KR100835364B1 - Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid - Google Patents

Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid Download PDF

Info

Publication number
KR100835364B1
KR100835364B1 KR1020070125749A KR20070125749A KR100835364B1 KR 100835364 B1 KR100835364 B1 KR 100835364B1 KR 1020070125749 A KR1020070125749 A KR 1020070125749A KR 20070125749 A KR20070125749 A KR 20070125749A KR 100835364 B1 KR100835364 B1 KR 100835364B1
Authority
KR
South Korea
Prior art keywords
dye
solar cell
sensitized solar
fatty acid
binder
Prior art date
Application number
KR1020070125749A
Other languages
Korean (ko)
Inventor
박경희
홍창국
구할본
조동련
김태영
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020070125749A priority Critical patent/KR100835364B1/en
Application granted granted Critical
Publication of KR100835364B1 publication Critical patent/KR100835364B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A dye-sensitized solar cell and a manufacturing method thereof are provided to enhance distribution property and adsorption property of a dye by using a binder through the chemical reforming of natural plant oil and a fatty acid. A dye-sensitized solar cell is made up of a counter electrode which includes a light transparence substance(10), a conductive light transparence layer(20) and a platinum layer(30), a photoelectrode and an electrolyte solution(50). A mixture layer is composed of a transition metal oxide(40) and a natural binder. Wherein, the natural binder is formed out of one selected from a group consisting of a fatty acid modified epoxy acrylate, acrylated epoxidized soybean oil and maleated acrylated epoxidized soybean oil.

Description

천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 사용한 염료감응형 태양전지 및 그 제조방법{Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid }Dye-sensitized solar cell and manufacturing method such using the binder through the chemical reforming of natural plant oil and fatty acid}

본 발명은 천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 사용한 염료감응형 태양전지 및 그 제조방법에 관한 것이다.The present invention relates to a dye-sensitized solar cell using a binder through chemical modification of natural vegetable oils and fatty acids, and a method of manufacturing the same.

염료감응형 태양전지는 기존의 실리콘 태양전지에 비해 제조단가가 낮고, 단가 대비 에너지 변화효율이 높으며, 투명성과 구부림이 가능한 셀을 제조할 수 있어 다양한 응용분야에 이용될 수 있는 장점을 가지고 있다. 이러한 염료감응형 태양전지는 빛을 가시광선 영역에서 흡수하여 전자-홀 쌍을 생성할 수 있는 염료분자와 생성된 전자를 전달하는 이산화티타늄(TiO2) 전이금속산화물이 포함된 광전극과 전해질 용액의 산화환원반응의 촉매 역할을 하는 백금층이 코팅된 상대전극으로 구 성된다. 다공질 막의 형태로 존재하는 광전극은 이산화티타늄(TiO2), 산화아연(ZnO), 산화주석(SnO2)과 같은 넓은 밴드갭을 가진 n형 산화물 반도체로 구성되고, 이 표면에 단분자층의 염료가 흡착되어 있다. 태양광이 태양 전지에 입사되면 염료 속의 페르미 에너지 부근의 전자가 태양에너지를 흡수하여 전자가 채워지지 않은 상위 준위로 여기 된다. 이때, 전자가 빠져나간 하위 준위의 빈자리는 전해질 속의 이온이 전자를 제공함으로써 다시 채워진다. 염료에 전자를 제공한 이온은 광전극으로 이동하여 전자를 제공받게 된다. 백금 상대전극은 전해질 용액 속에 있는 이온의 산화환원 반응의 촉매로 작용하여 표면에서의 산화 환원 반응을 통하여 전해질 속의 이온에 전자를 제공하는 역할을 한다. Dye-sensitized solar cells have the advantages of low manufacturing cost, high energy change efficiency compared to conventional silicon solar cells, and can be used for various applications because they can manufacture cells that can be transparent and bent. The dye-sensitized solar cell is a photoelectrode and electrolyte solution containing a dye molecule capable of absorbing light in the visible light region to form an electron-hole pair and a titanium dioxide (TiO 2 ) transition metal oxide that transfers the generated electrons. It is composed of a counter electrode coated with a platinum layer that serves as a catalyst for the redox reaction. The photoelectrode in the form of a porous membrane is composed of an n-type oxide semiconductor having a wide bandgap such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ). It is adsorbed. When sunlight enters the solar cell, electrons near the Fermi energy in the dye absorb the solar energy and are excited to higher levels where the electrons are not filled. At this time, the vacancy in the lower level where the electrons escape is filled again by the ions in the electrolyte providing the electrons. Ions that provide electrons to the dye move to the photoelectrode to receive electrons. The platinum counter electrode acts as a catalyst for the redox reaction of ions in the electrolyte solution to provide electrons to the ions in the electrolyte through a redox reaction on the surface.

종래의 염료감응형 태양전지에서는 유기시약인 폴리에틸렌글리콜(poly ethylene glycohol, PEG)나 폴리비닐알코올(poly vinyl alcohol, PVA)과 같은 바인더가 이용이 되고, 다시 코팅의 용이성을 위하여 비이온 계면활성제를 첨가하여야 하므로 제작 과정이 복잡하다. 또한, 석유 자원으로부터 얻어지기 때문에 한정된 지하자원을 이용할 수밖에 없고, 여전히 효율이 낮은 점이 문제점으로 지적되고 있다.In the conventional dye-sensitized solar cell, a binder such as polyethylene glycol (PEG) or polyvinyl alcohol (PVA), which is an organic reagent, is used, and a non-ionic surfactant is used for ease of coating. The production process is complicated because of the addition. In addition, because it is obtained from petroleum resources, limited underground resources have to be used, and the efficiency is still pointed out as a problem.

본 발명은 상술한 바와 같이 종래의 기술적 문제점을 해결하기 위한 것으로서, 염료감응형 태양전지의 광전극 제작 시 천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 사용하여 분산 특성을 높이고 염료의 흡착 특성을 향상시켜 높은 에너지 변환 효율을 얻는데 그 목적이 있다. 이를 위하여 본 발명은 유리기판에 전도성 투광층 및 백금층을 포함하는 상대전극과 전도성 투광층 및 전이금속산화물과 천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 포함하는 혼합물층으로 이루어지는 광전극과 상기 상대전극과 광전극 사이에 전해질 용액을 포함하는 것으로 구성된다. The present invention is to solve the conventional technical problems as described above, to improve the dispersion characteristics and the adsorption characteristics of the dye using a binder through the chemical modification of natural vegetable oils and fatty acids when manufacturing the photoelectrode of the dye-sensitized solar cell The purpose is to obtain a high energy conversion efficiency by improving. To this end, the present invention provides a photoelectrode comprising a counter electrode comprising a conductive light transmitting layer and a platinum layer on a glass substrate, and a mixture layer including a conductive light transmitting layer and a binder through chemical modification of a transition metal oxide, natural vegetable oil, and fatty acid. It comprises an electrolyte solution between the counter electrode and the photoelectrode.

본 발명에 따라 광전극에 천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 사용하면 염료감응형 태양전지의 개방전압(Voc, Open circuit voltage)이 증가하고 전류밀도(Isc, Short circuit current density)가 증가하는 것이 확인 되었다. 이것은 종래의 기술에 비해 에너지 변환 효율 측면에서 2배 이상의 효과를 얻을 수 있다. 천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 사용하여 분산 특성을 높이고 염료의 흡착 특성을 향상시켜 염료감응형 태양전지의 효율 증대를 기대할 수 있다.According to the present invention, the use of a binder through chemical modification of natural vegetable oils and fatty acids in the photoelectrode increases the open circuit voltage (Voc) and short circuit current density (Isc) of the dye-sensitized solar cell. It was confirmed to increase. This can be more than doubled in terms of energy conversion efficiency compared to the prior art. It is expected to increase the efficiency of dye-sensitized solar cells by increasing the dispersing characteristics and improving the adsorption characteristics of dyes by using binders through chemical modification of natural vegetable oils and fatty acids.

본 발명은 천연 식물성 오일과 지방산의 화학적 개질을 통한 바인더를 사용한 염료감응형 태양전지 및 그 제조방법에 관한 것으로 투광성 물질(10)에 전도성 투광층(20) 및 백금층(30)을 포함하는 상대전극과, 전도성 투광층 및 혼합물층을 포함하는 광전극과, 상기 상대전극과 광전극 사이에 전해질 용액(50)을 포함하는 것으로 구성되며, 도 1에서 본 발명에 의한 염료감응형 태양전지의 단면도 구조를 개략적으로 나타내었다. 상기 혼합물층은 전이금속산화물(40)과 천연 바인더로 이루어지며, 상기 천연 바인더는 에폭시화 아크릴레이트화된 지방산(fatty acid modified epoxy acrylate), 아크릴레이트화 에폭시화된 콩기름(acrylated epoxidized soybean oil), 말레이트화 아크릴레이트화 에폭시화된 콩기름(maleated acrylated epoxidized soybean oil) 중 어느 하나로 이루어진 것이다.The present invention relates to a dye-sensitized solar cell using a binder through chemical modification of natural vegetable oils and fatty acids and a method of manufacturing the same. A photoelectrode comprising an electrode, a conductive light transmitting layer and a mixture layer, and an electrolyte solution 50 between the counter electrode and the photoelectrode, the cross-sectional view of the dye-sensitized solar cell according to the present invention in FIG. The structure is shown schematically. The mixture layer is composed of a transition metal oxide 40 and a natural binder, the natural binder is a fatty acid modified epoxy acrylate, acrylated epoxidized soybean oil, It consists of any one of maleated acrylated epoxidized soybean oil.

본 발명에서는 환경 친화적이고 재생 가능한 천연 플랜트 오일(plant oil)이 나 지방산(fatty acid)을 화학적으로 개질하여 염료감응형 태양전지 광전극의 바인더로 사용하는 것으로, 일반적으로 사용되는 천연 플랜트 오일 또는 식물성 오일은 콩기름(soybean oil)이다. 콩기름의 주성분은 트리글리세라이드(triglyceride)이며, 이는 세 개의 지방산이 글리세롤(glycerol) 연결점에 연결되어 있는 도 2와 같은 형태이며 천연 식물성 오일이나 동물성 오일의 주성분이다.In the present invention, it is used as a binder of a dye-sensitized solar cell photochemically by chemically modifying environmentally friendly and renewable natural plant oil (fatty acid) or fatty acid, a natural plant oil or vegetable commonly used The oil is soybean oil. The main component of soybean oil is triglyceride (triglyceride), which is the same form as in Fig. 2 in which three fatty acids are connected to glycerol (glycerol) connection point and is the main component of natural vegetable oil or animal oil.

천연오일의 화학적 개질방법으로는 다양한 화학적 반응이 이용될 수 있으며, 트리글리세라이드의 분자사슬에 존재하는 이중결합이 아크릴레이트화(acrylated), 에폭시드화(epoxidized), 말레이트(maleated) 중 어느 하나 또는 이들의 조합으로 하는 반응이 이용된다. 에폭시드화된 트리글세라이드는 천연 식물성 오일에서 발견될 수도 있으며, 불포화 지방산의 일반적인 에폭시드 반응에 의해 합성된다. 아크릴레이트화(acrylated) 반응은 트리글리세라이드(triglyceride), 에폭시화된 지방산 중 어느 하나에 아크릴산(acrylic acid)을 반응시켜 합성하는 것이다. 이러한 화학적 개질 반응에 의해 여러가지 기능기가 쉽게 첨가될 수 있으며 원하는 특성을 가진 에폭시화 아크릴레이트화된 지방산(fatty acid modified epoxy acrylate)이나 아크릴레이트화 에폭시화된 콩기름(acrylated epoxidized soybean oil) 등의 개질된 지방산을 이용한 다양한 천연바인더가 제조될 수 있다. 말레이트(maleated) 반응은 카르복실기, 하이드록시 기능기(hydroxylated) 중 어느 하나에 말레이산(maleic acid or maleic anhydride)을 반응시켜 합성하는 것이다.Various chemical reactions may be used as a chemical reforming method of natural oil, and the double bond in the molecular chain of triglyceride may be any one of acrylated, epoxidized, and maleated, or The reaction which uses these combination is used. Epoxidized triglycerides may be found in natural vegetable oils and are synthesized by the general epoxide reaction of unsaturated fatty acids. The acrylated reaction is synthesized by reacting acrylic acid with either triglyceride or epoxidized fatty acid. By this chemical modification reaction, various functional groups can be easily added and modified such as fatty acid modified epoxy acrylate or acrylated epoxidized soybean oil having desired properties. Various natural binders using fatty acids can be prepared. The maleated reaction is synthesized by reacting maleic acid or maleic anhydride with any one of a carboxyl group and a hydroxylated group.

본 발명에 사용되는 에폭시화 아크릴레이트화된 지방산은 탄소수가 2 내지 80이고, 이중결합수는 0 내지 6인 포화 지방산 또는 불포화 지방산이 바람직하다.Epoxidized acrylated fatty acids used in the present invention are preferably saturated or unsaturated fatty acids having 2 to 80 carbon atoms and 0 to 6 double bond water.

화학적으로 개질된 트리글리세라이드 또는 지방산은 태양전지 광전극 제조 시 바인더로 사용될 수 있으며 요구되는 특성에 따라 화학적 개질방법이 다양화될 수 있다. 이러한 아크릴레이트, 에폭시 또는 말레이트 등의 여러 가지 기능성이 부여된 친환경 바인더는 염료감응형 태양전지 광전극 제작에 사용되어 이산화티타늄의 분산특성을 높이고 염료의 흡착특성을 향상시켜 태양전지의 에너지 변환효율을 크게 증가시키는 장점이 있으며, 친환경적인 염료감응형 태양전지를 제작할 수 있다. 또한 본 발명에서 사용된 천연 바인더는 재생가능한 자원으로부터 제조되기 때문에 석유자원으로부터 얻어지는 기존의 바인더들을 대체하여, 한정된 지하자원의 절약과 보존에도 기여할 수 있다.Chemically modified triglycerides or fatty acids may be used as binders in the manufacture of photovoltaic solar cells, and chemical modification methods may vary according to required properties. Eco-friendly binders that are endowed with various functionalities such as acrylate, epoxy, or maleate are used in the production of dye-sensitized solar cell photoelectrodes, which enhances the dispersion characteristics of titanium dioxide and improves the adsorption characteristics of dyes. There is an advantage to greatly increase, it is possible to manufacture environmentally friendly dye-sensitized solar cell. In addition, since the natural binder used in the present invention is manufactured from renewable resources, it is possible to replace existing binders obtained from petroleum resources, thereby contributing to the saving and preservation of limited underground resources.

도 3은 기존의 폴리에틸렌글리콜(polyethylene glycol, 이하 PEG라 한다.) 바인더(이하 P1이라 한다.)가 이용된 페이스트를 이용하여 광전극을 만들고 염료감응형 태양전지로 제작하여 측정된 광전압-전류밀도 곡선을 나타낸 것으로 아크릴레이트화 에폭시화된 콩기름 (acrylated epoxidized soybean oil, 이하 AESO라 한다.)과 이산화티타늄(TiO2)의 분산특성을 향상시키기 위하여 카르복실기가 추가된 말레이트화 아크릴레이트화 에폭시화된 콩기름(maleated acrylated epoxidized soybean oil, 이하 MAESO라 한다.)이 천연바인더로 사용되어 제작된 경우와 비교한 그래프이다. 광전압-전류밀도의 측정조건은 셀의 면적을 0.5x0.5㎠로 제작하였다. 천연바인더로 AESO와 MAESO가 이용된 경우 개방전압은 P1에 비해 40㎷ 증가되어 나타났으며 전류밀도는 63%, 99% 각각 증가되어 나타났다. 에너지 변환효율 또한 P1을 이용한 광전극에 비해 AESO, MAESO와 같은 천연바인더가 이용된 경우 각각 59%와 95%의 증가를 보였다. 이것은 모듈 형태의 염료감응형 태양전지를 제작한 경우 소량의 셀에 대한 직병렬 연결만으로도 동일 전력을 구현할 수 있어 그들의 적용분야는 많을 것으로 생각된다.3 is a photovoltaic electrode made of a paste using a conventional polyethylene glycol (hereinafter referred to as PEG) binder (hereinafter referred to as P1) and manufactured as a dye-sensitized solar cell. The density curve shows maleated acrylated epoxidation with carboxyl group added to improve the dispersion characteristics of acrylated epoxidized soybean oil (hereinafter referred to as AESO) and titanium dioxide (TiO 2 ). This is a graph comparing the case where the dried soybean oil (maleated acrylated soybean oil, hereinafter referred to as MAESO) was used as a natural binder. Photovoltaic-current density measurement conditions were made of a cell area of 0.5x0.5cm2. When AESO and MAESO were used as natural binders, the open voltage increased by 40㎷ compared to P1, and the current density increased by 63% and 99%, respectively. The energy conversion efficiency also increased by 59% and 95%, respectively, when natural binders such as AESO and MAESO were used, compared to the P1 photoelectrode. In case of fabrication of module-type dye-sensitized solar cell, the same power can be realized by only serial and parallel connection to a small amount of cells.

개방전압(V)Open voltage (V) 광전류 (㎃/㎠)Photocurrent (㎃ / ㎠) 필펙터Filfector 광전기에너지 변환효율 (%)Photovoltaic Energy Conversion Efficiency (%) P1P1 0.640.64 12.312.3 0.580.58 4.64.6 AESOAESO 0.680.68 20.020.0 0.540.54 7.37.3 MAESOMAESO 0.680.68 24.524.5 0.550.55 9.09.0

상기 표 1의 광전극 페이스트는 이산화티타늄(P-25) 2g, 트리톤(Triton) X-100 0.1g, 질산(HNO3) 용액 1㎖, 바인더 0.4g, 아세틸아세톤 0.2g, 정수(H2O) 7㎖를 포함하여 제조하였고, 바인더의 경우 P1은 PEG (#20,000), AESO는 아크릴레이트화 에폭시화된 콩기름, MAESO는 말레이트화 아크릴레이트화 에폭시화된 콩기름을 사용하였다.The photoelectrode paste of Table 1 is 2 g of titanium dioxide (P-25), Triton X-100 0.1 g, 1 ml of nitric acid (HNO 3 ) solution, 0.4 g of binder, 0.2 g of acetylacetone, and purified water (H 2 O). 7 ml), P1 was PEG (# 20,000), AESO was acrylated epoxidized soybean oil, and MAESO was maleated acrylated epoxidized soybean oil.

도 4는 천연 바인더를 이용한 광전극으로 제작된 염료감응형 태양전지에서 높은 에너지 변환효율을 보이는 이유를 알아보기 위하여 전극간의 계면저항을 측정하기 위한 교류 임피던스 그래프이다. 인공 태양광 시스템 (1.5AM, 100㎽/㎠)의 조건 하에 2전극 방식으로 단위 셀의 교류저항 측정은 0.01㎐~105㎐의 주파수 범위에서 측정되었고 개방전압(Voc)에서 측정한 결과이다. 4 is an AC impedance graph for measuring the interfacial resistance between electrodes in order to find out why high energy conversion efficiency is observed in a dye-sensitized solar cell manufactured with a photoelectrode using a natural binder. Under the conditions of artificial solar system (1.5AM, 100kW / cm2), the AC resistance measurement of the unit cell in the two-electrode method was measured in the frequency range of 0.01kJ ~ 105kW and the result was measured at the open voltage (Voc).

백금 상대전극과 동일의 전해액 및 기타 조건을 모두 동일하게 하고 P1 바인더와 천연 바인더인 AESO와 MAESO 바인더를 사용하여 이산화티타늄(TiO2) 광전극을 제작하고 이것을 염료감응형 태양전지로 조립한 후 2전극 방식의 교류 임피던스 결과이다. P1의 경우 고주파의 용액저항은 22.8Ω으로 AESO 11.0Ω, MAESO 12.2Ω에 비해 크게 나타남을 알 수 있다. 이것은 고주파 영역에서 광전극의 표면에 접한 이온의 이동과 전자의 전달이 천연바인더를 이용하여 이산화티타늄 광전극의 제작 시 계면 저항을 줄일 수 있어 이것은 에너지 변화 효율에 영향을 미친 것을 알 수 있다.The same electrolyte and other conditions as the platinum counter electrode were made, and a titanium dioxide (TiO 2 ) photoelectrode was fabricated using a P1 binder and a natural binder, AESO and MAESO binder, and then assembled into a dye-sensitized solar cell. AC impedance results of the electrode system. In case of P1, the solution resistance of high frequency is 22.8Ω, which is larger than that of AESO 11.0Ω and MAESO 12.2Ω. This suggests that the movement of ions and the transfer of electrons in contact with the surface of the photoelectrode in the high frequency region can reduce the interfacial resistance when fabricating the titanium dioxide photoelectrode using a natural binder, which can affect the energy change efficiency.

도 5 내지 도 7은 기존의 P1과 천연 바인더인 AESO, MAESO를 사용하여 제작한 각 광전극의 표면을 원자현미경(Atomic Force Microscope, AFM)을 이용하여 고찰하여 나타냈으며 이들의 주사전자현미경(Scanning Electron Microscope, SEM) 사진은 도 8 내지 도 10에 나타내었다. 기존의 P1을 이용하여 제작한 광전극 표면의 이산화티타늄 분산에 비해, 천연 바인더를 사용하여 제작된 광전극 표면 이산화티타늄의 분산특성이 향상되었음을 확인할 수 있었다. 또한 화학적 개질방법을 이용하여 카르복실기가 첨가된 MAESO 천연 바인더가 이산화티타늄과의 결합을 용이하게 하여 분산특성이 더욱 향상되었음을 보이고 있다. 이러한 개선된 분산특성에 의하여 염료의 흡착특성이 크게 향상되었으며 염료감응형 태양전지의 에너지 변환효율이 크게 증가되어졌다고 생각할 수 있다.5 to 7 illustrate the surface of each photoelectrode fabricated using conventional P1 and natural binders AESO and MAESO using an atomic force microscope (AFM), and their scanning electron microscopes (Scanning) Electron Microscope, SEM) picture is shown in Figures 8 to 10. Compared to the titanium dioxide dispersion of the photoelectrode surface fabricated using the conventional P1, it was confirmed that the dispersion characteristics of the photoelectrode surface titanium dioxide produced using the natural binder were improved. In addition, the MAESO natural binder to which the carboxyl group is added by using a chemical modification method has been shown to further improve the dispersion characteristics by facilitating the bonding with titanium dioxide. Due to the improved dispersion characteristics, the adsorption characteristics of the dye are greatly improved, and the energy conversion efficiency of the dye-sensitized solar cell is considered to be greatly increased.

본 발명의 일실시 예로서 염료감응형 태양전지를 다음과 같이 제조하였다. 이산화티타늄 2g과 MAESO 0.4g, 트리톤 X-100 0.1g, 질산 용액 1㎖, 아세틸아세톤 0.2g과 정수 7㎖를 행성 교반기에 넣고 교반기를 작동시킨다. 교반 방법은 15분 동안 교반하고 5분 휴지 하는 과정을 1 사이클로 하여 18~22 사이클을 작동시키는 과정을 거쳐서 혼합물을 제조한다.As an embodiment of the present invention, a dye-sensitized solar cell was prepared as follows. 2 g of titanium dioxide, 0.4 g of MAESO, 0.1 g of Triton X-100, 1 ml of nitric acid solution, 0.2 g of acetylacetone and 7 ml of purified water are placed in a planetary stirrer and the stirrer is operated. Stirring method is to prepare a mixture through a process of 18 to 22 cycles by stirring for 15 minutes and 5 minutes rest 1 cycle.

유리 기판에 불소 도핑 산화주석(Fluorine-doped Tin Oxide, 이하 FTO라 한다.) 박막을 증착시킨 다음 혼합물을 코팅하고 1차적으로 80℃에서 30분 동안 건조 한 후 450℃로 승온하여 30분 동안 2차 열처리 과정을 거쳐 광전극을 제조한다. 한편으로 유리 기판에 FTO 박막을 증착시킨 전도성 투광층을 코팅하고 그 위에 다시 백금 졸(Pt catalyst/SP, Solaronix)을 코팅하여 상대전극을 제조한다. 상대전극과 광전극 사이에는 전해질 용액을 주입한 다음 접착필름(60)으로 밀봉하여 염료감응형 태양전지를 완성시킨다.A thin film of fluorine-doped tin oxide (FTO) was deposited on the glass substrate, and then the mixture was coated, and the mixture was first dried at 80 ° C. for 30 minutes, then heated to 450 ° C. for 30 minutes. The photoelectrode is manufactured through a differential heat treatment process. Meanwhile, a counter electrode is prepared by coating a conductive light-transmitting layer on which a FTO thin film is deposited on a glass substrate and then coating platinum sol (Pt catalyst / SP, Solaronix) on the glass substrate. An electrolyte solution is injected between the counter electrode and the photoelectrode and then sealed with an adhesive film 60 to complete the dye-sensitized solar cell.

이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어 해석되어서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the terms or words used in the present specification and claims are not to be construed as being limited to ordinary or dictionary meanings, and are consistent with the technical spirit of the present invention. It must be interpreted as meaning and concept. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one embodiment of the present invention and do not represent all of the technical idea of the present invention, and various equivalents that may be substituted for them at the time of the present application and It should be understood that there may be variations.

도 1은 본 발명에 의한 염료감응형 태양전지의 구조를 개략적으로 나타낸 단면도. 1 is a cross-sectional view schematically showing the structure of a dye-sensitized solar cell according to the present invention.

도 2는 본 발명에 사용되는 천연 식물성 오일인 콩기름의 주성분인 트리글리세라이드(triglyceride)의 구조를 나타낸 화학식. Figure 2 is a chemical formula showing the structure of triglyceride (triglyceride) as a main component of soybean oil which is a natural vegetable oil used in the present invention.

도 3은 기존의 PEG 바인더를 이용한 염료감응형 태양전지의 광전압-전류밀도 곡선 그래프.Figure 3 is a graph of the photovoltage-current density curve of the dye-sensitized solar cell using a conventional PEG binder.

도 4는 천연 바인더를 이용한 염료감응형 태양전지의 전극 간 계면저항을 측정한 교류 임피던스 그래프.4 is an AC impedance graph measuring interfacial resistance between electrodes of a dye-sensitized solar cell using a natural binder.

도 5는 기존의 PEG 바인더를 이용하여 제작한 광전극의 AFM 사진.5 is an AFM photograph of a photoelectrode prepared using a conventional PEG binder.

도 6은 천연바인더 AESO 바인더를 이용하여 제작한 광전극의 AFM 사진.6 is an AFM photograph of a photoelectrode manufactured using a natural binder AESO binder.

도 7은 천연바인더 MAESO 바인더를 이용하여 제작한 광전극의 AFM 사진.7 is an AFM photograph of a photoelectrode prepared using a natural binder MAESO binder.

도 8은 기존의 PEG 바인더를 이용하여 제작한 광전극의 SEM 사진.8 is a SEM photograph of a photoelectrode manufactured using a conventional PEG binder.

도 9는 천연 바인더 AESO 바인더를 이용하여 제작한 광전극의 SEM 사진.9 is a SEM photograph of a photoelectrode prepared using a natural binder AESO binder.

도 10은 천연 바인더 MAESO 바인더를 이용하여 제작한 광전극의 SEM 사진.10 is a SEM photograph of a photoelectrode prepared using a natural binder MAESO binder.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

10: 투광성 물질 20: 전도성 투광층10: light transmitting material 20: conductive light transmitting layer

30: 백금층 40: 전이금속산화물 나노분말 30: platinum layer 40: transition metal oxide nano powder

50: 전해질 용액 60: 접착필름50: electrolyte solution 60: adhesive film

Claims (7)

투광성 물질에 전도성 투광층 및 백금층을 포함하는 상대전극과,A counter electrode comprising a conductive light transmitting layer and a platinum layer on the light transmitting material; 에폭시화 아크릴레이트화된 지방산(fatty acid modified epoxy acrylate), 아크릴레이트화 에폭시화된 콩기름(acrylated epoxidized soybean oil), 말레이트화 아크릴레이트화 에폭시화된 콩기름(maleated acrylated epoxidized soybean oil) 중 어느 하나로 이루어진 천연 바인더와, 전이금속산화물로 이루어진 혼합물층 및 전도성 투광층을 포함하는 광전극과,Either fatty acid modified epoxy acrylate, acrylated epoxidized soybean oil, or maleated acrylated epoxidized soybean oil. A photoelectrode comprising a natural binder, a mixture layer made of a transition metal oxide and a conductive light transmitting layer, 상기 상대전극과 광전극 사이에 전해질 용액을 포함하는 것을 특징으로 하는 염료감응형 태양전지.Dye-sensitized solar cell comprising an electrolyte solution between the counter electrode and the photoelectrode. 제 1항에 있어서,The method of claim 1, 에폭시화 아크릴레이트화된 지방산(fatty acid modified epoxy acrylate)은 탄소수가 2 내지 80이고, 이중결합수는 0 내지 6인 것을 특징으로 하는 염료감응형 태양전지.Epoxy acrylated fatty acid (fatty acid modified epoxy acrylate) is a dye-sensitized solar cell, characterized in that 2 to 80 carbon atoms, 0 to 6 double bond water. 에폭시화 아크릴레이트화된 지방산(fatty acid modified epoxy acrylate), 아크릴레이트화 에폭시화된 콩기름(acrylated epoxidized soybean oil), 말레이트 화 아크릴레이트화 에폭시화된 콩기름(maleated acrylated epoxidized soybean oil) 중 어느 하나로 이루어진 천연 바인더와 전이금속산화물로 이루어진 혼합물층을 제조 하는 단계;Either fatty acid modified epoxy acrylate, acrylated epoxidized soybean oil, or maleated acrylated epoxidized soybean oil. Preparing a mixture layer composed of a natural binder and a transition metal oxide; 투광성 물질에 전도성 투광층을 증착시키고 상기 혼합물을 코팅하여 건조 및 열처리한 후 염료를 흡착하여 광전극을 제조하는 단계;Preparing a photoelectrode by depositing a conductive light-transmitting layer on the light-transmitting material, coating the mixture, drying and heat-treating, and then adsorbing a dye; 투광성 물질에 전도성 투광층을 증착시키고 백금층을 코팅하여 상대전극을 제조하는 단계; 및Preparing a counter electrode by depositing a conductive light transmitting layer on the light transmitting material and coating a platinum layer; And 상기 광전극과 상대전극 사이의 공간에 전해질 용액을 주입하고 밀봉하는 단계를 포함하는 염료감응형 태양전지의 제조 방법.The method of manufacturing a dye-sensitized solar cell comprising the step of injecting and sealing an electrolyte solution in the space between the photoelectrode and the counter electrode. 제 3항에 있어서,The method of claim 3, wherein 상기 천연 바인더는 천연 식물성 오일과 지방산을 아크릴레이트화(acrylated), 에폭시드화(epoxidized), 말레이트(maleated) 중 어느 하나 또는 이들의 조합으로 하는 반응을 통하여 개질하는 염료감응형 태양전지의 제조 방법. The natural binder is a method of manufacturing a dye-sensitized solar cell is a natural vegetable oil and fatty acid modified by the reaction of any one or a combination of acrylated (epoxidized), maleated (maleated). . 제 4항에 있어서,The method of claim 4, wherein 상기 아크릴레이트화(acrylated) 반응은 트리글리세라이드(triglyceride), 에폭시화된 지방산 중 어느 하나에 아크릴산(acrylic acid)을 반응시켜 합성한 것 을 특징으로 하는 하는 염료감응형 태양전지의 제조 방법. The acrylated reaction is a method of manufacturing a dye-sensitized solar cell, characterized in that synthesized by reacting acrylic acid (acrylic acid) to any one of triglyceride, epoxidized fatty acid. 제 4항에 있어서,The method of claim 4, wherein 상기 말레이트(maleated) 반응은 카르복실기, 하이드록시 기능기(hydroxylated) 중 어느 하나에 말레이산(maleic acid or maleic anhydride)을 반응시켜 합성한 것을 특징으로 하는 염료감응형 태양전지의 제조 방법.The maleated reaction is a method of manufacturing a dye-sensitized solar cell, characterized in that synthesized by reacting maleic acid (maleic acid or maleic anhydride) to any one of a carboxyl group, hydroxylated. 제 3항에 있어서,The method of claim 3, wherein 상기 천연 바인더와 전이금속산화물이 포함되는 혼합물을 제조하는 단계에서,In the step of preparing a mixture containing the natural binder and a transition metal oxide, 상기 혼합물을 교반기에서 15분 동안 교반하고 5분 동안 휴지하는 과정을 1사이클로 하여 18~20사이클을 반복하는 단계를 포함하는 염료감응형 태양전지의 제조 방법.Method for producing a dye-sensitized solar cell comprising the step of stirring the mixture for 15 minutes in a stirrer and resting for 5 minutes as a cycle 1 to 18 to 20 cycles.
KR1020070125749A 2007-12-05 2007-12-05 Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid KR100835364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070125749A KR100835364B1 (en) 2007-12-05 2007-12-05 Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070125749A KR100835364B1 (en) 2007-12-05 2007-12-05 Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid

Publications (1)

Publication Number Publication Date
KR100835364B1 true KR100835364B1 (en) 2008-06-04

Family

ID=39770115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070125749A KR100835364B1 (en) 2007-12-05 2007-12-05 Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid

Country Status (1)

Country Link
KR (1) KR100835364B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097752B1 (en) 2009-10-08 2011-12-22 전남대학교산학협력단 Photocatalyst by increasing functionalization and Manufacturing method thereof, Composition of paste for forming semiconductor electrode of dye-sensitized solar cell including the said photocatalyst and Manufacturing method thereof, And Dye-sensitized solar cell using the same, and Manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097752B1 (en) 2009-10-08 2011-12-22 전남대학교산학협력단 Photocatalyst by increasing functionalization and Manufacturing method thereof, Composition of paste for forming semiconductor electrode of dye-sensitized solar cell including the said photocatalyst and Manufacturing method thereof, And Dye-sensitized solar cell using the same, and Manufacturing method thereof

Similar Documents

Publication Publication Date Title
Flores et al. Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte
Juang et al. Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells
Yue et al. A dye-sensitized solar cell based on PEDOT: PSS counter electrode
KR20070120268A (en) Method for modifying surface of a counter electrode and surface-modified counter electrode
KR101635758B1 (en) Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same
Wijeratne et al. Aspect-ratio dependent electron transport and recombination in dye-sensitized solar cells fabricated with one-dimensional ZnO nanostructures
KR20120043648A (en) Dye-sensitized solar cell and manufacturing method thereof
Jaculine et al. Zinc stannate nanoflower (Zn2SnO4) photoanodes for efficient dye sensitized solar cells
Sun et al. Bilayer TiO 2 photoanode consisting of a nanowire–nanoparticle bottom layer and a spherical voids scattering layer for dye-sensitized solar cells
KR100773147B1 (en) Dye-sensitized solar cell containing fluorescent material and method for manufacturing thereof
Arsyad et al. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte
JP2011076791A (en) Photoelectric conversion element, and optical power generating device using the photoelectric conversion element
Moon et al. Titanium oxide films prepared by sputtering, sol gel and dip coating methods for photovoltaic application
Kulesza et al. Development of solid-state photo-supercapacitor by coupling dye-sensitized solar cell utilizing conducting polymer charge relay with proton-conducting membrane based electrochemical capacitor
CN103887071A (en) Flexible nano paper-base compound photo-anode for dye-sensitized solar cell and preparation method thereof
KR100807238B1 (en) Photoelectrode of dye-sensitized solar cell containing glass powder
TW201214717A (en) Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same
KR100835364B1 (en) Dye-sensitized solar cell and manufacturing method thereof using the binder through the chemical reforming of natural plant oil and fatty acid
EP2192159A2 (en) Dye compound for dye-sensitized solar cells, dye-sensitized photoelectric converter and dye-sensitized solar cells
Effendi et al. Studies on graphene zinc-oxide nanocomposites photoanodes for high-efficient dye-sensitized solar cells
JP2010100850A (en) Ruthenium complex and photoelectric component using the same
KR100861117B1 (en) Dye-sensitized solar cell and manufacturing method thereof using binder having hydroxy group and carboxyl group
CN107680815B (en) A kind of preparation method and applications of homogeneity barrier layer/skeleton titania structure
KR101086631B1 (en) Photoelectrode of dye-sensitized solar cell containing titanium oxide nanofiber and method for manufacturing thereof
KR101762147B1 (en) Compostion for hole tansporting layer, hole transporting layer for inorganic/organic hybrid solar cell generated thereby, and organic/inorganic hybrid solar cell comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130515

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee