KR100838734B1 - Fe-based bulk crystals-amorphous composite alloy with high manganese composition - Google Patents

Fe-based bulk crystals-amorphous composite alloy with high manganese composition Download PDF

Info

Publication number
KR100838734B1
KR100838734B1 KR1020060131405A KR20060131405A KR100838734B1 KR 100838734 B1 KR100838734 B1 KR 100838734B1 KR 1020060131405 A KR1020060131405 A KR 1020060131405A KR 20060131405 A KR20060131405 A KR 20060131405A KR 100838734 B1 KR100838734 B1 KR 100838734B1
Authority
KR
South Korea
Prior art keywords
amorphous
atom percent
alloy
high manganese
iron
Prior art date
Application number
KR1020060131405A
Other languages
Korean (ko)
Inventor
김용찬
남궁정
김문철
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020060131405A priority Critical patent/KR100838734B1/en
Application granted granted Critical
Publication of KR100838734B1 publication Critical patent/KR100838734B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

An iron-based bulk amorphous alloy having high manganese composition is provided to improve toughness while maintaining glass forming ability by mixing amorphous substance and crystal substance. An iron-based bulk amorphous alloy having high manganese composition contains Mn of 18 ± 0.1 atom percent, Si of 3 ± 0.1 atom percent, Al of 3 ± 0.1 atom percent, Cr of 8 ± 0.1 atom percent, Mo of 0.5 ± 0.1 atom percent, semi-metal 4 to 21 atom percent, balance of Fe and impurity. The semi-metal includes C, B and P. The compositions of C, B and P are 8 ± 0.1 atom percent, 1 ± 0.1 atom percent and 1 ± 0.1 atom percent, respectively. The iron-based bulk amorphous alloy having high manganese composition preferably contains Mn of 16 to 20 atom percent, Si of 1.3 atom percent, Al of 1 to 3.5 atom percent, Cr of 7 to 9 atom percent, Mo of 0.4 to 2 atom percent, and semi-metal 4 to 21 atom percent.

Description

고망간 철계 결정-비정질 합금{Fe-based bulk Crystals-Amorphous composite alloy with high Manganese composition}Fe-based bulk Crystals-Amorphous composite alloy with high Manganese composition

도1은 본 발명의 일실시 예에 따른 비정질 합금의 열분석 결과 그래프이고, 1 is a thermal analysis result graph of an amorphous alloy according to an embodiment of the present invention,

도2는 본 발명의 실험에 사용된 비정질 합금의 압축시험에 따른compressive stress strain 그래프이고,2 is a compressive stress strain graph according to the compression test of the amorphous alloy used in the experiment of the present invention,

도3은 결정과 비정질 상이 공존하는 것을 보여주는 결정-비정질 합금의 TEM 미세조직 사진이며,3 is a TEM microstructure photograph of a crystalline-amorphous alloy showing coexistence of crystals and amorphous phases.

도4는 본 발명의 합금을 이용하여 2mm 두께의 판재를 연속 주조하여 제조하는 공정을 나타내는 그림이다. Figure 4 is a diagram showing a process of manufacturing by continuously casting a plate of 2mm thickness using the alloy of the present invention.

본 발명은 망간(Mn)을 함유한 철계 결정-비정질 함금에 관한 것으로, 더욱 상세하게는 상기 합금계가 가지는 취성의 문제를 해결하기 위하여 비정질과 결정질을 적절히 혼재시켜 비정질 형성능을 유지하면서 인성을 크게 향상시키도록 한 고망간 철계 결정-비정질 함금에 관한 것이다.The present invention relates to an iron-based crystal-amorphous alloy containing manganese (Mn), and more particularly, in order to solve the problem of brittleness of the alloy system, by mixing the amorphous and crystalline appropriately to maintain the amorphous forming ability, greatly improving the toughness Iron-based crystal-amorphous alloys.

철계 벌크 비정질 합금은 다른 비정질 합금이 1990년대 중반에 개발된 데 비 해 조금 늦은 2000년대 이르러 비로소 합금계의 개발에 관한 연구결과가 발표되기 시작하였으며, 최근 미국, 일본 등에서 철계 비정질 합금에 관한 문헌이 발표되고 있으나 이들은 대부분 취성을 가지는 재료로서 판재제조 등에 한계를 가지고 있었다. Iron-based bulk amorphous alloys began to be published in the late 2000s, when other amorphous alloys were developed in the mid-1990s, and research results on the development of alloy-based alloys were recently published in the United States and Japan. Although they are announced, most of them have brittle materials and have limitations in plate production.

이후 저가의 벌크 비정질 합금계를 개발하기 위해 국내외 많은 연구자의 노력으로 다수의 철계 비정질 합금이 개발, 문헌 등에 발표되었으나 고가의 원소 사용으로 인해 합금원소 원재료 가격의 상승, 제조공정상의 한계, 그리고 취약한 파괴연신율 등이 문제가 되어 현재까지 상용화에 이르지 못한 실정이다.Since then, a number of iron-based amorphous alloys have been developed and published in the literature in order to develop inexpensive bulk amorphous alloys. However, due to the use of expensive elements, the price of raw materials for alloying elements is increasing, limitations in the manufacturing process, and fragile destruction. Elongation has become a problem and has not been commercialized.

또한 종래 개발된 벌크 비정질 합금계들은 고가 원소의 첨가로 인해 높은 합금원가, 높은 강도에 비해 낮은 연신율로 인한 취성, 그리고 판재 등 벌크로 제조하였을 경우 열 충격으로 인한 표면 결함 및 균열이 존재하였다. In addition, the conventionally developed bulk amorphous alloys have high alloy cost due to the addition of expensive elements, brittleness due to low elongation compared to high strength, and surface defects and cracks due to thermal shock when manufactured in bulk such as a plate.

본 발명은 상기와 같은 문제점을 감안하여 이를 해소하고자 발명한 것으로서, 가격이 저렴한 망간을 다량 함유하여 비정질 형성능을 향상시킴과 동시에 고강도 및 고 인성 그리고 기계적 물성(압축강도, 파괴연신율 등)에 가장 유리한 최적의 천이원소(Metalloid) 조성을 가지는 철계 결정-비정질 함금을 제공함에 그 목적이 있는 것이다.The present invention has been invented to solve this problem in view of the above problems, and it contains a large amount of inexpensive manganese to improve amorphous forming ability and at the same time, it is most advantageous for high strength and high toughness and mechanical properties (compressive strength, fracture elongation, etc.). Its purpose is to provide an iron-based crystal-amorphous alloy with an optimal metallurgical composition.

상기 목적을 달성하기 위한 본 발명의 고망간 철계 결정-비정질 함금 조성비는, Mn : 16~20at%, Si : 1~3at%, Al : 1~3.5at%, Cr : 7~9at%, Mo : 0.4~2at%, 반 금속원소 : 4~21at% 나머지는 Fe로 이루어진다.The high manganese iron-based crystal-crystalline alloy composition ratio of the present invention for achieving the above object, Mn: 16-20at%, Si: 1-3at%, Al: 1-33.5at%, Cr: 7-9at%, Mo: 0.4 ~ 2at%, semi-metal element: 4 ~ 21at% The rest is composed of Fe.

그리고 본 발명의 고망간 철계 결정-비정질 함금의 바람직한 조성비는, Mn : 18± 0.1at%, Si : 3± 0.1at%, Al : 3± 0.1at%, Cr : 8± 0.1at%, Mo : 0.5± 0.1at%, 반금속원소 : 4~21at%, 나머지는 Fe이고, 상기 반금속원소는 C, B, P이며, 그들의 사용량은 C : 8± 0.1at%, B : 1± 0.1at%, P : 1± 0.1at%이다.And, the preferred composition ratio of the high manganese iron-based crystal-amorphous alloy of the present invention is Mn: 18 ± 0.1 at%, Si: 3 ± 0.1 at%, Al: 3 ± 0.1 at%, Cr: 8 ± 0.1 at%, Mo: 0.5 ± 0.1at%, semimetal element: 4 ~ 21at%, the rest is Fe, the semimetal element is C, B, P, the amount of their use is C: 8 ± 0.1at%, B: 1 ± 0.1at% , P: 1 ± 0.1 at%.

상기 본 발명의 조성비에서 at%라 함은 원자량(atomic weight)비를 의미하는 것이다.In the composition ratio of the present invention, at% means atomic weight ratio.

본 발명의 고망간 철계 결정-비정질 함금에서 망간(Mn)은 비자성 특성을 띄도록 하기 위한 것으로, 그 사용량은 16~20at%인데, 그 이하를 사용하거나 그 이상을 사용하게 되면 본 발명에서 목적으로 하는 망간(Mn)원소의 효능을 발휘하지 못하게 된다. 따라서 Mn 사용량은 16~20at% 하였다. 한편 상기 Mn의 가장바람직한 사용량은 18± 0.1at%이다.In the high manganese iron-based crystal-amorphous alloy of the present invention, manganese (Mn) is intended to exhibit nonmagnetic properties, the amount of which is used is 16 to 20at%, the use of less than or more if the purpose of the present invention It will not be able to exhibit the efficacy of the manganese (Mn) element. Therefore, the amount of Mn used was 16-20 at%. On the other hand, the most preferred amount of Mn is 18 ± 0.1 at%.

크롬(Cr)과 몰리브덴(Mo)은 내식성 향상을 위하여 사용되는 것으로, 그 사용량은 Cr : 7~9at%, Mo : 0.4~2at%인데, 이하를 사용하거나 그 이상을 사용하게 되면 본 발명에서 목적으로 하는 내식성이 목적치를 달성할 수 없게 되는 것이다. 따라서 Cr과 Mo의 사용량은 각각 7~9at%, 0.5± 0.1at%로 하였다. 한편 Cr과 Mo의 가장바람직한 사용량은 Cr : 8± 0.1at%, Mo : 0.5± 0.1at%이다.Chromium (Cr) and molybdenum (Mo) are used to improve the corrosion resistance, the amount of use is Cr: 7 to 9 at%, Mo: 0.4 to 2 at%, the use of the following or more if the purpose of the present invention Corrosion resistance will not be able to achieve the target value. Therefore, the amount of Cr and Mo used was 7-9 at% and 0.5 ± 0.1 at%, respectively. On the other hand, the most preferable amounts of Cr and Mo are Cr: 8 ± 0.1at% and Mo: 0.5 ± 0.1at%.

규소(Si)는 주조성향상을 위하여 사용되는 것으로, 그 사용량은 Si : 1~3at%인데, 그 이하를 사용하거나 그 이상을 사용하게 되면 본 발명에서 목적으로 하는 주조성이 목적치를 달성할 수 없거나 초과하게 되는 문제점이 발생한다. 따라서 Si 의 사용량은 1~3at%로 하였다. 한편 Si의 가장바람직한 사용량은 3ㅁ 0.1at%이다.Silicon (Si) is used to improve the casting property, the amount of use is Si: 1 to 3 at%, when using less or more, the castability aimed at in the present invention can achieve the target value. There is a problem that is missing or exceeded. Therefore, the usage-amount of Si was 1-3 at%. On the other hand, the most preferable usage of Si is 3 W 0.1at%.

알루미늄(Al), 반금속원소{(탄소(C), 붕소(B), 인(P)}는 비정질 형성능을 향상시키기 위하여 사용되는 것으로, 상기 Al의 사용량은 1~3.5at%, 반금속원소의 사용량은 4~21at%인데 이하를 사용하거나 그 이상을 사용하게 되면 본 발명에서 목적으로 하는 형성능이 목적치를 달성할 수 없게 되는 것이다. 따라서 Al 사용량은 1~3.5at%, 반금속원소 사용량은 4~21at%로 하였다. 한편 Al의 가장바람직한 사용량은 3± 0.1at%이고, 반금속원소 즉 C의 사용량은 8± 0.1at%이며, B는 1± 0.1at%, P는 1± 0.1at%이다.Aluminum (Al), semimetal elements {(carbon (C), boron (B), phosphorus (P)}) is used to improve the amorphous forming ability, the amount of Al used is 1 ~ 3.5at%, semimetal element If the amount of used is 4 ~ 21 at% or less or more than that if the use of the target forming ability in the present invention will not achieve the target value. The most preferred amount of Al is 3 ± 0.1at%, the amount of semimetal element, C, is 8 ± 0.1at%, B is 1 ± 0.1at%, P is 1 ± 0.1at %to be.

이하 본 발명을 실시 예를 들어 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예]EXAMPLE

상술한 바와 같은 조성을 진공아크용해를 이용하여 지름 2mm 봉상으로 시편을 제조하였으며, 제조된 벌크 비정질 시편을 XRD(X-ray Diffraction) 분석 및 열분석장비인 DSC(Differential Scanning Calorie meter) 분석을 통하여 결정화온도(Tx), 비정질온도(Tg), 합금용해온도(Tm), 등을 측정하였으며, 상기 측정치로부터 비정질 형성능을 나타낼 수 잇는 보정된 비정질 전이온도 Trg(=Tg/Tm), 비정질 안정성의 지표인 결정- 비정질 온도차 △T(=Tx-Tg)를 계산하였다.The specimens were prepared in the form of rods with a diameter of 2 mm using vacuum arc melting, and the bulk amorphous specimens were crystallized through XRD (X-ray Diffraction) analysis and DSC (Differential Scanning Calorie meter) analysis. Temperature (Tx), amorphous temperature (Tg), alloy melting temperature (Tm), etc. were measured, and the corrected amorphous transition temperature Trg (= Tg / Tm), which is an indication of amorphous stability, can be used as an index of amorphous stability. The crystal-amorphous temperature difference ΔT (= Tx-Tg) was calculated.

또한 시편의 지름을 2mm, 높이3mm 봉상 압축형 시편으로 가공하여 압축시험을 통해 재료의 기계적 물성(압축강도, 파괴연신율 등)을 측정하였고 그 결과를 하기 표1에 나타내었다.In addition, the diameter of the specimen was processed to 2mm, 3mm height rod-shaped compression specimens through the compression test to measure the mechanical properties of the material (compressive strength, elongation at break, etc.) and the results are shown in Table 1 below.

Figure 112006094727694-pat00001
Figure 112006094727694-pat00001

상기 표1에서의 결과를 상세히 나열하면, Fe원소를 기본으로 하여 비정질 형성능 향상을 목적으로 Mn, Al을 각각 18± 0.1at%, 3± 0.1at% 첨가하였으며, 기계적 물성 및 비정질 합금 특성을 극대화하기 위해 Cr, Mo의 조성을 각각 7~9at%, 0.5~2at% 첨가하였다. To summarize the results in Table 1, 18 ± 0.1 at% and 3 ± 0.1 at% Mn and Al were added for the purpose of improving the amorphous forming ability based on the Fe element, maximizing mechanical properties and amorphous alloy properties To do this, 7 to 9 at% and 0.5 to 2 at% of Cr and Mo were added.

일부 합금계는 비정질 특성을 전혀 나타내지 않았으며, 특정 조성의 합금은 비정질 특성을 나타내었는데, 비정질 형성으로 인해 열분석 결과 명확한 결정화 피크를 얻었다. Some alloys showed no amorphous properties, and alloys of specific composition showed amorphous properties. Thermal crystallization resulted in clear crystallization peaks due to amorphous formation.

이를 바탕으로 결정화온도(Tx), 비정질 전이온도(Tg), 합금용해온도(Tm)등을 측정하였으며, 상기의 측정치로부터 비정질 형성능을 나타낼 수 있는 보정된 비정질 전이온도, Trg(=Tg/Tm) 측정 결과 0.48~0.57의 높은 비정질 형성능을 가짐을 확인하였다. Based on this, crystallization temperature (T x ), amorphous transition temperature (T g ), alloy melting temperature (T m ), etc. were measured, and the corrected amorphous transition temperature, T rg (= T g / T m ) measurement results showed that it has a high amorphous forming ability of 0.48 ~ 0.57.

또한 비정질 안정성의 지표인 결정-비정질 온도차 △T(=Tx-Tg)는 47~131℃를 나타내었다. 본 Cr, Mo 변화 실험에서 비정질 형성능과 기계적 물성을 비교하여 최적의 조성이 Cr8Mo0.5임을 확인하였다.In addition, the crystal-amorphous temperature difference ΔT (= T x -T g ), which is an index of amorphous stability, represented 47 to 131 ° C. In the Cr and Mo change experiments, it was confirmed that the optimum composition was Cr 8 Mo 0.5 by comparing the amorphous forming ability and the mechanical properties.

본 기본 합금계(Fe64.5-Cr8-Mn18-Mo0.5-Si3-B3)에서 반금속원소 (C, B, P)에 따라 비정질 형성능 및 기계적 물성의 변화가 크게 변함에 착안하여 기본 합금계를 바탕으로 반금속원소 총 합의 조성을 4~21at%까지 변화시켜가면서 합금계의 특성을 분석하였다. In this basic alloy system (Fe 64.5 -Cr 8 -Mn 18 -Mo 0.5 -Si 3 -B 3 ), the amorphous formability and mechanical properties change greatly depending on the semimetal elements (C, B, P). Based on the alloy system, the composition of the alloy system was analyzed by changing the composition of the total sum of semimetal elements to 4 ~ 21at%.

비정질형성 용이성은 임계냉각속도 Rc에 의하여 평가될 수 있지만 이를 이론적으로 체계화하거나 직접 측정하기 어렵기 때문에 여러 가지 다른 인자를 통해 간접적으로 비정질 형성 용이성을 평가한다. The ease of amorphous formation can be assessed by the critical cooling rate R c , but it is difficult to formulate or directly measure it theoretically, so it is indirectly evaluated for ease of formation through various other factors.

대표적인 비정질 형성 용이성을 평가하는 인자로 결정화 온도 Tx와 유리천이온도 Tg의 차로 나타내는 과냉각 액상영역 ΔTx(Tx-Tg), 용융점에 대한 유리천이온도의 비인 Trg(Tg/Tl)값이 있다. Representative factors for evaluating the ease of amorphous formation include the subcooled liquid zone ΔT x (T x -T g ), which is represented by the difference between the crystallization temperature T x and the glass transition temperature T g , and T rg (T g / T l ) There is a value.

이와 같은 인자를 통해 비정질 형성능을 평가하였으며, 본 실험에서는 천이원소의 조성이 10% 이상의 조성에서 높은 비정질 형성능(Trg:0.58∼0.65)값을 나타내었으며,ΔTx는 30∼110℃ 값을 나타내었다. In this experiment, the amorphous forming ability was evaluated through the above factors. In this experiment, the amorphous forming ability (T rg : 0.58 to 0.65) was shown to be higher than 10%, and ΔT x was 30 to 110 ° C. It was.

비정질 형성능이 우수하다고 알려진 Fe-Cr-Mo-C-B-P계 합금은 구성 원자간의 원자 반지름 대소 관계가 Mo> Cr > Fe > P > B > C 순으로 다양하고 Mo이 속한 ETM(Early Transition Metal)과 Fe와 같은 LTM(Late Transition Metal)원소에서 ETM-LTM, ETM-B, LTM-B Pair간의 음의 혼합열을 가지고 Fe-Cr, Cr-Mo간의 전율고용관계가 있다. Fe-Cr-Mo-CBP-based alloys, which are known to have excellent amorphous forming ability, vary in the order of atomic radius between constituent atoms in the order of Mo> Cr> Fe> P> B> C and ETM (Early Transition Metal) and Fe In the LTM (Late Transition Metal) element, there is a tremor employment relationship between Fe-Cr and Cr-Mo with negative mixed heat between ETM-LTM, ETM-B and LTM-B pair.

또한 Cr/Mo의 조성비는 비정질 형성능 및 기계적 물성에 영향을 미치므로 Cr, Mo의 조성을 각각 7∼9at%, 0.5∼2at%로 변화시켜 실험을 실시하였으며, 최적의 비정질 형성능(0.48)과 기계적 특성(압축강도:2.29GPa, 파괴연신율:40%)을 나타내는 조성이 Cr8Mo0 .5임을 확인하였다. In addition, since Cr / Mo composition ratio affects amorphous forming ability and mechanical properties, experiments were carried out by changing Cr and Mo compositions to 7-9 at% and 0.5-2 at%, respectively, and showed optimum amorphous forming ability (0.48) and mechanical properties. this composition represents the (compressive strength:: 2.29GPa, fracture elongation: 40%) was identified as Cr 8 Mo 0 .5.

또한 비정질 형성능 향상에 유리하다고 알려진 반금속 원소(C, B, P)의 영향을 분석하기 위해 Fe 조성을 60at%이상 유지하면서 5at%∼21at% 범위로 변화시켜가면서 실험을 실시하였다.  In addition, the experiment was conducted while varying the range of 5at% to 21at% while maintaining the Fe composition of 60at% or more in order to analyze the effect of semimetal elements (C, B, P), which are known to be advantageous for improving amorphous forming ability.

본 합금계에서는 석션(suction) 주조시 합금의 유동성 향상을 위해 Si을 3ㅁ 0.1at%, 비정질 형성능을 향상 원소로 알려진 Al을 3± 0.1at% 첨가하였으며, 이들의 조성은 고정하였다. In the alloy system, 3 ± 0.1at% of Si and 3 ± 0.1at% of Al, which is known to improve the amorphous forming ability, were added to improve the fluidity of the alloy during suction casting, and their composition was fixed.

반금속원소의 조성의 합이 5at% 미만인 합금계에서는 DSC, XRD 분석결과 비정질 특성이 거의 나타나지 않았으며 미세조직도 대부분 결정질을 나타내었다. In the alloy system with the total composition of semimetal elements less than 5at%, DSC and XRD analysis showed almost no amorphous properties and the microstructures were mostly crystalline.

반면 반금속 원소 조성의 합이 10%인 경우에는 특정조성에서만 우수한 비정질 특성(Trg: 0.53∼0.65) 및 기계적 특성(압축강도: 1.88∼2.8GPa, 파괴연신율: 14.8∼30%)을 나타내었다. On the other hand, when the sum of the semimetal elements is 10%, the amorphous properties (T rg : 0.53 to 0.65) and the mechanical properties (compressive strength: 1.88 to 2.8 GPa and breaking elongation: 14.8 to 30%) are excellent only in specific compositions. .

반금속 원소를 21at% 첨가한 합금계들은 일반적으로 우수한 비정질 특성(Trg: 0.58∼0.63)을 나타내었지만, 기계적 특성(압축강도: 1.19∼2.87GPa, 파괴연신율: 4.5∼9%)은 상대적으로 낮은 수준이었다.Alloy systems containing 21 at% of a semimetal element generally showed excellent amorphous properties (T rg : 0.58 to 0.63), but mechanical properties (compressive strength: 1.19 to 2.87 GPa and elongation at break: 4.5 to 9%) were relatively high. It was a low level.

비정질 형성능 및 기계적 특성이 가장 우수한 결정-비정질 복합 조직을 갖는 RIBA503 합금은 트윈롤을 이용한 스트립캐스팅 주조가 용이하였다 The RIBA503 alloy, which has a crystal-amorphous composite structure with the best amorphous forming ability and mechanical properties, was easy to cast stripcast using twin rolls.

본 실험에 사용된 철계 비정질 기본 합금계(FeMn18Cr8Mo0.5CBPSi3Al3)에서, 반금속원소의 조성의 합이 5at% 미만의 경우에는 비정질 특성이 거의 나타나지 않았으며, 10at%인 경우(RIBa503)는 결정, 비정질 상이 공존하는 복합조직으로 압축시험 결과에서 탄성, 비탄성 영역을 나타내었다. 따라서 결정상과 비정질상이 공존하는 특성으로 인해 우수한 비정질 특성 및 기계적 특성을 나타내었다. In the iron-based amorphous base alloy (FeMn 18 Cr 8 Mo 0.5 CBPSi 3 Al 3 ) used in this experiment, when the sum of the composition of the semimetal elements was less than 5at%, the amorphous property was hardly exhibited. (RIBa503) is a composite structure in which crystal and amorphous phases coexist and shows elastic and inelastic regions in compression test results. Therefore, due to the coexistence of the crystalline phase and the amorphous phase showed excellent amorphous and mechanical properties.

그러나 반금속원소를 21at%까지 첨가한 경우에는 조직의 대부분이 비정질로 구성되어 있었으므로 우수한 비정질 형성능 특성은 나타내었으나 결정상의 부재로 인한 연신율의 저하로 인해 기계적 물성이 상대적으로 낮게 나타났다.However, when the semi-metallic element was added up to 21at%, most of the tissues were composed of amorphous material, which showed excellent amorphous forming ability, but the mechanical properties were relatively low due to the decrease in elongation due to the absence of crystal phase.

또한 본 발명은 상용화가 가능토록 본 발명의 조성비를 갖는 합금계를 스트립 캐스팅 공정에 적용하여 두께 0.5~2mm, 폭 100~150mm의 판상으로 연속 생산하는데 문제가 없었다. In addition, the present invention has no problem in continuously producing an alloy system having a composition ratio of the present invention in a strip casting process so as to be commercially available in a plate shape of 0.5 to 2 mm in thickness and 100 to 150 mm in width.

이상의 비정질 합금계(Fe59-Cr8-Mn18-Mo0.5-Si3-B3-C8P1Al3-RIBA503)는 비정질 형성능 및 기계적 물성(압축강도:2.8GPa, 파괴연신율: 30%)이 우수한 복합재료로서, 비정질 고유의 높은 강도, 우수한 내식성, 뛰어난 탄성 등의 특성은 물론 대부분의 비정질 재료가 가지고 있는 취약한 연성을 극복 할 수 있었다. The above amorphous alloys (Fe 59 -Cr 8 -Mn 18 -Mo 0.5 -Si 3 -B 3 -C 8 P 1 Al 3 -RIBA503) have amorphous forming ability and mechanical properties (compressive strength: 2.8 GPa, fracture elongation: 30%). As an excellent composite material, it has been able to overcome the weak ductility of most amorphous materials as well as the properties of amorphous high strength, excellent corrosion resistance and excellent elasticity.

특히 상기 언급한 합금계 (RIBA501~505)들은 각기 비정질 형성능, 비정질 안정화능, 압축강도, 파괴연신율 등 목적에 따라 사용되는 용도를 달리하면 판재로 제조가 가능하였다.In particular, the above-mentioned alloys (RIBA501 ~ 505) can be produced in a plate by using a different purpose depending on the purpose, such as amorphous forming ability, amorphous stabilizing ability, compressive strength, fracture elongation.

상기 합금 가운데 결정-비정질 복합 특성을 나타내는 RIBA 503 합금은 비정질 재료의 전형적인 특성인 취성을 거의 나타내지 않을 뿐 아니라 주조성 또한 우수한 합금으로서 연속 주조 공정(strip casting)에 적용하여 판재로 만들 경우, 종래 문헌에서 보고되고 있는 철계 합금계들이 가지는 가장 큰 단점인 취성을 비정질-결정 복합 조직을 통하여 극복 할 수 있을 뿐만 아니라, 우수한 강도 및 주조성을 가진 저가의 벌크 비정질 합금을 제조가 가능하였다. Among the alloys, the RIBA 503 alloy, which exhibits crystal-amorphous composite properties, exhibits almost no brittleness, which is typical of amorphous materials, and is also excellent in castability, and is applied to strip casting when applied to a strip casting process. In addition to overcoming brittleness, which is the biggest disadvantage of iron-based alloys reported in the paper, through the amorphous-crystal composite structure, it was possible to manufacture low-cost bulk amorphous alloys with excellent strength and castability.

Claims (5)

삭제delete Mn : 18± 0.1at%, Si : 3± 0.1at%, Al : 3± 0.1at%, Cr : 8± 0.1at%, Mo : 0.5± 0.1at%, 반금속원소 : 4~21at%, 나머지는 Fe와 필수불가결하게 첨부된 불순물의 조성비를 갖고, Mn: 18 ± 0.1at%, Si: 3 ± 0.1at%, Al: 3 ± 0.1at%, Cr: 8 ± 0.1at%, Mo: 0.5 ± 0.1at%, semimetal element: 4 ~ 21at%, rest Has a composition ratio of Fe and indispensable impurities, 상기 반금속원소는 C, B, P이고, 그들의 첨가량은 C : 8± 0.1at%, B : 1± 0.1at%, P : 1± 0.1at%임을 특징으로 하는 고망간 철계 결정-비정질 합금. The semi-metallic elements are C, B, P, and their addition amount is C: 8 ± 0.1 at%, B: 1 ± 0.1 at%, P: 1 ± 0.1 at% high manganese iron-based crystal-amorphous alloy. 삭제delete 상기 제2항의 조성비를 갖는 합금계를 스트립 캐스팅 공정에 적용하여 연속으로 두께 0.5~2mm, 폭 100~150mm의 판상으로 제작된 것을 특징으로 하는 고망간 철계 결정-비정질 합금.The high-manganese iron-based crystal-amorphous alloy, characterized in that the alloy having a composition ratio of claim 2 is produced in a plate shape of 0.5 ~ 2mm in thickness, 100 ~ 150mm in width by applying to the strip casting process. 상기 제2항의 조성비를 갖는 합금계를 석션주조 공정을 통해 지름2mm 봉상으로 제작된 것을 특징으로 하는 고망간 철계 결정-비정질 합금.An alloy system having the composition ratio of claim 2 is manufactured in a rod shape having a diameter of 2 mm through a suction casting process. High manganese iron-based crystal-amorphous alloy.
KR1020060131405A 2006-12-20 2006-12-20 Fe-based bulk crystals-amorphous composite alloy with high manganese composition KR100838734B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060131405A KR100838734B1 (en) 2006-12-20 2006-12-20 Fe-based bulk crystals-amorphous composite alloy with high manganese composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060131405A KR100838734B1 (en) 2006-12-20 2006-12-20 Fe-based bulk crystals-amorphous composite alloy with high manganese composition

Publications (1)

Publication Number Publication Date
KR100838734B1 true KR100838734B1 (en) 2008-06-16

Family

ID=39771548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060131405A KR100838734B1 (en) 2006-12-20 2006-12-20 Fe-based bulk crystals-amorphous composite alloy with high manganese composition

Country Status (1)

Country Link
KR (1) KR100838734B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855479A (en) * 2015-12-08 2017-06-16 比亚迪股份有限公司 It is a kind of judgement non-crystaline amorphous metal whether the method for crystallization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417649A (en) * 1990-05-09 1992-01-22 Mitsubishi Electric Corp Iron-base low magnetostriction amorphous alloy
JPH1171658A (en) 1996-09-30 1999-03-16 Unitika Ltd Iron base amorphous metallic thin strip and magnetic marker
JP2000212707A (en) 1999-01-27 2000-08-02 Japan Science & Technology Corp High magnetostriction amorphous alloy
WO2002018667A2 (en) * 2000-09-01 2002-03-07 A.M.T.P. Advanced Metal Production Ltd. New amorphous fe-based alloys containing chromium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417649A (en) * 1990-05-09 1992-01-22 Mitsubishi Electric Corp Iron-base low magnetostriction amorphous alloy
JPH1171658A (en) 1996-09-30 1999-03-16 Unitika Ltd Iron base amorphous metallic thin strip and magnetic marker
JP2000212707A (en) 1999-01-27 2000-08-02 Japan Science & Technology Corp High magnetostriction amorphous alloy
WO2002018667A2 (en) * 2000-09-01 2002-03-07 A.M.T.P. Advanced Metal Production Ltd. New amorphous fe-based alloys containing chromium
WO2002018667A3 (en) * 2000-09-01 2002-08-29 A M T P Advanced Metal Product New amorphous fe-based alloys containing chromium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855479A (en) * 2015-12-08 2017-06-16 比亚迪股份有限公司 It is a kind of judgement non-crystaline amorphous metal whether the method for crystallization
CN106855479B (en) * 2015-12-08 2019-07-26 比亚迪股份有限公司 A method of determine amorphous alloy whether crystallization

Similar Documents

Publication Publication Date Title
Xi et al. Glass-forming Mg–Cu–RE (RE= Gd, Pr, Nd, Tb, Y, and Dy) alloys with strong oxygen resistance in manufacturability
Zhang et al. Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability
Huang et al. A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability
CN1168928A (en) Quinary metallic glass alloys
Li et al. Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content
Li et al. Glass-forming ability and corrosion resistance of Zr-based Zr–Ni–Al bulk metallic glasses
Li et al. Microstructure and mechanical properties of bulk Mg–Zn–Ca amorphous alloys and amorphous matrix composites
Park et al. Ti-based bulk metallic glasses with high specific strength
KR20060056783A (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
Seifoddini et al. New (Fe0. 9Ni0. 1) 77Mo5P9C7. 5B1. 5 glassy alloys with enhanced glass-forming ability and large compressive strain
Park et al. Effect of the substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy
Meng et al. Tantalum based bulk metallic glasses
Park et al. Enhanced glass forming ability and plasticity in Mg-based bulk metallic glasses
Sun et al. Aluminum-rich bulk metallic glasses
KR101752976B1 (en) Fabricating method for metallic glass composite with controlling work hardening capacity and composites fabricated by the method
Li et al. Improved plasticity of iron-based high-strength bulk metallic glasses by copper-induced nanocrystallization
Gu et al. The novel Ti-based metallic glass with excellent glass forming ability and an elastic constant dependent glass forming criterion
Wang et al. Effects of boron content on the glass-forming ability and mechanical properties of Co–B–Ta glassy alloys
Li et al. Fabrication of bulk metallic glasses in the alloy system Fe–C–Si–B–P–Cr–Mo–Al using hot metal and industrial ferro-alloys
KR100723167B1 (en) Fe-based bulk metallic glass alloys containing misch metal
Chang et al. Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy
Chen et al. High strength and plastic strain of Mg-based bulk metallic glass composite containing in situ formed intermetallic phases
Zeng et al. Ni-rich Ni–Pd–P bulk metallic glasses with significantly improved glass-forming ability and mechanical properties by Si addition
KR100838734B1 (en) Fe-based bulk crystals-amorphous composite alloy with high manganese composition
Zong et al. Glass forming ability, thermal stability and elastic properties of Zr-Ti-Cu-Be-(Fe) bulk metallic glasses

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130611

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140611

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150611

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160613

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170612

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 12