KR100820432B1 - A correcting method of the radius of curvature considering road slope - Google Patents

A correcting method of the radius of curvature considering road slope Download PDF

Info

Publication number
KR100820432B1
KR100820432B1 KR1020060110660A KR20060110660A KR100820432B1 KR 100820432 B1 KR100820432 B1 KR 100820432B1 KR 1020060110660 A KR1020060110660 A KR 1020060110660A KR 20060110660 A KR20060110660 A KR 20060110660A KR 100820432 B1 KR100820432 B1 KR 100820432B1
Authority
KR
South Korea
Prior art keywords
road
lateral
radius
yaw rate
curvature
Prior art date
Application number
KR1020060110660A
Other languages
Korean (ko)
Inventor
이찬규
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060110660A priority Critical patent/KR100820432B1/en
Application granted granted Critical
Publication of KR100820432B1 publication Critical patent/KR100820432B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • B60W2050/0056Low-pass filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0059Signal noise suppression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/14Cruise control
    • B60Y2300/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

A method for correcting a radius of curvature considering road slope is provided to calculate accurate a radius of curvature and to preclude a recognition error of a vehicle in front by calculating a road radius difference value using a Yaw rate according to the condition of the slope. A road radius is calculated by a Yaw rate sensor. The road radius is calculated by a lateral G sensor. The difference of the road radiuses is calculated. The road radius difference value is calculated by a Yaw rate according to the condition of the slope. The road radius difference value is calculated by the lateral G according to the condition of the slope. The slope value of the road is calculated by each difference value. The road radius value of the Yaw rate and the lateral G is corrected by the slope. The average of each corrected road radius value is outputted.

Description

도로 횡구배를 감안한 도로의 곡률반경 보정방법{a correcting method of the radius of curvature considering road slope}Correction method of the radius of curvature considering road slope}

도 1은 구배가 있는 도로에서 각 센서가 측정되는 좌표계의 방향 표시도1 is a view showing the direction of the coordinate system in which each sensor is measured on a road with a gradient

도 2는 본 발명의 한 실시예의 곡률반경 보정 순서도2 is a flowchart of curvature radius correction in an embodiment of the present invention;

본 발명은 도로 횡구배를 감안한 도로의 곡률반경 보정방법에 관한 것으로, 더 자세하게는 차량이 보다 안전하게 선회할 수 있도록 하는 도로 횡구배로 인하여 곡률반경이 부정확해짐으로써 선행차 인식 오류가 발생되는 것을 방지할 수 있도록 한 것에 관한 것이다.The present invention relates to a method of compensating the radius of curvature of a road in consideration of a road lateral gradient, and more particularly, to prevent a preceding vehicle recognition error from being caused by an inaccurate radius of curvature due to a road lateral gradient that enables a vehicle to turn more safely. It's about making things happen.

최근 들어 차량의 차간거리 제어시스템이나 충돌피해 경감시스템에서 전방의 차량이나 물체를 판단하기 위해서는 레이다를 사용하는 예가 많다.Recently, radar is often used to determine a vehicle or an object ahead in a vehicle distance control system or a collision avoidance reduction system.

그런데 검지한 물체가 자차선 내에 있는지를 판단하기 위해서는 도로의 곡률 정보를 통하여 도로의 궤적을 예측함으로써 선행차로 인식하게 되며, 현재 도로의 곡률을 예측하는 방법은 다음의 네 가지가 알려져 있다.However, in order to determine whether the detected object is in the own lane, it is recognized as a preceding vehicle by predicting the trajectory of the road through the curvature information of the road, and the following four methods for predicting the curvature of the road are known.

① 요 레이트 센서(Yaw Rate Sensor) 또는 래터럴 G 센서(Lateral G Sensor)를 이용하여 곡률을 계산하는 방법① Calculation of curvature using yaw rate sensor or lateral G sensor

② 스티어링 앵글 센서(Steering Angle Sensor)를 이용하여 곡률을 계산하는 방법② How to calculate curvature using Steering Angle Sensor

③ 양측 휠의 속도차를 이용하여 곡률을 계산하는 방법③ How to calculate the curvature by using the speed difference of both wheels

④ 위의 3가지를 조합하여 사용하는 방법④ How to use the above three in combination

그러나 실제로는 곡률 반경에 따라 차량이 보다 안전하게 선회할 수 있도록 도로에 횡구배를 두었다. In practice, however, we have lateral gradients on the road to allow the vehicle to turn more safely along the radius of curvature.

즉, 운전자의 보다 적은 스티어링 휠의 조작으로도 선회가 가능해진 것이다.In other words, the driver can turn even with fewer steering wheels.

이로 인해 생기는 문제는 위의 도로 곡률 예측 방법을 기준으로 할 때 ① 요 레이트(Yaw Rate) 발생의 감소 및 래터럴 G(Lateral G)의 증가, ② 스티어링 휠(Steering Wheel) 조작의 감소로 인한 Steering Angle의 감소, ③ 양측 휠의 속도차의 감소를 들 수 있으며, 아울러 위의 3 가지 문제로 인해 곡률 반경 예측이 부정확해지고, 그 에 따라 전방의 자차선 주행 차량을 선행차로 판단하지 않거나 옆차선 주행 차량을 선행차로 오인식하게 되는 등의 문제가 발생하게 된다.The problem caused by this is based on the above-mentioned road curvature prediction method. ① Steering angle due to decrease of yaw rate and increase of lateral G, ② decrease of steering wheel operation. And the decrease in speed difference between the wheels on both sides, and the above three problems make the radius of curvature prediction inaccurate. Therefore, it is not judged as a preceding vehicle or the next lane driving vehicle. Problems such as misrecognizing as a preceding vehicle will occur.

본 발명은 상기 종래의 문제점을 감안하여 안출한 것이며, 그 목적이 도로의 횡구배를 감안하여 곡률반경을 보정하는 것에 의해 정확한 곡률반경을 산출할 수 있도록 함으로써 선행차 인식 오류를 방지할 수 있도록 하는 도로 횡구배를 감안한 도로의 곡률반경 보정방법을 제공하는 데에 있는 것이다.The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to correct the radius of curvature by correcting the radius of curvature in consideration of the lateral gradient of the road so that the preceding vehicle recognition error can be prevented. It is to provide a method of correcting the radius of curvature of a road considering the road lateral gradient.

이하 상기 목적을 달성하기 위한 본 발명의 구체적인 기술내용을 첨부도면에 의거하여 더욱 자세히 설명하면 다음과 같다.Hereinafter, the specific technical details of the present invention for achieving the above object will be described in more detail with reference to the accompanying drawings.

도 1에는 구배가 있는 도로에서 각 센서가 측정되는 좌표계의 방향을 나타내는 것으로, 실제로 센서에 의해 측정되는 요 레이트(Yaw Rate) 및 래터럴 가속도(Lateral Acceleration)값은 도로의 구배각 θ 값에 의해 구배가 없을 때의 값과의 차이를 나타낸다.1 shows the direction of the coordinate system in which each sensor is measured on a road with a gradient, and the yaw rate and the lateral acceleration measured by the sensor are actually graded by the gradient angle θ of the road. The difference with the value when there is no.

따라서, 구배가 있는 도로에서 측정되는 요 레이트(Yaw Rate) 값은 구배가 없을 때 동일한 도로에서 나타나게 될 요 레이트(Yaw Rate) 다음과 같은 관계가 있다Therefore, the yaw rate value measured on the road with the gradient has the following relationship with the yaw rate that will appear on the same road when there is no gradient.

(1) 구배 있는 도로 요 레이트(Yaw Rate') = 구배 없는 도로 요 레이트(Yaw Rate) × cosθ (1) Gradient Yaw Rate '= Gradient Yaw Rate × cosθ

동일한 방법으로 구배 있는 래터럴 G(Lateral G') 값은 다음과 같다.In the same way, the gradient G (Lateral G ') values are:

(2) 구배 있는 도로 래터럴 G(Lateral G') = 구배 없는 도로 래터럴 G(Lateral G) ÷ cosθ(2) Graded Road Lateral G '= Graded Road Lateral G' ÷ cosθ

이 때 구배 있는 요 레이트(Yaw Rate')와 구배 있는 래터럴 G(Lateral G')에 의해서 계산되는 도로의 곡률 반경(R_yr')은 각각 At this time, the radius of curvature R_yr 'calculated by the gradient yaw rate' and the gradient lateral G 'is respectively

(3) Yaw Rate'에 의한 곡률반경(R_yr') = 차속(V) ÷ Yaw Rate'(3) radius of curvature due to Yaw Rate '(R_yr') = vehicle speed (V) ÷ Yaw Rate '

(4) Lateral G'에 의한 곡률반경(R_G') = V2 ÷ Lateral G'(4) Radius of curvature due to lateral G '(R_G') = V 2 ÷ Lateral G '

으로 표현된다.It is expressed as

그런데 평지일 경우에 이 두 값은 같은 값을 갖게 되지만 횡구배가 있는 도로에서는 서로 다른 값을 가지게 된다.However, in the case of flat land, these two values will have the same value, but they will have different values on roads with lateral gradients.

