KR100823151B1 - A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor - Google Patents

A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor Download PDF

Info

Publication number
KR100823151B1
KR100823151B1 KR20060130149A KR20060130149A KR100823151B1 KR 100823151 B1 KR100823151 B1 KR 100823151B1 KR 20060130149 A KR20060130149 A KR 20060130149A KR 20060130149 A KR20060130149 A KR 20060130149A KR 100823151 B1 KR100823151 B1 KR 100823151B1
Authority
KR
South Korea
Prior art keywords
polyurethane foam
carrier
aeration tank
porous polyurethane
foam carrier
Prior art date
Application number
KR20060130149A
Other languages
Korean (ko)
Inventor
김형근
홍성오
Original Assignee
한수테크니칼서비스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한수테크니칼서비스(주) filed Critical 한수테크니칼서비스(주)
Priority to KR20060130149A priority Critical patent/KR100823151B1/en
Application granted granted Critical
Publication of KR100823151B1 publication Critical patent/KR100823151B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

An aeration tank for a fluidized-bed biofilm reactor, which is filled with a porous polyurethane foam carrier having improved fluidity and wear resistance that is formed in the form of a constant hexahedron with width, length, and height ranging from 3 to 4.5 mm in the amount of 30 to 50% of the apparent volume of the entire aeration tank, is provided to make it not necessary to return carrier sludge, treat wastewater even under a high load condition, and substantially improve the wastewater treatment efficiency ultimately. As a method for preparing a porous polyurethane foam carrier formed in the form of a constant hexahedron with width, length, and height ranging from 3 to 4.5 mm, the method comprises: a first step of supplying an isocyanate compound, a polyol, a catalyst, a silicone surfactant, and a foaming agent to a mixing head and reacting the isocyanate compound, polyol, catalyst, silicone surfactant, and foaming agent to obtain a sponge-shaped porous polyurethane foam carrier; a second step of longitudinally cutting the sponge-shaped porous polyurethane foam carrier to form longitudinal blade marks on the carrier in an equal distance; a third step of laterally cutting the sponge-shaped porous polyurethane foam carrier having the longitudinal blade marks formed thereon to form lateral blade marks on the carrier in an equal distance; a fourth step of finally cutting the polyurethane foam carrier having the longitudinal and lateral blade marks formed thereon to obtain porous polyurethane foam carriers formed in the form of a constant hexahedron with a width, a length and a height ranging from 3 to 4.5 mm; and a fifth step of vacuum-sucking the cut hexahedral porous polyurethane foam carriers to remove fragments therefrom using a mesh net. As an aeration tank for a fluidized-bed biofilm reactor used in wastewater treatment, the aeration tank is filled with a porous polyurethane foam carrier(1) that is formed in the form of a constant hexahedron with a width, a length and a height ranging from 3 to 4.5 mm in the amount of 30 to 50% of the apparent volume of the entire aeration tank, and includes a wedge wire screen(2).

Description

다공성 폴리우레탄 발포체 담체 및 이의 제조 방법 및 유동상 생물막 반응 장치용 폭기조{A MULTIPOROUS POLYURETHANE FOAM CARRIER A METHOD FOR PREPARATION OF THE SAME, AND AN AERATION TANK USED FOR FLUIDIZED-BED BIOFILM REACTOR} Porous polyurethane foam carrier and method for preparing the same and aeration tank for fluidized bed biofilm reaction apparatus {A MULTIPOROUS POLYURETHANE FOAM CARRIER A METHOD FOR PREPARATION OF THE SAME, AND AN AERATION TANK USED FOR FLUIDIZED-BED BIOFILM REACTOR}

도 1은 유동상 생물막 반응 장치용 폭기조(曝氣槽)를 도시한 것이다. 1 illustrates an aeration tank for a fluidized bed biofilm reaction apparatus.

도 2는 유동상 생물막 반응 장치용 폭기조에 설치된 웨지 와이어 스크린(wedge wire screen)을 도시한 것이다.2 shows a wedge wire screen installed in an aeration tank for a fluidized bed biofilm reactor.

도 3은 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 절단(cutting)하는 장치의 사시도이다.3 is a perspective view of an apparatus for cutting a sponge-shaped porous polyurethane foam carrier.

도 4는 샤프트에 원형 나이프가 3~4.5 mm의 범위내에서 등간격으로 배치되어 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 절단하여 칼집을 내는 원형 회전 나이프 번들, 및 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체로 마무리 절단하는 밴드 나이프를 도시한 것이다.4 is a circular rotary knife bundle for cutting the sponge by cutting the porous polyurethane foam carrier of the sponge shape is arranged at equal intervals in the range of 3 to 4.5 mm on the shaft, and the horizontal, vertical and height of 3 to 4.5 A band knife is shown which finish cuts into a porous polyurethane foam carrier in the form of a regular cube in the range of mm.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체1: Porous polyurethane foam carrier in hexahedral form with a width, length and height in the range of 3 to 4.5 mm

2, 2': 웨지 와이어 스크린(wedge wire screen)2, 2 ': wedge wire screen

3: 폭기조 윗부분 4: 스크린 유효 면적(망씌운 부분)3: top of aeration tank 4: screen effective area (blinded)

5: 스크린 세정용 산기관(diffuser) 6: 처리수 유출부5: diffuser for screen cleaning 6: treated water outlet

10: 가로축 원형 회전 나이프 번들10: horizontal axis rotary knife bundle

20: 세로축 원형 회전 나이프 번들20: vertical axis rotary knife bundle

30: 밴드 나이프 40: 컨테이너(container) 41: 이송판30: band knife 40: container 41: transfer plate

42: 레일(rail) 50: 흡입용 펌프(pump)42: rail 50: suction pump

A: 가로축 원형 회전 나이프 번들에 의해 세로로 형성된 칼집라인.A: Sheath line formed vertically by the horizontal axis circular rotating knife bundle.

B: 세로축 원형 회전 나이프 번들에 의해 가로로 형성된 칼집라인.B: Sheath line formed horizontally by the longitudinal rotary knife bundle.

C: 밴드 나이프에 의해 마무리 절단된 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체. C: Porous polyurethane foam carrier in the form of a hexahedron having a width, length, and height of 3 to 4.5 mm, which is finished cut by a band knife.

본 발명은 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체 및 이의 제조 방법에 관한 것이다. 또한, 본 발명은 오·폐수 처리에 사용되는 유동상 생물막 반응 장치용 폭기조(曝氣槽)에 관한 것이다. The present invention relates to a porous polyurethane foam carrier in the form of a hexahedron having a constant width, length, and height within a range of 3 to 4.5 mm, and a method of manufacturing the same. Moreover, this invention relates to the aeration tank for fluidized bed biofilm reaction apparatuses used for wastewater treatment.

유동상 타입의 생물막 폐수 처리 장치에 사용되었던 종래의 미생물 담체는 적체 현상으로 인해 폐수 처리 효율이 저하될 뿐만 아니라, 담체 슬러지의 반송이 불가피하다는 단점이 있었다. Conventional microbial carriers used in fluidized bed type biofilm wastewater treatment devices have a disadvantage that not only the wastewater treatment efficiency is lowered due to the accumulation phenomenon, but also the transport of carrier sludge is inevitable.

한편, 스폰지 형상의 합성수지(특히, 폴리우레탄) 발포체는 육면체로 절단되어 오·폐수 처리용 미생물 담체로 사용되어 왔는데, 발포체 입자의 크기가 너무 작으면 유실되기 쉽고, 발포체 입자의 크기가 너무 크면 담체와 오·폐수 사이의 접촉 표면적 및 담체의 유동성이 현저히 저하되는 문제점이 있었다. 더욱이, 스폰지 형상의 발포체 담체를 적절한 크기와 모양으로 균일하게 절단하지 못하여 파편이 남아있게 되면 담체의 내마모성에 악영향을 미치게 된다. On the other hand, sponge-like synthetic resins (especially polyurethane) foams have been used as microbial carriers for wastewater treatment by cutting into hexahedron, but if the size of the foam particles is too small, it is easy to be lost, and if the size of the foam particles is too large, the carrier There was a problem that the surface area of contact between the wastewater and the wastewater and the fluidity of the carrier were significantly reduced. Moreover, failure to uniformly cut the sponge-shaped foam carrier to an appropriate size and shape, leaving debris, adversely affects the wear resistance of the carrier.

본 발명은 유동성과 내마모성이 개선된, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체 및 이의 제조 방법을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a porous polyurethane foam carrier in the form of a hexahedron having a constant width, length and height within a range of 3 to 4.5 mm with improved flowability and wear resistance.

또한, 본 발명은 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체가 전체 폭기조 겉보기 용적의 30~50% 충진되어 있으며, 웨지 와이어 스크린(wedge wire screen)을 구비하는 것을 특징으로 하는 유동상 생물막 반응 장치용 폭기조(曝氣槽)를 제공함으로써, 담체 슬러지의 반송이 불필요하고, 고부하에서의 처리가 가능하도록 하는 것을 목적으로 한다.In addition, the present invention is a porous cube of polyurethane foam in the form of a regular cube in the range of 3 to 4.5 mm in width, length and height filled with 30 to 50% of the total volume of the aeration tank, wedge wire screen It is an object of the present invention to provide an aeration tank for a fluidized bed biofilm reaction device, which is characterized in that the carrier sludge is not necessary to be transported and the treatment at high load is possible.

본 발명은 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체를 제조하는 방법으로서, (a) i) 4,4-디페닐메탄 디이소시아네이트, 2,4-톨루엔-디이소시아네이트, 2,6-톨루엔-디이소시아네이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 이소시아네이트 화합물, ii) 분자량 3,000∼8,000의 폴리올, iii) 디메틸시클로헥실아민, 테트라메틸헥산디아민, 펜타메틸렌디에틸렌트리아민 및 트리에틸렌디아민으로 이루어진 군으로부터 선택되는 촉매, iv) Si-C 결합 또는 Si-O-C 결합을 가지는 실리콘계 정포제, 및 v) 플루오로탄화수소(HFC), 클로로플루오로탄화수소(HCFC) 및 시클로펜탄으로 이루어진 군으로부터 선택되는 발포제를 각각의 독립된 라인(line)을 통해 교반봉이 구비된 믹싱 헤드(mixing head)에 공급하여 반응시킴으로써, 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 수득하는 단계; (b) 샤프트에 원형 나이프가 3~4.5 mm의 범위내에서 등간격으로 배치되어 있는 가로축 원형 회전 나이프 번들(10)을 상하 운동시켜, 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 세로로 절단하여 등간격의 칼집라인(A)을 내는 단계; (c) 샤프트에 원형 나이프가 3~4.5 mm의 범위내에서 등간격으로 배치되어 있는 세로축 원형 회전 나이프 번들(20)을 수평 운동시켜, 세로로 칼집라인이 난 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 가로로 절단하여 등간격의 칼집라인(B)을 내는 단계; (d) 밴드 나이프를 사용하여 마무리 절단하여, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체를 수득하는 단계; (e) 담체 흡입용 펌프를 사용하여, 절단된 육면체 형태의 다공성 폴리우레탄 담체에 진공을 흡입시킨 후, 메쉬 네트(Mesh Net)를 사용하여 2단계로 파편을 제거하는 단계를 포함하는 것을 특징으로 하는 방법을 제공한다. The present invention provides a method for preparing a porous polyurethane foam carrier having a hexahedral form in the range of 3 to 4.5 mm in width, length and height, comprising: (a) i) 4,4-diphenylmethane diisocyanate, 2,4 An isocyanate compound selected from the group consisting of -toluene-diisocyanate, 2,6-toluene-diisocyanate and mixtures thereof, ii) polyols having a molecular weight of 3,000-8,000, iii) dimethylcyclohexylamine, tetramethylhexanediamine, pentamethylene A catalyst selected from the group consisting of diethylenetriamine and triethylenediamine, iv) silicon-based foam stabilizers having Si-C bonds or Si-OC bonds, and v) fluorohydrocarbons (HFC), chlorofluorohydrocarbons (HCFC) And reacting by supplying a blowing agent selected from the group consisting of cyclopentane to a mixing head equipped with a stirring rod through each independent line. As such, to obtain a porous polyurethane foam carrier of sponge shape; (b) the horizontal axis circular rotary knife bundle 10, in which the circular knives are arranged at equal intervals within the range of 3 to 4.5 mm, is vertically cut by vertically cutting the sponge-shaped porous polyurethane foam carrier on the shaft. Drawing a scabbard line (A) of the; (c) Horizontally moving the vertical axis circular rotary knife bundle 20, in which the circular knife is arranged at equal intervals within the range of 3 to 4.5 mm, to form a sponge-like porous polyurethane foam carrier having a vertical cut. Cutting horizontally to produce equally spaced sheath lines (B); (d) finishing cutting using a band knife to obtain a porous polyurethane foam carrier in the form of a cube that has a constant width, length, and height within a range of 3 to 4.5 mm; (e) using a pump for inhaling the carrier, suctioning a vacuum into the cut porous polyurethane carrier, and then removing the debris in two steps using a mesh net. Provide a way to.

스폰지 형상의 다공성 폴리우레탄 발포체 담체의 수득 단계 (a)에 사용되는 주원료에 있어서, 이소시아네이트 화합물은 4,4-디페닐메탄 디이소시아네이트이거나, 또는 80/20 비율로 혼합된 2,4-톨루엔-디이소시아네이트/2,6-톨루엔-디이소시아네이트(80/20)인 것이 바람직하고, 폴리올은 2~4개의 -OH기(또는 활성 수소)를 함유하는 폴리올인 것이 바람직하다. 이소시아네이트 화합물과 폴리올의 반응에 상용되는 촉매는 3급 아민(tertiary amine) 화합물이고, 그 예로는 디메틸시클로헥실아민(DMCHA), 테트라메틸헥산디아민(TMHDA), 펜타메틸렌디에틸렌트리아민(PMDETA) 및 트리에틸렌디아민(TEDA) 등을 들 수 있다. 폴리우레탄 발포체의 제조에 사용되는 실리콘 정포제는 원료의 혼합을 용이하게 하는 유화 작용, 폴리우레탄 발포체의 표면 장력을 낮춰 기포 성장을 돕는 작용, 기포간 압력차를 낮춰 가스의 확산을 막고 폴리우레탄 셀(cell)이 불균일화되는 것을 예방하는 작용, 폴리우레탄 셀 막의 안정화 작용, 발포체의 유동성 등의 개선 작용 등을 한다. 실리콘 정포제는 Si-C 결합 또는 Si-O-C 결합을 가지는 것이 바람직하다. 발포제는 오존층 파괴 등 환경에 미치는 악영향을 최소화하기 위해 플루오로탄화수소(HFC)(예컨대, HFC-245fa, HFC-365mfc 등), 클로로플루오로탄화수소(HCFC)(예컨대, HCFC-141b) 및 시클로펜탄 등을 사용하는 것이 바람직하다. 그 밖에 난연제(flame retardant), 사슬연장제(chain extender), 가교제(crosslinker) 등의 첨가제가 투여될 수도 있다. In the main raw material used in the step (a) of obtaining a sponge-like porous polyurethane foam carrier, the isocyanate compound is 4,4-diphenylmethane diisocyanate or 2,4-toluene-di mixed in an 80/20 ratio. It is preferable that it is isocyanate / 2, 6-toluene diisocyanate (80/20), and it is preferable that a polyol is a polyol containing 2-4 -OH groups (or active hydrogen). Catalysts commonly used for the reaction of isocyanate compounds with polyols are tertiary amine compounds, for example dimethylcyclohexylamine (DMCHA), tetramethylhexanediamine (TMHDA), pentamethylenediethylenetriamine (PMDETA) and Triethylenediamine (TEDA) etc. are mentioned. Silicone foam stabilizers used in the production of polyurethane foams emulsify the raw materials to facilitate mixing, lower the surface tension of the polyurethane foam to help bubble growth, and lower the pressure difference between bubbles to prevent gas diffusion and polyurethane cells. The action of preventing the unevenness of the cell, the stabilization of the polyurethane cell membrane, and the improvement of the fluidity of the foam, and the like. It is preferable that a silicon foam stabilizer has a Si-C bond or a Si-O-C bond. Blowing agents are used to minimize adverse effects on the environment, such as ozone layer destruction, such as fluorohydrocarbon (HFC) (e.g., HFC-245fa, HFC-365mfc, etc.), chlorofluorohydrocarbon (HCFC) (e.g., HCFC-141b) and cyclopentane. Preference is given to using. In addition, additives such as a flame retardant, a chain extender, and a crosslinker may be administered.

도 3에 도시되어 있는 바와 같이, 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 절단(cutting)하는 장치는 가로축 원형 회전 나이프 번들(10), 세로축 원형 회전 나이프 번들(20), 밴드 나이프(30), 이송판(41)을 구비한 컨테이너(40), 레일(42), 및 흡입용 펌프(50)를 포함한다. 스폰지 원단을 상하좌우의 유동 나이프를 사용하여 절단(cutting)하는 원리를 채택한 이 장치는 기존의 목금형을 이용한 프레스(press) 장치에 비하여 높은 생산성을 달성할 수 있다. As shown in FIG. 3, a device for cutting a sponge-shaped porous polyurethane foam carrier includes a horizontal axis circular rotary knife bundle 10, a vertical axis circular rotary knife bundle 20, a band knife 30, and a transfer. A container 40 with a plate 41, a rail 42, and a suction pump 50 are included. Adopting the principle of cutting the sponge fabric by using up, down, left and right flow knives, the device can achieve higher productivity compared to the press device using a wood die.

단계 (b)에서 가로축 원형 회전 나이프 번들(10)의 상하 운동에 의해 세로로 칼집라인(A)을 내고, 단계 (c)에서 세로축 원형 회전 나이프 번들(20)의 수평 운동에 의해 가로로 칼집라인(B)을 낸 후, 단계 (d)에서 밴드 나이프(30)에 의해 마무리 절단함으로써, 가로, 세로 및 높이가 3~4.5 mm인 육면체 형태의 다공성 폴리우레탄 발포체를 균일하고 정밀하게 절단할 수 있다. In step (b), the cut line A is cut out vertically by the vertical movement of the horizontal axis rotating knife bundle 10, and in step (c), the cut line is cut horizontally by the horizontal movement of the vertical axis rotating knife bundle 20. After (B) is cut out, it is possible to cut uniformly and precisely the porous polyurethane foam in the form of a cube having a width, length, and height of 3 to 4.5 mm by finishing cutting by the band knife 30 in step (d). .

단계 (e)에서는 담체 흡입용 펌프를 사용하여, 절단된 육면체 형태의 다공성 폴리우레탄 담체에 진공을 흡입시킨 후, 메쉬 네트(Mesh Net)를 사용하여 2단계로 파편을 제거함으로써, 최종적으로 수득되는 담체의 내마모성을 향상시킬 수 있다. In step (e), a vacuum is sucked into the cut polyurethane cube in the form of a hexahedral porous pump, followed by removal of debris in two steps using a mesh net. Abrasion resistance of the carrier can be improved.

또한, 본 발명은 전술한 방법에 의해 제조되는, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체를 제공한다. 담체의 크기는 작을수록 좋으나 담체의 크기가 예컨대 3 mm 미만인 경우에는 스크린(특히, 웨지 와이어 스크린)에 의해 처리수와 분리되기 어렵고, 담체의 크기가 예컨대 5 mm를 초과하는 경우에는 담체의 유동성이 저하되기 쉽다. 오·폐수와의 접촉 면적 및 유동성을 최적화함과 동시에 담체가 처리수와 함께 유실되는 것을 방지하기 위해서는 담체의 크기가 3~4.5 mm인 것이 바람직하다. 한편, 본 발명에 따른 다공성 폴리우레탄 발포체 담체는 활성탄 성분이나 접착성 수지 성분을 함유하지 않기 때문에, 제조 공정이 간단하다. The present invention also provides a porous polyurethane foam carrier in the form of a hexahedron having a width, length and height of 3 to 4.5 mm, which are produced by the above-described method. The smaller the carrier, the better, but if the carrier is smaller than 3 mm, for example, it is difficult to be separated from the treated water by a screen (especially a wedge wire screen), and when the carrier is larger than 5 mm, for example, It is easy to fall. In order to optimize the contact area and fluidity with the waste water and to prevent the carrier from being lost with the treated water, the carrier has a size of 3 to 4.5 mm. On the other hand, since the porous polyurethane foam carrier according to the present invention does not contain an activated carbon component or an adhesive resin component, the manufacturing process is simple.

하기 참고도 1은 합성 배수(당, 어육 엑기스, 야채 엑기스 등 함유)를 이용 한, 다공성 폴리우레탄 발포체 담체의 크기에 따른 초화(硝化) 속도(시간에 따른 △N농도)의 비교실험 결과를 나타낸 것이다.Reference 1 below shows the results of comparative experiments of the rate of initialization (ΔN concentration over time) according to the size of the porous polyurethane foam carrier using synthetic drainage (containing sugar, fish meat extract, vegetable extract, etc.). will be.

[참고도 1][Reference Figure 1]

Figure 112006094104479-pat00001
Figure 112006094104479-pat00001

초화(硝化) 속도를 판단 지표로 사용한 이유는 통상의 유기물 제거에 기여하는 균에 비하여 초화균(硝化菌)이 증식 속도가 늦고, 이로 인하여 담체의 균체 보관 및 유지 능력이 처리 수질에 나타나기 쉽기 때문이다. 상기 참고도 1에 나타나 있는 바와 같이, 가로, 세로 및 높이가 3 mm인 담체의 처리 능력이 가로, 세로 및 높이가 5 mm인 담체의 처리 능력에 비하여 약 2배 정도 높다는 것을 알 수 있다.The reason for using the rate of mineralization as an index of determination is that the rate of growth of supernovae is slower than that of bacteria which contribute to the removal of organic matters. to be. As shown in the reference figure 1, it can be seen that the processing capacity of the carrier having a width, length, and height of 3 mm is about two times higher than that of the carrier having a width, length, and height of 5 mm.

또한, 본 발명은 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체가 전체 폭기조 겉보기 용적의 30~50% 충진되어 있으며, 웨지 와이어 스크린(wedge wire screen)을 구비하는 것을 특징으로 하는 유동상 생물막 반응 장치용 폭기조(曝氣槽)를 제공한다. 폭기조는 유입된 오·폐수내의 오염물질을 유동상 담체에 부착된 미생물과 접촉시키고, 산기관(散氣 管, diffuser)을 이용하여 공기와 혼합시킴으로써 유기물을 미생물의 생체로 변환시키거나 미생물의 대사 에너지와 대사 부산물(예컨대, 이산화탄소 등)로 변환시킴으로써 오·폐수내의 오염물질을 제거하는 역할을 한다. 오·폐수 처리용 유동상 생물막 반응 장치 내에 설치되는 폭기조는 가로, 세로 및 높이가 3~4.5 mm인 육면체 형태의 다공성 폴리우레탄 발포체 담체가 전체 폭기조 겉보기 용적의 30~50% 충진되어 있으며, 웨지 와이어 스크린(wedge wire screen)을 구비하는 것을 특징으로 한다. 폭기조는 편면 폭기와 전면 폭기가 모두 가능하다. 웨지 와이어 스크린은 폭기조 벽면에 대하여 수직으로 설치되어 담체와 처리수를 분리시킨다. 웨지 와이어 스크린은 스크린의 폐색 상황이 육안으로 확인가능한 구조로 되어 있으며, 스크린 세정용 산기관이 공기 세정 가능하도록 적당한 거리로 떨어져 설치되어 있다. 생물 분해에 의해 발생하는 잉여 오니는 담체의 유동에 의한 마찰로 폭기조로부터 연속 배출된다.In addition, the present invention is a porous cube of polyurethane foam in the form of a regular cube in the range of 3 to 4.5 mm in width, length and height filled with 30 to 50% of the total volume of the aeration tank, wedge wire screen It provides an aeration tank for a fluidized bed biofilm reaction apparatus, characterized by having a. The aeration tank converts organic matter into microorganisms or metabolizes microorganisms by contacting the contaminants in the influent wastewater with microorganisms attached to the fluidized bed carrier and mixing them with air using an diffuser. It converts energy and metabolic by-products (eg, carbon dioxide) to remove contaminants from wastewater. The aeration tank installed in the fluidized bed biofilm reaction device for wastewater treatment is filled with 30 to 50% of the total volume of the aeration tank, filled with a porous polyurethane foam carrier in the form of a cube having a width, length and height of 3 to 4.5 mm. And a screen (wedge wire screen). Aeration tanks can be used for both single-sided and front aeration. The wedge wire screen is installed perpendicular to the aeration tank wall to separate the carrier and the treated water. The wedge wire screen has a structure in which the occlusion of the screen can be visually confirmed, and the screen cleaning diffuser is provided at a suitable distance to allow air cleaning. Surplus sludge generated by biodegradation is continuously discharged from the aeration tank by friction with the flow of the carrier.

본 발명은 유동성과 내마모성이 개선된, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체가 전체 폭기조 겉보기 용적의 30~50% 충진되어 있는 생물막 반응 장치용 폭기조를 제공함으로써, 담체 슬러지의 반송이 불필요하고, 고부하에서의 처리가 가능하도록 하고, 궁극적으로 오·폐수 처리 효율을 획기적으로 향상시킬 수 있다. The present invention is for a biofilm reaction apparatus in which the porous polyurethane foam carrier in the form of a hexahedron having a constant hexahedral shape in the range of 3 to 4.5 mm in width, length and height is improved, and filled with 30 to 50% of the total volume of the aeration tank. By providing an aeration tank, the conveyance of carrier sludge is unnecessary, the treatment at high load is possible, and ultimately, wastewater treatment efficiency can be improved significantly.

Claims (9)

가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체를 제조하는 방법으로서, As a method for producing a porous polyurethane foam carrier having a hexahedron shape in the range of 3 to 4.5 mm in width, length and height, (a) i) 4,4-디페닐메탄 디이소시아네이트, 2,4-톨루엔-디이소시아네이트, 2,6-톨루엔-디이소시아네이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 이소시아네이트 화합물, ii) 분자량 3,000∼8,000의 폴리올, iii) 디메틸시클로헥실아민, 테트라메틸헥산디아민, 펜타메틸렌디에틸렌트리아민 및 트리에틸렌디아민으로 이루어진 군으로부터 선택되는 촉매, iv) Si-C 결합 또는 Si-O-C 결합을 가지는 실리콘계 정포제, 및 v) 플루오로탄화수소(HFC), 클로로플루오로탄화수소(HCFC) 및 시클로펜탄으로 이루어진 군으로부터 선택되는 발포제를 각각의 독립된 라인(line)을 통해 교반봉이 구비된 믹싱 헤드(mixing head)에 공급하여 반응시킴으로써, 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 수득하는 단계; (a) i) an isocyanate compound selected from the group consisting of 4,4-diphenylmethane diisocyanate, 2,4-toluene-diisocyanate, 2,6-toluene-diisocyanate and mixtures thereof, ii) molecular weight 3,000 to 3,000 8,000 polyols, iii) a catalyst selected from the group consisting of dimethylcyclohexylamine, tetramethylhexanediamine, pentamethylenediethylenetriamine and triethylenediamine, iv) a silicon foam stabilizer having a Si-C bond or a Si-OC bond And v) supplying a blowing agent selected from the group consisting of fluorohydrocarbon (HFC), chlorofluorohydrocarbon (HCFC) and cyclopentane to the mixing head with a stirring rod through each separate line. By reacting to obtain a sponge-shaped porous polyurethane foam carrier; (b) 샤프트에 원형 나이프가 3~4.5 mm의 범위내에서 등간격으로 배치되어 있는 가로축 원형 회전 나이프 번들을 상하 운동시켜, 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 세로로 절단하여 등간격의 칼집을 내는 단계; (b) Vertically cutting the sponge-shaped porous polyurethane foam carrier by vertically moving the horizontal axis circular rotary knife bundle in which the circular knives are arranged at equal intervals within the range of 3 to 4.5 mm on the shaft to cut the equally spaced sheaths. Making step; (c) 샤프트에 원형 나이프가 3~4.5 mm의 범위내에서 등간격으로 배치되어 있는 세로축 원형 회전 나이프 번들을 수평 운동시켜, 세로로 칼집이 난 스폰지 형상의 다공성 폴리우레탄 발포체 담체를 가로로 절단하여 등간격의 칼집을 내는 단계; (c) Horizontal movement of the vertical axis circular rotary knife bundle with circular knives arranged at equal intervals within the range of 3 to 4.5 mm on the shaft, and the longitudinally cut sponge-like porous polyurethane foam carrier is cut horizontally. Equally spaced sheaths; (d) 밴드 나이프를 사용하여 마무리 절단하여, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체를 수득하는 단계; (d) finishing cutting using a band knife to obtain a porous polyurethane foam carrier in the form of a cube that has a constant width, length, and height within a range of 3 to 4.5 mm; (e) 담체 흡입용 펌프를 사용하여, 절단된 육면체 형태의 다공성 폴리우레탄 담체에 진공을 흡입시킨 후, 메쉬 네트(Mesh Net)를 사용하여 2단계로 파편을 제거하는 단계를 포함하는 것을 특징으로 하는 방법.(e) using a pump for inhaling the carrier, suctioning a vacuum into the cut porous polyurethane carrier, and then removing the debris in two steps using a mesh net. How to. 제 1 항에 있어서,The method of claim 1, 상기 이소시아네이트 화합물은 4,4-디페닐메탄 디이소시아네이트이거나, 또는 80/20 비율로 혼합된 2,4-톨루엔-디이소시아네이트/2,6-톨루엔-디이소시아네이트(80/20)인 것을 특징으로 하는 방법.The isocyanate compound is 4,4-diphenylmethane diisocyanate, or 2,4-toluene-diisocyanate / 2,6-toluene-diisocyanate (80/20) mixed at an 80/20 ratio Way. 제 1 항에 있어서,The method of claim 1, 상기 폴리올은 2~4개의 -OH기(또는 활성 수소)를 함유하는 것을 특징으로 하는 방법.The polyol is characterized in that it contains 2 to 4 -OH groups (or active hydrogen). 제 1 항 내지 제 3 항 중 어느 하나의 항의 방법에 의해 제조되는, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체. A porous polyurethane foam carrier in the form of a hexahedron formed by the method of any one of claims 1 to 3, wherein the width, length and height are constant within a range of 3 to 4.5 mm. 제 4 항에 있어서,The method of claim 4, wherein 상기 담체는 활성탄 성분이나 접착성 수지 성분을 함유하지 아니하는 것을 특징으로 하는 담체.The carrier is characterized in that it does not contain an activated carbon component or an adhesive resin component. 오·폐수 처리에 사용되는 유동상 생물막 반응 장치용 폭기조(曝氣槽)로서, Aeration tank for fluidized bed biofilm reaction apparatus used for wastewater treatment, 가로, 세로 및 높이가 3~4.5 mm의 범위내에서 일정한 육면체 형태의 다공성 폴리우레탄 발포체 담체가 전체 폭기조 겉보기 용적의 30~50% 충진되어 있으며, 웨지 와이어 스크린(wedge wire screen)을 구비하는 것을 특징으로 하는 폭기조.Porous polyurethane foam carrier in the form of a hexagonal cube in the range of 3 to 4.5 mm in width, length and height is filled with 30 to 50% of the total volume of the aeration tank, and is provided with a wedge wire screen. Aeration tank made with. 제 6 항에 있어서,The method of claim 6, 상기 폭기조는 수심이 4~5m이고, 수심:폭의 비가 1:1~2:1인 것을 특징으로 하는 폭기조.The aeration tank has a depth of 4 ~ 5m, a depth of width: the ratio of 1: 1 to 2: aeration tank. 제 6 항 또는 제 7 항에 있어서,The method according to claim 6 or 7, 상기 폭기조는 편면 폭기와 전면 폭기가 모두 가능한 것을 특징으로 하는 폭기조. The aeration tank is aeration tank, characterized in that both the one-sided aeration and the front aeration. 제 6 항 또는 제 7 항에 있어서,The method according to claim 6 or 7, 상기 웨지 와이어 스크린은 폭기조 벽면에 대하여 수직으로 설치되어 있는 것을 특징으로 하는 폭기조. And the wedge wire screen is installed perpendicular to the aeration tank wall.
KR20060130149A 2006-12-19 2006-12-19 A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor KR100823151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20060130149A KR100823151B1 (en) 2006-12-19 2006-12-19 A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20060130149A KR100823151B1 (en) 2006-12-19 2006-12-19 A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor

Publications (1)

Publication Number Publication Date
KR100823151B1 true KR100823151B1 (en) 2008-04-21

Family

ID=39571840

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20060130149A KR100823151B1 (en) 2006-12-19 2006-12-19 A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor

Country Status (1)

Country Link
KR (1) KR100823151B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2877430A4 (en) * 2012-07-26 2016-05-11 Anaergia Inc Biofilm carrier screen
KR20170025930A (en) 2015-08-31 2017-03-08 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same
KR20180050620A (en) 2015-08-31 2018-05-15 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same
CN110745887A (en) * 2019-11-18 2020-02-04 饶汀 Low-energy-consumption wastewater treatment method
KR20220160920A (en) 2021-05-28 2022-12-06 이경환 Flow-phase ceramic solid using floating housing and ceramic balls
CN116789260A (en) * 2023-06-16 2023-09-22 亚太建设科技信息研究院有限公司 System for improving suspended filler backflow and mesh blocking of MBBR (moving bed biofilm reactor) process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207380A (en) 1998-01-29 1999-08-03 Kurita Water Ind Ltd Microorganism carrier
KR20040059499A (en) * 2002-12-24 2004-07-06 재단법인 포항산업과학연구원 Nano composite rigid foam composition for ice pack comprising silane
KR20070009803A (en) * 2005-07-14 2007-01-19 주식회사 태영 The device for advanced treatment to organic substance, nitrogen, phosphorus of wastewater using thereof and the nitro-microbe coating media

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207380A (en) 1998-01-29 1999-08-03 Kurita Water Ind Ltd Microorganism carrier
KR20040059499A (en) * 2002-12-24 2004-07-06 재단법인 포항산업과학연구원 Nano composite rigid foam composition for ice pack comprising silane
KR20070009803A (en) * 2005-07-14 2007-01-19 주식회사 태영 The device for advanced treatment to organic substance, nitrogen, phosphorus of wastewater using thereof and the nitro-microbe coating media

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2877430A4 (en) * 2012-07-26 2016-05-11 Anaergia Inc Biofilm carrier screen
KR20170025930A (en) 2015-08-31 2017-03-08 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same
KR20180050620A (en) 2015-08-31 2018-05-15 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same
CN110745887A (en) * 2019-11-18 2020-02-04 饶汀 Low-energy-consumption wastewater treatment method
KR20220160920A (en) 2021-05-28 2022-12-06 이경환 Flow-phase ceramic solid using floating housing and ceramic balls
CN116789260A (en) * 2023-06-16 2023-09-22 亚太建设科技信息研究院有限公司 System for improving suspended filler backflow and mesh blocking of MBBR (moving bed biofilm reactor) process

Similar Documents

Publication Publication Date Title
KR100823151B1 (en) A multiporous polyurethane foam carrier a method for preparation of the same, and an aeration tank used for fluidized-bed biofilm reactor
CN1146615C (en) Siloxanes surface activater for producing apertured polyurethane flexible foam
KR101150740B1 (en) Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method
JP3929472B2 (en) Gas dissolution amount adjusting device and system
JP5969593B2 (en) Method and apparatus for treating wastewater containing oil
CN1880356A (en) Carbon dioxide blown low density, flexible microcellular polyurethane elastomers
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
JP4908278B2 (en) Defoaming method for foaming waste liquid
JP2009225774A (en) Japanese ginger-cultivating method having nutrient solution circulation
JP4879553B2 (en) Microbial carrier for water treatment
JP5490426B2 (en) Polyurethane foam for microbial immobilization support
WO2009033291A1 (en) Wastewater treatment
JP4514874B2 (en) Water treatment carrier, method for producing water treatment carrier and water treatment device
US4503150A (en) Polyurethane foam and a microbiological metabolizing system
CN216972279U (en) Sewage oil removing device
CN112566715A (en) Wastewater treatment apparatus and wastewater treatment method
JP2012166142A (en) System for membrane separation activated sludge and method for membrane separation activated sludge
KR20180031085A (en) Method and device for biologically treating organic wastewater
Dacewicz et al. Application of a double layer sand filter with a PUR foams layer in the treatment of domestic sewage with an increased content of ammonia nitrogen
KR100418138B1 (en) Open-cell polyisocyanurate foam for fixing and supporting plants
JPH05269482A (en) Waste water treatment method and sewage purifying tank by biological filtration method
EP0213123A1 (en) Polyurethane foam and a microbiological metabolizing system
KR980009141A (en) Aerobic treatment method of organic sewage and its apparatus
PT2322487E (en) Device for the purification of sanitary waste water
JP2008100185A (en) Microorganism carrier for water treatment

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130131

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170407

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 12