KR100818659B1 - Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof - Google Patents

Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof Download PDF

Info

Publication number
KR100818659B1
KR100818659B1 KR1020060106738A KR20060106738A KR100818659B1 KR 100818659 B1 KR100818659 B1 KR 100818659B1 KR 1020060106738 A KR1020060106738 A KR 1020060106738A KR 20060106738 A KR20060106738 A KR 20060106738A KR 100818659 B1 KR100818659 B1 KR 100818659B1
Authority
KR
South Korea
Prior art keywords
hyaluronic acid
drug
nanogel
delete delete
present
Prior art date
Application number
KR1020060106738A
Other languages
Korean (ko)
Inventor
박태관
이혁진
목혜정
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020060106738A priority Critical patent/KR100818659B1/en
Application granted granted Critical
Publication of KR100818659B1 publication Critical patent/KR100818659B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels

Abstract

A method for preparing a hyaluronic acid nanogel is provided to encapsulate a macromolecular drug in a hyaluronic acid nano-gel physically and provide a drug delivery system with excellent drug delivery rate in vivo, stability, drug activity and excellent selectivity on a specific receptor of cancer cells. A method for preparing a hyaluronic acid nanogel containing a therapeutic drug comprises the steps of: (a) dissolving the drug such as plasmid gene, antisense ODN, siRNA, RNA, peptide, protein and water-soluble drug and a hyaluronic acid where a free thiol group is introduced into a carboxylic acid in an aqueous solution; (b) adding the aqueous solution to an organic solvent such as methylene chloride, chloroform, benzene, toluene and hexane to form a W/O reverse emulsion and (c) auto-crosslinking the free thiol group through disulfide bond. Further, a molecular weight of the hyaluronic acid is 10,000 to 2x10^7, and a diameter of the hyaluronic acid nanogel is 100 to 900nm.

Description

거대분자 약물을 함유한 히알루론산 나노젤 및 그 제조방법{Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and Fabrication method thereof}Hyaluronic acid nanogels containing macromolecular drugs and preparation method thereof {Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and Fabrication method

도 1은 본 발명에 사용된 히알루론산 (HA)(분자량: 1.79 x 107)의 카르복실기에 EDC/HOBt를 이용하여 양 말단에 아민기를 가진 씨스타민을 접목시킨 후, DTT를 이용하여 씨스타민에 존재하는 이황화 결합을 환원시켜 유리 황화기를 생성하는 방법을 설명하고 있다.1 is a carboxyl group of the hyaluronic acid (HA) (molecular weight: 1.79 x 10 7 ) used in the present invention by using EDC / HOBt to combine cystamine having an amine group at both ends, and then to Cistamine using DTT. A method of reducing free disulfide bonds to produce free sulfide groups is described.

도 2는 본 발명에서 사용된 유리 황화기가 도입된 히알루론산 (HA)이 워터-인-오일 에멀젼 (w/o emulsion)을 통해 자가 가교함으로써 siRNA가 물리적으로 봉입되는 과정을 설명하고 있다.2 illustrates a process in which siRNAs are physically encapsulated by self-crosslinking of hyaluronic acid (HA) having a free sulfide group used in the present invention through a water-in-oil emulsion (w / o emulsion).

도 3은 히알루론산 나노젤 (HA nanogel)의 크기를 측정한 결과이다. (A) DLS를 통해 측정한 히알루론산 나노젤의 크기, (B) 아토믹포스마이크로스코피 (AFM)을 토해 측정한 히알루론산 나노젤의 크기.3 is a result of measuring the size of the hyaluronic acid nanogel (HA nanogel). (A) Size of hyaluronic acid nanogel measured by DLS, (B) Size of hyaluronic acid nanogel measured by atomic force microscopy (AFM).

도 4는 히알루론산 나노젤에 함유된 siRNA가 글루타치온 (GSH) 농도에 따라 다른 방출 속도를 나타낸 것을 나타낸다.4 shows that siRNAs contained in hyaluronic acid nanogels exhibited different release rates according to glutathione (GSH) concentrations.

도 5는 초록 형광 단백질 siRNA가 봉입된 히알루론산 나노젤을 초록 형광 단백질을 발현하는 세포 (HCT-116)에 첨가하였을 때 얻을 수 있는 단백질 발현에 관한 것이다. (A) 첨가된 siRNA양에 따른 초록 형광 단백질의 발현 억제와 (B) 배지에 혈청이 첨가 되었을 경우와 무혈청의 경우에 나타나는 초록 형광 단백질의 발현 억제를 나타내고 있다.FIG. 5 relates to protein expression that is obtained when green hyaluronic acid nanogels encapsulated with green fluorescent protein siRNA are added to cells expressing green fluorescent protein (HCT-116). Inhibition of the expression of the green fluorescent protein according to the amount of siRNA added (A) and the suppression of the expression of the green fluorescent protein when serum was added to the medium and serum-free.

본 발명은 생체적합성 천연 고분자인 히알루론산 (HA)을 재료로 하여 거대 분자 약물을 세포내로 전달할 수 있는 히알루론산 나노젤 및 그 제조 방법에 관한 것이다.The present invention relates to a hyaluronic acid nanogel capable of delivering macromolecular drugs intracellularly using hyaluronic acid (HA), a biocompatible natural polymer, and a method for producing the same.

기존에 발명된 거대 분자약물을 세포내로 전달할 수 있는 방법으로 생체분해 성 합성 고분자 (예로, PLGA)를 이용한 워터인오일인워터 (W/O/W) 나노스피어 (nanosphere), 거대분자 약물(siRNA, 펩타이드, 단백질)의 페길레이션 (PEGylation), 강한 양이온을 띠는 폴리에틸렌이민 (polyethylenimine, PEI), 폴리엘라이신 (poly-lysine, PLL)을 이용한 치료용 유전 물질과의 폴리일렉트롤라이트 컴플렉스(polyelectrolyte complex)의 형성 등이 있다. 이러한 전달 방법은 상기 거대 분자약물의 물리화학적 안정성에 많은 문제점을 일으킨다. 예를 들어, PLGA 나노스피어의 경우 낮은 봉입율과 미비한 전달효율로서 실용성이 현저히 낮고, 펩 타이드나 유전자의 페길레이션 (PEGylation)은 뭉침(aggregation) 현상을 줄여주지만 그 전달 효율이 낮다. 또한 폴리일렉트롤라이트 콤플렉스의 경우, 양이온성 고분자들이 세포 독성을 유발하기 쉬워 아직 안전성에 문제가 있다. 특히 급성적인 세포 독성, 면역반응 등을 일으키는 것으로 알려져 있어서 생체 적합성이 떨어진다. Water in oil in water (W / O / W) nanospheres and macromolecular drugs (siRNA) using biodegradable synthetic polymers (eg, PLGA) as a method to deliver the previously invented macromolecular drugs into cells PEGylation of polypeptides, peptides and proteins, polyelectrolyte with therapeutic genetic materials using strong cationic polyethylenimine (PEI) and poly-lysine (PLL) complex formation). This delivery method raises many problems in the physicochemical stability of the macromolecular drugs. For example, PLGA nanospheres have a very low practicality due to low encapsulation rate and poor transfer efficiency, and pegylation of peptides or genes reduces aggregation, but the transfer efficiency is low. In the case of polyelectrolyte complexes, cationic polymers are prone to cytotoxicity and there are still safety problems. In particular, it is known to cause acute cytotoxicity, immune response, etc., poor biocompatibility.

천연 고분자인 히알루론산 (HA)은 넌설페이티드 글라이코사미노글리칸 (nonsulfated glycosaminoglycan)으로서 N-아세틸-D-글루코사민과 D-글루큐로닉산으로 구성되어 있으며, 세포 밖 구조체의 주요 성분으로서 높은 생체 적합성을 가지고 있다. 또한 피하조직과 연골조직 같은 연결조직의 세포외측 기질 뿐 아니라 안구의 유리체 및 관절 동동의 활액에 존재하며, 히알루론산과 히알루론산 수용체인 CD44/RHAMM의 상호작용은 세포 이동성 및 세포증식과 특정 생리학적 과정들을 제어하는 것으로 알려져 있다. The natural polymer, hyaluronic acid (HA), is a nonsulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine and D-glucuronic acid, and is a high component of the extracellular structure. It has biocompatibility. It is also present in the synovial fluid of the eye's vitreous and joint sinus as well as extracellular matrix of connective tissues such as subcutaneous and cartilage tissues.The interaction between hyaluronic acid and the hyaluronic acid receptor CD44 / RHAMM is associated with cell mobility and cell proliferation It is known to control the processes.

이러한 특징으로 히알루론산은 치료적 용도를 가지며, 미국식품의약품(FDA)에서 정맥주사, 구강 투여, 피부투여 등으로 인간에게 사용하는 것을 승인 받은 천연 고분자이다 (참조:P. Bulpitt, et al., J. Biomed. Mater. Res. 47, 152(1999)). 현재로는 조직공학용 지지체와 약물전달용 하이드로젤로서 그 사용 범위가 증대되고 있다.Because of these features, hyaluronic acid is a natural polymer that has therapeutic uses and is approved for use in humans in the US Food and Drug Administration (FDA) by intravenous injection, oral administration, and skin administration (P. Bulpitt, et al., J. Biomed. Mater. Res. 47, 152 (1999)). At present, the scope of use is increasing as a support for tissue engineering and hydrogel for drug delivery.

하이드로젤을 이용한 거대분자 약물 전달은 그 동안 많은 연구 결과와 효용성이 발표되었으며 (참조: A. Ludwi, Adv Drug Deliv Rev 57(11) (2005)), 특정 암세포 표면에 많이 발현되는 CD44와 결합 할 수 있음이 이미 알려져 있어, 암세포 를 목표로 표적지향적 약물전달이 가능하다 (참조: K. Akima et al.. J Drug Targetting 4 (1996)). 특히 나노 크기의 시스템에서의 거대분자 약물의 흡수는 상피 장벽(epithelial barrier)을 침투하는 것을 가능하게 하며, 약물을 분해로부터 방어해준다는 것 또한 증명되었다.Macromolecular drug delivery using hydrogels has been published for many years and has been published (A. Ludwi, Adv Drug Deliv Rev 57 (11) (2005)). It is already known that it is possible to target drug delivery to cancer cells (K. Akima et al. J Drug Targetting 4 (1996)). Absorption of macromolecular drugs, particularly in nanoscale systems, has been shown to enable penetration of the epithelial barrier and protect the drug from degradation.

본 발명은 상기한 바와 같이 종래기술이 가지는 문제를 해결하기 위해 제안된 것으로, 그 목적은 거대 분자 약물을 물리적으로 봉입하는 것이 가능하여, 약물의 세포내 전달율, 안정성 및 약물의 활성도 면에서 매우 우수한 약물 전달체의 제조방법 및 약물전달체를 제공함에 있다.The present invention has been proposed to solve the problems of the prior art as described above, the object of which is to physically encapsulate the macromolecular drug, it is very excellent in the intracellular delivery rate, stability and drug activity of the drug The present invention provides a method for producing a drug carrier and a drug carrier.

상기한 목적을 달성하기 위하여 본 발명은 카르복시산에 유리 황화기가 도입된 히알루론산을 이황화결합시켜 자가가교에 의해 히알루론산 나노젤을 제조하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for preparing hyaluronic acid nanogels by self-crosslinking by disulfide-linking hyaluronic acid in which a free sulfide group is introduced into carboxylic acid.

또한 본 발명은 히알루론산의 카르복시산에 유리 황화기를 도입하는 단계; 상기 유리 황화기가 도입된 히알루론산을 이황화결합시켜 자가가교에 의해 히알루론산 나노젤을 제조하는 방법을 제공한다.In addition, the present invention comprises the steps of introducing a free sulfide group to the carboxylic acid of hyaluronic acid; The present invention provides a method of preparing hyaluronic acid nanogels by self-crosslinking by disulfide-linking hyaluronic acid into which the free sulfide group is introduced.

상기 본 발명에 의하면 바람직하게는 히알루론산의 분자량은 10,000~2×107 의 범위이다.According to the present invention, preferably, the molecular weight of hyaluronic acid is in the range of 10,000 to 2 × 10 7 .

상기 본 발명에 의하면 바람직하게는 히알루론산의 유리 황화기의 치환율은 10~90%의 범위이다.According to the said invention, Preferably, the substitution rate of the free sulfide group of hyaluronic acid is 10 to 90% of range.

상기 본 발명에 의하면 바람직하게는 히알루론산 나노젤은 100~900nm의 지름을 가지는 구형이다.According to the present invention, preferably, the hyaluronic acid nanogel is spherical having a diameter of 100 to 900 nm.

또한 본 발명은 치료용 약물을 함유하며, 카르복시산에 유리 황화기가 도입된 히알루론산을 이황화결합시켜 자가가교된 히알루론산 나노젤을 포함하는 치료용 약물을 함유한 히아루론산 나노젤을 제공한다.In another aspect, the present invention provides a hyaluronic acid nanogel containing a therapeutic drug, including a therapeutic drug including a self-crosslinked hyaluronic acid nanogel by disulfide-linking hyaluronic acid introduced into the carboxylic acid free sulfide group.

상기 본 발명에 의하면 바람직하게는 약물은 플라즈미드 유전자, 안티센스 ODN, siRNA, RNA, 펩타이드, 단백질 및 수용성 약물로 구성되는 군에서 선택되는 적어도 1종으로 한다.According to the present invention, preferably, the drug is at least one selected from the group consisting of plasmid gene, antisense ODN, siRNA, RNA, peptide, protein, and water-soluble drug.

또한 본 발명은 약물과 카르복시산에 유리 황화기가 도입된 히알루론산을 수용액에 용해하는 단계; 상기 수용액을 유기용매에 첨가하여 W/O 역에멀젼을 형성하는 단계; 유리황화기를 이황화결합하여 자가가교시키는 단계를 포함하는 치료용 약물을 함유한 히아루론산 나노젤의 제조방법을 제공한다.In another aspect, the present invention comprises the steps of dissolving hyaluronic acid in which a free sulfide group is introduced into the drug and carboxylic acid in an aqueous solution; Adding the aqueous solution to an organic solvent to form a W / O inverse emulsion; It provides a method for producing a hyaluronic acid nanogel containing a therapeutic drug comprising the step of self-crosslinking by disulfide-free sulfide groups.

상기 본 발명에 의하면 바람직하게는 유기용매는 메틸렌클로라이드, 클로로포름, 벤젠, 톨루엔, 및 헥산으로 구성되는 군에서 선택되는 적어도 1종으로 한다.According to the present invention, preferably, the organic solvent is at least one selected from the group consisting of methylene chloride, chloroform, benzene, toluene, and hexane.

이하, 본 발명의 내용을 상세하게 설명하면 다음과 같다.Hereinafter, the content of the present invention will be described in detail.

본 발명에 따른 히알루론산 나노젤은 이황화결합에 의해 자가가교된 상태의 하이드로젤로서, 내부에 원하는 목표에 전달하고자 하는 약물을 함유할 수 있고, 환원환경에서는 함유된 약물을 방출하는 것이 가능하다.The hyaluronic acid nanogel according to the present invention is a hydrogel in a state of self-crosslinking by disulfide bonds, and may contain a drug to be delivered to a desired target therein, and may release a drug contained in a reducing environment.

이와 같은 본 발명의 히알루론산 나노젤은 히알루론산에 존재하는 카르복실기에 유리 황화기가 소정 비율로 도입되어진 것을 기본 단위체로 하고, 이들 단위체들을 이황화 결합시켜 자가가교에 의해 구형의 나노젤로서 제조할 수 있다.Such hyaluronic acid nanogels of the present invention may be prepared as spherical nanogels by self-crosslinking by disulfide-bonding these units as basic units having free sulfide groups introduced at a predetermined ratio to the carboxyl groups present in the hyaluronic acid. .

카르복실기를 다량 함유한 천연 고분자인 히알루론산 (HA)은 황화기(thiol group)의 도입이 간편하고 또한 효과적이다. 황화기가 도입된 히알루론산은 중성 pH 영역에서 이황화 결합을 형성할 수 있으며, 자가가교에 의해 하이드로젤을 형성할 수 있다.Hyaluronic acid (HA), a natural polymer containing a large amount of carboxyl groups, is simple and effective in introducing a thiol group. Hyaluronic acid into which the sulfidation group is introduced may form disulfide bonds in the neutral pH range, and may form hydrogels by self-crosslinking.

황화기를 제공할 수 있는 물질은 구조내 카르복실기에 치환되어질 수 있는 작용기를 가지며, 유리 황화기를 가지고 있거나, 이황화 결합을 가지고 있어 환원조건하에 유리 황화기를 제공할 수 있는 어떠한 물질도 사용될 수 있으며, 예를 들어 시스타민(Cystamine), DTP (dithiobis(propanoic dihydrazide)), DTB (dithiobis(butyric dihydrazide)) 등을 들 수 있다.The material capable of providing a sulfide group has a functional group which can be substituted with a carboxyl group in the structure, and any material capable of providing a free sulfide group under reducing conditions due to having a free sulfide group or having a disulfide bond may be used. For example, cystamine, DTP (dithiobis (propanoic dihydrazide)), DTB (dithiobis (butyric dihydrazide)), etc. are mentioned.

본 발명에서의 유리 황화기의 치환율은 특별한 한정을 요하는 것은 아니며, 예를 들어 10~90%의 범위내에서 실시하는 것으로 족하다.The substitution rate of the free sulfide group in this invention does not require a special limitation, For example, it is sufficient to carry out in 10 to 90% of range.

본 발명에 사용될 수 있는 히알루론산의 분자량은 특별한 한정을 요하는 것은 아니며, 예를 들어 10,000~2×107의 범위내에서 실시하는 것으로 족하다. 히알루론산 천연 고분자는 이와 같이 다양한 분포의 분자량이 사용될 수 있으며, 본 발명에 의하면 히알루론산의 분자량에 따라 용해도의 차이가 다소 나타나지만, 카르복 실기의 치환율에는 큰 차이가 나타나지 않았다.The molecular weight of hyaluronic acid that can be used in the present invention does not require any particular limitation, and for example, it is sufficient to carry out within the range of 10,000 to 2 × 10 7 . As such, the molecular weight of the hyaluronic acid natural polymer may be used in various distributions. According to the present invention, the solubility difference appears somewhat depending on the molecular weight of the hyaluronic acid, but the substitution rate of the carboxyl group does not appear to be large.

본 발명에 따라 제조되어지는 히알루로산 나노젤은 100~900nm의 지름을 가지는 구형의 나노젤이다.Hyaluronic acid nanogels prepared according to the present invention is a spherical nanogel having a diameter of 100 ~ 900nm.

본 발명에 따라 얻어지는 히알루론산 나노젤은 타겟에 전달하고자 하는 약물을 함유할 수 있으며, 이들 약물은 유리 황화기가 도입된 히알루론산과 혼합하여 수용액에 용해된 후, 이를 초음파의 존재하에 유기용매상에 분산시켜 나노미터 수준의 W/O 역에멀젼을 형성하고, 이황화 결합으로 가교시키는 과정에 의해 히알루론산 나노젤의 내부에 봉입될 수 있다.The hyaluronic acid nanogels obtained according to the present invention may contain a drug to be delivered to a target, and these drugs are mixed with hyaluronic acid into which a free sulfide group is introduced, dissolved in an aqueous solution, and then, on the organic solvent in the presence of ultrasonic waves. It can be dispersed to form nanometer-level W / O inverse emulsion and encapsulated inside the hyaluronic acid nanogel by the process of crosslinking with disulfide bonds.

초음파 진동을 이용한 에멀젼의 형성은 이황화 결합의 형성을 촉진시켜 신속한 이황화 결합에 의한 자가가교를 유도하고, 그 결과 내부에 봉입되어질 거대분자 약물의 구조와 활성도를 유지하는데 큰 도움이 된다. The formation of emulsions using ultrasonic vibrations facilitates the formation of disulfide bonds, leading to rapid self-crosslinking by disulfide bonds, and consequently helps to maintain the structure and activity of macromolecular drugs to be encapsulated therein.

상기 본 발명에서 W/O 역에멀젼을 형성하기 위해 사용될 수 있는 유기 용매로는 예를 들어, 메틸렌 클로라이드, 클로로포름, 벤젠, 톨루엔, 헥산 등을 들 수 있다. Organic solvents that can be used to form the W / O inverse emulsion in the present invention include, for example, methylene chloride, chloroform, benzene, toluene, hexane and the like.

본 발명에 사용될 수 있는 약물은 바람직하게는 치료용 수용성 고분자로서, 특별히 한정되는 것은 아니며, 플라즈미드 유전자, 안티센스 ODN, siRNA, RNA, 펩타이드, 단백질 등의 약물을 들 수 있다. 특히 치료용 유전자의 경우 봉입율이 50% 이상으로서 매우 높고, 그 활성도도 매우 우수하다.The drug that can be used in the present invention is preferably a water-soluble polymer for treatment, and is not particularly limited, and includes drugs such as plasmid gene, antisense ODN, siRNA, RNA, peptide, protein, and the like. Especially in the case of therapeutic genes, the encapsulation rate is very high as 50% or more, and its activity is also very good.

본 발명에 따른 히알루론산 나노젤은 특히, 특정 세포 예를 들어 암세포의 CD44와 RHAMM의 수용체를 특이적으로 인식할 수 있어 세포내 이입과정 등에 의해 진입이 가능하고, 세포내 환원인자인 글루타치온에 민감하게 반응하여 분해될 수 있어 암세포 표적지향형 약물전달체로서도 기능할 수 있다.In particular, hyaluronic acid nanogel according to the present invention can specifically recognize the receptors of CD44 and RHAMM of a specific cell, for example, cancer cells, can enter by intracellular migration process, and is sensitive to glutathione, an intracellular reducing factor. It can be decomposed and reacted to function as a cancer cell targeted drug delivery agent.

이하, 실시 예를 통해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시 예는 본 발명을 오로지 설명하기 위한 것으로 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 국한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these embodiments according to the gist of the present invention.

<실시예 1> 히알루론산에 황화기의 도입Example 1 Introduction of Sulfur Group to Hyaluronic Acid

히알루론산 (HA, MW:132K, 630K, 1.79x107) 을 각각 pH 7.0 의 인산완충액 (PBS) 에 녹인 후, 0.44 um 의 나일론 필터 (Minisart)를 이용하여 필터링을 하였다. 필터링이 된 히알루론산 용액에 히알루론산에 존재하는 카복실기의 몰비(molar ratio)의 3배에 해당하는 EDC 와 HObt를 첨가한 후 2시간 동안 잘 섞어주었다. 그 후 EDC/HObt 와 동일한 몰비 (molar ratio)의 씨스타민 (cystamine dihydrochloride)을 첨가한 후 24 시간 동안 반응시켰다. 반응 물질은 남아있는 EDC/HObt 와 씨스타민을 제거하기 위해 투석막 (MWCO: 3500)을 이용하여 증류수에서 24시간동안 투석한 후, 투석된 용액에 카르복실기의 몰 비의 5배에 해당하는 디티티 (DTT)를 첨가하여 24 시간동안 반응시켰다. 이때 첨가된 DTT는 씨스타민과 반응하여 유리 황화기 (free thiol group)를 만드는데 이용된다. 황화기가 도입된 히 알루론산 용액은 다시 한번 투석막 (MWCO: 20,000)을 이용하여 증류수에서 이틀간 투석시켰다. 투석된 용액은 동결건조하였다 (도 1).Hyaluronic acid (HA, MW: 132K, 630K, 1.79x10 7 ) was dissolved in phosphate buffer (PBS) at pH 7.0, respectively, and filtered using a 0.44 um nylon filter (Minisart). The filtered hyaluronic acid solution was added EDC and HObt corresponding to three times the molar ratio of the carboxyl group present in the hyaluronic acid and then mixed well for 2 hours. Thereafter, the same molar ratio of cystamine dihydrochloride as EDC / HObt was added, followed by reaction for 24 hours. The reactants were dialyzed in distilled water for 24 hours using a dialysis membrane (MWCO: 3500) to remove the remaining EDC / HObt and cystamine, and then 5 times the molar ratio of carboxyl groups in the dialyzed solution ( DTT) was added and reacted for 24 hours. The added DTT is then used to react with cystamine to form a free thiol group. The hyaluronic acid solution into which the sulfide was introduced was once again dialyzed in distilled water for two days using a dialysis membrane (MWCO: 20,000). The dialysed solution was lyophilized (FIG. 1).

유리 황화기 (free thiol group)가 히알루론산에 도입된 양을 확인하기 위하여, 엘만 측정법 (Elman's assay)을 사용하였다. 엘만 측정법에 따라, 각 히알루론산 분자량의 유리 황화기의 도입 정도는 30~45% 로 측정되었으며, 그 결과 분자량에 따른 황화기의 도입 경향에는 큰 차이를 보이지 않았다. In order to confirm the amount of free thiol group introduced into hyaluronic acid, Elman's assay was used. According to the Elman measurement, the degree of introduction of free sulfide groups of each hyaluronic acid molecular weight was determined to be 30 to 45%, and as a result, there was no significant difference in the tendency of sulfide groups to be introduced according to molecular weight.

<실시예 2> 치료용 거대분자 약물이 봉입된 히알루론산 나노젤의 제조 <Example 2> Preparation of hyaluronic acid nanogels containing the therapeutic macromolecule drug

실시예 1에서 준비한 황화기가 치환된 히알루론산 (HA, MW: 1.79x107) 을 pH 7.0 PBS 에 1~2 % 농도로 녹였다. 이때 치료용 거대분자 약물 (siRNA, 펩타이드, 단백질)를 함께 첨가하여 녹인 후, 0.44 um 의 나일론 필터 (Minisart)를 이용하여 여과하였다. 워터인 오일 에멀젼 (W/O emulsion)에서 사용될 유기 용매로 헥산 (anhydrous hexane)을 준비하였다 (5 ml). 헥산에 스판 65 (Span 65) 계면 활성제를 무게비로 2 % 가량 첨가한 후 초음파 진동기를 이용해 녹였다. 이렇게 계면 활성제가 녹아 있는 헥산에 위에서 준비된 약물이 첨가된 히알루론산 용액을 한 방울씩 첨가하면서 15초간 초음파 진동기를 이용해 워터인 오일 에멀젼을 만들었다. 그 후 히알루론산 간의 충분한 가교 (crosslinking)를 위해 2 시간가량 마그네틱 교반(magnetic stirrer)를 이용해 잘 섞어주었다 (도 2). 이때 생성된 나노젤은 원심분리기를 이용하여 분리한 후, 계면 활성제 제거를 위해 헥산을 이용해 두 번 닦아 내고 진공 오븐에서 말렸다. The sulfide-substituted hyaluronic acid (HA, MW: 1.79 × 10 7 ) prepared in Example 1 was dissolved in a concentration of 1 to 2% in pH 7.0 PBS. At this time, the therapeutic macromolecule drug (siRNA, peptide, protein) was added and dissolved together, and then filtered using a 0.44 um nylon filter (Minisart). Hexane (anhydrous hexane) was prepared as an organic solvent to be used in a water in oil emulsion (W / O emulsion) (5 ml). Span 65 surfactant was added to hexane in a weight ratio of about 2% and dissolved using an ultrasonic vibrator. The oil emulsion, which is a water, was prepared using an ultrasonic vibrator for 15 seconds while adding a drop of hyaluronic acid solution containing the drug prepared above to hexane in which the surfactant was dissolved. Thereafter, the mixture was mixed well using magnetic stirrer for about 2 hours for sufficient crosslinking between hyaluronic acid (FIG. 2). The resulting nanogels were separated using a centrifuge, then wiped twice with hexane to remove the surfactant and dried in a vacuum oven.

히알루론산 나노젤의 크기는 동적광산란 장치 (DLS)를 통해 측정할 수 있다. 측정값은 200~300 나노미터 크기로 그 분포도가 균일했다 (도 3). The size of hyaluronic acid nanogels can be measured via a dynamic light scattering device (DLS). The measured value was 200-300 nanometers in size, and the distribution was uniform (FIG. 3).

<실험예 1> 봉입된 치료용 고분자의 양의 정량 및 발산Experimental Example 1 Quantification and Dissipation of Encapsulated Therapeutic Polymer

실시예 2에서 제조한 히알루론산 나노젤이 치료용 거대분자 약물을 물리적으로 봉입한 정도를 측정하기 위한 실험을 수행하였다. 디티티 (DTT) 와 글루타치온을 이용하여 이황화 결합을 통해 가교되어 있는 히알루론산 나노젤을 분해시킨 후, 남아 있는 치료용 siRNA의 양을 정량 하였다. siRNA의 양을 정량 한 경우, 봉입율이 ~50 퍼센트에 이르렀다. 또한 0~10 mM 사이의 글루타치온의 농도에 따른 siRNA 의 방출 정도도 측정하였다. 참고로 세포내의 글루타치온의 농도는 1~10 mM 정도로 알려져 있다. 측정 결과 10 mM 글루타치온 농도에서 1 시간 안에, siRNA 가 모두 방출되는 것을 확인할 수 있었다 (도 4).An experiment was performed to measure the degree to which the hyaluronic acid nanogel prepared in Example 2 physically encapsulated the therapeutic macromolecular drug. Ditty (DTT) and glutathione were used to dissolve the crosslinked hyaluronic acid nanogels through disulfide bonds, and the amount of therapeutic siRNA remaining was quantified. When quantifying the amount of siRNA, the inclusion rate reached ˜50 percent. In addition, the degree of siRNA release was measured according to the concentration of glutathione between 0 and 10 mM. For reference, the concentration of glutathione in cells is known to be about 1-10 mM. As a result, it was confirmed that all siRNAs were released within 1 hour at 10 mM glutathione concentration (FIG. 4).

<실험예 2> 히알루론산 나노젤의 세포내 전달Experimental Example 2 Intracellular Delivery of Hyaluronic Acid Nanogel

실시예 2에서 제조한 siRNA를 함유한 히알루론산 나노젤을 세포내로 전달하는 실험을 해보았다. 초록 형광을 띠는 HCT-116 세포를 anti-GFP siRNA를 함유한 히알루론산 나노젤 (1mg/ml)을 배지에 첨가하여 배양한 후, 유전자 발현 억제정도를 측정하였다. 측정결과, 배양액에 혈청(serum)이 첨가되거나 첨가되어 있지 않은 두 경우 모두 60% 이상의 유전자 발현 억제 정도를 확인할 수 있었다 (도 5). 이 결과 히알루론산 나노젤은 기존의 다른 양이온성 고분자 담체 (예로, 폴리에틸렌이민)에 비하여 시럼이 존재하여도 유전자 발현 억제 효율이 우수하다는 것을 예시하고 있다.The experiment was performed to deliver the hyaluronic acid nanogel containing the siRNA prepared in Example 2 intracellularly. Green fluorescent HCT-116 cells were cultured with anti-GFP siRNA-containing hyaluronic acid nanogels (1 mg / ml) and cultured. As a result of the measurement, in both cases in which serum was added or not added, the degree of inhibition of gene expression of 60% or more was confirmed (FIG. 5). As a result, the hyaluronic acid nanogels exemplify that the gene expression inhibition efficiency is excellent even if the serum is present compared to other cationic polymer carriers (for example, polyethyleneimine).

이상에서 설명한 바와 같이, 본 발명은 거대 분자 약물을 히알루론산 (HA) 나노젤에 물리적으로 봉입하는 것이 가능하여, 약물의 세포내 전달율, 안정성 및 약물의 활성도 면에서 매우 우수한 약물전달체를 제공하는 것이 가능하다. 특히, 암세포의 특정 수용체에 대하여 선택성이 우수하여 암세포 표적지향성 약물전달체로서 기능 할 수 있다. As described above, the present invention is capable of physically encapsulating a macromolecular drug in hyaluronic acid (HA) nanogel, thereby providing a drug carrier which is very excellent in terms of intracellular delivery rate, stability and drug activity of the drug. It is possible. In particular, it has excellent selectivity with respect to specific receptors of cancer cells and can function as a cancer cell target-oriented drug carrier.

Claims (16)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 약물과 카르복시산에 유리 황화기가 도입된 히알루론산을 수용액에 용해하는 단계; 상기 수용액을 유기용매에 첨가하여 W/O 역에멀젼을 형성하는 단계; 유리황화기를 이황화결합하여 자가가교시키는 단계를 포함하는 치료용 약물을 함유한 히 아루론산 나노젤의 제조방법.Dissolving hyaluronic acid having a free sulfide group introduced into the drug and the carboxylic acid in an aqueous solution; Adding the aqueous solution to an organic solvent to form a W / O inverse emulsion; A method for producing a hyaluronic acid nanogel containing a therapeutic drug comprising the step of self-crosslinking by disulfide-free sulfide groups. 제 11항에 있어서, 히알루론산의 분자량은 10,000~2×107의 범위인 히알루론산 나노젤의 제조방법.The method of claim 11, wherein the hyaluronic acid has a molecular weight in the range of 10,000 to 2 × 10 7 . 제 11항에 있어서, 히알루론산의 유리 황화기의 치환율은 10~90%인 히알루론산 나노젤의 제조방법.The method for producing a hyaluronic acid nanogel according to claim 11, wherein the substitution rate of the free sulfide group of hyaluronic acid is 10 to 90%. 제 11항에 있어서, 히알루론산 나노젤은 100~900nm의 지름을 가지는 구형인 히알루론산 나노젤의 제조방법.The method of claim 11, wherein the hyaluronic acid nanogel is a spherical hyaluronic acid nanogel having a diameter of 100 to 900 nm. 제 11항에 있어서, 유기용매는 메틸렌클로라이드, 클로로포름, 벤젠, 톨루엔, 및 헥산으로 구성되는 군에서 선택되는 적어도 1종인 히알루론산 나노젤의 제조방법.The method of claim 11, wherein the organic solvent is at least one selected from the group consisting of methylene chloride, chloroform, benzene, toluene, and hexane. 제 11항에 있어서, 약물은 플라즈미드 유전자, 안티센스 ODN, siRNA, RNA, 펩타이드, 단백질 및 수용성 약물로 구성되는 군에서 선택되는 적어도 1종인 히알루론산 나노젤의 제조방법.The method of claim 11, wherein the drug is at least one selected from the group consisting of plasmid gene, antisense ODN, siRNA, RNA, peptide, protein, and water-soluble drug.
KR1020060106738A 2006-10-31 2006-10-31 Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof KR100818659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060106738A KR100818659B1 (en) 2006-10-31 2006-10-31 Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060106738A KR100818659B1 (en) 2006-10-31 2006-10-31 Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof

Publications (1)

Publication Number Publication Date
KR100818659B1 true KR100818659B1 (en) 2008-04-01

Family

ID=39533517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060106738A KR100818659B1 (en) 2006-10-31 2006-10-31 Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof

Country Status (1)

Country Link
KR (1) KR100818659B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910569A (en) * 2015-06-03 2015-09-16 西安交通大学 Hyaluronic acid/poly(N-epsilon-acryloyl-L-lysine) dual-network aquagel capable of biological reduction and preparation method thereof
KR101831948B1 (en) 2015-02-13 2018-02-23 주식회사 엔도더마 Microstructure Using Cross-linked Hyaluronic Acid Hydrogel and Process for Preparing the Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054301A1 (en) * 2003-11-14 2005-06-16 Chugai Seiyaku Kabushiki Kaisha Crosslinked polysaccharide microparticles and process for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054301A1 (en) * 2003-11-14 2005-06-16 Chugai Seiyaku Kabushiki Kaisha Crosslinked polysaccharide microparticles and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101831948B1 (en) 2015-02-13 2018-02-23 주식회사 엔도더마 Microstructure Using Cross-linked Hyaluronic Acid Hydrogel and Process for Preparing the Same
KR101831949B1 (en) 2015-02-13 2018-02-23 주식회사 엔도더마 Microstructure Using Cross-linked Hyaluronic Acid Hydrogel and Process for Preparing the Same
KR101838715B1 (en) 2015-02-13 2018-03-14 주식회사 엔도더마 Composition For Manufacturing Microneedle Comprising Crosslinked Hyaluronic Acid and Non-crosslinked Hyaluronic Acid
CN104910569A (en) * 2015-06-03 2015-09-16 西安交通大学 Hyaluronic acid/poly(N-epsilon-acryloyl-L-lysine) dual-network aquagel capable of biological reduction and preparation method thereof

Similar Documents

Publication Publication Date Title
Mokhtarzadeh et al. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering
Casettari et al. Biomedical applications of amino acid-modified chitosans: a review
Madkhali et al. Modified gelatin nanoparticles for gene delivery
Witschi et al. Influence of the microencapsulation method and peptide loading on poly (lactic acid) and poly (lactic-co-glycolic acid) degradation during in vitro testing
JP5443976B2 (en) Hybrid gel containing chemically crosslinked hyaluronic acid derivative and pharmaceutical composition using the same
Gonzalez-Gaitano et al. Drug carrier systems based on cyclodextrin supramolecular assemblies and polymers: present and perspectives
Jin et al. Hyaluronic acid in drug delivery systems
EP3148515B1 (en) Nanoparticle
Watkins et al. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules
Zheng et al. Biodegradable and redox-responsive chitosan/poly (L-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides
EP1891941A1 (en) Aqueous gels comprising microspheres
KR20130133692A (en) Method of manufacturing crosslinked hydrogel for drug delivery system
US20040038885A1 (en) Colloidal suspension of submicronic particles for carrying active principles and their mode of preparation
US20210361570A1 (en) In situ gelling polysaccharide-based nanoparticle hydrogel compositions, and methods of use thereof
Maria et al. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide
CN108210932A (en) A kind of preparation method of charge driving self-assembly chitosan base medicine-carried nano particles
TWI386224B (en) An injectable smart gel and the fabricating method thereof
Freitas et al. Sterculia striata gum as a potential oral delivery system for protein drugs
Kofuji et al. Biodegradation and drug release of chitosan gel beads in subcutaneous air pouches of mice
Dubashynskaya et al. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications
Kumari et al. Polysaccharide-based nanogels for drug and gene delivery
KR100818659B1 (en) Hyaluronic acid nanogels for physical encapsulation of macromolecular drugs and fabrication method thereof
Teixeira et al. Pullulan hydrogels as drug release platforms in biomedicine
Feng et al. Natural Hydrogels Applied in Photodynamic Therapy
Piatkowski et al. Application of Poly (aspartic acid) and its Derivatives in Medicine and Pharmacy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee