KR100834936B1 - Material for exchanging heat and air and its manufacturing method - Google Patents

Material for exchanging heat and air and its manufacturing method Download PDF

Info

Publication number
KR100834936B1
KR100834936B1 KR1020070133031A KR20070133031A KR100834936B1 KR 100834936 B1 KR100834936 B1 KR 100834936B1 KR 1020070133031 A KR1020070133031 A KR 1020070133031A KR 20070133031 A KR20070133031 A KR 20070133031A KR 100834936 B1 KR100834936 B1 KR 100834936B1
Authority
KR
South Korea
Prior art keywords
heat exchange
heat exchanger
total heat
polyurethane
air
Prior art date
Application number
KR1020070133031A
Other languages
Korean (ko)
Inventor
이영규
이경주
권은희
Original Assignee
(주)웰크론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)웰크론 filed Critical (주)웰크론
Priority to KR1020070133031A priority Critical patent/KR100834936B1/en
Application granted granted Critical
Publication of KR100834936B1 publication Critical patent/KR100834936B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Abstract

A heat exchange material for a heat exchanger and a manufacturing method thereof are provided to improve durability and prevent air from mixing while exhibiting high moisture permeation properties by forming a heat exchanger with synthetic polymer resin material, thereby preventing the decomposition or the dew condensation of a paper material. A method for manufacturing a heat exchange material for a heat exchanger includes the steps of making a melt brown non-woven fabric with one selected from polypropylene, polybutadieneterephthalate, polyamide, and polyurethane, each having fiber formation properties, and stacking the same randomly in the thickness of 0.5-5mum, calendering the material to form the material in the thickness of 20-100mum, and impregnating the result material with polyvinyl alcohol resin or polyurethane resin or attaching a non-porous polyurethane or polyvinyl film to a surface of the result material.

Description

전열교환기의 전열교환소재 및 그 제조방법{Material for exchanging heat and air and its manufacturing method}Material for exchanging heat and air and its manufacturing method

본 발명은 기체 차폐성이 뛰어난 반면, 투습은 자유로워 열교환은 이루어지되 물질교환을 일으키지 않아 공기의 혼합을 일으키지 않는 전열교환기의 전열교환소재에 관한 것으로, 보다 상세하게는 급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재를 섬유형성능이 있는 합성고분자수지를 멜트블라운 부직포로 제조하는 것에 관한 것이다. The present invention relates to a total heat exchange material of the total heat exchanger that has excellent gas shielding, but is free of moisture permeation, which does heat exchange but does not cause mass exchange and thus does not cause air mixing, and more particularly, includes an air supply passage and an exhaust passage. The present invention relates to a synthetic polymer resin having a fiber-forming ability as a melt blown nonwoven fabric of a total heat exchange material of a total heat exchanger for a ventilation device that performs heat exchange and mass exchange between indoor and outdoor air.

사람이 살아가는데 있어서 필연적으로 외기로부터 차단된 실내에서의 생활이 동반되며 따라서 실내의 공기를 외부의 공기와 교환하기 위한 환기장치는 필수적이다. In order for a person to live, it is inevitably accompanied by living in an indoor environment that is isolated from outside air, and thus a ventilation device for exchanging indoor air with external air is essential.

일반적으로 환기장치는 하나의 송풍기를 이용하여 실내의 공기만을 외부로 강제 배출시키는 방식을 채택하고 있다. 그런데, 하나의 송풍기를 이용하여 실내의 공기만을 강제로 배출시킬 경우, 실내의 냉기 또는 열기가 여과 없이 외부로 배출됨과 더불어 실외의 공기가 문이나 창틈 등을 통해 열교환 없이 유입됨으로 인해 실내를 난방 및 냉방시키는데 드는 경비가 불필요하게 많이 들게 되었다.In general, the ventilation system adopts a method of forcibly discharging only indoor air to the outside using a single blower. However, in the case of forcibly discharging only the indoor air by using one blower, the indoor air is discharged to the outside without filtration and the outdoor air is introduced without heat exchange through the door or the window gap, thereby heating and cooling the room. The cost of cooling was unnecessarily high.

또한, 갑작스런 냉기 및 열기가 외부에서 내부로 유입됨으로 인해 실내공기의 급격한 온도변화로 그 내부에 존재하는 사람들이 불쾌감을 느끼게 되고, 특히 실내의 창문이나 문틀이 닫혀진 상태에서 실내공기만을 외부로 배출시키는 경우에는 외부의 신선한 공기의 유입이 차단되어 산소결핍현상이 발생될 수 있음은 물론, 실내공기의 습도조절이 전혀 이루어 지지 않게 되어 환기장치가 구비되어 있음에도 불구하고 쾌적한 실내환경을 유지시키지 못하는 문제점 등이 있었다.In addition, due to the sudden inflow of cold air and heat from inside to outside people suddenly change the temperature of the interior people there is unpleasant feelings, especially in the state that the indoor window or door frame closed to discharge only the indoor air to the outside In this case, the inflow of external fresh air may be blocked and oxygen deficiency may occur, and the humidity of the indoor air is not controlled at all. However, even though the ventilation device is provided, it does not maintain a comfortable indoor environment. There was this.

이러한 문제점을 해결하고자, 실외공기를 실외로 배출되는 실내공기와 먼저 열교환시킨 다음 실내로 공급하는 전열교환 방식의 환기장치가 제시되었다.In order to solve this problem, a total heat exchange type ventilation device for first exchanging outdoor air with indoor air discharged to the outside and then supplying the indoor air has been proposed.

상기 전열교환 방식의 환기장치의 내부에는 실내의 현열(Sensible heat) 및 잠열(Latent heat)을 교환하는 전열교환기가 구비되는데, 상기 전열교환기의 일반적인 구조가 도 1 에 도시되어 있다.An inside of the total heat exchange type ventilator is provided with a total heat exchanger for exchanging sensible heat and latent heat in the room. The general structure of the total heat exchanger is illustrated in FIG. 1.

도 1 에 도시된 바에 따르면, 상기 전열교환기(10)는 대략 사각판 형상의 전열막(20)이 상측과 하측면을 구성하고 상기 전열막(20)의 사이에는 단면이 대략 삼각형상으로 형성되도록 다수회 절곡된 절곡판(30)이 형성된다. As shown in FIG. 1, the heat exchanger 10 has an approximately square plate-shaped heat transfer film 20 forming an upper side and a lower side thereof, and a cross section is formed in a substantially triangular shape between the heat transfer membranes 20. The bending plate 30 bent a plurality of times is formed.

상기 절곡판(30)의 절곡된 상부와 하부 즉, 삼각형상의 꼭지점부분이 상기 전열막(20)에 접촉하여 결합되도록 형성된다. 그리고 상기 전열막(20)과 절곡판(30)은 다수개가 적층되어 하나의 전열교환기를 구성한다.The bent upper and lower portions of the bent plate 30, that is, the vertex portions of the triangular shape are formed to be in contact with the heat transfer film 20. In addition, the heat transfer membrane 20 and the bending plate 30 are stacked in plural to constitute one heat exchanger.

그리고, 상기 절곡판(30)은 실내공기와 실외공기가 유동하는 통로가 되며, 실내공기와 실외공기가 서로 열교환 하는 곳이다. 따라서, 실내공기와 실외공기가 환기를 위해서 서로 혼합(물질교환)되지는 않으면서 서로 접할 수 있도록 적층되는 각각의 절곡판(30)은 상기 전열막(20)을 사이에 두고 서로 교차되는 구조로 형성된다. 즉, 상기 절곡판(30)은 급기되는 실외공기 및 배기되는 실내공기의 일방향 유동통로(40,45)를 형성하기 위해 각 전열막(20) 사이 마다 다른 방향으로 적층되어 흡입되는 공기와 배기되는 공기가 각각의 독립된 유동통로(40,45)를 가지게 된다.The bending plate 30 is a passage through which indoor air and outdoor air flow, and is a place where indoor air and outdoor air exchange with each other. Therefore, each of the bending plates 30 stacked so as to be in contact with each other without mixing (substance exchange) with the indoor air and the outdoor air has a structure intersecting each other with the heat transfer film 20 therebetween. Is formed. That is, the bending plate 30 is stacked in different directions between the heat transfer membranes 20 to form one-way flow passages 40 and 45 of the outdoor air to be supplied and the indoor air to be exhausted. Air will have separate flow passages 40 and 45, respectively.

그리고 상기 유동통로(40,45)를 통하여 유동하는 공기는 상기 절곡판(30) 사이에 형성된 상기 전열막(20)을 사이에 두고 접하게 됨으로써 상기 전열막을 통해서 실외공기와 실내공기의 열교환이 일어나게 된다.In addition, the air flowing through the flow passages 40 and 45 is in contact with the heat transfer membrane 20 formed between the bending plates 30, thereby causing heat exchange between outdoor air and indoor air through the heat transfer membrane. .

상기와 같은 기능을 하는 전열교환기(10)의 절곡판(30)과 전열막(20)은 일반적으로 종이소재로 형성되거나 화이버(Fiber,60)에 폴리우레탄(Polyurethane, 70) 멤브레인(Membrane)을 코팅한 재료를 사용하여 형성하는 것이 일반적이었다.The bending plate 30 and the heat transfer membrane 20 of the heat exchanger 10 having the above function are generally formed of a paper material or made of polyurethane (Polyurethane, 70) membrane (Fiber, 60) membrane (Membrane) It was common to form using coated materials.

도 2 는 종래기술에 의한 종이소재로 형성된 전열교환소재의 조직을 확대한 현미경 사진으로서, 도면에 도시된 바에 따르면, 상기 종이소재(50)는 방사상으로 형성된 망상의 구조로 형성되어 투습량이 낮아지게 된다. 상기 투습량은 구조체를 통과하는 수증기의 이동량을 나타낸 것으로 전열교환기(10)의 중요한 성능요소중의 하나이다.2 is an enlarged micrograph of the structure of the total heat exchange material formed of a paper material according to the prior art, as shown in the drawing, the paper material 50 is formed in a radially formed network structure so that the moisture permeability is lowered do. The moisture permeation rate represents the amount of water vapor moving through the structure and is one of the important performance factors of the total heat exchanger (10).

그리고, 상기와 같은 종이소재(50)는 종이가 가지는 화학 구조의 한계로 인해 투습량이 낮아지게 된다. 일반적인 종이소재(50)는 물의 수소분자(H2)와 쉽게 결합하는 특징을 가지는 오에이치(OH)기가 적은 구조를 가지고 있어 물의 수소분 자(H2)와 결합이 용이하지 못하고 이는 투습량이 낮은 문제를 초래하게 된다.In addition, the paper material 50 as described above has a low water vapor transmission rate due to the limitation of the chemical structure of the paper. Common paper material (50) has got the five small group H (OH) structure having the characteristics to easily combine with water of molecular hydrogen (H 2) do not readily combine with water hydrogen molecular (H 2), which lower the amount of moisture permeation It causes problems.

또한 종이소재(50)만으로 상기 전열교환기(10)의 절곡판(30)과 전열막(20)을 구성하게 될 경우에는 기계적 물성이 낮아 물리적 결합력이 약해서 외형을 형성하는데 있어서 다소 문제가 있으며 이는 공기의 유동통로(40,45)를 확보하는데도 어려움을 초래하게 된다. In addition, when the bent plate 30 and the heat transfer membrane 20 of the heat exchanger 10 using only the paper material 50, mechanical properties are low, the physical bonding strength is weak, so there is some problem in forming the appearance, which is air It will also cause difficulty in securing the flow passages (40, 45).

도 3 은 종래 기술에 의한 화이버에 폴리우레탄 멤브레인을 코팅한 소재로 형성된 전열교환소재의 조직을 확대한 현미경 사진으로서, 도면에 도시된 바에 따르면, 상기 같은 종이소재(50)를 재료로 한 전열교환기(10)의 문제점을 개선하기 위해서 화이버(60)에 폴리우레탄멤브레인(70)을 코팅한 소재를 재료로하여 상기 전열교환기(10)를 구성하였다.3 is an enlarged micrograph of the structure of the total heat exchange material formed of a material coated with a polyurethane membrane on the fiber according to the prior art, as shown in the figure, a heat exchanger made of the same paper material 50 as a material In order to improve the problem of (10), the total heat exchanger (10) was constructed using a material coated with a polyurethane membrane (70) on the fiber (60).

상기 화이버(60)는 종이소재(50)만으로 구성되는 전열교환기(10)가 가지는 낮은 기계적 물성을 보완하기 위한 것으로 도시된 바와 같이 치밀한 구조로 형성되어 높은 인장강도를 확보하며 지지층(62)을 형성하게 된다.The fiber 60 is formed to have a dense structure as shown to compensate for the low mechanical properties of the heat exchanger 10 composed of only the paper material 50, thereby securing a high tensile strength and forming a support layer 62. Done.

그리고, 상기 지지층(62)의 상부에는 폴리올(Polyol)이 조합된 폴리우레탄(70)이 코팅되어 투습작용을 수행하는 투습층(72)이 형성된다. 상기 폴리올은 친수기인 오에이치(OH)기를 2개이상 가진 지방족 화합물로서, 우수한 습기 흡착력과 강력한 수소결합을 통해서 투습량이 극대화 되도록 한다.In addition, a moisture permeable layer 72 is formed on the support layer 62 to coat a polyurethane 70 in which a polyol is combined to perform a moisture permeation function. The polyol is an aliphatic compound having two or more hydrophilic O (OH) groups to maximize the moisture permeability through excellent moisture adsorption and strong hydrogen bonds.

상기 폴리우레탄(70) 멤브레인이 상기 지지층(62)의 표면에 형성되어 상기 절곡판(30)을 구성함으로써 상기 전열교환기(10)는 고투습성을 확보하게 될 뿐만 아니라 강한 물리적 결합력을 가지게 되어 상기 절곡판(30)을 통해서 열교환이 원활하게 일어날 수 있게 한다.The polyurethane 70 membrane is formed on the surface of the support layer 62 to form the bent plate 30 so that the heat exchanger 10 not only ensures high moisture permeability but also has a strong physical bonding force to the bend. The plate 30 allows the heat exchange to occur smoothly.

그러나 상기와 같이 구성되는 종래기술에 의한 환기장치의 전열교환소재에서는 다음과 같은 문제점이 있다.However, the electrothermal exchange material of the prior art ventilation device configured as described above has the following problems.

상기 전열교환기(10)의 절곡판(30)을 구성하는 지지층(62)을 비교적 고가의 소재인 화이버(60)로 형성함으로서 전체적인 환기장치의 생산비용이 상승하게 되고, 이는 제품의 가격경쟁력을 떨어뜨리는 문제점이 된다.By forming the support layer 62 constituting the bent plate 30 of the heat exchanger 10 from the fiber 60, which is a relatively expensive material, the production cost of the entire ventilation device is increased, which lowers the price competitiveness of the product. It becomes a problem to float.

그리고, 상기 지지층(62)을 형성하는 화이버(60)는 투습될 경우 처지는 현상이 발생하게 된다. 상기 지지층(62)이 처지게 되면 공기의 유동이 일어나는 유동통로(40,45)가 막히거나 줄어들게 되어 유로의 손실이 발생하고 이는 전열교환기(10)의 성능을 저해하는 치명적인 문제점이 된다.In addition, the fiber 60 forming the support layer 62 may cause sagging when the fiber 60 is moisture-permeable. When the support layer 62 sags, flow paths 40 and 45 in which air flow occurs are blocked or reduced, resulting in loss of flow paths, which is a fatal problem that impairs the performance of the heat exchanger 10.

상기의 문제점을 해결하기 위해 대한민국 특허 제651284호는 종이소재로 형성된 지지층과 상기 지지층의 표면이 폴리우레탄소재로 도포된 투습층으로 구성되는 전열교환기의 전열교환소재를 제공하고 있다.In order to solve the above problems, Korean Patent No. 651284 provides a total heat exchange material of a total heat exchanger consisting of a support layer formed of a paper material and a moisture-permeable layer coated with a polyurethane material.

그런데 상기 종래기술도 근본적으로는 종이재의 지지층을 포함하고 있어 내구성이 떨어지고, 오랜시간 사용시 내구성의 부재로 인하여 전열성능발현에 악영향을 미치고 있다는 단점이 있다.By the way, the prior art also includes a support layer of the paper material, the durability is low, there is a disadvantage that adversely affects the heat transfer performance due to the absence of durability in use for a long time.

한편, 대한민국 특허원 제2006-47872호는 셀룰로오스계 소재로 되는 전열교환소재를 개시하고 있으나,이 역시 오랜 시간 사용시 상기와 같은 문제점이 발생된다.On the other hand, Korean Patent Application No. 2006-47872 discloses a heat transfer material made of a cellulose-based material, but this also causes such problems when used for a long time.

따라서 본 발명은 상기의 점을 감안하여 안출된 것으로서 본 발명의 목적은 기존 종이 성분의 전열교환소재의 문제점인 열악한 내구성을 개선하고 공기의 혼합을 일으키지 않고 뛰어난 투습성을 발현하여 종이의 부패 및 결로 발생을 개선한 전열교환소재를 제공하는 것이다.Accordingly, the present invention has been made in view of the above point, and an object of the present invention is to improve the poor durability, which is a problem of the total heat exchange material of the existing paper components, and to develop excellent moisture permeability without causing air mixing, resulting in rot and condensation of paper. It is to provide an improved heat transfer material.

상기의 목적을 달성하기 위해 본 발명은 급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재를 섬유형성능이 있는 합성고분자수지를 멜트블라운시켜서 된 것을 사용하는 것이다. 본 발명에서 말하는 전열교환소재는 전열막 및 절곡판의 제조에 사용되는 것을 말한다.In order to achieve the above object, the present invention melt-blown synthetic polymer resin having a fiber forming ability of the total heat exchange material of the total heat exchanger for ventilating apparatus having an air supply passage and an exhaust passage to perform heat exchange and mass exchange between indoor and outdoor air. To use the old one. The heat transfer material referred to in the present invention refers to those used in the manufacture of heat transfer membranes and bent plates.

상기 합성고분자수지는 멜트블라운 가능한 섬유형성능 폴리프로필렌, 폴리부타디엔테레프탈레이트, 폴리아미드 및 폴리우레탄으로부터 선택된 1종을 멜트블라운 방법으로 부직포를 형성시켜서 된 것일 수 있다.The synthetic polymer resin may be obtained by forming a nonwoven fabric by melt blown from one selected from meltblown fibrous polypropylene, polybutadiene terephthalate, polyamide and polyurethane.

다른 관점에서 본 발명은 급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재의 제조방법으로서 멜트블라운 부직포로 가능한 섬유형성능 폴리프로필렌, 폴리부타디엔테레프탈레이트, 폴리아미드 및 폴리우레탄으로부터 선택된 1종을 0.5 ~ 5㎛ 정도의 굵기로 멜트블라운 부직포를 랜덤하게 적층하는 1단계; 및 상기 1단계에서 형성된 소재를 캘린더 가공하는 2단계를 포함함을 특징으로 하는 전열교환기의 전열교환소재의 제조방법을 제공한다.In another aspect, the present invention is a method for producing a total heat exchange material of a total heat exchanger for a ventilator that performs heat exchange and mass exchange between indoor and outdoor air with an air supply passage and an exhaust passage, and is capable of forming a polypropylene and polybutadiene as a melt blown nonwoven fabric. 1 step of randomly laminating a melt blown nonwoven fabric having a thickness of about 0.5 ~ 5㎛ one species selected from terephthalate, polyamide and polyurethane; And it provides a method for producing a total heat exchange material of the total heat exchanger comprising a step of calendering the material formed in the first step.

또한 상기 2단계에서 형성된 소재에 폴리비닐알콜(PVA)수지 또는 폴리우레탄수지를 함침하는 3단계를 더 포함할 수 있다. In addition, the material formed in step 2 may further include a third step of impregnating a polyvinyl alcohol (PVA) resin or polyurethane resin.

또한 상기 2단계 이후 형성된 소재의 일면에 논포러스(Non porous) 타입의 폴리우레탄필름 또는 폴리비닐알콜(PVA)필름을 부착하는 3단계 방법을 포함한다.In addition, it includes a three-step method for attaching a non porous (polyurethane film) or a polyvinyl alcohol (PVA) film on one surface of the material formed after the second step.

본 발명에 의하면, 기존 종이 성분의 전열교환소재의 문제점인 열악한 내구성을 개선하고 공기의 혼합을 일으키지 않고 뛰어난 투습성을 발현하여 종이의 부패 및 결로 발생을 개선한 전열교환소재가 제공된다. 또한 소수성 섬유를 이용하여 세탁 등 물사용이 가능한 전열교환소재가 제공된다.According to the present invention, there is provided a heat transfer material that improves poor durability, which is a problem of the heat transfer material of the existing paper components, and exhibits excellent moisture permeability without causing air mixing to improve the corruption and condensation of paper. In addition, the use of hydrophobic fibers is provided a total heat exchange material that can be used for water, such as washing.

이하 본 발명을 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재를 섬유형성능이 있는 합성고분자수지를 멜트블라운시켜서 된 것을 사용하는 것을 특징으로 한다. 여기서 상기 합성고분자수지는 섬유형성능이 있는 멜트블라운 부직포가 가능한 것이라면 특별히 제한하지 않는다. 예를 들면, 섬유형성능 폴리프로필렌, 폴리부타디엔테레프탈레이트, 폴리아미드 및 폴리우레탄이 있다.The present invention is characterized by using a synthetic polymer resin having a fiber-forming ability of the total heat exchange material of the total heat exchanger for the ventilator to perform heat exchange and mass exchange between indoor and outdoor air with an air supply passage and an exhaust passage. do. Herein, the synthetic polymer resin is not particularly limited as long as the meltblown nonwoven fabric having fiber forming ability is possible. For example, there are fiber forming ability polypropylene, polybutadiene terephthalate, polyamide and polyurethane.

멜트블라운 부직포는 방사조건의 조정에 따라 1인치당 35홀 및 50홀, 100홀 등의 미세 노즐을 통해 1마이크로 수준의 나노급 미세 섬유의 제조가 가능하다. 멜 트블라운에 의한 섬유의 단면은 특별히 제한하지 않는다. 멜트블라운 부직포에 대해서도 잘 알려져 있다.(예, 한국 공개특허 1993-0013311) 본 발명의 방법은 통상의 멜트블라운 부직포 설비를 사용한다.Melt-Brown nonwoven fabric can produce 1 micro level of nano fine fibers through fine nozzles such as 35 holes, 50 holes and 100 holes per inch according to the adjustment of spinning conditions. The cross section of the fiber by the melt blown is not particularly limited. Melt-blown nonwovens are also well known (eg, Korean Patent Laid-Open No. 1993-0013311). The method of the present invention uses a conventional meltblown nonwoven fabric.

다른 관점에서 본 발명의 방법은 급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재의 제조방법에 있어서, 멜트블라운 부직포로 가능한 섬유형성능 폴리프로필렌, 폴리부타디엔테레프탈레이트, 폴리아미드 및 폴리우레탄으로부터 선택된 1종을 0.5 ~ 5㎛ 정도의 굵기로 멜트블라운 시켜서 랜덤하게 적층하는 단계를 포함한다. 또한 본 발명은 상기 단계에서 형성된 소재를 캘린더(Calender)가공하여 두께를 20 ~ 100㎛로 형성하는 2단계를 포함한다. 캘린더 가공에 대해서는 당업자에게 잘 알려져 있으므로 상세한 설명은 하지 않는다. In another aspect, the method of the present invention is a method of manufacturing a total heat exchange material of a total heat exchanger for a ventilator, which has an air supply passage and an exhaust passage and performs heat exchange and mass exchange between indoor and outdoor air, and is capable of forming a fiber of a polypropylene with a meltblown nonwoven fabric. And randomly stacking one selected from propylene, polybutadiene terephthalate, polyamide and polyurethane by meltblowing to a thickness of about 0.5 to 5 μm. In addition, the present invention includes two steps of forming a thickness of 20 ~ 100㎛ by calendering the material formed in the above step (Calender). Since calendering is well known to those skilled in the art, no detailed description is given.

일반적으로 본 발명의 전열교환소재에 사용되는 멜트블라운 부직포 섬유의 섬도는 0.5 ~ 5㎛ 정도가 되며, 적층된 소재의 두께는 후도(캘린더 가공후 및/또는 함침후의 두께, 이하 같음)가 일반적으로 20 ~ 100㎛ 정도가 바람직하다. 적층된 전열교환소재의 두께가 20㎛ 이하일 경우에는 소재의 가공성이 현저히 감소하고, 두께가 100㎛를 초과할 경우에는 투기도 및 투습도 등 전열교환소재의 효율이 현저히 감소하기 때문이다.In general, the fineness of the melt blown nonwoven fabric used in the total heat exchange material of the present invention is about 0.5 to 5 μm, and the thickness of the laminated material is thick (after calendering and / or after impregnation, which is equal to or less). Generally, about 20-100 micrometers is preferable. This is because when the thickness of the laminated heat transfer material is 20 μm or less, the workability of the material is significantly reduced, and when the thickness exceeds 100 μm, the efficiency of the heat exchange material such as air permeability and moisture permeability is significantly reduced.

한편, 상기 적층된 전열교환소재에 투기도 및 투습도를 제어/조정하기 위해 폴리우레탄 필름 또는 폴리비닐알콜(PVA) 필름을 부착할 수 있으며 또는 폴리비닐알콜(PVA)수지 또는 폴리우레탄수지를 함침할 수도 있다.Meanwhile, a polyurethane film or a polyvinyl alcohol (PVA) film may be attached to the laminated electrothermal exchange material to control / adjust the air permeability and moisture permeability, or may be impregnated with a polyvinyl alcohol (PVA) resin or a polyurethane resin. It may be.

또한 본 발명의 전열교환소재는 섬도를 달리하여 제조한 부직포층을 여러겹 부착하여 제조한 것도 포함된다.In addition, the total heat exchange material of the present invention includes those prepared by attaching a plurality of non-woven fabric layers produced by different fineness.

이하 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

실시예 1. Example 1.

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌고분자를 아래의 방사조건으로 용융 방사하여 섬도 1㎛이하의 굵기의 부직포를 생산하여 캘린더(제조사 :동원롤, 온도:95℃, 압력:52kgf/cm2, 속도 16m/min) 처리하여 40g/m2의 부직포원지를 제작하였다.Melt blown non-woven fabrication equipment with 35 holes / inch nozzle form melt-spun polypropylene polymers under the following spinning conditions to produce nonwoven fabrics with a thickness of less than 1 µm and produced calender (manufacturer: Dongwon roll, temperature: 95 ℃, Pressure: 52 kgf / cm 2 , speed 16 m / min) to produce a 40 g / m 2 nonwoven fabric.

캘린더 처리한 상기 원지를 논포러스(Non-Porous) 형태의 친수성 폴리우레탄 R/P (Release Paper)로 15~20g/m2로 부착하여 70 g/m2의 전열교환소자용 부직포를 제작하였다.The calendered base paper was attached at 15 to 20 g / m 2 using a non-porous hydrophilic polyurethane R / P (Release Paper) to prepare a 70 g / m 2 nonwoven fabric for a total heat exchange element.

* 방사 조건Radiation condition

- 고분자: 폴리프로필렌 MI(Melt Index) 1500  Polymer: Polypropylene MI (Melt Index) 1500

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 5.1psi  Air pressure: 5.1psi

- DCD: 13cm  DCD: 13cm

- F/T(Forming Table) 속도: 8m/min  -F / T (Forming Table) speed: 8m / min

실시예 2.Example 2.

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌고분자를 실시예1의 방사조건으로 용융 방사하여 섬도 1㎛이하의 굵기의 부직포를 생산하여 캘린더 처리(제조사 :동원롤, 온도:95℃, 압력:52kgf/cm2, 속도 16m/min)하여 40g/m2의 원지를 제작하였다. 캘린더 처리한 원지를 포러스(Porous) 형태의 폴리우레탄 R/P (Release Paper) 15~20g/m2로 부착하여 65 g/m2의 전열 교환 소자용 부직포를 제작하였다.Melt blown nonwoven fabric manufacturing equipment with a 35-holes / inch nozzle form melt-spun polypropylene polymer under the spinning conditions of Example 1 to produce a nonwoven fabric with a thickness of less than 1 μm, calendered (manufacturer: Dongwon roll, temperature: 95 degreeC, pressure: 52 kgf / cm <2> , speed 16 m / min), and the base paper of 40 g / m <2> was produced. A calendered base paper was attached with a polyurethane R / P (Release Paper) 15-20 g / m 2 in the form of a porous to prepare a 65 g / m 2 nonwoven fabric for a total heat exchange element.

실시예3. Example 3.

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌고분자를 아래의 방사조건으로 용융 방사하여 섬도 3㎛이하 및 5㎛가 되는 20g/m2의 부직포를 각각 생산하여 핫멜트(Hotmelt) 1~1.5g/m2 도포하여 부착(기계 : ITW사, 핫멜트접착제: National Starch사)하여 캘린더 처리(제조사 :동원롤, 온도:90℃, 압력:52kgf/cm2, 속도 16m/min)하여 전열 교환 소자용 부직포를 제작하였다. In the form of a nozzle 35holes / inch of meltblown nonwoven fabric production facility by melt spinning a polypropylene polymer with spinning conditions under the following fineness 3㎛ 5㎛ and the non-woven fabric of 20g / m 2 which is Produce and apply hotmelt 1 ~ 1.5g / m 2 and apply it (machine: ITW, hot melt adhesive: National Starch), calendering (manufacturer: Dongwon roll, temperature: 90 ℃, pressure: 52kgf / cm 2 , 16 m / min) to produce a nonwoven fabric for a total heat exchange element.

* 방사조건* Radiation condition

1) 1Layer(3㎛이하)  1) 1Layer (less than 3㎛)

- 고분자: 폴리프로필렌 MI(Melt Index) 1500Polymer: Polypropylene MI (Melt Index) 1500

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 6.7psi  Air pressure: 6.7 psi

- DCD: 17cm  DCD: 17cm

- F/T 속도: 11.2m/min  -F / T speed: 11.2m / min

2) 2Layer(5㎛이하)  2) 2Layer (less than 5㎛)

- 고분자: 폴리프로필렌 MI(Melt Index) 1500Polymer: Polypropylene MI (Melt Index) 1500

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 7.3psi  Air pressure: 7.3 psi

- DCD: 17cm  DCD: 17cm

- F/T 속도: 11.2m/min  -F / T speed: 11.2m / min

실시예 4Example 4

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌고분자를 아래의 방사조건으로 용융 방사하여 굵기 1㎛이하, 3㎛이하 및 5㎛이하의 폴리프로필렌 15g/m2의 부직포를 각각 생산하여 핫멜트(hotmelt) 2g/m2을 도포하여 순차적으로 적층하여 3층으로 본딩하였다. 본딩한 부직포를 캘린더 가공(제조 사 :동원롤, 온도:90℃, 압력:52kgf/cm2, 속도 14m/min)을 하여 48g/m2의 전열 교환 소자용 부직포를 제작하였다.Melt blown non-woven fabrication equipment with 35 holes / inch nozzle shape. Polypropylene polymer is melt-spun under the following spinning conditions to produce 15 g / m 2 non-woven fabrics of polypropylene 15 g / m 2 or less. Produced by applying a hotmelt (g) 2g / m 2 was laminated sequentially and bonded in three layers. The bonded nonwoven fabric was calendered (manufacturer: Dongwon roll, temperature: 90 ° C, pressure: 52 kgf / cm 2 , speed 14 m / min) to produce a 48 g / m 2 nonwoven fabric for a total heat exchange element.

투기도: 5-3-1 방향Speculation: 5-3-1 directions

투습도Breathable

1) 1Layer(1㎛이하)1) 1Layer (less than 1㎛)

- 고분자: 폴리프로필렌 MI(Melt Index) 1500Polymer: Polypropylene MI (Melt Index) 1500

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 4.7psi  Air pressure: 4.7 psi

- DCD: 17cm  DCD: 17cm

- F/T 속도: 11.2m/min  -F / T speed: 11.2m / min

2) 2Layer(3㎛이하)  2) 2Layer (less than 3㎛)

- 고분자: 폴리프로필렌 MI(Melt Index) 1500Polymer: Polypropylene MI (Melt Index) 1500

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 6.8psi  Air pressure: 6.8 psi

- DCD: 17cm  DCD: 17cm

- F/T 속도: 11.2m/min  -F / T speed: 11.2m / min

3) 3Layer(5㎛이하)  3) 3Layer (less than 5㎛)

- 고분자: 폴리프로필렌 MI(Melt Index) 1500Polymer: Polypropylene MI (Melt Index) 1500

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 7.3psi  Air pressure: 7.3 psi

- DCD: 17cm  DCD: 17cm

- F/T 속도: 11.2m/min  -F / T speed: 11.2m / min

실시예 5Example 5

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌고분자를 실시예4의 방사조건으로 용융 방사하여 굵기 1㎛이하, 3㎛이하 및 5㎛이하의 폴리프로필렌 15g/m2의 부직포를 생산하여 핫멜트(hotmelt) 2g/m2을 도포하여 역순차적으로 적층하여 3층의 부직포를 제작하였다. 본딩한 부직포를 캘린더 가공(제조사:동원롤, 온도:90℃, 압력:52kgf/cm2, 속도 16m/min)을 하여 48g/m2의 전열 교환 소자용 부직포를 제작하였다.Melt blown non-woven fabrication equipment with 35 holes / inch nozzle shape. Polypropylene polymer is melt-spun under the spinning conditions of Example 4, and 15 g / m 2 nonwoven fabric having a thickness of less than 1 µm, less than 3 µm, and less than 5 µm. To produce a hotmelt (hotmelt) 2g / m 2 It was laminated in reverse order to produce a three-layer nonwoven fabric. The bonded nonwoven fabric was calendered (manufacturer: Dongwon roll, temperature: 90 ° C, pressure: 52 kgf / cm 2 , speed 16 m / min) to produce a 48 g / m 2 nonwoven fabric for a total heat exchange element.

실시예 6Example 6

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌을(친수기가 있는 폴리프로필렌(제조사: Ciba,제품명: HL 560) 5% 포함) 아래의 방 사조건으로 방사하여 흡수성 폴리프로필렌 40g/m2의 부직포를 생산하였다. 이 부직포에 수용성폴리우레탄(제조사:켐나인, 상품명:CWP-878 )를 함침하여 스퀴즈롤을 통과하여 60℃에서 열풍건조하였다.Meltblown non-woven fabrication equipment with 35 holes / inch nozzle shape. A nonwoven fabric of / m 2 was produced. The nonwoven fabric was impregnated with a water-soluble polyurethane (manufacturer: chemnine, trade name: CWP-878), passed through a squeeze roll, and dried by hot air at 60 ° C.

* 방사조건* Radiation condition

- 고분자: 폴리프로필렌: 95% MI(Melt Index) 150 Polymer: Polypropylene: 95% MI (Melt Index) 150

친수성폴리프로필렌: 5%(제조사: Ciba, 제품명 HL 560)         Hydrophilic Polypropylene: 5% (Manufacturer: Ciba, Product Name HL 560)

- 방사온도: 250℃  -Spinning temperature: 250 ℃

- 에어압: 4.5psi  Air pressure: 4.5 psi

- DCD: 17cm  DCD: 17cm

- F/T 속도: 8m/min  -F / T speed: 8m / min

실시예 7Example 7

노즐의 형태가 35holes/inch인 멜트블로운 부직포 제조 설비로 폴리프로필렌을 (친수기가 있는 폴리프로필렌(제조사: Ciba,제품명: HL 560) 5% 포함) 실시예 6의 방사조건으로 방사하여 폴리프로필렌 40g/m2의 부직포를 생산하였다. 이 부직포에 수용성 폴리비닐알콜(PVA, 동양제철화학, 중합도 2,400)를 함침하여 스퀴즈롤을 통과하여 60℃에서 열풍건조하였다.Meltblown nonwoven fabrication equipment with a 35-holes / inch nozzle form (using polypropylene (hydrophilic polypropylene (manufacturer: Ciba, product name: HL 560) 5%) 5%) A nonwoven fabric of / m 2 was produced. The nonwoven fabric was impregnated with water-soluble polyvinyl alcohol (PVA, Tong Yang Steel Chemical, polymerization degree 2,400), passed through a squeeze roll, and dried by hot air at 60 ° C.

상기 실시예에서 제조된 소재의 투기도 및 투습도를 아래 표에 나타내었다.The air permeability and water vapor permeability of the material produced in the above examples are shown in the table below.

구분division 투습도(g/m2.24hr)Moisture permeability (g / m2.24hr) 투기도(sec/100ml)Air permeability (sec / 100ml) 비고Remarks 실시예1Example 1 3,8503,850 2,9002,900 실시예2Example 2 3,5003,500 1515 비교예Comparative example 실시예3Example 3 3,3003,300 800800 실시예4Example 4 3,4003,400 1,0201,020 실시예5Example 5 3,3003,300 1,3001,300 실시예6Example 6 3,2003,200 2,0502,050 실시예7Example 7 3,2003,200 2,5002,500

* 투기도: JIS P 8117에 준거하여 걸리(gurly)법에 의해 측정하였다.* Air permeability: It measured by the Gurly method based on JIS P 8117.

* 투습도: JIS Z 0208 25℃, 90% RH의 조건으로 24시간의 투습도를 측정하였다.* Water vapor transmission rate: The moisture vapor transmission rate of 24 hours was measured on condition of JISZ0208 25 degreeC and 90% RH.

* 실시예 3, 4 및 5의 경우 투기도와 투습도는 굵은 섬도층(5㎛이하층)에서부터 얇은 섬도층(3㎛이하층)으로 습도 및 공기가 흐르도록 한 경우의 결과치이다.* In the case of Examples 3, 4 and 5, the air permeability and the water vapor transmission rate are the results obtained when the humidity and air flows from the thick fine layer (5 μm or less) to the thin fine layer (3 μm or less).

멜트블로운 방식으로 생산한 부직포에 non porous 타입, porous 타입의 친수성 PU(polyurethane) 필름을 라미네이팅 방법으로 부착을 하였을 때 기공이 없는 nonporous타입의 필름을 부착한 부직포는 투기도가 2,900sec,투습성이 3,850g/m2.24hr 으로 양호하나, porous 타입으로 필름을 부착한 부직포는 표면의 미세기공으로 공기가 투습도는 양호하나 투기도가 15초로 나타나 적합한 물성이 나타나지 않았다(실시예1,2)When non-porous and porous hydrophilic PU (polyurethane) film is attached to the nonwoven fabric produced by the melt-blown method by laminating method, the non-woven fabric with nonporous type film without pores has air permeability of 2,900 sec. 3,850g / m2.24hr is good, but the porous type nonwoven fabric attached to the film has good air permeability due to micropores on the surface, but the air permeability is 15 seconds, showing no suitable physical properties (Examples 1 and 2)

섬도를 다르게 방사한 2종(5㎛,3㎛)의 멜트블로운 부직포를 2층을 A-B(5㎛)-A-B(3㎛) (A:멜트블로운 부직포 방사면, B:멜트블로운 부직포 벨트면) 형태로 본딩하여 단일층으로 구성된 멜트블로운 부직포보다 다소 투기도와 투습도가 우수한 결과가 나왔다.Two kinds of melt blown nonwoven fabrics with different fineness of spunness (5 μm, 3 μm) are made of two layers of AB (5 μm) -AB (3 μm) (A: Meltblown nonwoven fabric, B: Meltblown nonwoven fabric Belt-bonded) resulted in better air permeability and moisture permeability than melt blown nonwoven fabric composed of a single layer.

섬도가 다르게 방사된 3종(1㎛,3㎛,5㎛)의 멜트블로운 부직포를 A-B(섬도:5㎛)-A-B(섬도:3㎛)-A-B(섬도:1㎛)(A:멜트블로운 부직포 방사면, B:멜트블로운 부직포 벨트면) 형으로 순서대로 순차 적층 본딩하였다. 이는 기공의 크기를 달리하여 물질이 큰층에서 작은 층으로 이동하여 투습성을 높이기 위한 방법이다. 그 결과 투습성과 투기성이 양호하게 나타났다. (실시예 4)Three kinds of melt-blown nonwoven fabrics spun differently in fineness (1 μm, 3 μm, 5 μm) were made into AB (fineness: 5 μm) -AB (fineness: 3 μm) -AB (fineness: 1 μm) (A: Mel Laminated bonding was sequentially performed in the form of a tumbled nonwoven fabric spinning surface, B: meltblown nonwoven belt surface). This is a method for increasing the moisture permeability by moving the material from the large layer to the small layer by changing the pore size. As a result, moisture permeability and air permeability were good. (Example 4)

실시예4와 달리 3Layer를 A-B(섬도:5㎛)-B-A(섬도:3㎛)-A-B(섬도:1㎛) 역순으로 순차 적층하여 본딩함으로 기공을 다층화하고 공기의 흐름 방해를 위해 위와 같이 구성한 결과 투기도는 다소 개선되었으며, 투습도는 실시예 4과 유사하게 나타났다. (실시예 5)Unlike Example 4, 3Layer was laminated in the reverse order of AB (depth: 5 μm) -BA (depth: 3 μm) -AB (depth: 1 μm) in order to multilayer the pores and configure the above to prevent air flow. Results The air permeability was somewhat improved, and the water vapor transmission rate was similar to that of Example 4. (Example 5)

투기성 개선을 위해 폴리프로필렌에 친수성 폴리우레탄 수용액을 함침 처리하여 건조하였다. 멜트 블로운으로 방식을 생산한 부직포의 미세공간에 친수성 폴리우레탄 수용액이 분포하여 투기도 및 투습성이 개선됨을 알 수 있다. (실시예 6) The polypropylene was dried by impregnating a hydrophilic aqueous polyurethane solution to improve air permeability. Hydrophilic polyurethane aqueous solution is distributed in the microcavity of the nonwoven fabric produced by the melt blown method can be seen that the air permeability and moisture permeability is improved. (Example 6)

멜트블로운 방식으로 생산한 부직포에 투기성과 투습성을 개선하기 위해 부직포에 형성되어 있는 미세기공을 조정하고 투습성능을 유지할 수 있는 소재로 PVA필름을 부착하거나 PVA 희석액을 Dipping 처리하면 투기도와 투습성 성능이 향상됨을 알 수 있다 (실시예 7)In order to improve the air permeability and moisture permeability of the nonwoven fabric produced by the melt blown method, it is possible to adjust the micropores formed in the nonwoven fabric and to maintain the moisture permeability. It can be seen that the improvement (Example 7)

도 1 은 일반적인 환기장치의 전열교환기를 보인 개요도.1 is a schematic view showing a total heat exchanger of a general ventilation device.

도 2 는 종래기술에 의한 종이소재로 형성된 전열교환소재의 조직을 확대한 현미경 사진.Figure 2 is an enlarged micrograph of the structure of the total heat exchange material formed of a conventional paper material.

도 3 은 종래 기술에 의한 화이버에 폴리우레탄 멤브레인을 코팅한 소재로 형성된 전열교환소재의 조직을 확대한 현미경 사진.Figure 3 is an enlarged micrograph of the structure of the total heat exchange material formed of a material coated with a polyurethane membrane on the fiber according to the prior art.

도 4 는 본 발명의 실시예 1에 따라 생산한 부직포 포면의 현미경 사진이다.Figure 4 is a micrograph of the nonwoven fabric surface produced according to Example 1 of the present invention.

Claims (9)

급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재에 있어서, In the total heat exchange material of the total heat exchanger for the ventilation device having an air supply passage and an exhaust passage to perform heat exchange and material exchange between indoor and outdoor air, 상기 전열교환소재는 섬유형성능이 있는 합성고분자수지를 섬도를 서로 다르게 멜트블라운시켜서된 부직포원지를 2층이상이 되게 부착한 것임을 특징으로 하는 환기장치용 열교환기의 전열교환소재.The total heat exchange material of the heat exchanger for a ventilator heat exchanger, characterized in that the synthetic polymer resin having a fiber-forming ability is attached to the nonwoven fabric base material by melt blown differently to the two or more layers. 1항에 있어서, 상기 합성고분자수지는 멜트블라운 가능한 섬유형성능 폴리프로필렌, 폴리부타디엔테레프탈레이트, 폴리아미드 및 폴리우레탄으로부터 선택된 1종인 것임을 특징으로 하는 환기장치용 열교환기의 전열교환소재.The total heat exchange material of the heat exchanger of the ventilation device according to claim 1, wherein the synthetic polymer resin is one selected from meltblown fiber-forming polypropylene, polybutadiene terephthalate, polyamide and polyurethane. 급기통로와 배기통로를 구비하여 실내외 공기간의 열교환 및 물질교환을 수행하는 환기장치용 전열교환기의 전열교환소재의 제조방법에 있어서,In the manufacturing method of the total heat exchange material of the total heat exchanger for a ventilation device having an air supply passage and an exhaust passage to perform heat exchange and material exchange between indoor and outdoor air, 멜트블라운 가능한 섬유형성능 폴리프로필렌, 폴리부타디엔테레프탈레이트, 폴리아미드 및 폴리우레탄으로부터 선택된 1종을 0.5 ~ 5㎛ 정도의 굵기로 멜트블라운 시켜서 랜덤하게 적층하는 1단계 및Melt-Blownable Fiber Forming Capability Polypropylene, Polybutadiene terephthalate, Polyamide and Polyurethane One step of randomly stacking by melt-blowing to a thickness of about 0.5 ~ 5㎛ and 상기 1단계에서 형성된 소재를 캘린더가공하는 2단계를 포함함을 특징으로 하는 전열교환기의 전열교환소재의 제조방법.Method for producing a total heat exchange material of the total heat exchanger comprising the step of calendering the material formed in the first step. 제 3항에 있어서, 상기 2단계에서 형성된 소재에 폴리비닐알콜(PVA)수지 또 는 폴리우레탄수지를 함침하는 3단계를 더 포함함을 특징으로 하는 전열교환기의 전열교환소재의 제조방법.The method of claim 3, further comprising the step of impregnating a polyvinyl alcohol (PVA) resin or a polyurethane resin in the material formed in the second step. 제3항에 있어서, 상기 2단계에서 형성된 소재의 일면에 논포러스(Non porous) 타입의 폴리우레탄필름 또는 폴리비닐알콜(PVA) 필름을 부착하는 3단계를 더 포함함을 특징으로 하는 전열교환기의 전열교환소재의 제조방법.[4] The electrothermal heat exchanger of claim 3, further comprising: attaching a non porous type polyurethane film or a polyvinyl alcohol (PVA) film to one surface of the material formed in the second step. Method for producing a total heat exchange material. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070133031A 2007-12-18 2007-12-18 Material for exchanging heat and air and its manufacturing method KR100834936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070133031A KR100834936B1 (en) 2007-12-18 2007-12-18 Material for exchanging heat and air and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070133031A KR100834936B1 (en) 2007-12-18 2007-12-18 Material for exchanging heat and air and its manufacturing method

Publications (1)

Publication Number Publication Date
KR100834936B1 true KR100834936B1 (en) 2008-06-03

Family

ID=39769955

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070133031A KR100834936B1 (en) 2007-12-18 2007-12-18 Material for exchanging heat and air and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100834936B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110973A (en) * 2014-07-16 2014-10-22 袁野 Evaporative cooling core based on corrugated paper and flat plates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366792A (en) * 1991-12-27 1994-11-22 Mitsui Petrochemical Industries, Ltd. Laminated three layer non-woven fabric with improved interface and process for producing the same
JPH11189999A (en) * 1997-12-19 1999-07-13 Tokushu Paper Mfg Co Ltd Whole heat exchanger paper and element for whole heat exchanger using the same
US6145588A (en) * 1998-08-03 2000-11-14 Xetex, Inc. Air-to-air heat and moisture exchanger incorporating a composite material for separating moisture from air technical field

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366792A (en) * 1991-12-27 1994-11-22 Mitsui Petrochemical Industries, Ltd. Laminated three layer non-woven fabric with improved interface and process for producing the same
JPH11189999A (en) * 1997-12-19 1999-07-13 Tokushu Paper Mfg Co Ltd Whole heat exchanger paper and element for whole heat exchanger using the same
US6145588A (en) * 1998-08-03 2000-11-14 Xetex, Inc. Air-to-air heat and moisture exchanger incorporating a composite material for separating moisture from air technical field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110973A (en) * 2014-07-16 2014-10-22 袁野 Evaporative cooling core based on corrugated paper and flat plates

Similar Documents

Publication Publication Date Title
US9517433B2 (en) Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same
JP5230821B2 (en) Total heat exchanger and method of manufacturing partition plate used therefor
CN102076401B (en) Composite membrane and moisture adjustment module using the same
KR102487103B1 (en) Filter media and composite filter comprising the same
US20030129910A1 (en) Multiple-layered nonwoven constructs for improved barrier performance
CN110087754B (en) Filter medium, method for producing same, and filter unit including same
KR20050013157A (en) Moisture-Permeable, Waterproof and Windproof Laminated Sheet, Interlining Using the Same, and Garment Containing the Interlining
KR100834936B1 (en) Material for exchanging heat and air and its manufacturing method
KR102063675B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR20170123814A (en) Conjugate spinning non-woven fabric for waterproof breathable performance control in multi-layer structure
JP6925567B1 (en) A partition plate, a total heat exchange element using the partition plate, a total heat exchanger, and a method for manufacturing the partition plate.
US11839855B2 (en) Filter medium, manufacturing method therefor, and filter unit including same
KR20150076665A (en) Composite fiber aggregate for total heat exchange element, Preparation method thereof and total heat exchange element comprising the same
KR102621800B1 (en) Nanofiber filter and preparation method thereof
KR101929841B1 (en) Textile fabric for cloths with moisture permeability and water-proof properties
KR20130009081A (en) Preparation method of total heat exchanger element by melt blown nonwoven
KR102001863B1 (en) A manufacturing method of electrospun nano-web fabric integrated with bonding process
KR20100074459A (en) Polyester nonwoven fabrics and preparation method thereof
KR102201031B1 (en) Thermokeeping fabric
CN111530299B (en) Support material and semipermeable membrane composite
US20230166217A1 (en) Pleated composite pervaporation laminate and method of making same
JP2002067205A (en) Moisture permeable waterproof laminate cloth having excellent antidewing properties
WO2021152839A1 (en) Partitioning plate, total heat exchange element, total heat exchanger, and method for manufacturing partitioning plate
JP2015172263A (en) Moisture-permeable water-proof fabric
KR20100074458A (en) Polyester nonwoven fabrics and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140527

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150513

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160526

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 12