따라서 실제 횡구배가 있는 도로에서의 곡률 반경은 각각Therefore, the curvature radii on roads with actual transverse gradients

(5) R_yr' = V ÷ Yaw Rate × cosθ(5) R_yr '= V ÷ Yaw Rate × cosθ

(6) R_G = V2 ÷ Lateral G ÷ cosθ(6) R_G = V 2 ÷ Lateral G ÷ cosθ

으로 표현된다.It is expressed as

따라서 횡구배의 의해 증감된 도로의 곡률 반경은 다음과 같이 계산된다.Therefore, the radius of curvature of the road increased or decreased by the lateral gradient is calculated as follows.

Yaw Rate에 의한 것 : V ÷ Yaw Rate' × (1 - cosθ )By Yaw Rate: V ÷ Yaw Rate '× (1-cosθ)

Lateral G에 의한 것 : V2 ÷ Lateral G' × (1 ÷ cosθ - 1)By Lateral G: V 2 ÷ Lateral G '× (1 ÷ cosθ-1)

그리고 횡구배가 있는 도로에서 계산된 Yaw Rate와 Lateral G에 의한 곡률 반경의 차이는 다음 식에 의해 구할 수 있게 된다.The difference between the Yaw Rate and the radius of curvature due to Lateral G on the road with lateral gradient can be obtained by the following equation.

Figure 112006082162313-pat00001
Figure 112006082162313-pat00001

위 식에 의해서 도로의 횡구배 θ값이 계산되며, 로우 패스 필터(Low Pass Filter)를 통해 잡음을 제거한다.
상기 로우 패스 필터는 Yaw Rate와 Lateral G 센서의 신호가 도로의 요철 또는 차량 진동에 의해 고주파 잡음을 포함하게 되므로 이러한 고주파 잡음을 없애기 위한 단순한 필터를 말한다.
The lateral gradient θ of the road is calculated by the above equation, and noise is removed through a low pass filter.
The low pass filter refers to a simple filter for eliminating such high frequency noise since the signals of the yaw rate and the lateral G sensor include high frequency noise due to unevenness of the road or vehicle vibration.

계산된 θ값에 의해 실제 도로의 곡률 반경을 다음과 같이 계산할 수 있게 된다.The calculated radius of curvature of the road can be calculated as follows.

Figure 112006082162313-pat00002
Figure 112006082162313-pat00002

따라서 최종적으로 곡률 반경 R_yr과 R_G 값의 평균으로 출력함으로써 횡구배가 있는 도로일지라도 정확한 도로 곡률 반경을 예측할 수 있게 된다.Therefore, by finally outputting the average of the radius of curvature R_yr and R_G, it is possible to predict the exact radius of curvature of the road, even if the road has a horizontal gradient.

도 2에는 본 발명의 보정 순서도가 도시되어 있다.2 shows a correction flowchart of the present invention.

본 발명의 도로 횡구배를 감안한 곡률반경 보정방법은 요 레이트(Yaw Rate)에 의한 도로반경(R_yr')을 계산하는 단계;The curvature radius correction method considering the road lateral gradient of the present invention includes the steps of calculating the road radius (R_yr ') by the yaw rate;

래터럴 G(Lateral G)에 의한 도로반경(R_G')을 계산하는 단계;Calculating a road radius R_G 'due to lateral G;

상기 각 단계에서 산출한 도로반경의 차이를 계산하는 단계;Calculating a difference in road radius calculated at each step;

횡구배의 유무에 따른 요 레이트(Yaw Rate)에 의한 도로반경 차이값을 계산하는 단계;Calculating a road radius difference value due to yaw rate according to the presence or absence of a lateral gradient;

횡구배의 유무에 따른 래터럴 G(Lateral G)에 의한 도로반경 차이값을 계산하는 단계;Calculating a road radius difference value due to Lateral G according to the presence or absence of a lateral gradient;

상기 각 차이값을 통해 도로의 구배각(θ)을 계산하는 단계;Calculating a gradient angle θ of the road based on the difference values;

로우 패스 필터(Low Pass Filter)를 통해 Yaw Rate와 Lateral G 센서의 잡음을 제거하는 단계;Removing noise of the yaw rate and the lateral G sensor through a low pass filter;

횡구배에 의한 요 레이트(Yaw Rate)와 래터럴 G(Lateral G)의 도로곡률값을 보정하는 단계;Correcting the yaw rate and the road curvature values of Lateral G by Lateral Gradient;

요 레이트(Yaw Rate)와 래터럴 G(Lateral G)의 보정된 도로곡률값의 평균을 출력하는 단계;로 이루어진다.And outputting an average of the corrected road curvature values of the yaw rate and the lateral G.

이상에서와 같이 본 발명은 요 레이트 센서(Yaw Rate Sensor)와 래터럴 G 센서(Lateral G Sensor)를 이용하여 계산한 각 도로반경(R_yr')(R_G')의 차이를 계산하고, 횡구배의 유무에 따른 요 레이트(Yaw Rate)에 의한 도로반경 차이값과 래터럴 G(Lateral G)에 의한 도로반경 차이값을 계산한 후, 상기 각 차이값을 통해 도로의 구배각(θ)을 계산하는 동시에 횡구배에 의한 요 레이트(Yaw Rate)와 래터럴 G(Lateral G)의 도로곡률값을 보정하도록 한 것으로, 본 발명에 의하면 횡구배가 있는 도로에서 발생되는 요 레이트(Yaw Rate) 발생의 감소 및 래터럴 G(Lateral G) 의 증가, 스티어링 휠(Steering Wheel) 조작의 감소로 인한 스티어링 앵글(Steering Angle)의 감소, 양측 휠의 속도차의 감소 등에 의해서 도로의 곡률을 잘못 예측함으로써 발생하게 되는 자차선에 주행하고 있는 전방의 선행차를 타차선 차량으로 인식하는 문제라든지 타차선에 주행하고 있는 전방의 차량을 자차선의 선행차량으로 인식하는 문제를 해결할 수 있게 되며, 선행차량 검지의 인식 성능 향상 및 강건성을 확보할 수 있게 되므로 보다 안정적인 로직 설계 및 주행이 가능하게 되며, 승객의 안전성을 향상시킬 수 있게 되는 등의 효과를 얻을 수 있게 된다.As described above, the present invention calculates the difference between each road radius (R_yr ') (R_G') calculated using a yaw rate sensor and a lateral G sensor, and whether there is a lateral gradient. After calculating the road radius difference value by yaw rate and the road radius difference value by lateral G, the gradient angle θ of the road is calculated using the difference values The yaw rate caused by the boat and the road curvature values of the lateral G are corrected. According to the present invention, the reduction of the yaw rate generated in the road having a lateral gradient and the lateral G ( Drive on own lanes caused by misprediction of curvature of the road due to the increase in lateral G), the decrease in steering angle due to the decrease in steering wheel operation, and the decrease in speed difference between the two wheels. Take a preceding vehicle It is possible to solve the problem of recognizing the vehicle as the first vehicle or the problem of recognizing the vehicle in front of the other lane as the preceding vehicle of the own lane, and to improve the recognition performance and robustness of the detection of the preceding vehicle. It becomes possible to design and run, and to achieve the effect of improving the safety of the passengers.

Claims (2)

요 레이트 센서(Yaw Rate Sensor)에 의한 도로반경(R_yr')을 계산하는 단계; 래터럴 G 센서(Lateral G Sensor)에 의한 도로반경(R_G')을 계산하는 단계; 상기 계산된 각 도로반경(R_yr')(R_G')의 차이를 계산하는 단계; 횡구배의 유무에 따른 요 레이트(Yaw Rate)에 의한 도로반경 차이값을 계산하는 단계; 횡구배의 유무에 따른 래터럴 G(Lateral G)에 의한 도로반경 차이값을 계산하는 단계; 상기 각 차이값을 통해 도로의 구배각(θ)을 계산하는 단계; 횡구배에 의한 요 레이트(Yaw Rate)와 래터럴 G(Lateral G)의 도로곡률값을 보정하는 단계; 보정된 각 도로곡률값의 평균을 출력하는 단계;로 이루어지는 도로 횡구배를 감안한 도로의 곡률반경 보정방법.Calculating a road radius R_yr 'by a yaw rate sensor; Calculating a road radius R_G 'by the Lateral G Sensor; Calculating a difference between the calculated road radiuses R_yr 'and R_G'; Calculating a road radius difference value due to yaw rate according to the presence or absence of a lateral gradient; Calculating a road radius difference value due to Lateral G according to the presence or absence of a lateral gradient; Calculating a gradient angle θ of the road based on the difference values; Correcting the yaw rate and the road curvature values of Lateral G by Lateral Gradient; And outputting an average of each corrected road curvature value. 제1항에 있어서, 도로의 구배각(θ)을 계산하는 단계;의 다음에 로우 패스 필터(Low Pass Filter)를 통해 요 레이트 센서와 레터럴 G 센서에 포함된 고주파 잡음을 제거하는 단계;를 거치도록 한 것을 특징으로 하는 도로 횡구배를 감안한 도로의 곡률반경 보정방법.The method of claim 1, further comprising: calculating a gradient angle θ of the road; and then, removing a high frequency noise included in the yaw rate sensor and the lateral G sensor through a low pass filter. A curvature radius correction method of the road considering the road lateral gradient, characterized in that through.
KR1020060110660A 2006-11-09 2006-11-09 A correcting method of the radius of curvature considering road slope KR100820432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060110660A KR100820432B1 (en) 2006-11-09 2006-11-09 A correcting method of the radius of curvature considering road slope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060110660A KR100820432B1 (en) 2006-11-09 2006-11-09 A correcting method of the radius of curvature considering road slope

Publications (1)

Publication Number Publication Date
KR100820432B1 true KR100820432B1 (en) 2008-04-08

Family

ID=39534182

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060110660A KR100820432B1 (en) 2006-11-09 2006-11-09 A correcting method of the radius of curvature considering road slope

Country Status (1)

Country Link
KR (1) KR100820432B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481134B1 (en) * 2013-05-10 2015-01-12 현대오트론 주식회사 System and method for estimating the curvature radius of autonomous vehicles using sensor fusion
KR20190043270A (en) * 2017-10-18 2019-04-26 현대자동차주식회사 Apparatus and method for estimating redius of curvature of vehicle
KR20190047777A (en) * 2017-10-30 2019-05-09 현대자동차주식회사 Apparatus for controlling driving of vehicle and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077318A (en) * 2004-01-27 2005-08-02 주식회사 만도 Method for detectiing a bank road

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077318A (en) * 2004-01-27 2005-08-02 주식회사 만도 Method for detectiing a bank road

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481134B1 (en) * 2013-05-10 2015-01-12 현대오트론 주식회사 System and method for estimating the curvature radius of autonomous vehicles using sensor fusion
KR20190043270A (en) * 2017-10-18 2019-04-26 현대자동차주식회사 Apparatus and method for estimating redius of curvature of vehicle
CN109677415A (en) * 2017-10-18 2019-04-26 现代自动车株式会社 Device and method for estimating the radius of curvature of vehicle
KR102375149B1 (en) * 2017-10-18 2022-03-16 현대자동차주식회사 Apparatus and method for estimating redius of curvature of vehicle
KR20190047777A (en) * 2017-10-30 2019-05-09 현대자동차주식회사 Apparatus for controlling driving of vehicle and method thereof
KR102393467B1 (en) * 2017-10-30 2022-05-03 현대자동차주식회사 Apparatus for controlling driving of vehicle and method thereof

Similar Documents

Publication Publication Date Title
US8190330B2 (en) Model based predictive control for automated lane centering/changing control systems
US9507016B2 (en) Preceding vehicle selection apparatus
EP1857991B1 (en) Vehicle lane departure detecting device
US7477760B2 (en) Vehicle state sensing system and vehicle state sensing method
JP5716680B2 (en) Preceding vehicle selection device and inter-vehicle distance control device
JP3912416B2 (en) Vehicle departure prevention control device
CN110035930B (en) Parking assist apparatus
US10099691B2 (en) Apparatus and program for assisting drive of vehicle
JP3608259B2 (en) Automobile route estimation device
US20130274959A1 (en) Driving support apparatus, driving support method, and vehicle
EP2380794B1 (en) Curve radius estimation device
KR102183224B1 (en) System for Correcting Misalignment of Radar Installment Angle and Method thereof
KR102355735B1 (en) System and Method for Lane Keep Asistance
US20160314359A1 (en) Lane detection device and method thereof, and lane display device and method thereof
KR20140083723A (en) SCC device and method determining lane of target vehicle applying the same
JP6941178B2 (en) Automatic operation control device and method
KR101490905B1 (en) System and method for autonomous driving of vehicle
KR100820432B1 (en) A correcting method of the radius of curvature considering road slope
KR101927111B1 (en) Method and Apparatus for Calculating Yawrate and Method for Controlling the Lane Keeping Assist System Using the Same
KR102303230B1 (en) Apparatus and method for estimating radius of curvature in vehicle
US20140012491A1 (en) Traveling support apparatus and traveling support method
CN104842876A (en) Apparatus and method for setting assistance region
KR20220026657A (en) Method and system for recognizing road surface
CN110562253B (en) Automobile self-adaptive cruise curve following control device and control method
KR102152581B1 (en) Apparatus and Method for altering blind spot detection region

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
LAPS Lapse due to unpaid annual fee