KR100831813B1 - The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method - Google Patents

The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method Download PDF

Info

Publication number
KR100831813B1
KR100831813B1 KR1020070035706A KR20070035706A KR100831813B1 KR 100831813 B1 KR100831813 B1 KR 100831813B1 KR 1020070035706 A KR1020070035706 A KR 1020070035706A KR 20070035706 A KR20070035706 A KR 20070035706A KR 100831813 B1 KR100831813 B1 KR 100831813B1
Authority
KR
South Korea
Prior art keywords
base oil
aromatic extract
oil
lead
aromatic
Prior art date
Application number
KR1020070035706A
Other languages
Korean (ko)
Inventor
조용래
박삼룡
박철우
안지애
Original Assignee
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이에너지 주식회사 filed Critical 에스케이에너지 주식회사
Priority to KR1020070035706A priority Critical patent/KR100831813B1/en
Application granted granted Critical
Publication of KR100831813B1 publication Critical patent/KR100831813B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/06Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A method for preparing versatile naphthenic lube oil of excellent performance is provided to make use of an aromatic extract that is produced from the production of paraffin-based lube oil using an atmospheric residue as a material. Versatile naphthenic lube oil is prepared by: modifying an aromatic extract through the addition of hydrogen(HT), the aromatic extract being produced from a solvent de-aromatic process following a first vacuum distillation process(VDU 1) on paraffin-based atmospheric residue; and carrying out a second vacuum distillation process(VDU 2) to separate the modified oil in diverse viscosity levels. The hydrogen addition is carried out under conditions of at least 1.0/hr fluid space speed, 1800psig pressure, and 350deg.C, in presence of a Ni-Mo catalyst.

Description

방향족 추출물을 이용한 납센 윤활기유 제조방법 및 이에 따른 납센 윤활기유{The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method}The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method}

도 1은 본 발명의 일 실시예에 따른 납센 윤활기유의 제조 공정을 나타내는 개략도이다.1 is a schematic view showing a process for producing a lead-based lube base oil according to an embodiment of the present invention.

도 2는 본 발명의 타 실시예에 따른 납센 윤활기유의 제조 공정을 나타내는 개략도이다.Figure 2 is a schematic diagram showing a process for producing a lead-based lube base oil according to another embodiment of the present invention.

※도면의 주요부분에 대한 부호의 설명※ Explanation of symbols for main parts of drawing

AR : 상압잔사유 VDU 1 : 감압증류공정AR: Pressure residue VDU 1: Pressure distillation process

SDA : 용제탈청공정 VR : 감압잔사유 SDA: Solvent degreasing process VR: Decompression residue

SEU : 용제탈방향족공정 DAE : 증류유분 방향족 추출물SEU: solvent dearomatic process DAE: distillate fraction aromatic extract

RAE : 잔사유 방향족 추출물 CAE : 복합 방향족 추출물 RAE: Residual Aromatic Extract CAE: Complex Aromatic Extract

HT : 수소첨가 개질반응 공정 VDU 2 : 감압증류공정 HT: Hydrogen Reforming Process VDU 2: Vacuum Distillation Process

SDW : 용제탈랍공정 HDF : 수소첨가 마무리공정SDW: Solvent Dropping Process HDF: Hydrogen Finishing Process

FS : 분별증류공정 FS: Fractional Distillation Process

본 발명은 방향족 추출물을 이용한 납센 윤활기유 제조방법 및 이에 따른 납센 윤활기유에 관한 것으로, 보다 구체적으로는 파라핀계 윤활기유 제조시 부산되는 방향족 추출물을 공급원료로하여 수소첨가반응법에 의해 납센계 탄화수소 화합물을 주성분으로 하는 납센 윤활기유의 제조방법 및 이에 따른 납센 윤활기유에 관한 것이다.The present invention relates to a method for producing naphtha lubricating base oil using an aromatic extract and to a naphtha lubricating base oil according to the present invention, and more specifically, to a naphtha-based hydrocarbon compound by a hydrogenation reaction using an aromatic extract by-product as a feedstock for the production of paraffinic base oil. The present invention relates to a method for producing lead-based lube base oil and a lead-based lube base oil.

전통적으로 납센계 윤활기유는 납센계 원유시 얻어지는 상압잔사유를 추가 정제하여 얻고 있는데, 이는 납센계 탄화수소가 본질적으로 지니는 저온에서의 우수한 유동성과 우수한 용해력을 확보하기 위해 석유 원유 자체에 납센계 탄화수소가 많은 것을 출발물질로 하여 원하는 성상의 오일제품을 확보하고 있다. 이렇게 얻은 납센 윤활기유는 오일이 열전달 매체로서의 기능과 절연기능을 필요로 하는 전기절연유 용도나, 고무 제품을 합성하거나 가공하는 과정의 고무가공유 용도, 또는 납센계 오일일 지니는 저온에서의 유동성과 우수한 용해력을 필요로 하는 특수용도의 윤활유제품의 기초오일로 사용되고 있다. 이러한 오일을 확보하기 위해서는 일반적으로 원유 자체에 납센계 탄화수소 성분이 풍부한 납센계 석유 원유를 출발물질로 하여, 원하는 납센계 윤활기유 제품을 제조하게 된다. Traditionally, the lead-based lubricating base oil is obtained by further refining the atmospheric residue oil obtained from the lead-based petroleum oil. Many have been used as starting materials to secure oil products of desired properties. The lead-based lube base oil thus obtained has excellent fluidity and excellent solubility at low temperatures, such as the use of electrical insulating oils where the oils need to function as a heat transfer medium and for insulating functions, as well as for the use of rubber in the process of synthesizing or processing rubber products, or as lead-based oils. It is used as a base oil for lubricating oil products for special applications that require oil. In order to secure such an oil, a desired lead-based lubricating base oil product is generally manufactured using lead-based petroleum crude oil, which is rich in lead-based hydrocarbon components in crude oil itself.

그러나 종래 기술에 따른 납센계 윤활기유는 결국 납센 원유로부터 얻어지는 것이므로, 최초 원료 물질인 원유의 경제적 확보 여부와 원유의 성상에 따라 경제성과 제품의 성상 성능이 결정된다. 또한 현재 납센 원유 매장량은 전세계 석유 원 유 매장량의 2~3%에 불과하며, 지리적 위치 또한 베네수엘라, 미국(텍사스, 캘리포니아, 루이지애나, 아칸사스), 영국 북해지역, 중국(발해만, 가랍마의, 요하, 대항) 등으로 제한적이어서 납센 원유의 조달이 갈수록 원활하지 못한 실정이다. 이로 인해, 지난 15년간 세계 유수의 석유회사인 Exxon, Sun, Chevron, Texaco, Shell 등은 납센 윤활기유 공장을 폐쇄하였다. 이와 같이, 납센 원유를 근간으로 하는 납센 윤활기유를 경제적으로 확보하기 어려워지고, 납센계 기초유의 원활한 공급이 이루어지지 않음으로 인하여 가격이 상승하고 있는 추세이다. However, since the lead-based lubricating base oil according to the prior art is finally obtained from the lead-based crude oil, the economic performance and the performance characteristics of the product is determined according to the economic security of the crude oil as the first raw material and the properties of the crude oil. In addition, current lead-based crude oil reserves represent only 2-3% of the world's oil reserves, and geographical locations include Venezuela, the United States (Texas, California, Louisiana, and Arkansas), the North Sea of the United Kingdom, China (Balhae Bay, Gabor, Yoha, As a result, the supply of lead-based crude oil is becoming more and more difficult. As a result, the world's leading petroleum companies, Exxon, Sun, Chevron, Texaco and Shell, have shut down their lead-based lube base oil plants for the past 15 years. As such, it is difficult to economically secure lead-based lube base oil based on lead-based crude oil, and the price is rising due to the failure to smoothly supply lead-based base oil.

납센계 오일의 정의는 석유산업의 특성으로 인하여 정확하게 정의되어 있지 않으며, 관용적으로 납센 원유로부터 얻은 납센계 탄화수소가 풍부한 오일로서 다음과 같은 특성을 지닌다. The definition of lead-based oils is not precisely defined due to the nature of the petroleum industry. It is conventionally rich in lead-based hydrocarbons derived from naphtha crude oil and has the following characteristics.

파라핀계 탄소 비율이 55~60% 이하. Paraffinic carbon ratio is 55 to 60% or less.

비중 값이 0.876이상 0.934이하. Specific gravity value is 0.876 or more and 0.934 or less.

파라핀계 오일 대비 용해력이 우수함. Excellent solubility compared to paraffinic oil.

파라핀계 오일 대비 왁스 함량이 적어 저온 유동성이 우수함.Excellent low temperature fluidity due to less wax content than paraffinic oil.

파라핀계 오일 대비 열전도도가 우수함. Excellent thermal conductivity compared to paraffinic oils.

파라핀계 오일 대비 휘발성이 높음. Higher volatility than paraffinic oils.

전세계 석유 원유의 97~98%를 차지하는 풍부한 원료 조달이 가능한 파라핀계 오일 대비 납센계 오일은 희소성이 높아지고 있다. 따라서, 납센계 오일 제조를 위한 새로운 공급원료의 발굴과 이를 활용한 제조기술 개발이 필요한 실정이다. Compared to paraffinic oil, which can supply abundant raw materials, which account for 97-98% of the world's petroleum oil, lead-based oil is becoming more rare. Therefore, it is necessary to find a new feedstock for the production of lead-based oil and to develop a manufacturing technology using the same.

이에 본 발명에서는 원천적으로 원료 조달이 용이한 파라핀계 원유로부터 납센윤활기유를 경제적으로 확보하기 위하여 예의 연구한 결과, 파라핀계 원유를 상압에서 증류하여 남는 상압잔사유를 공급원료로 파라핀계 윤활기유를 제조하는 단위공정인 용제 탈방향족 공정에서 부산되는 방향족 추출물을 공급원료로 하여 수소첨가반응, 감압증류 공정 등을 수행함으로써 다양한 점도등급의 경제적인 납센 윤활기유를 제조할 수 있음을 확인하였다. Accordingly, in the present invention, as a result of earnest research to economically secure lead-based lubricating base oil from paraffinic crude oil, which is easy to source raw materials, paraffin-based lubricating oil is used as a feedstock. It was confirmed that economical lead-based lube base oils of various viscosity grades can be prepared by performing hydrogenation reaction and reduced pressure distillation process using the aromatic extract produced from the solvent dearomatic process, which is a unit process, as a feedstock.

따라서 본 발명의 목적은 원료가 원천적으로 풍부한 파라핀계 원유의 상압잔사유를 공급원료로한 파라핀계 윤활기유 제조 공정 중에서 부산되는 방향족 추출물을 공급원료로 우수한 성능을 지닌 납센계 윤활기유를 경제적으로 제조하는 방법을 데 제공하는데 있다. Accordingly, an object of the present invention is to economically produce lead-based lube base oil having excellent performance as a feedstock with aromatic extracts from the paraffin-based lube base oil manufacturing process using the atmospheric residue of paraffin-based crude oil having abundant raw materials as a feedstock. To provide a way to do that.

본 발명의 또 다른 목적은 상기의 제조방법을 이용하여 다양한 용도로 사용되는 납센 윤활기유를 제공함에 있다. Still another object of the present invention is to provide a lead-based lube base oil that is used for various purposes by using the above production method.

상기 목적을 달성하기 위한 본 발명에 따른 납센 윤활기유의 제조방법은, 파라핀계 상압잔사유에 대한 제 1 감압증류공정(VDU1), 용제탈방향족공정(SEU)로부터 부산되는 방향족 추출물을 수소첨가반응으로 개질시키는 단계(HT); 및According to the present invention, a method for preparing a lead-based lube base oil according to the present invention includes hydrogenation of aromatic extracts from the first vacuum distillation process (VDU1) and solvent de-aromatic process (SEU) for paraffinic atmospheric residue oil. Modifying (HT); And

상기 개질된 유분을 다양한 점도로 분리하기 위한 제 2 감압증류 단계(VDU2)를 포함한다. And a second vacuum distillation step (VDU2) for separating the reformed fraction into various viscosities.

상기 다른 목적을 달성하기 위한 납센 윤활기유는 40℃에서의 동점도 6센티 스톡스 이상 750센티스톡스 이하, 비중 0.876 내지 0.934이며, 파라핀계 탄소 비율 55% 이하의 성상을 나타낸다.The lead-based lube base oil for achieving the above another object has a kinematic viscosity at 40 ° C. of 6 centistokes or more and 750 centistokes or less, specific gravity 0.876 to 0.934, and exhibits a paraffinic carbon ratio of 55% or less.

이하 본 발명을 첨부된 도면을 참조하여 좀 더 구체적으로 살펴보면 다음과 같다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 따른 납센 윤활기유를 제조방법은, 도 1에 나타난 바와 같이, 기존의 파라핀계 윤활기유를 제조하는 공정 즉, 파라핀계 상압잔사유의 감압증류공정(VDU1), 용제탈방향족공정(SEU), 용제탈납공정(SDW), 수소첨가마무리공정(HDF)및 분별증류공정(FS)을 포함하는 파라핀계 윤활기유의 제조공정에서, 상기 용제탈방향족공정(SEU)로부터 부산되는 방향족 추출물을 수소첨가반응의 공급원료로 이용함으로써 보다 경제적인 납센 윤활기유 제조방법이 제공된다. As illustrated in FIG. 1, a method for preparing a lead-based lubricant base oil according to the present invention includes a process for preparing a conventional paraffinic lubricant base oil, that is, a reduced pressure distillation process (VDU1) of a paraffinic atmospheric residue oil, and a solvent de-aromatic process (SEU). ), Hydrogenated aromatic extracts from the solvent de-aromatic process (SEU) in the manufacturing process of paraffinic lubricating base oil including solvent desorption process (SDW), hydrofinishing process (HDF) and fractional distillation process (FS). Use as a feedstock for the reaction provides a more economical method for producing lead-based lube base oil.

이하 본원발명을 각 공정별로 더욱 자세히 설명한다. Hereinafter, the present invention will be described in more detail for each process.

본원발명에 따른 공급원료는 앞서 살펴본 바와 같이, 파라핀계 윤활기유의 제조공정 중 용제 탈방향족 공정(SEU)에서 부산되는 방향족 추출물을 이용하며, 분리된 방향족 추출물 이외의 물질은 통상적인 파라핀계 윤활기유 공정에 도입된다. As described above, the feedstock according to the present invention uses an aromatic extract by-produced in a solvent dearomatic process (SEU) during the manufacturing process of the paraffinic base oil, and materials other than the separated aromatic extract are conventional paraffinic base oil processes. Is introduced.

본 발명에 있어서, 상기 '방향족 추출물'은 석유 원유를 증류할 경우에 얻어지는 상압잔사유를 이용하여 윤활기유를 제조하는 용제 탈방향족 공정에서 부산되는 40℃에서의 동점도 170~5,100 센티스톡스이며, 비중 0.98 이상, 방향족 함량 70 중량% 이상의 방향족 탄화수소 혼합물을 의미한다.In the present invention, the 'aromatic extract' is a kinematic viscosity of 170 to 5,100 centistokes at 40 ° C. which is by-produced in a solvent dearomatic process for preparing a lubricating base oil using atmospheric residue obtained when distilling petroleum crude oil. An aromatic hydrocarbon mixture of at least 0.98 and an aromatic content of at least 70% by weight.

상기 분리된 방향족 추출물 중에서 증류유분(Distillate)으로부터 얻어진 방향족 부산물은 증류유분 방향족 추출물(DAE, Distillate Aromatic Extract)이라 하고, 감압잔사유로부터 얻어진 방향족 부산물은 잔사유 방향족추출물(RAE, Residue Aromatic Extract)이라 한다. Among the aromatic extracts, the aromatic by-products obtained from distillate (Distillate) are called Distillate Aromatic Extract (DAE), and the aromatic by-products obtained from vacuum residue are called Residue Aromatic Extract (RAE). do.

한편, 여러 방향족 추출물을 혼합한 복합 방향족 추출물(CAE, Composite Aromatic Extract)를 공급원료로 본 발명에 따라 수행할 경우 동시에 여러 점도등급의 납센 윤활기유 확보가 가능한데, 복합 방향족 추출물이란 종래의 파라핀계 윤활기유 공장에서 부산되는 방향족 추출물이 하나의 저장탱크에 집하시키게 되어 발생되는 통상적인 상용공장의 방향족 추출물로서, 하기 표 1은 일본석유 주식회사(Nippon Oil Corporation)의 복합 방향족 추출물 시료의 성상이며 이를 후술하는 실시예 3의 공급원료로 활용하였다. On the other hand, when performing a composite aromatic extract (CAE, Composite Aromatic Extract) mixed with several aromatic extracts according to the present invention as a feedstock, it is possible to secure various viscosity grade naphtha lube base oil at the same time, the composite aromatic extract is a conventional paraffinic lubricator As an aromatic extract of a conventional commercial plant generated by the aromatic extracts from the oil plant collected in one storage tank, the following Table 1 is the characteristics of the composite aromatic extract sample of Nippon Oil Corporation (Nippon Oil Corporation), which will be described later. It was used as a feedstock of Example 3.

CAE 1CAE 1 비중 @ 15/4℃ Specific Gravity @ 15/4 ℃ 0.9980.998 동점도 @40℃, cSt Kinematic Viscosity @ 40 ℃, cSt 560.4560.4 유동점, ℃  Pour point, ℃ 17.517.5 인화점, ℃  Flash point, ℃ 260260 황함량, wt% Sulfur content, wt% 5.05.0 방향족탄화수소, wt% Aromatic hydrocarbons, wt% 91.391.3 다환방향족 함량, wt% Polyaromatic content, wt% 2121

이들의 복합형태 또는 단일형태의 방향족 추출물을 수소첨가반응공정(HT)으로 보내어 수첨반응 촉매 및 수소 유입 하에 방향족 탄화수소 구조를 납센 탄화수소로 전환시키게 되는데, 상기에서 사용가능한 수첨 반응 촉매는 니켈-텅스텐(Ni-W), 니켈-몰리브덴(Ni-Mo) 등으로서, 이중 니켈-몰리브덴계(Ni-Mo)촉매가 바람직하게 사용될 수 있으며, 수소 유입 하에 유액 공간 속도(LHSV: Liquid Hourly Space Velocity)는 1.0/hr이하, 바람직하게는 0.5~1.0/hr이며, 압력은 1,800psig 이상, 바람직하게는 2,000~2,400psig이고, 온도 350℃이상, 바람직하게는 380~400℃의 조건으로 처리한다. These complex or mono-type aromatic extracts are sent to a hydrogenation reaction (HT) to convert the aromatic hydrocarbon structure into a lead-sensed hydrocarbon under hydrogenation catalyst and hydrogen inflow. The hydrogenation catalyst usable here is nickel-tungsten ( Ni-W), nickel-molybdenum (Ni-Mo), and the like, a double nickel-molybdenum-based (Ni-Mo) catalyst may be preferably used, and the liquid hourly space velocity (LHSV) is 1.0 under hydrogen inflow. / hr or less, preferably 0.5 to 1.0 / hr, the pressure is 1,800 psig or more, preferably 2,000 to 2,400 psig, and is treated under conditions of a temperature of 350 ° C or more, preferably 380 to 400 ° C.

이때 유액 공간 속도가 1.0/hr를 초과하거나, 반응압력이 1,800psig미만이거나, 반응온도 350℃미만인 경우는 수소첨가 반응이 충분히 이루어지지 않아 방향족 탄화수소가 납센 탄화수소로 전환되기에 바람직하지 않다.At this time, when the fluid space velocity exceeds 1.0 / hr, the reaction pressure is less than 1,800 psig, or the reaction temperature is less than 350 ℃ it is not preferable to convert the aromatic hydrocarbon to lead-sen hydrocarbon because the hydrogenation reaction is not performed sufficiently.

상기 수첨반응공정을 거치게 되면, 파라핀계 탄화수소의 탄소수 비율이 55%이하, 40℃에서의 동점도 6 내지 750센티스톡스, 비중 0.876 내지 0.934인 유분으로 개질되며, 이를 별도의 감압 증류공정(이하, '2 감압증류공정'이라 함: VDU2)으로 보내어 납센 윤활기유로서 적합한 다양한 점도 등급으로 분리시키게 되는데, 상기 제 2 감압증류공정(VDU2)은 탑정압력 70 내지80mmHg, 탑정온도 70 내지 90℃ 및 탑저압력 140 내지 160mmHg, 탑저온도 300 내지 360℃로 수행된다. 상기 제 2감압증류 공정은 당업계의 일반적인 감압증류 공정조건에 부합한다.After the hydrogenation reaction, the carbon number of the paraffinic hydrocarbon is 55% or less, the kinematic viscosity at 40 ℃ 6 to 750 centistokes, the specific gravity 0.876 to 0.934 is modified to an oil, which is a separate vacuum distillation process (hereinafter, ' 2 'distillation under reduced pressure distillation process': VDU2) to be separated into various viscosity grades suitable as lead-based lubricating base oil. The second reduced pressure distillation process (VDU2) has a column top pressure of 70 to 80 mmHg, tower top temperature of 70 to 90 ° C, and tower low pressure. 140 to 160 mmHg, the bottom temperature is performed at 300 to 360 ℃. The second reduced pressure distillation process meets the general reduced pressure distillation process conditions in the art.

본 발명에 따른 납센 윤활기유 제조방법은 상기 제 2감압증류 공정 후, 윤활기유의 사용목적 등을 고려하여, 용제 탈랍시키는 단계(SDW), 수소첨가 마무리 반응단계(HDT) 및 분별증류단계(FS)의 순서로 이루어지는 후처리 공정 중에서 하나 또는 그 이상을 선택적으로 더욱 포함하는 것이 바람직하다. 즉, 상기 후처리 공정에서 상기 제 2 감압증류공정을 거친 윤활기유가, 도 1 또는 도 2에서 개시되는 바와 같이 용제 탈랍단계(SDW), 수첨마무리단계(HDT), 분별증류단계(FS)의 공정으로 개별적으로 도입되어 원하는 성상이나 조건으로 후처리 되도록 하는 것이 가능하며, 보다 고품질의 제품을 수득하기 위하여 용제 탈랍단계(SDW)를 거친 후 수첨마무리단계(HDT) 및/또는 분별증류단계(FS)를 거칠 수 있고, 수첨마무리단계(HDT) 후 분별증류단계(FS)를 거치는 것도 가능하며, 상기 후처리 단계 모두를 상기 공정 순서에 따라 거치도록 설계되는 것도 가능하다. According to the present invention, a method for preparing lead-based lube base oil includes, after the second reduced pressure distillation process, a solvent dewaxing step (SDW), a hydrogenation finishing reaction step (HDT), and a fractional distillation step (FS) in consideration of the purpose of use of the lubricant base oil. It is preferable to further optionally include one or more of the post-treatment step consisting of the order of. That is, the lubricating base oil which has undergone the second reduced pressure distillation step in the post-treatment process is a process of solvent dewaxing step (SDW), hydrofinishing step (HDT), fractional distillation step (FS) as disclosed in FIG. It is possible to be individually introduced into the post-treatment to the desired properties or conditions, and after the solvent dewaxing step (SDW) to obtain a higher quality product, the hydrofinishing step (HDT) and / or fractional distillation step (FS) It may be rough, may be subjected to the fractional distillation step (FS) after the hydrofinishing step (HDT), it may be designed to pass all of the post-treatment step in accordance with the process sequence.

상기 제 2 감압 분류공정을 거친 유분의 전부 또는 일부를, 용도에 따라 저온 유동성을 확보하기 위해 유동성을 저하시키는 왁스와 같은 직쇄형 파라핀계 탄화수소 화합물을 기존의 파라핀계 윤활기유 공정의 용제탈랍공정(SDW)으로 보내어 유동점이 -12.5℃ 이하가 되도록 한다. 상기 용제탈랍 공정에서 사용 가능한 용제로는 메칠-이소부틸-케톤, 프로판, 메칠-에칠 케톤 등이 있으며, 바람직하게는 메칠-에칠 케톤(MEK, Methyl-Ethyl Ketone)을 적용할 수 있다. 한편 용제 대비 오일의 혼합비는 2.0~3.0로서, 혼합한 다음 냉각하여 2단계 휠터를 통해 오일의 유동성을 저해하는 왁스 성분을 제거함으로써 수행된다. All or a part of the oil that has undergone the second pressure-reduced fractionation process, a straight-chain paraffinic hydrocarbon compound, such as wax to reduce the fluidity in order to ensure low-temperature fluidity according to the use of the solvent stripping process of the conventional paraffinic lubricant base oil process ( SDW) so that the pour point is below -12.5 ℃. Solvents usable in the solvent dewaxing process include methyl-isobutyl-ketone, propane, methyl-ethyl ketone, and the like. Methyl-ethyl ketone (MEK) may be preferably applied. Meanwhile, the mixing ratio of the oil to the solvent is 2.0 to 3.0, which is performed by mixing and cooling to remove the wax component that inhibits the fluidity of the oil through a two-stage filter.

또한 용도에 따라 산성물질 및 기타 불순물을 제거하여 색상을 개선시키고 열이나 빛에 대한 안정성을 향상시키기 위해 니켈과 텅스턴계 촉매를 충진한 수소첨가 마무리 공정(HDF)을 통하여 다환 방향족 화합물과 헤테로(황, 질소, 산소 등) 화합물 등을 제거하도록 하며, 상기 수소첨가 마무리 공정에서는 팔라듐, 니켈-텅스텐 등의 촉매가 사용될 수 있으나 바람직하게는 니켈-텅스턴계((Ni-W) 촉매가 사용될 수 있다. 상기 촉매와 함께 수소 유입 하에 유액공간속도 1.0~2.0/hr, 압력 1,500~2,500psig, 바람직하게는 1,900~2,200psig, 온도 180~320℃, 바람직하게는 220~280℃의 조건에서 상기 공정이 수행되며, 또한 휘발성을 낮추어 화재 및 취급의 안전성을 향상시키기 위해 분별 증류공정(FS)을 통하여 경질유분을 제거하여 납센계 윤활기유를 얻게 되는 데, 상기 납센계 윤활기유는 종래의 납센 원유로부터 제조된 제품과 동등 이상의 성상과 조성을 지니게 된다. Also, depending on the application, polycyclic aromatic compounds and hetero (polycyclic aromatic compounds) and hetero ( Sulfur, nitrogen, oxygen, etc.) compounds, such as palladium, nickel-tungsten catalyst may be used in the hydrogenation finishing process, but preferably nickel-tungsten-based ((Ni-W) catalyst) The process is carried out under the conditions of the fluid space velocity 1.0 ~ 2.0 / hr, pressure 1,500 ~ 2,500 psig, preferably 1,900 ~ 2,200 psig, temperature 180 ~ 320 ℃, preferably 220 ~ 280 ℃ under hydrogen inlet with the catalyst This is carried out, and in order to lower the volatility to improve the safety of fire and handling to remove light oil through a fractional distillation process (FS) to obtain a lead-based lubricating base oil, the lead-based lubrication The vigorous oil will have properties and compositions that are equal to or greater than products made from conventional leaded crude oil.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하지만 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples.

<제조예 1><Manufacture example 1>

본 발명의 공급원료인 방향족 추출물은 다음과 같이 도 1에 나타낸 종래의 파라핀계 원유의 상압증류시 증류탑 하부에 남는 상압잔사유를 공급원료로 감압증류공정(VDU1)에 주입하여 탑정압력 75mmHg, 탑정온도 80℃ 및 탑저압력 150mmHg, 탑저온도 350℃로 감압 증류하여 증류추출물 60D(Distillate, 증류유분) 12.0부피%, 100D 15.5부피%, 150D 16.3부피%와 500D 14.2부피% 그리고 탑저 제품인 150VR(Vacuum Residue, 감압잔사유) 42.0LV%를 얻었으며, 이들 여러 점도등급의 증류유분 및 감압잔사유를 확보하여 각각의 저장탱크에 반제품으로 보관하며, 이들을 각기 용제탈방향족 공정에 투여하게 된다. 용제탈방향족공정(SEU)에서 용제로는 퓨후럴(Fufural)을 적용하여 상기 60D, 100D, 150D, 500D 증류유분(Distillates) 및 감압잔사유(Vacuum Residue) 150VR에 대하여 용제 대비 오일의 혼합비 2.2~4.0, 오일온도 83~84℃, 용제온도 118~128℃ 조건으로 처리한 후, 방향족 탄화수소가 저감된 탈방향족 유분을 58~75부피% 수율로 얻게 되며 이들 탈방향족 유분들은 파라핀계 윤활기유의 반제품이 된다. 적용된 퓨후럴 용제는 추출된 방향족화합물을 함유하고 있으며, 별도의 용제회수처리기에서 회수되는데 이 과정에서 방향족 추출물이 부산되어 진다. 이렇게 얻어진 방향족 추출물 5종을 하기 표 2에 나타내었다. The aromatic extract as a feedstock of the present invention is injected into the vacuum distillation process (VDU1) as a feedstock to the atmospheric residue remaining at the bottom of the distillation column during atmospheric distillation of the conventional paraffinic crude oil shown in FIG. Distillate was distilled under reduced pressure at a temperature of 80 ° C. and a tower bottom pressure of 150 mmHg, and a tower bottom temperature of 350 ° C. to extract 12.0% by volume of 60D (Distillate), 15.5% by volume of 100D, 15.5% by volume of 150D, 14.2% by volume of 500D and 150VR (Vacuum) Residue, 42.0LV% of distilled oil and distilled oil of various viscosity grades were obtained and stored as semi-finished products in their respective storage tanks. Solvent de-aromatic process (SEU) as a solvent by applying fufural (Fufural) for the 60D, 100D, 150D, 500D distillates (Vacuum Residue) 150VR mixing ratio of the oil to the solvent 2.2 ~ 4.0, oil temperature 83 ~ 84 ℃, solvent temperature 118 ~ 128 ℃, dearomatic fraction reduced aromatic hydrocarbons are obtained in 58 ~ 75 volume% yield, and these dearomatic fractions are semi-finished products of paraffinic base oil. do. The applied purulent solvent contains the extracted aromatic compound and is recovered in a separate solvent recovery process, in which the aromatic extract is withdrawn. The five aromatic extracts thus obtained are shown in Table 2 below.

DAE 및 RAE의 성상 Characteristics of DAEs and RAEs 방향족 추출물 (원료 증류유분)Aromatic extract (raw distillate) DAE 1 (60D)DAE 1 (60D) DAE 2 (100D)DAE 2 (100D) DAE 3 (150D)DAE 3 (150D) DAE 4 (500D)DAE 4 (500D) RAE 1 (150VR)RAE 1 (150VR) 비중 @ 15/4℃ Specific Gravity @ 15/4 ℃ 1.0011.001 1.0021.002 1.0041.004 0.9860.986 0.9830.983 동점도 @40℃, cSt Kinematic Viscosity @ 40 ℃, cSt 178.9178.9 1,1581,158 1,5911,591 3,8283,828 5,0875,087 유동점, ℃  Pour point, ℃ 27.527.5 22.522.5 17.517.5 12.512.5 17.517.5 인화점, ℃  Flash point, ℃ 242242 254254 258258 274274 282282 증류성상, ℃ Distillation phase, ℃ 초류점 10% off 50%off 90% off 종류점  Superstore 10% off 50% off 90% off 328 383 424 449 514328 383 424 449 514 355 414 480 535 614355 414 480 535 614 374 440 484 539 630374 440 484 539 630 385 455 543 623 689385 455 543 623 689 386 465 551 626 688386 465 551 626 688 황함량, wt% Sulfur content, wt% 3.63.6 3.93.9 3.83.8 3.13.1 3.13.1 방향족탄화수소, wt% Aromatic hydrocarbons, wt% 90.290.2 81.681.6 86.986.9 72.372.3 73.573.5 다환방향족 함량, wt% Polyaromatic content, wt% 8.28.2 9.79.7 10.010.0 5.35.3 6.56.5

상기 방향족 추출물을 공급원료로 하여 제조한 납센 윤활기유의 성상 및 성능 시험결과를 하기 실시예 및 비교예에 나타내었으며 이에 수행된 시험은 하기와 같은 방법으로 하였다.The properties and performance test results of the lead-based lube base oil prepared by using the aromatic extract as a feedstock are shown in the following Examples and Comparative Examples.

비중은 KS M 2002 에 준하여 실시하였다.Specific gravity was carried out in accordance with KS M 2002.

점도는 KS M 2014에 준하여 실시하였다.Viscosity was performed according to KS M 2014.

인화점은 KS M 2010에 준하여 실시하였다.Flash point was conducted according to KS M 2010.

유동점은 KS M 2016에 준하여 실시하였다.Pour point was conducted according to KS M 2016.

황함량은 ANTEK 장비를 이용하여 KS M 2027에 따라 실시하였다.Sulfur content was carried out according to KS M 2027 using ANTEK equipment.

아닐린점은 KS M 2053에 준하여 실시하였다.The aniline point was carried out in accordance with KS M 2053.

증류성상 및 탄소수분포 시험은 KS M 2031에 준하여 실시하였다.Distillation phase and carbon number distribution test were carried out in accordance with KS M 2031.

탄화수소 조성은 ASTM D 2140에 준하여 실시하였다.The hydrocarbon composition was carried out according to ASTM D 2140.

방향족 탄화수소 함량은 ASTM D 2549에 준하여 실시하였다.The aromatic hydrocarbon content was carried out in accordance with ASTM D 2549.

10) 다환방향족 함량은 IP 346에 준하여 실시하였다. 10) Polycyclic aromatic content was carried out according to IP 346.

<실시예 1 및 비교예 1><Example 1 and Comparative Example 1>

도 1에 나타난 바와 같이 방향족 추출물(DAE-1)을 니켈-몰리브덴계(Ni-Mo, IFP사의 HR-448) 촉매가 충진된 수소첨가반응기에 주입하여 수소 유입하에 유액공간속도 0.5/hr, 압력 2,466psig, 온도 370℃의 조건으로 처리하여, 감압증류공정(VDU2)에 주입하여 탑정압력 75mmHg, 탑정온도 80℃ 및 탑저압력 150mmHg, 탑저온도 325℃로 감압 증류하여 연료유 영역의 경질 추출물 53.0부피%와 중간 및 탑저 추출물인 윤활기유 영역 제품 100N(Neutral) 47.0부피%를 얻었으며 이것의 성상을 납센 원유로부터 제조된 동일 점도등급의 일반적인 납센 윤활기유의 성상과 비교하여 표 3에 나타내었다. As shown in FIG. 1, the aromatic extract (DAE-1) was injected into a hydrogenation reactor filled with a nickel-molybdenum-based catalyst (Ni-Mo, HR-448, IFP), and a fluid space velocity of 0.5 / hr under hydrogen inflow. 2,466 psig, treated at a temperature of 370 ° C, injected into a vacuum distillation process (VDU2), distilled under reduced pressure to a column top pressure of 75mmHg, tower top temperature of 80 ° C and tower bottom pressure of 150mmHg, and tower bottom temperature of 325 ° C. The volume% and 47.0 volume% of 100N (Neutral) lubricating base oil products, which are intermediate and bottom extracts, were obtained and their properties are shown in Table 3 in comparison with the properties of the common viscose lubricating base oils of the same viscosity grades prepared from naphtha crude oil.

실시예 1 -DAE로부터 제조된 100N급 납센 윤활기유의 성상과 조성 Example 1 Properties and Compositions of 100N Class Lead-Acid Lubricant Base Oils Prepared from DAE DAE-1 공급원료DAE-1 feedstock 실시예1 100NExample 1 100N 비교예1 100NComparative Example 1 100 N 납센 윤활기유 요구조건Lead-based lube base oil requirements 비중 @ 15/4℃ (주1) Specific gravity @ 15/4 ℃ (Note 1) 1.0011.001 0.8800.880 0.8980.898 0.876~0.9340.876-0.934 동점도 @40℃, cSt Kinematic Viscosity @ 40 ℃, cSt 178.9178.9 19.219.2 19.419.4 인화점, ℃ Flash point, ℃ 242242 182182 184184 유동점, ℃ Pour point, ℃ 27.527.5 -7.5-7.5 -37.5-37.5 전산가, mgKOH/g Acid value, mgKOH / g -- 0.420.42 0.070.07 아닐린점, ℃ Aniline point, ℃ -- 66.866.8 63.563.5 황함량, ppm Sulfur content, ppm 3.6%3.6% 320320 145145 탄화수소 조성,% 파라핀계 탄화수소(Cp) 나프텐계 탄화수소(Cn) 방향족계 탄화수소(Ca) Hydrocarbon composition,% Paraffinic hydrocarbon (Cp) Naphthenic hydrocarbon (Cn) Aromatic hydrocarbon (Ca) - - - --- 52 40 8 52 40 8 46 48 6 46 48 6 55~60이하 (주1)  55 ~ 60 or less (Note 1) 다환방향족 함량, wt% Polyaromatic content, wt% 8.28.2 2.12.1 1.71.7 - -

(주1) 미국석유협회의 납센오일 분류기준: 비중 0.876~0.934, Cp 55~60%이하. (Note 1) American Petroleum Institute's classification criteria for lead-sen oil: 0.876 ~ 0.934 specific gravity, Cp 55 ~ 60% or less.

상기 실시예 1에서 방향족 추출물(DAE1)의 방향족 화합물들은 상기 조건의 수소첨가 반응에 의해 납센 화합물로 개질되어 미국석유협회에서 규정하는 납센계 탄화수소의 요건인 비중 0.876이상 0.934이하, 파라핀 탄화수소를 이루는 탄소수 함량 55% 이하를 충족하는 납센계 오일로 전환된 것을 알 수 있다. In Example 1, the aromatic compounds of the aromatic extract (DAE1) are modified to be a lead-sensing compound by hydrogenation under the above conditions, and the specific gravity 0.876 to 0.934, which is a requirement of the lead-sensed hydrocarbons defined by the American Petroleum Association, to form a paraffin hydrocarbon. It can be seen that the content is converted to a lead-based oil having a content of 55% or less.

실시예 1에서 제조된 납센 윤활기유 100N은 일반적인 납센 윤활기유를 필요로하는 영역에서 이상 없이 적용될 수 있으나, 비교예 1의 종래의 제품대비 유동점이 높으며 산성물질 함량 또한 높은 것을 알 수 있다. 따라서 필요에 따라 저온 유동성이 우수하고 열이나 자외선 안정성이 우수한 제품을 요구하는 경우에 안전하게 적용되기 위해서는 추가 정제가 필요하며 이를 실시예 2에 나타내었다. The lead-sensing lube base oil 100N prepared in Example 1 may be applied without any abnormality in a region requiring a general naphtha lube base oil, but it can be seen that the pour point is higher than that of the conventional product of Comparative Example 1 and the acidic substance content is also high. Therefore, in order to safely apply in the case of requiring a low-temperature fluidity and excellent heat or UV stability as needed, further purification is required, which is shown in Example 2.

<실시예 2> <Example 2>

실시예 1에서 제조된 100N급 납센 오일의 유동점을 낮추기 위해 도 1에 나타낸 종래의 용제탈랍공정(SDW)에 투입하여 용제로는 메칠-에칠케톤(MEK, Methyl-Ethyl Ketone))을 적용하여 용제 대비 오일의 혼합비 2.0으로 혼합한 다음 -17℃로 냉각하여 2단계 휠터를 통해 오일의 유동성을 저해하는 왁스 성분을 제거하여 유동점 -37.5℃ 기준으로 탈왁스 유분을 79~81부피% 수율로 얻게 되었으며, 이들 유분의 산도를 낮추고 열산화안정성과 자외선안정성을 증대시키고자 니켈-텅스턴계((Ni-W, Criterion사) 촉매 및 및 수소 유입하에 유액공간속도 1.2/hr, 압력 1,800psig, 온도 264℃의 조건으로 산성물질이나 잔여 불순물들을 처리한 다음 압력 75mmHg, 탑정온도 67℃, 탑저온도 270℃ 조건에서 분별증류(FS)하여 인화점을 향상시키기 위해 경질유분을 제거한 결과, 하기 표 3에 기재한 바와 같이 더욱 낮은 유동점을 지니며, 열, 산화 및 자외선에 불안정한 물질 즉, 방향족 화합물 및 산성물질이 적게 포함하도록 개선된 100N급 납센 윤활기유를 얻었다.In order to lower the pour point of the 100N grade lead-sensing oil prepared in Example 1, the solvent was applied to the conventional solvent stripping process (SDW) shown in FIG. 1 by applying methyl-ethyl ketone (MEK). The mixture was mixed at a mixing ratio of 2.0 and then cooled to -17 ° C to remove wax components that hindered fluidity of the oil through a two-stage filter to obtain dewaxed oil in a yield of 79 to 81% by volume based on -37.5 ° C. In order to reduce the acidity of these fractions and to increase the thermal oxidation stability and ultraviolet stability, the nickel-tungsten-based catalyst (Ni-W, Criterion Co., Ltd.) and the fluid space velocity of 1.2 / hr, pressure 1,800 psig, and temperature 264 under hydrogen inflow Treatment of acidic substances or residual impurities under the conditions of ℃ and fractional distillation (FS) at pressure 75mmHg, column top temperature 67 ℃, column bottom temperature 270 ℃ conditions to remove the light oil to improve the flash point, as shown in Table 3 below One bar As said Genie a lower pour point, heat unstable material to oxidation and ultraviolet light that is, to obtain an improved class napsen 100N base oil to contain less aromatics and acids.

실시예 2 -유동성과 전산가가 개선된 100N급 납센 오일 Example 2 100N class lead-acid oil with improved fluidity and computational value 실시예1 100NExample 1 100N 실시예2 100NExample 2 100N 비교예1 100NComparative Example 1 100 N 납센 윤활기유 요구조건Lead-based lube base oil requirements 비중 @ 15/4℃ (주1) Specific gravity @ 15/4 ℃ (Note 1) 0.8800.880 0.8850.885 0.8980.898 0.876~0.9340.876-0.934 동점도 @40℃, cSt Kinematic Viscosity @ 40 ℃, cSt 19.219.2 19.519.5 19.419.4 인화점, ℃ Flash point, ℃ 182182 186186 184184 유동점, ℃ Pour point, ℃ -7.5-7.5 -37.5-37.5 -37.5-37.5 전산가, mgKOH/g Acid value, mgKOH / g 0.420.42 0.010.01 0.070.07 아닐린점, ℃ Aniline point, ℃ 66.866.8 64.864.8 63.563.5 황함량, ppm Sulfur content, ppm 320320 2424 145145 탄화수소 조성,% 파라핀계 탄화수소(Cp) 나프텐계 탄화수소(Cn) 방향족계 탄화수소(Ca) Hydrocarbon composition,% Paraffinic hydrocarbon (Cp) Naphthenic hydrocarbon (Cn) Aromatic hydrocarbon (Ca) 52 40 8 52 40 8 48 47 5 48 47 5 46 48 6 46 48 6 55~60이하 - - 55 ~ 60 or less-- 다환방향족 함량, wt% Polyaromatic content, wt% 2.12.1 0.80.8 1.71.7 - -

상기 실시예 2에서 종래의 용제탈랍공정을 통하여 유동성을 저해하는 왁스를 제거한 결과 유동점이 -37.5℃이하로 개선되었으며, 이에 따라 파라핀계 탄화수소 함량의 저감과 동시에 납센계 탄화수소 함량이 40%에서 47%로 더욱 증대되는 것을 알 수 있다. 또한 니켈-텅스턴 금속이 함유된 촉매로 수소첨가 마무리 반응 공정을 수행한 결과 다환 방향족 화합물과 산성물질인 헤테로 화합물이 극도로 제거되어 산도(전산가)가 낮아 졌으며 열안정성 및 자외선 안정성이 우수하고 발암성 물질의 전구체인 다환 방향족 화합물이 상대적으로 적은 납센 윤활기유 제품의 확보가 가능함을 알 수 있다. As a result of removing the wax that inhibits fluidity through the conventional solvent dewaxing in Example 2, the pour point was improved to -37.5 ° C. or less, thereby reducing the content of paraffinic hydrocarbons and simultaneously increasing the content of lead-based hydrocarbons from 40% to 47%. It can be seen that further increases. In addition, as a result of performing a hydrogenation finishing process with a catalyst containing nickel-tungsten metal, polycyclic aromatic compounds and hetero compounds, which are acidic substances, are extremely removed, resulting in low acidity (acid value), excellent thermal stability, UV stability, and carcinogenesis. It can be seen that a lead-based lube base oil product having relatively few polycyclic aromatic compounds, which are precursors of the active substance, can be obtained.

실시예 1, 2에서 단일 증류유분 방향족 추출물(DAE-1)을 공급원료로 납센 윤활기유 제조를 수행하였으며, 이러한 결과는 다른 각각의 방향족 추출물들을 공급원료로 하여 동일한 방법으로 각각의 납센 오일로 전환할 수 있으며, 공급원료의 점도 차이에 따라 단지 제품의 점도 값만 상이할 것인바, 하기 실시예 3에서는 혼합한 복합 방향족 추출물(CAE, Composite Aromatic Extract)를 공급원료로 하여 동시에 여러 점도등급을 갖는 납센 윤활기유에 대한 확보가 가능하였다. In Examples 1 and 2, a single distillate fractional aromatic extract (DAE-1) was used as a feedstock to produce Napsen lubricating base oil. These results were converted into respective Napsen oils in the same manner using different aromatic extracts as a feedstock. According to the viscosity difference of the feedstock, only the viscosity value of the product will be different. In Example 3 below, a mixed raw aromatic extract (CAE, Composite Aromatic Extract) is used as a feedstock, and a waxsen having several viscosity grades at the same time. Lubrication base oil could be secured.

<실시예 3><Example 3>

실시예 3에 사용된 CAE는 앞서 설명한 표 1에 따른 일본석유 주식회사(Nippon Oil Corporation)의 복합 방향족 추출물 시료의 성상을 만족하는 것을 사용하였고, 상기 복합 방향족 추출물을 공급원료로 하여, 니켈-몰리브덴계(Ni-Mo, Criterion사의 LH-23) 촉매가 충진된 수소첨가반응기에 주입하여 수소 유입하에 유액공간속도 0.7/hr, 압력 2,450psig, 온도 380℃의 조건으로 수소첨가반응 후에 도 1과 같이 감압증류공정(VDU2)에 주입하여 탑정압력 75mmHg, 탑정온도 80℃ 및 탑저압력 150mmHg, 탑저온도 360℃로 감압 증류하여 상압에서의 증류온도로 환산시 초류점(최초 끓는점)에서 350℃ 영역 추출물 12.2부피%, 350~400℃ 영역 추출물 21.5부피%, 400~440℃ 영역 추출물 22.7부피%, 440~490℃ 영역 추출물 21.8부피%, 490℃이상 영역 추출물 21.9부피%를 얻었으며 이것들의 성상을 표 5에 나타내었다. The CAE used in Example 3 was used to satisfy the properties of the sample of the composite aromatic extract of Nippon Oil Corporation according to Table 1 described above, using the composite aromatic extract as a feedstock, nickel- molybdenum-based (Ni-Mo, Criterion Co., Ltd. LH-23) After injection into a catalyst-packed hydrogenation reactor, hydrogenation under the conditions of liquid flow rate 0.7 / hr, pressure 2,450psig, and temperature 380 ℃ under hydrogen inlet, reduced pressure as shown in FIG. Distillation under reduced pressure by distillation at 75mmHg tower top pressure, tower top temperature 80 ℃ and tower bottom pressure 150mmHg, tower bottom temperature 360 ℃ by injection into distillation process (VDU2) Volume%, 21.5% by volume of extract from 350 ~ 400 ℃, 22.7% by volume of extract from 400 ~ 440 ℃, 21.8% by volume of extract from 440 ~ 490 ℃, 21.9% by volume of extract from above 490 ℃, and their properties are shown in Table 5 Indicated on .

실시예 3-CAE로부터 제조된 다양한 점도 등급의 납센 오일 Example 3 Naphtha Oil of Various Viscosity Grades Prepared from CAE 상압 증류온도 범위, ℃ (ISO 점도등급)Atmospheric distillation temperature range, ℃ (ISO viscosity grade) ~350 (10)~ 350 (10) 350~400 (22)350 ~ 400 (22) 400~440 (68)400 ~ 440 (68) 440~490 (220)440 ~ 490 (220) 490~ (680)490-(680) 비중 @ 15/4℃ (주1) Specific gravity @ 15/4 ℃ (Note 1) 0.8770.877 0.8910.891 0.9110.911 0.9260.926 0.9330.933 동점도 @40℃, cSt Kinematic Viscosity @ 40 ℃, cSt 6.36.3 24.124.1 66.166.1 212.8212.8 750.4750.4 인화점, ℃ Flash point, ℃ 132132 182182 254254 286286 366366 유동점, ℃ Pour point, ℃ -42.5-42.5 -12.5-12.5 33 1212 3030 전산가, mgKOH/g Acid value, mgKOH / g 0.220.22 0.310.31 0.370.37 0.410.41 0.470.47 아닐린점, ℃ Aniline point, ℃ 49.249.2 61.361.3 72.172.1 83.783.7 97.297.2 황함량, ppm Sulfur content, ppm 77 1111 2525 3434 6565 탄화수소 조성,% 파라핀계 탄화수소(Cp) 나프텐계 탄화수소(Cn) 방향족계 탄화수소(Ca) Hydrocarbon composition,% Paraffinic hydrocarbon (Cp) Naphthenic hydrocarbon (Cn) Aromatic hydrocarbon (Ca) 50 49 1 50 49 1 49 48 3 49 48 3 47 48 5 47 48 5 46 47 7 46 47 7 46 44 10 46 44 10 다환방향족 함량, wt% Polyaromatic content, wt% 0.50.5 0.80.8 1.41.4 2.22.2 2.72.7

본 발명에 따른 복합 방향족 추출물을 공급원료로 수소첨가 개질반응 및 감압 증류한 결과 다양한 점도 등급의 납센 윤활기유를 동시에 확보할 수 있었다. 파라핀계 탄화수소를 구성하는 탄소수가 백분율로 46~50%로 미국 석유협회의 납센계 오일의 분류 기준인 Cp함량인 55~60%이하를 충족, 통상적인 납센 윤활기유의 비중범위인 0.876이상 0.934이하를 충족하였으며, 40℃ 동점도 값이 6.0센티스톡스에서 750센티스톡스 범위의 납센계 오일의 확보가 가능함을 알 수 있다. 또한 유럽에서 오일 중 총함량이 3% 이하로 규제되는 발암성 물질의 전구체인 다환방향족 화합물이 본 발명에 의해 제조된 오일에는 유럽의 규제치 이하로 함유되어 친환경적인 제품의 확보가 가능하였다. As a result of the hydrogenation reforming and vacuum distillation as a feedstock, the complex aromatic extract according to the present invention was able to secure various viscosity grades of lead-based lubricating base oil. The carbon number constituting the paraffinic hydrocarbon is 46 ~ 50% as a percentage, and satisfies the Cp content of 55 ~ 60%, which is the classification standard of the lead oil of the American Petroleum Institute, and the specific gravity range of the conventional lead-based lubricant base oil is 0.876 or more and 0.934 or less. It was found that the 40 ° C kinematic viscosity value of 6.0 centistokes to 750 centistokes in the range of lead-based oil can be obtained. In addition, the polycyclic aromatic compound, which is a precursor of a carcinogenic substance whose total content of oil is regulated to 3% or less in Europe, is contained in the oil produced by the present invention under the European regulatory value, thereby ensuring environmentally friendly products.

상기 실시예 3에서 오일의 점도값이 높아짐에 따라 유동성 또한 나쁜 것을 알 수 있는데, 적용 용도에 따라 저온에서의 유동성 확보가 필요한 경우 본 발명에 따른 실시예 2와 같이 도 1에 나타낸 종래의 용제탈랍공정을 수행함으로써 유동성이 개선된 제품의 확보가 가능하며, 산도를 줄이고 열산화안정성과 자외선안정성을 더욱 향상시키고자 할 경우에 실시예 2과 같이 수소첨가마무리공정을 수행함으로써 개선된 제품의 확보가 가능하다. It can be seen that the fluidity is also bad as the viscosity value of the oil is increased in Example 3, when it is necessary to ensure the fluidity at low temperature according to the application purpose, the conventional solvent dewaxing shown in Figure 1 as in Example 2 according to the present invention By carrying out the process, it is possible to secure products with improved fluidity.In order to reduce acidity, and to further improve thermal oxidation stability and ultraviolet ray stability, as in Example 2, hydrogenated finishing process is performed to secure improved products. It is possible.

이상에서 살펴본 바와 같이, 본 발명에 따르면 고갈되어가는 납센 원유에서 직접 납센 윤활기유를 확보하는 종래의 기술에 비하여, 풍부한 원료공급이 가능한 파라핀 원유로부터 기존의 파라핀계 윤활기유 제조공정의 부산물을 활용하여 납센계 윤활기유를 경제적으로 확보할 수 있다. As described above, according to the present invention, compared to the conventional technique of securing a lead-based lubricating base oil directly from depleted lead-based crude oil, by-products of the conventional paraffinic lubricating base oil manufacturing process from paraffin crude oil, which can supply abundant raw materials, Lead-based lube base oil can be secured economically.

Claims (7)

파라핀계 상압잔사유에 대한 제 1 감압증류공정(VDU1) 후의 용제 탈방향족 공정(SEU)로부터 부산되는 방향족 추출물을 수소첨가반응으로 개질시키는 단계(HT); 및Reforming the aromatic extract by-product from the solvent dearomatic process (SEU) after the first vacuum distillation process (VDU1) for the paraffinic atmospheric residue oil by hydrogenation (HT); And 상기 개질된 유분을 다양한 점도로 분리하기 위한 제 2 감압증류 단계(VDU2)를 포함하는 것을 특징으로 하는 납센 윤활기유의 제조방법. And a second vacuum distillation step (VDU2) for separating the reformed oil into various viscosities. 제 1항에 있어서, 상기 방법은, 용제 탈랍시키는 단계(SDW), 수소첨가 마무리 반응단계(HDT) 및 분별증류단계(FS)에서 하나 또는 그 이상을 선택적으로 더욱 포함하는 것을 특징으로 하는 납센 윤활기유의 제조방법.The method of claim 1, wherein the method, the lead-sensing lubricator further comprises one or more optionally in the solvent dewaxing step (SDW), hydrofinishing reaction step (HDT) and fractional distillation step (FS). Preparation method. 제 1항 또는 제 2항에 있어서, 상기 수소첨가반응공정(HT)에 도입되는 상기 방향족 추출물은, 복합 방향족 추출물(CAE, Composite Aromatic Extract), 증류유분 방향족 추출물(DAE, Distillate Aromatic Extract) 또는 잔사유 방향족추출물(RAE, Residue Aromatic Extract)인 것을 특징으로 하는 납센 윤활기유의 제조방법.The method of claim 1 or 2, wherein the aromatic extract introduced into the hydrogenation reaction (HT) is a composite aromatic extract (CAE, Composite Aromatic Extract), distillate aromatic extract (DAE, Distillate Aromatic Extract) or glass A method for producing lead-based lube base oil, characterized in that the private aromatic extract (RAE, Residue Aromatic Extract). 제 1항 또는 제 2항에 있어서, 상기 수소첨가반응공정(HT)에 도입되는 상기 방향족 추출물은 40℃에서의 동점도가 170~5,100 센티스톡스이며, 비중 0.98 이상, 방향족 함량 70중량% 이상인 것을 특징으로 하는 납센 윤활기유의 제조방법.According to claim 1 or 2, wherein the aromatic extract introduced into the hydrogenation reaction (HT) has a kinematic viscosity of 170 ~ 5,100 centistokes at 40 ℃, specific gravity 0.98 or more, aromatic content is 70% by weight or more Method for producing lead-based lube base oil. 제 1항 또는 제 2항에 있어서, 상기 수소첨가반응공정(HT)은 니켈-몰리브덴계(Ni-Mo)촉매를 이용하여 수소 유입 하에 1.0/hr이하의 유액 공간 속도, 1,800psig 이상의 압력, 350℃이상의 온도에서 수행되는 것을 특징으로 하는 납센 윤활기유의 제조방법.The process of claim 1 or 2, wherein the hydrogenation reaction (HT) is performed using a nickel-molybdenum-based (Ni-Mo) catalyst and has a fluid space velocity of 1.0 / hr or less, a pressure of 1,800 psig or more, 350 under hydrogen inflow. A method for producing lead-based lube base oil, characterized in that carried out at a temperature above ℃. 제 1항 또는 제 2항에 있어서, 상기 제 2 감압증류 단계(VDU2)는 탑정압력 70 내지 80mmHg, 탑정온도 70 내지 90℃ 및 탑저압력 135 내지 165mmHg, 탑저온도 300 내지 350℃로 수행되는 것을 특징으로 하는 납센 윤활기유의 제조방법. The method of claim 1 or 2, wherein the second vacuum distillation step (VDU2) is carried out at a tower static pressure of 70 to 80mmHg, a column top temperature of 70 to 90 ℃ and a column bottom pressure of 135 to 165mmHg, a tower bottom temperature of 300 to 350 ℃ A method for producing lead-based lube base oil. 제 1항 또는 제 2항에 따른 방법에 의하여 제조되고, 40℃에서의 동점도가 6~750 센티스톡스이며, 비중 0.876~0.934이고, 파라핀계 탄화수소 탄소수 비율이 55% 이하인 것을 특징으로 하는 납센 윤활기유.A lead-based lube base oil prepared by the method according to claim 1 or 2, having a kinematic viscosity at 40 ° C. of 6 to 750 centistokes, a specific gravity of 0.876 to 0.934, and a paraffinic hydrocarbon carbon ratio of 55% or less. .
KR1020070035706A 2007-04-11 2007-04-11 The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method KR100831813B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070035706A KR100831813B1 (en) 2007-04-11 2007-04-11 The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070035706A KR100831813B1 (en) 2007-04-11 2007-04-11 The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method

Publications (1)

Publication Number Publication Date
KR100831813B1 true KR100831813B1 (en) 2008-05-28

Family

ID=39665023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070035706A KR100831813B1 (en) 2007-04-11 2007-04-11 The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method

Country Status (1)

Country Link
KR (1) KR100831813B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386393A (en) * 2022-07-05 2022-11-25 中海油气(泰州)石化有限公司 Preparation system and method of transformer oil anti-gassing component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890000634A (en) * 1986-06-23 1989-03-15 원본미기재 Method for producing lubricant base oil
JPH06207184A (en) * 1992-12-04 1994-07-26 Exxon Res & Eng Co Aromatic oil and its preparation
US5840175A (en) 1997-08-29 1998-11-24 Exxon Research And Engineering Company Process oils and manufacturing process for such using aromatic enrichment with extraction followed by single stage hydrofinishing
KR100188422B1 (en) 1991-04-05 1999-06-01 토마스 케이. 맥브라이드 Method of upgrading residua
KR100262884B1 (en) 1997-08-30 2000-08-01 남창우 Operating oil of power type direction regulator for automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890000634A (en) * 1986-06-23 1989-03-15 원본미기재 Method for producing lubricant base oil
KR100188422B1 (en) 1991-04-05 1999-06-01 토마스 케이. 맥브라이드 Method of upgrading residua
JPH06207184A (en) * 1992-12-04 1994-07-26 Exxon Res & Eng Co Aromatic oil and its preparation
US5840175A (en) 1997-08-29 1998-11-24 Exxon Research And Engineering Company Process oils and manufacturing process for such using aromatic enrichment with extraction followed by single stage hydrofinishing
KR100262884B1 (en) 1997-08-30 2000-08-01 남창우 Operating oil of power type direction regulator for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386393A (en) * 2022-07-05 2022-11-25 中海油气(泰州)石化有限公司 Preparation system and method of transformer oil anti-gassing component
CN115386393B (en) * 2022-07-05 2023-10-10 中海油气(泰州)石化有限公司 Preparation system and method of anti-gassing component of transformer oil

Similar Documents

Publication Publication Date Title
KR101399207B1 (en) Method for producing feedstocks of high quality lube base oil from unconverted oil
JP3564578B2 (en) Method for obtaining engine fuel by extracting and hydrotreating hydrocarbon charge, and obtained gas oil
US8110091B2 (en) Process for the conversion of feedstocks resulting from renewable sources for producing gas oil fuel bases with a low sulphur content and with an improved cetane number
JP2697749B2 (en) Process for producing a high-grade lubricating base oil feedstock from unconverted oil in a fuel oil hydrocracking process operated in a recycling manner
US20080132435A1 (en) Process to obtain biolubricants and bioparaffins by hydroprocessing mixtures of wax obtained from renewable resources and waxes of mineral origin
CN116761870A (en) Co-processing of waste polymer-based materials for aviation fuel production
JPH06116571A (en) Production of low-viscosity base oil having high viscosity index for lubricating oil
KR101956490B1 (en) Process for producing aromatics from wide-boiling temperature hydrocarbon feedstocks
US5039399A (en) Solvent extraction of lubricating oils
CN102690678B (en) Processing method of inferior heavy crude oil
CN102643668A (en) A process for simultaneously producing two environment-friendly rubber filling oils
US3637483A (en) Synthetic lubricating oil stock production
CN115678611B (en) Method for producing bright stock from vacuum residuum
KR101566581B1 (en) Method for Co-producing Environmentally Friendly Diesel Fuels and Naphthenic Base Oils Using Solvent Extraction of Middle Distillate
CN101790576B (en) Method for producing feedstocks of high quality lube base oil from coking gas oil
KR100831813B1 (en) The method of preparing naphthenic lube base oil from aromatic extract and the naphthenic base oil using the method
CN1175620A (en) Method for producing lubricating oil base oil and wax for food
CN109504435B (en) Method for increasing yield of aviation kerosene through hydrocracking
EP1272591B1 (en) Process to prepare a process oil
CN101629105A (en) Method for combining coal tar fractional distillation and hydro-conversion
CN103305249A (en) Method for producing bitumen
US20160152913A1 (en) Methods and systems for alternating production of distillate fuels and lube basestocks from heavy hydrocarbon feed
CN109504434B (en) Method for increasing yield of aviation kerosene through hydrocracking
RU2649395C1 (en) Method of high-index components of base oils preparation
KR100802896B1 (en) Paraffin-based electric insulating oil and method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130312

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee