-04-20 연세대학교 산학협력단 Low concentration carbon monoxide adsorbent, its manufacturing method and carbon monoxide removal module comprising the carbon monoxide adsorbent

Similar Documents

Publication Publication Date Title
Li et al. Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts
Chen et al. Ce-modified mesoporous γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation
Zhou et al. Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure
Valechha et al. Study of nano-structured ceria for catalyticCO oxidation
Liu et al. Three dimensionally ordered macroporous Au/CeO 2 catalysts synthesized via different methods for enhanced CO preferential oxidation in H 2-rich gases
Zhang et al. Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite
Teng et al. Synthesis of mesoporous Ce1− xZrxO2 (x= 0.2− 0.5) and catalytic properties of CuO based catalysts
Zamani et al. The investigation of Ru/Mn/Cu–Al2O3 oxide catalysts for CO2/H2 methanation in natural gas
Shi et al. Tailoring catalytic performance of carbon nanotubes confined CuOCeO2 catalysts for CO preferential oxidation
Liu et al. Boosting catalytic oxidation of propane over mixed-phase CoO-Co3O4 nanoparticles: Effect of CoO
Mikheeva et al. Toluene abatement on Ag-CeO2/SBA-15 catalysts: Synergistic effect of silver and ceria
Liu et al. Low-temperature catalytic oxidation of CO over highly active mesoporous Pd/CeO 2–ZrO 2–Al 2 O 3 catalyst
Yu et al. Hollow copper–ceria microspheres with single and multiple shells for preferential CO oxidation
Zheng et al. A highly active and hydrothermal-resistant Cu/ZnO@ NC catalyst for aqueous phase reforming of methanol to hydrogen
Guo et al. Copper manganese oxides supported on multi-walled carbon nanotubes as an efficient catalyst for low temperature CO oxidation
CN113996293B (en) Cerium lanthanum solid solution supported iridium catalyst, preparation method and application thereof
Habimana et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas
Wu et al. Pt/NiCo2O4 nanowire arrays on Ni foam as catalysts for efficient formaldehyde oxidation at room temperature
Gu et al. Preparation and performances of nanorod-like inverse CeO 2–CuO catalysts derived from Ce-1, 3, 5-Benzene tricarboxylic acid for CO preferential oxidation
Liu et al. Insights into the role of strontium in catalytic combustion of toluene over La 1− x Sr x CoO 3 perovskite catalysts
Zhai et al. Influence of MnO2 crystal existing form on its catalytic performance for toluene oxidation
KR100839055B1 (en) Alumina-ceria catalyst comprising copper oxide
Han et al. Enhanced sulfur resistance by constructing MnO x–Co 3 O 4 interface on Ni foam in the removal of benzene
Ye et al. Effect of CuO species and oxygen vacancies over CuO/CeO2 catalysts on low-temperature oxidation of ethyl acetate
Wang et al. Manganese dioxide supported on hollow graphitized carbon spheres for the catalytic oxidation of toluene: Improved adsorption and electron transfer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120319

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130405

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee