KR100807100B1 - Device and Method for unified codecs - Google Patents

Device and Method for unified codecs Download PDF

Info

Publication number
KR100807100B1
KR100807100B1 KR1020060065139A KR20060065139A KR100807100B1 KR 100807100 B1 KR100807100 B1 KR 100807100B1 KR 1020060065139 A KR1020060065139 A KR 1020060065139A KR 20060065139 A KR20060065139 A KR 20060065139A KR 100807100 B1 KR100807100 B1 KR 100807100B1
Authority
KR
South Korea
Prior art keywords
information
bitstream
syntax
description
unit
Prior art date
Application number
KR1020060065139A
Other languages
Korean (ko)
Other versions
KR20080006243A (en
Inventor
장의선
이선영
이충구
Original Assignee
주식회사 휴맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴맥스 filed Critical 주식회사 휴맥스
Priority to KR1020060065139A priority Critical patent/KR100807100B1/en
Priority to PCT/KR2007/001542 priority patent/WO2007114586A1/en
Publication of KR20080006243A publication Critical patent/KR20080006243A/en
Application granted granted Critical
Publication of KR100807100B1 publication Critical patent/KR100807100B1/en
Priority to US12/242,563 priority patent/US8711946B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

통합 코덱 장치 및 방법이 개시된다. 본 발명의 실시예에 따른 복호화 장치는 테이블 저장부; 부호화기로부터 수신된 디코딩 디스크립션에 상응하는 n(임의의 자연수)개의 테이블(table)을 생성하여 상기 테이블 저장부에 저장하는 디스크립션 디코더; 상기 테이블 저장부에 저장된 상기 테이블 정보를 이용하여 상기 부호화기로부터 수신된 비트스트림에 포함된 인코딩된 비디오 데이터에 상응하는 동영상 데이터를 생성하여 출력하는 코덱부를 포함할 수 있다. 본 발명에 따르면, 각 표준(예를 들어, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC 등)에 따른 다양한 형식으로 부호화된 비트스트림을 동일한 정보 인식 방식으로 복호화할 수 있다.

Figure R1020060065139

Video compression, 통합 코덱, VCTR, MPEG, AVC, Toolbox, Functional Unit, Connection,

An integrated codec apparatus and method are disclosed. Decoding apparatus according to an embodiment of the present invention includes a table storage unit; A description decoder for generating n (random natural numbers) tables corresponding to the decoding description received from the encoder and storing the tables in the table storage unit; The codec unit may generate and output video data corresponding to encoded video data included in a bitstream received from the encoder by using the table information stored in the table storage unit. According to the present invention, a bitstream encoded in various formats according to each standard (eg, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC, etc.) can be decoded using the same information recognition scheme.

Figure R1020060065139

Video compression, integrated codec, VCTR, MPEG, AVC, Toolbox, Functional Unit, Connection,

Description

통합 코덱 장치 및 방법{Device and Method for unified codecs}Device and Method for unified codecs

도 1은 일반적인 복호화기의 구성을 개략적으로 나타낸 도면.1 is a diagram schematically showing a configuration of a general decoder.

도 2는 일반적인 부호화기의 구성을 개략적으로 나타낸 도면.2 is a diagram schematically illustrating a configuration of a general encoder.

도 3은 본 발명의 일 실시예에 따른 복호화기의 구성을 개략적으로 나타낸 도면.3 is a diagram schematically illustrating a configuration of a decoder according to an embodiment of the present invention.

도 4는 본 발명의 일 실시예에 따른 확장 비트스트림(universal bit-stream)의 구성을 간략히 나타낸 도면. 4 is a diagram schematically illustrating a configuration of a universal bit-stream according to an embodiment of the present invention.

도 5는 본 발명의 일 실시예에 따른 코덱부의 구성을 개략적으로 나타낸 도면.5 is a view schematically showing a configuration of a codec unit according to an embodiment of the present invention.

도 6은 본 발명의 일 실시예에 따른 SYN 파서(Syntax Parser)의 구성을 개략적으로 나타낸 도면.FIG. 6 is a diagram schematically illustrating a configuration of a SYN parser according to an embodiment of the present invention. FIG.

도 7은 본 발명의 일 실시예에 따른 MB 처리부의 구성을 개략적으로 나타낸 도면.7 is a diagram schematically showing a configuration of an MB processing unit according to an embodiment of the present invention.

도 8은 본 발명의 제1 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.8 is a diagram showing the configuration of an extended bitstream according to the first embodiment of the present invention;

도 9는 본 발명의 제2 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.9 illustrates a configuration of an extended bitstream according to the second embodiment of the present invention.

도 10은 본 발명의 제3 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.10 is a diagram showing the configuration of an extended bitstream according to the third embodiment of the present invention.

도 11은 본 발명의 제4 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.11 illustrates a configuration of an extended bitstream according to the fourth embodiment of the present invention.

도 12a는 본 발명의 제5 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.12A illustrates a configuration of an extended bitstream according to the fifth embodiment of the present invention.

도 12b는 본 발명의 제6 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.12B illustrates a configuration of an extended bitstream according to the sixth embodiment of the present invention.

도 12c는 본 발명의 제7 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.12C illustrates a configuration of an extended bitstream according to the seventh embodiment of the present invention.

도 12d는 본 발명의 제8 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면.12D is a diagram showing the configuration of an extended bitstream according to an eighth embodiment of the present invention;

도 13는 본 발명의 일 실시예에 따른 부호화기의 블록 구성도.13 is a block diagram of an encoder according to an embodiment of the present invention.

도 14 내지 도 53은 본 발명의 실시예들에 따른 각 테이블들을 예시한 도면.14-53 illustrate respective tables in accordance with embodiments of the present invention.

본 발명은 통합 코덱에 관한 것으로서, 보다 상세하게는 다양한 부호화/복호화 표준에 범용적으로 이용될 수 있는 통합 코덱 장치 및 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to an integrated codec, and more particularly, to an integrated codec apparatus and method that can be used universally in various encoding / decoding standards.

일반적으로 동영상은 부호화기(encoder)에 의해 비트스트림(Bit-stream) 형태로 변환된다. 이때, 비트스트림은 부호화기의 제약 조건을 만족하는 부호화 유형에 따라 저장된다. In general, a video is converted into a bitstream by an encoder. In this case, the bitstream is stored according to an encoding type satisfying the constraint of the encoder.

MPEG은 비트스트림의 제약 조건으로서 구문(syntax, 이하 'syntax'라 칭함) 및 의미(semantics, 이하 'semantics'라 칭함)를 요구한다. MPEG requires syntax (hereinafter referred to as 'syntax') and semantics (hereinafter referred to as 'semantics') as constraints of the bitstream.

syntax는 데이터의 구조나 형식 및 길이를 나타내며, 데이터가 어떤 순서로 표현되는지를 나타낸다. 즉, syntax는 부호화(encoding)/복호화(decoding) 작업을 위한 문법을 맞추기 위한 것으로, 비트스트림에 포함된 각 요소들(elements)의 순서와 각 요소의 길이, 데이터 형식 등을 정의한다. syntax indicates the structure, format, and length of the data, and in what order the data is represented. That is, syntax is to fit a grammar for encoding / decoding, and defines the order of each element included in the bitstream, the length of each element, and the data format.

Semantics는 데이터를 구성하는 각 비트가 의미하는 뜻을 나타낸다. 즉, semantics는 비트스트림 내의 각 요소들의 의미가 무엇인지를 나타낸다.Semantics means what each bit of data means. That is, semantics indicates what the meaning of each element in the bitstream is.

따라서, 부호화기의 부호화 조건 또는 적용된 표준(또는 코덱)에 따라 다양한 형태의 비트스트림이 생성될 수 있다. 일반적으로 각 표준(예를 들어 MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC 등)은 각각 상이한 비트스트림 syntax를 가진다. Therefore, various types of bitstreams may be generated according to encoding conditions of an encoder or an applied standard (or codec). In general, each standard (eg MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC, etc.) has a different bitstream syntax.

따라서, 각 표준이나 부호화 조건에 따라 부호화된 비트스트림은 각각 다른 형식(즉, syntax 및 semantics)을 가진다고 할 수 있으며, 해당 비트스트림의 복호화를 위해서는 부호화기에 대응되는 복호화기가 사용되어야 한다. Accordingly, bitstreams encoded according to each standard or encoding condition may have different formats (ie, syntax and semantics), and a decoder corresponding to an encoder should be used to decode the bitstream.

상술한 바와 같이, 종래의 비트스트림 복호화기는 부호화기의 제약 조건을 만족하여야 하는 제한이 있었으며, 이러한 제한은 복수의 표준에 대응되는 통합 복호화기를 구현하기 어려운 원인이 된다.As described above, the conventional bitstream decoder has a limitation of satisfying the constraints of the encoder, and this limitation causes a difficulty in implementing an integrated decoder corresponding to a plurality of standards.

따라서 본 발명은 상술한 문제점을 해결하기 위한 것으로, 각 표준(예를 들어, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC 등)에 따른 다양한 형식(syntax, semantics)으로 부호화된 비트스트림을 동일한 정보 인식 방식으로 복호화(decoding)할 수 있는 통합 코덱 장치 및 방법을 제공하는 것이다.Accordingly, the present invention is to solve the above-described problem, and is encoded in various formats (syntax, semantics) according to each standard (for example, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC, etc.) It is an object of the present invention to provide an integrated codec apparatus and method capable of decoding a bitstream in the same information recognition scheme.

본 발명의 다른 목적은 다양한 부호화 방식으로 압축된 비트스트림을 동일한 정보 분석 방법에 의해 파싱(parsing)하고, 파싱된 데이터를 이용하여 복호화를 위한 각 기능부(FU, Functional Unit)들을 유기적으로 제어할 수 있는 통합 코덱 장치 및 방법을 제공하는 것이다. Another object of the present invention is to parse a bitstream compressed by various encoding schemes by the same information analysis method, and to control each functional unit (FU) for decoding using parsed data. An integrated codec device and method are provided.

본 발명의 또 다른 목적은 다양한 형태의 비트스트림을 복호화하기 위한 syntax 해석 방법을 공통적으로 적용할 수 있는 통합 코덱 장치 및 방법을 제공하는 것이다.Still another object of the present invention is to provide an integrated codec apparatus and method capable of commonly applying a syntax analysis method for decoding various types of bitstreams.

본 발명의 또 다른 목적은 다양한 형태의 비트스트림을 공통된 Syntax 해석 방법으로 파싱할 수 있도록 하기 위한 새로운 명령어들의 집합을 적용할 수 있는 통합 코덱 장치 및 방법을 제공하는 것이다.Another object of the present invention is to provide an integrated codec apparatus and method capable of applying a new set of instructions for parsing various types of bitstreams using a common syntax analysis method.

본 발명의 또 다른 목적은 syntax 엘리먼트의 변경이나 추가, 삭제 시에도 복호화기가 용이하게 비트스트림을 복호화할 수 있는 통합 코덱 장치 및 방법을 제 공하는 것이다.It is still another object of the present invention to provide an integrated codec device and method that can easily decode a bitstream even when a syntax element is changed, added, or deleted.

본 발명의 또 다른 목적은 해석된 syntax의 엘리먼트 정보(element information, 즉 syntax 파싱에 의한 결과물)를 비트스트림 복호화를 위해 이용되는 구성 요소들이 공유할 수 있도록 하는 통합 코덱 장치 및 방법을 제공하는 것이다.It is still another object of the present invention to provide an integrated codec device and method for allowing components used for bitstream decoding to share element information (ie, output by syntax parsing) of parsed syntax.

본 발명의 또 다른 목적은 해석된 syntax의 엘리먼트 정보를 후속하는 비트스트림 syntax 엘리먼트의 해석을 위해 이용할 수 있도록 하는 통합 코덱 장치 및 방법을 제공하는 것이다.It is yet another object of the present invention to provide an integrated codec apparatus and method that enables element information of an interpreted syntax to be used for interpretation of subsequent bitstream syntax elements.

본 발명의 또 다른 목적은 여러 표준(코덱)에서 제안하는 다양한 디코딩 방법을 구성하는 기능들을 각기 기능부(FU, Functional Unit)대로 분할하여 툴박스에 저장하는 통합 코덱 장치 및 방법을 제공하는 것이다.Another object of the present invention is to provide an integrated codec device and method for dividing functions constituting various decoding methods proposed by various standards (codecs) into functional units (FU) and storing them in a toolbox.

본 발명의 또 다른 목적은 다양한 형태로 부호화 된 비트스트림을 복호화하기 위해 툴박스에서 필요한 기능부들만을 선별하여 디코딩하는 통합 코덱 장치 및 방법을 제공하는 것이다.It is still another object of the present invention to provide an integrated codec apparatus and method for selecting and decoding only functional units required by a toolbox to decode a bitstream encoded in various forms.

본 발명의 또 다른 목적은 툴박스에 저장된 기능부의 변경이나 추가, 삭제가 가능한 통합 코덱 장치 및 방법을 제공하는 것이다.Still another object of the present invention is to provide an integrated codec apparatus and method capable of changing, adding, or deleting a functional part stored in a toolbox.

또한, 본 발명의 또 다른 목적은 비트스트림 복호화를 위한 코덱 통합에 관한 개념 및 구조에 대한 국제 표준화에 있으며, 그 외의 다른 본 발명의 목적들은 이하에 서술되는 실시예를 통하여 보다 명확해질 것이다.Further, another object of the present invention is to internationally standardize the concept and structure of the codec integration for bitstream decoding, and the other objects of the present invention will become clearer through the embodiments described below.

상술한 목적을 달성하기 위하여 본 발명의 일 측면에 따르면, 다양한 표준에 범용적으로 이용될 수 있는 부호화기/복호화기 및/또는 통합 코덱 장치가 제공된다.According to an aspect of the present invention to achieve the above object, there is provided an encoder / decoder and / or integrated codec device that can be used universally in various standards.

본 발명의 일 실시예에 따른 복호화 장치는 테이블 저장부; 부호화기로부터 수신된 디코딩 디스크립션에 상응하는 n(임의의 자연수)개의 테이블(table)을 생성하여 상기 테이블 저장부에 저장하는 디스크립션 디코더; 상기 테이블 저장부에 저장된 상기 테이블 정보를 이용하여 상기 부호화기로부터 수신된 비트스트림에 포함된 인코딩된 비디오 데이터에 상응하는 동영상 데이터를 생성하여 출력하는 코덱부를 포함할 수 있다.Decoding apparatus according to an embodiment of the present invention includes a table storage unit; A description decoder for generating n (random natural numbers) tables corresponding to the decoding description received from the encoder and storing the tables in the table storage unit; The codec unit may generate and output video data corresponding to encoded video data included in a bitstream received from the encoder by using the table information stored in the table storage unit.

상기 코덱부는, 미리 지정된 프로세스를 처리하도록 각각 구현된 복수의 기능부를 포함하는 툴 박스; 상기 복수의 기능부 중 하나 이상의 기능부에 의한 상기 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보가 저장되는 CSCI(Control Signal/Context Information) 저장부; 및 미리 지정된 하나 이상의 테이블을 참조하여 복수의 기능부들의 순차적 처리 순서를 지정하는 연결 제어부를 포함할 수 있다.The codec unit may include: a tool box including a plurality of functional units respectively implemented to process a predetermined process; A Control Signal / Context Information (CSCI) storage unit for storing a plurality of element information generated by syntax parsing of the bitstream by at least one of the plurality of functional units; And a connection controller for designating a sequential processing order of the plurality of functional units by referring to one or more predetermined tables.

상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현될 수 있다.The predetermined process of each of the functional units may be implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream.

상기 인코딩된 비디오 데이터가 복수의 표준에 의해 인코딩된 경우, 상기 코 덱부는 상기 테이블 정보를 참조하여 복수의 표준에 따른 프로세스를 수행하는 복수의 기능부를 순차적으로 연결하여 상기 동영상 데이터를 생성하여 출력할 수 있다.When the encoded video data is encoded by a plurality of standards, the codec unit may generate and output the video data by sequentially connecting a plurality of functional units that perform a process according to a plurality of standards with reference to the table information. Can be.

상기 툴 박스는, 상기 비트스트림의 신택스 파싱에 의해 복수의 엘리먼트 정보를 생성하여 상기 CSCI 저장부에 저장하고, 상기 인코딩된 비디오 데이터에 상응하는 매크로블록 데이터를 생성하여 순차적 출력하는 파싱 기능부; 및 상기 매크로블록 데이터를 상기 동영상 데이터로 변환하기 위하여 처리할 프로세스가 각각 지정된 복수의 처리 기능부들을 포함할 수 있다.The tool box may include: a parsing function unit generating a plurality of element information by syntax parsing of the bitstream, storing the plurality of element information in the CSCI storage unit, and generating and sequentially outputting macroblock data corresponding to the encoded video data; And a plurality of processing functional units, each of which is assigned a process to be processed to convert the macroblock data into the video data.

상기 n개의 테이블은 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 복수의 기능부(FU)들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함할 수 있다. 상기 n개의 테이블에는 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)이 더 포함될 수 있다.The n tables include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. (Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) indicating detailed information on the element information, F-RT (Fu-Rule Table) for sequential selection of a plurality of functional units (FU), the function FL (FU List) indicating a list of parts, and FU-CSCIT indicating element information to be input to the selected functional unit. The n tables may further include a default value table (DVT) indicating a relationship between actual values and code values during entropy coding.

상기 SET(Syntax Element Table), 상기 S-RT(Syntax - Rule Table) 및 상기 F-RT(FU-Rule Table)는 파일 포인터를 이동하여 k(임의의 자연수) 비트를 독출하는 리드(READ) 명령, 파일 포인터 이동없이 k 비트를 독출하는 시크(SEEK) 명령, 파일 포인터에서 k비트 만큼 파일 포인트를 이동하는 플러시(FLUSH) 명령, 인덱스간의 분기를 지시하는 고(GO) 명령, 엘리먼트 정보의 플래그를 설정하는 세트(SET) 명령 중 하나 이상을 포함하여 구성될 수 있다.The SET (Syntax Element Table), the S-RT (Syntax-Rule Table), and the F-RT (FU-Rule Table) read a k (arbitrary natural number) bit by moving a file pointer. Instructions, a seek command that reads k bits without moving the file pointer, a flush command that moves file points by k bits from the file pointer, a GO instruction that indicates a branch between indexes, and element information. It may be configured to include one or more of the set (SET) command to set the flag.

상기 연결 제어부는 상기 F-RT를 이용하여 상기 파싱 기능부 및 상기 복수의 처리 기능부들 중 선택된 복수의 기능부들의 순차적 처리 순서를 지정할 수 있다.The connection control unit may designate a sequential processing order of a plurality of functional units selected from the parsing function unit and the plurality of processing function units using the F-RT.

상기 연결 제어부에 의해 선택된 처리 기능부는 미리 지정된 엘리먼트 정보 및 직전의 기능부에 의한 출력 데이터를 이용하여 미리 지정된 프로세스를 수행할 수 있다.The processing function selected by the connection control unit may perform a predetermined process using predetermined element information and output data by the immediately preceding function unit.

상기 파싱 기능부는 상기 SET, 상기 S-RT 및 상기 CSCIT를 이용하여 상기 엘리먼트 정보를 생성할 수 있다.The parsing function unit may generate the element information by using the SET, the S-RT, and the CSCIT.

상기 부호화기로부터 상기 디코딩 디스크립션 및 상기 비트스트림이 통합된 확장 비트스트림이 수신되는 경우, 상기 복호화 장치는 상기 디코딩 디스크립션 및 상기 비트스트림을 분리하기 위한 분리부를 더 포함할 수 있다.When the decoding description and the extended bitstream in which the bitstream are integrated are received from the encoder, the decoding apparatus may further include a separation unit for separating the decoding description and the bitstream.

상기 디코딩 디스크립션은 하나 이상의 테이블 영역으로 구성되고, 각 테이블 영역에는 상기 테이블을 구성하기 위한 테이블 정보가 삽입될 수 있다.The decoding description may include one or more table areas, and table information for configuring the table may be inserted into each table area.

상기 테이블 정보는 상기 비트스트림을 복호화하기 위한 코덱 번호(Codec No.), 프로파일 및 레벨 번호(Profile and level No.)에 상응하는 지정 정보를 포함하고, 상기 디스크립션 디코더는 상기 테이블 저장부에 미리 저장된 복수의 테이블들 중 상기 지정 정보에 상응하는 n개의 테이블들을 추출할 수 있다.The table information includes designation information corresponding to a codec number (Codec No.), a profile and a level number (Profile and level No.) for decoding the bitstream, and the description decoder is stored in advance in the table storage unit. N tables corresponding to the specified information among a plurality of tables may be extracted.

상기 n개의 테이블 영역에 각각 삽입되는 테이블 정보는 각각의 테이블을 구 성하기 위한 바이너리 코드 정보를 포함하고, 상기 디스크립션 디코더는 상기 바이너리 코드 정보를 이용하여 n개의 테이블들을 생성하여 상기 테이블 저장부에 저장할 수 있다.The table information inserted into each of the n table areas includes binary code information for configuring each table, and the description decoder generates n tables using the binary code information and stores them in the table storage unit. Can be.

상기 n개의 테이블 영역 중 m(임의의 자연수)개의 테이블 영역에는 상응하는 테이블에 대한 코덱 번호(Codec No.)와 프로파일 및 레벨 번호(Profile and level No.)에 상응하는 지정 정보가 포함되고, k(n-m인 임의의 수)개의 테이블 영역에는 상응하는 테이블을 구성하기 위한 바이너리 코드 정보를 포함되며, 상기 디스크립션 디코더는 상기 테이블 저장부에 미리 저장된 복수의 테이블들 중 상기 지정 정보에 상응하는 m개의 테이블들을 추출하고, 상기 바이너리 코드 정보를 이용하여 k개의 테이블들을 생성하여 상기 테이블 저장부에 저장할 수 있다.M (arbitrary natural numbers) of the n table areas include designation information corresponding to a codec number (Codec No.) and a profile and level number (Profile and level No.) for the corresponding table, k The table area (any number of nm) includes binary code information for configuring a corresponding table, and the description decoder includes m tables corresponding to the specified information among a plurality of tables previously stored in the table storage unit. And k tables are generated using the binary code information and stored in the table storage unit.

본 발명의 다른 실시예에 따른 복호화 장치는 유기적으로 연동되는 복수의 테이블 정보를 저장하는 테이블 저장부; 상기 테이블 저장부에 저장된 하나 이상의 테이블 정보를 이용하여 부호화기로부터 수신된 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보를 엘리먼트 정보 저장부에 저장하고, 상기 비트스트림에 포함된 인코딩된 비디오 데이터에 상응하는 매크로블록 데이터를 순차적 출력하는 신택스 파서; 각각 미리 설정된 프로세스를 처리하도록 구현된 복수의 기능부를 포함하는 MB 처리부; 및 상기 테이블 저장부에 저장된 하나 이상의 테이블 정보를 이용하여 복수의 기능부를 순차적으로 선택하는 연결 제어부를 포함할 수 있다. 여기서, 상기 연결 제어부에 의해 선택된 임의의 기능부는 상기 엘리먼트 정보 저장부에 저장된 엘리먼트 정보 중 미리 지정된 엘리먼트 정보를 이용하여 상기 매크로블록 데이터를 처리하여 출력할 수 있다.Decoding apparatus according to another embodiment of the present invention includes a table storage unit for storing a plurality of table information that is organically interlocked; Storing a plurality of element information generated by syntax parsing of a bitstream received from an encoder by using one or more table information stored in the table storage unit in an element information storage unit, and encoding included in the bitstream A syntax parser for sequentially outputting macroblock data corresponding to the processed video data; An MB processing unit including a plurality of functional units each configured to process a preset process; And a connection controller configured to sequentially select a plurality of functional units by using one or more table information stored in the table storage unit. Here, the arbitrary functional unit selected by the connection controller may process and output the macroblock data by using predetermined element information among the element information stored in the element information storage unit.

상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현될 수 있다.The predetermined process of each of the functional units may be implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream.

상기 연결 제어부는 미리 지정된 테이블 정보를 이용하여 상기 신택스 파서의 동작을 제어할 수 있다.The connection controller may control an operation of the syntax parser using predetermined table information.

상기 복호화 장치는 상기 부호화기로부터 수신된 디코딩 디스크립션에 상응하는 n(임의의 자연수)개의 테이블(table)을 생성하여 상기 테이블 저장부에 저장하는 디스크립션 디코더를 더 포함할 수 있다.The decoding apparatus may further include a description decoder which generates n (random natural numbers) tables corresponding to the decoding description received from the encoder and stores the tables in the table storage unit.

상기 부호화기로부터 상기 디코딩 디스크립션 및 상기 비트스트림이 통합된 확장 비트스트림이 수신되는 경우, 상기 복호화 장치는 상기 디코딩 디스크립션 및 상기 비트스트림을 분리하여 상기 신택스 파서와 상기 디스크립션 디코더로 각각 입력하는 분리부를 더 포함할 수 있다.When the decoding description and the extended bitstream in which the bitstream are integrated are received from the encoder, the decoding apparatus may further include a separation unit for separating the decoding description and the bitstream and inputting them to the syntax parser and the description decoder, respectively. can do.

상기 디스크립션 정보는 독립된 데이터 또는 비트스트림으로 입력될 수 있다.The description information may be input as independent data or bitstream.

상기 연결 제어부는 순차적으로 선택한 복수의 기능부 중 선행하는 기능부의 결과 데이터가 후행하는 기능부로 입력되도록 제어할 수 있다.The connection controller may control the result data of the preceding functional unit to be input to the following functional unit among the plurality of sequentially selected functional units.

상기 연결 제어부에 의해 순차적으로 선택되는 복수의 기능부 중 선행하는 기능부의 결과 데이터는 후행하는 기능부에 의해 접근될 수 있는 버퍼 메모리에 기록될 수 있다.The result data of the preceding functional unit among the plurality of functional units sequentially selected by the connection control unit may be recorded in a buffer memory accessible by the subsequent functional unit.

상기 신택스 파서에 의해 순차적 출력되는 매크로블록 데이터는 상기 버퍼 메모리에 기록될 수 있다.Macroblock data sequentially output by the syntax parser may be written to the buffer memory.

상기 디스크립션 정보는 바이너리 코드로 구성될 수 있다.The description information may be composed of binary code.

상기 디스크립션 정보는 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 신택스 파서 또는 상기 기능부들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함할 수 있다. 상기 테이블에는 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함될 수 있다.The description information may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) representing detailed information about the element information, FL (FU List) representing the list of the functional units, the syntax parser or the sequential selection of the functional units It may include an FU-Rule Table (F-RT) and an FU-CSCIT indicating element information to be input to the selected functional unit. The table may further include a default value table (DVT) indicating a relationship between actual values and code values during entropy coding.

상기 SET(Syntax Element Table), 상기 S-RT(Syntax - Rule Table) 및 상기 F-RT(FU-Rule Table)는 파일 포인터를 이동하여 k(임의의 자연수) 비트를 독출하는 리드(READ) 명령, 파일 포인터 이동없이 k 비트를 독출하는 시크(SEEK) 명령, 파일 포인터에서 k비트 만큼 파일 포인터를 이동하는 플러시(FLUSH) 명령, 인덱스간의 분기를 지시하는 고(GO) 명령, 엘리먼트 정보의 플래그를 설정하는 세트(SET) 명령 중 하나 이상을 포함하여 구성될 수 있다.The SET (Syntax Element Table), the S-RT (Syntax-Rule Table), and the F-RT (FU-Rule Table) read a k (arbitrary natural number) bit by moving a file pointer. Command, a SEEK instruction that reads k bits without moving the file pointer, a FLUSH instruction that moves the file pointer by k bits from the file pointer, a GO instruction that indicates a branch between indexes, and element information It may be configured to include one or more of the set (SET) command to set the flag.

상기 신택스 파서는 상기 S-RT를 이용하여 처리할 비트스트림 신택스를 선택 하고, 상기 SET에 기록된 상기 프로세스를 이용하여 상기 엘리먼트 정보를 생성하고, 생성된 상기 엘리먼트 정보를 상기 CSCIT에 상응하도록 상기 엘리먼트 정보 저장부에 저장할 수 있다.The syntax parser selects a bitstream syntax to be processed using the S-RT, generates the element information using the process recorded in the SET, and sets the element information to correspond to the CSCIT. Can be stored in the information storage.

상기 연결 제어부는 상기 F-RT를 이용하여 상기 신택스 파서 또는 어느 하나의 기능부를 선택하고, 상기 FL을 이용하여 상기 신택스 파서 또는 상기 기능부의 특성을 인식하며, 상기 FU-CSCIT 및 상기 CSCIT를 이용하여 상기 선택된 기능부에 입력될 엘리먼트 정보를 상기 엘리먼트 정보 저장부에서 추출하여 상기 선택된 기능부로 입력할 수 있다.The connection controller selects the syntax parser or any one functional unit using the F-RT, recognizes the syntax parser or the characteristics of the functional unit using the FL, and uses the FU-CSCIT and the CSCIT. The element information to be input to the selected functional unit may be extracted from the element information storage unit and input to the selected functional unit.

본 발명의 또 다른 실시예에 따른 부호화 장치는 입력된 동영상을 복수의 기능부들을 순차적으로 이용하여 미리 지정된 부호화 방식에 따른 비트스트림으로 변환하는 인코딩부; 및 상기 비트스트림의 신택스 정보 및 상기 기능부들의 연결 관계(connection)에 따른 디스크립션 정보를 생성하는 디스크립션 정보 생성부를 포함할 수 있다. 여기서, 상기 비트스트림 및 상기 디스크립션 정보는 함께 복호화 장치로 제공될 수 있다.An encoding apparatus according to another embodiment of the present invention includes an encoding unit for converting an input video into a bitstream according to a predetermined encoding scheme using a plurality of functional units sequentially; And a description information generator for generating description information according to a connection relationship between the syntax information of the bitstream and the functional units. Here, the bitstream and the description information may be provided together to the decoding apparatus.

상기 비트스트림 및 상기 디스크립션 정보는 하나의 확장 비트스트림으로 생성되어 상기 복호화 장치로 제공될 수 있다.The bitstream and the description information may be generated as one extension bitstream and provided to the decoding apparatus.

상기 디스크립션 정보는 독립된 데이터 또는 비트스트림으로 상기 복호화 장치로 제공될 수 있다.The description information may be provided to the decoding apparatus as independent data or bitstream.

상기 디스크립션 정보는 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 상기 기능부들에 상응하는 상기 복호화 장치의 기능부 리스트를 나타내는 FL(FU List), 상기 복호화 장치의 기능부들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함할 수 있다.The description information may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) representing detailed information about the element information, FL (FU List) representing a functional unit list of the decoding apparatus corresponding to the functional units, A FU-Rule Table (F-RT) for sequential selection of the functional units may include a FU-CSCIT indicating element information to be input to the selected functional unit.

상기 디스크립션 정보는 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함할 수 있다.The description information may further include a default value table (DVT) indicating a relationship between an actual value and a code value during entropy coding.

본 발명의 또 다른 실시예에 따른 복호화 장치는 하나 이상의 테이블 정보들을 저장하는 테이블 저장부; 부호화기로부터 수신된 디코딩 디스크립션에 상응하는 n(0 또는 m이하인 임의의 자연수)개의 테이블(table) 정보를 생성하여 상기 테이블 저장부에 저장하거나 k(m-n인 임의의 수)개의 테이블 정보를 상기 테이블 저장부에서 선택하는 디스크립션 디코더; 상기 디스크립션 디코더에 의해 생성 또는 선택된 m(n과 같거나 그 이상인 임의의 자연수)개의 테이블 정보를 이용하여 상기 부호화기로부터 수신된 비트스트림에 포함된 인코딩된 비디오 데이터에 상응하는 동영상 데이터를 생성하여 출력하는 코덱부를 포함할 수 있다.Decoding apparatus according to another embodiment of the present invention includes a table storage unit for storing one or more table information; Generate n (any number less than 0 or m) table information corresponding to the decoding description received from the encoder and store it in the table storage, or store k (any number being mn) table information in the table storage. A description decoder selected from the portion; Generating and outputting moving image data corresponding to encoded video data included in a bitstream received from the encoder using m (any natural number equal to or greater than n) table information generated or selected by the description decoder. It may include a codec unit.

상기 디코딩 디스크립션이 상기 비트스트림이 부호화된 코덱 번호(Codec No.), 프로파일 및 레벨 번호(Profile and level No.)에 상응하는 지정 정보를 포함하는 경우 상기 m개의 테이블 정보는 상기 테이블 저장부에서 선택될 수 있다.The m table information is selected by the table storage unit when the decoding description includes designation information corresponding to a codec number (Codec No.), a profile and a level number (Codec No.) in which the bitstream is encoded. Can be.

상기 디코딩 디스크립션은 m개의 테이블 영역으로 구성되고, 각 테이블 영역 에는 상기 테이블을 구성하기 위한 테이블 정보가 삽입될 수 있다.The decoding description is composed of m table areas, and table information for constituting the table may be inserted into each table area.

임의의 테이블 정보에 상응하는 테이블 영역에 생성 정보가 포함된 경우, 상기 디스크립션 디코더는 상기 생성 정보를 이용하여 상응하는 테이블을 신규 생성할 수 있다.When generation information is included in a table area corresponding to arbitrary table information, the description decoder may newly generate a corresponding table using the generation information.

임의의 테이블 정보에 상응하는 테이블 영역에 수정 정보가 포함된 경우, 상기 디스크립션 디코더는 상기 수정 정보를 이용하여 상응하는 테이블을 수정할 수 있다.When correction information is included in a table area corresponding to arbitrary table information, the description decoder may modify the corresponding table using the correction information.

임의의 테이블 정보에 상응하는 테이블 영역 또는 상기 테이블 영역 이전에 코덱 번호(Codec No.), 프로파일 및 레벨 번호(Profile and level No.)가 더 포함된 경우, 상기 디스크립션 디코더는 상기 코덱에 상응하는 상기 테이블 정보를 상기 수정 정보에 의해 수정할 수 있다.When a table area corresponding to any table information or a codec number (Codec No.), a profile and a level number (Profile and level No.) are further included before the table area, the description decoder is further configured to correspond to the codec. Table information can be modified by the correction information.

상기 코덱부는, 미리 지정된 프로세스를 처리하도록 각각 구현된 복수의 기능부를 포함하는 툴 박스; 상기 복수의 기능부 중 하나 이상의 기능부에 의한 상기 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보가 저장되는 CSCI(Control Signal/Context Information) 저장부; 및 미리 지정된 하나 이상의 테이블을 참조하여 복수의 기능부들의 순차적 처리 순서를 지정하는 연결 제어부를 포함할 수 있다.The codec unit may include: a tool box including a plurality of functional units respectively implemented to process a predetermined process; A Control Signal / Context Information (CSCI) storage unit for storing a plurality of element information generated by syntax parsing of the bitstream by at least one of the plurality of functional units; And a connection controller for designating a sequential processing order of the plurality of functional units by referring to one or more predetermined tables.

상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현될 수 있다.The predetermined process of each of the functional units may be implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream.

상기 인코딩된 비디오 데이터가 복수의 표준에 의해 인코딩된 경우, 상기 코덱부는 상기 테이블 정보를 참조하여 복수의 표준에 따른 프로세스를 수행하는 복수의 기능부를 순차적으로 연결하여 상기 동영상 데이터를 생성하여 출력할 수 있다.When the encoded video data is encoded by a plurality of standards, the codec unit may generate and output the video data by sequentially connecting a plurality of functional units that perform a process according to a plurality of standards with reference to the table information. have.

상기 툴 박스는, 상기 비트스트림의 신택스 파싱에 의해 복수의 엘리먼트 정보를 생성하여 상기 CSCI 저장부에 저장하고, 상기 인코딩된 비디오 데이터에 상응하는 매크로블록 데이터를 생성하여 순차적 출력하는 파싱 기능부; 및 상기 매크로블록 데이터를 상기 동영상 데이터로 변환하기 위하여 처리할 프로세스가 각각 지정된 복수의 처리 기능부들을 포함할 수 있다.The tool box may include: a parsing function unit generating a plurality of element information by syntax parsing of the bitstream, storing the plurality of element information in the CSCI storage unit, and generating and sequentially outputting macroblock data corresponding to the encoded video data; And a plurality of processing functional units, each of which is assigned a process to be processed to convert the macroblock data into the video data.

상기 m개의 테이블은 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 복수의 기능부(FU)들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함할 수 있다. 상기 테이블에는 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)가 더 포함될 수 있다.The m tables may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. (Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) indicating detailed information on the element information, F-RT (Fu-Rule Table) for sequential selection of a plurality of functional units (FU), the function FL (FU List) indicating a list of parts, and FU-CSCIT indicating element information to be input to the selected functional unit. The table may further include a default value table (DVT) indicating a relationship between actual values and code values during entropy coding.

상기 SET(Syntax Element Table), 상기 S-RT(Syntax - Rule Table) 및 상기 F-RT(FU-Rule Table)는 파일 포인터를 이동하여 s(임의의 자연수) 비트를 독출하는 리드(READ) 명령, 파일 포인터 이동없이 s 비트를 독출하는 시크(SEEK) 명령, 파일 포인터에서 s비트 만큼 파일 포인터를 이동하는 플러시(FLUSH) 명령, 인덱스간의 분기를 지시하는 고(GO) 명령, 엘리먼트 정보의 플래그를 설정하는 세트(SET) 명령 중 하나 이상을 포함하여 구성될 수 있다.The SET (Syntax Element Table), the S-RT (Syntax-Rule Table), and the F-RT (FU-Rule Table) move a file pointer to read s (arbitrary natural numbers) bits. Command, a SEEK instruction that reads the s bits without moving the file pointer, a FLUSH instruction that moves the file pointer by s bits in the file pointer, a GO instruction that indicates a branch between indexes, and element information It may be configured to include one or more of the set (SET) command to set the flag.

상기 연결 제어부는 상기 F-RT를 이용하여 상기 파싱 기능부 및 상기 복수의 처리 기능부들 중 선택된 복수의 기능부들의 순차적 처리 순서를 지정할 수 있다.The connection control unit may designate a sequential processing order of a plurality of functional units selected from the parsing function unit and the plurality of processing function units using the F-RT.

상기 연결 제어부에 의해 선택된 처리 기능부는 미리 지정된 엘리먼트 정보 및 직전의 기능부에 의한 출력 데이터를 이용하여 미리 지정된 프로세스를 수행할 수 있다.The processing function selected by the connection control unit may perform a predetermined process using predetermined element information and output data by the immediately preceding function unit.

상기 파싱 기능부는 상기 SET, 상기 S-RT 및 상기 CSCIT를 이용하여 상기 엘리먼트 정보를 생성할 수 있다.The parsing function unit may generate the element information by using the SET, the S-RT, and the CSCIT.

상기 부호화기로부터 상기 디코딩 디스크립션 및 상기 비트스트림이 통합된 확장 비트스트림이 수신되는 경우, 상기 복호화 장치는 상기 디코딩 디스크립션 및 상기 비트스트림을 분리하기 위한 분리부를 더 포함할 수 있다.When the decoding description and the extended bitstream in which the bitstream are integrated are received from the encoder, the decoding apparatus may further include a separation unit for separating the decoding description and the bitstream.

상술한 목적을 달성하기 위하여 본 발명의 다른 측면에 따르면, 다양한 표준에 범용적으로 이용될 수 있는 복호화 방법/부호화 방법 및/또는 그 방법의 실행을 위한 프로그램이 기록된 기록매체가 제공된다.According to another aspect of the present invention for achieving the above object, there is provided a decoding method / encoding method that can be used universally in various standards and / or a recording medium on which a program for executing the method is recorded.

본 발명의 일 실시예에 따른 복호화 방법은, (a) 부호화 장치로부터 비트스트림 및 디스크립션 정보를 입력받는 단계; (b) 상기 디스크립션 정보에 상응하는 복수의 테이블 정보를 생성하여 저장하는 단계; (c) 하나 이상의 테이블 정보를 이용하여 상기 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보를 엘리먼트 정보 저장부에 저장하는 단계; (d) 상기 비트스트림의 인코딩된 비디오 데이터를 미리 지정된 크기의 매크로블록으로 변환하여 순차적 출력하는 단계; (e) 하나 이상의 테이블 정보를 이용하여 임의의 기능부를 선택하고, 상기 엘리먼트 정보 저장부에 저장된 복수의 엘리먼트 정보 중 상기 선택된 기능부에 대해 미리 지정된 엘리먼트 정보를 선택적으로 입력하는 단계; 및 (f) 상기 선택된 기능부가 상기 입력된 엘리먼트 정보를 이용한 미리 지정된 프로세스를 수행하여 결과 데이터를 출력하는 단계를 포함할 수 있다. 여기서, 상기 단계 (e) 및 상기 단계 (f)는 상기 결과 데이터가 상기 인코딩된 비디오 데이터에 상응하는 동영상 데이터가 될 때까지 반복될 수 있다.According to an embodiment of the present invention, a decoding method includes: (a) receiving a bitstream and description information from an encoding apparatus; (b) generating and storing a plurality of table information corresponding to the description information; (c) storing a plurality of element information generated by syntax parsing of the bitstream using at least one table information in an element information storage unit; (d) converting the encoded video data of the bitstream into macroblocks having a predetermined size and sequentially outputting the macroblocks; (e) selecting an arbitrary function unit using one or more table information, and selectively inputting element information predetermined for the selected function unit among a plurality of element information stored in the element information storage unit; And (f) outputting the result data by performing a predetermined process using the input element information by the selected function unit. Here, the step (e) and the step (f) may be repeated until the result data is moving picture data corresponding to the encoded video data.

상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현될 수 있다.The predetermined process of each of the functional units may be implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream.

상기 단계 (e) 및 상기 단계 (f)의 반복 수행도중, 상기 단계 (e)에 의해 선택될 기능부에 요구되는 엘리먼트 정보가 상기 엘리먼트 정보 저장부에 저장되지 않은 경우 상기 단계(b)의 재수행 후 상기 단계 (e) 및 상기 단계 (f)의 반복 수행을 재개할 수 있다.During the repeated execution of step (e) and step (f), if the element information required for the functional unit to be selected by step (e) is not stored in the element information storage unit, the step (b) After performing, the repeated execution of step (e) and step (f) may be resumed.

순차적으로 선택되는 복수의 기능부 중 선행하는 기능부의 결과 데이터는 후행하는 기능부에 의해 접근될 수 있는 버퍼 메모리에 기록될 수 있다.The result data of the preceding functional unit among the plurality of sequentially selected functional units can be recorded in a buffer memory accessible by the subsequent functional unit.

상기 단계 (b)에서, 상기 순차적 출력되는 매크로블록은 상기 버퍼 메모리에 기록될 수 있다.In the step (b), the macroblocks that are sequentially output may be written to the buffer memory.

상기 디스크립션 정보는 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 기능부들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함할 수 있다. 또한, 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)가 더 포함될 수 있다.The description information may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) representing detailed information about the element information, FL (FU List) representing the list of functional units, F-RT (for sequential selection of the functional units) FU-Rule Table) and an FU-CSCIT indicating element information to be input to the selected functional unit. Also, a DVT (Default Value Table) indicating a relationship between an actual value and a code value during entropy coding may be further included.

상기 단계 (c)에서, 상기 SET, 상기 S-RT, 상기 CSCIT 및 상기 DVT가 이용될 수 있다.In step (c), the SET, the S-RT, the CSCIT and the DVT can be used.

상기 단계 (c), 상기 단계 (d) 및 상기 단계 (f)를 수행하기 위한 기능부는 상기 F-RT에 의해 결정될 수 있다.The functional unit for performing the step (c), the step (d) and the step (f) may be determined by the F-RT.

상기 단계 (c)는, (g) 상기 S-RT를 이용하여 처리할 비트스트림 신택스를 선택하는 단계; (h) 상기 SET에 기록된 상기 프로세스를 이용하여 상기 엘리먼트 정보를 생성하는 단계; 및 (i) 상기 생성된 엘리먼트 정보를 상기 CSCIT에 상응하도록 상기 엘리먼트 정보 저장부에 저장하는 단계를 포함할 수 있다. 여기서, 상기 단계 (g) 내지 상기 단계 (i)는 모든 비트스트림 신택스에 상응하는 엘리먼트 정보 가 생성되어 저장될 때까지 반복될 수 있다.Step (c) comprises: (g) selecting a bitstream syntax to be processed using the S-RT; (h) generating the element information using the process recorded in the SET; And (i) storing the generated element information in the element information storage unit to correspond to the CSCIT. Here, the steps (g) to (i) may be repeated until element information corresponding to all bitstream syntaxes is generated and stored.

상기 단계 (e)는, 상기 F-RT를 이용하여 어느 하나의 기능부를 선택하는 단계; 상기 FL을 이용하여 인식된 상기 기능부의 특성에 부합하도록, 상기 FU-CSCIT 및 상기 CSCIT를 이용하여 상기 선택된 기능부에 입력될 엘리먼트 정보를 상기 엘리먼트 정보 저장부에서 추출하는 단계; 및 상기 추출된 엘리먼트 정보를 상기 선택된 기능부로 입력하는 단계를 포함할 수 있다.Step (e) may include selecting any one of the functional units using the F-RT; Extracting, from the element information storage unit, element information to be input to the selected functional unit by using the FU-CSCIT and the CSCIT to match the characteristics of the functional unit recognized by the FL; And inputting the extracted element information into the selected function unit.

상기 비트스트림 및 상기 디스크립션 정보가 하나의 확장 비트스트림으로 입력되는 경우 상기 단계 (b)는, 상기 확장 비트스트림에서 상기 비트스트림 및 상기 디스크립션 정보를 분할하는 단계가 선행할 수 있다.When the bitstream and the description information are input as one extension bitstream, the step (b) may be preceded by dividing the bitstream and the description information in the extension bitstream.

상기 디스크립션 정보는 독립된 데이터 또는 비트스트림으로 입력될 수 있다.The description information may be input as independent data or bitstream.

상기 디스크립션 정보는 바이너리 코드로 구성될 수 있다.The description information may be composed of binary code.

본 발명의 다른 실시예에 따른 부호화 방법은 (a) 입력된 동영상을 복수의 기능부들을 순차적으로 이용하여 미리 지정된 부호화 방식에 따른 비트스트림으로 변환하는 단계; (b) 상기 비트스트림의 신택스 정보 및 상기 기능부들의 연결 관계(connection)에 따른 디스크립션 정보를 생성하는 단계; 및 (c) 상기 비트스트림 및 상기 디스크립션 정보를 복호화 장치로 전송하는 단계를 포함할 수 있다.According to another aspect of the present invention, there is provided an encoding method comprising: (a) converting an input video into a bitstream according to a predetermined encoding scheme using a plurality of functional units sequentially; (b) generating description information according to a connection relationship between the syntax information of the bitstream and the functional units; And (c) transmitting the bitstream and the description information to a decoding apparatus.

상기 단계 (c)는, 상기 비트스트림 및 상기 디스크립션 정보를 포함하는 하나의 확장 비트스트림을 생성하는 단계; 및 상기 확장 비트스트림을 상기 복호화 장치로 전송하는 단계를 포함할 수 있다.Step (c) comprises: generating one extension bitstream including the bitstream and the description information; And transmitting the extended bitstream to the decoding apparatus.

본 발명의 또 다른 실시예에 따르면, 복호화 방법을 수행하기 위해 복호화 장치에서 실행될 수 있는 명령어들의 프로그램이 유형적으로 구현되어 있으며, 상기 복호화 장치에 의해 판독될 수 있는 프로그램이 기록된 기록 매체에 있어서, (a) 부호화 장치로부터 입력된 디스크립션 정보에 상응하는 복수의 테이블 정보를 생성하여 저장하는 단계; (b) 상기 저장된 하나 이상의 테이블 정보를 이용하여 부호화 장치로부터 입력된 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보를 저장하는 단계; (c) 상기 비트스트림의 인코딩된 비디오 데이터를 미리 지정된 크기의 매크로블록으로 변환하여 순차적 출력하는 단계; 및 (d) 상기 매크로블록 데이터를 상기 동영상 데이터로 변환하기 위하여 처리할 프로세스가 각각 지정된 복수의 처리 기능부 중 상기 저장된 하나 이상의 테이블 정보를 참조하여 하나의 처리 기능부를 호출하는 단계를 실행하되, 상기 호출된 처리 기능부는 상기 저장된 복수의 엘리먼트 정보 중 미리 지정된 엘리먼트 정보를 이용하여 지정된 프로세스를 수행한 결과 데이터를 출력하고, 상기 단계 (d)는 상기 결과 데이터가 상기 인코딩된 비디오 데이터에 상응하는 동영상 데이터가 될 때까지 반복되는 것을 특징으로 하는 프로그램을 기록한 기록매체가 제공된다.According to still another embodiment of the present invention, there is provided a recording medium in which a program of instructions that can be executed in a decoding apparatus for performing a decoding method is tangibly implemented, and in which a program that can be read by the decoding apparatus is recorded. (a) generating and storing a plurality of table information corresponding to the description information input from the encoding apparatus; (b) storing a plurality of element information generated by syntax parsing of a bitstream input from an encoding apparatus using the stored one or more table information; (c) converting the encoded video data of the bitstream into macroblocks having a predetermined size and sequentially outputting the macroblocks; And (d) invoking one processing function by referring to the stored one or more table information among a plurality of processing functions each having a process to be processed for converting the macroblock data into the video data. The called processing function outputs result data of performing a specified process using predetermined element information among the plurality of stored element information, and the step (d) includes moving picture data in which the result data corresponds to the encoded video data. There is provided a recording medium on which a program is recorded, which is repeated until

상기 단계 (d)의 반복 수행도중, 상기 단계 (d)에 의해 선택될 기능부에 요구되는 엘리먼트 정보가 상기 엘리먼트 정보 저장부에 저장되지 않은 경우 상기 단계(b)의 재수행 후 상기 단계 (d)의 반복 수행이 재개될 수 있다.During the repetition of the step (d), if the element information required for the functional unit to be selected by the step (d) is not stored in the element information storage unit, the step (d) after the redo of the step (b) ) Can be resumed.

상기 처리 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩 을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현될 수 있다.The predetermined process of each of the processing functions may be implemented to independently perform each of the functions proposed by a plurality of standards for decoding of the bitstream.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.

제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접 속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.

이하, 첨부한 도면들을 참조하여 본 발명에 따른 통합 코덱 방법 및 장치의 실시예를 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어 도면 부호에 상관없이 동일하거나 대응하는 구성 요소는 동일한 참조번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of an integrated codec method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the following description with reference to the accompanying drawings, the same or corresponding components are denoted by the same reference numerals. And duplicate description thereof will be omitted.

도 1은 일반적인 복호화기의 구성을 개략적으로 나타낸 도면이고, 도 2는 일반적인 부호화기의 구성을 개략적으로 나타낸 도면이다.FIG. 1 is a diagram schematically showing a configuration of a general decoder, and FIG. 2 is a diagram schematically showing a configuration of a general encoder.

도 1에 도시된 바와 같이, 일반적으로 MPEG-4 복호화기(100)는 가변장 디코딩부(Variable Length Decoding, 110), 역 스캔부(Inverse Scan, 115), 역 DC/AC 예측부(Inverse DC/AC Prediction, 120), 역 양자화부(Inverse Quantization, 125), 역 DCT부(Inverse Discrete Cosine Transform, 역 이산 여현 변환부, 130), 동영상 복원부(VOP Reconstruction, 135)를 포함한다. 복호화기(100)의 구성은 적용되는 표준에 따라 상이할 수 있음은 자명하며, 또한 일부 구성요소는 타 구성요소로 대체될 수도 있을 것이다.As shown in FIG. 1, the MPEG-4 decoder 100 generally includes a variable length decoding unit 110, an inverse scan unit 115, and an inverse DC / AC prediction unit. / AC Prediction (120), Inverse Quantization (125), Inverse Discrete Cosine Transform (Inverse Discrete Cosine Transformation, 130), and Video Restoration (VOP Reconstruction, 135). It is apparent that the configuration of the decoder 100 may be different according to the applied standard, and some components may be replaced with other components.

전달된 비트스트림(105)이 syntax 파싱(parsing)되어 헤더 정보 및 인코딩된 영상 데이터(encoded video data)가 추출되면, 가변장 디코딩부(110)는 미리 설정된 허프만 테이블(Huffman Table)을 이용하여 양자화된 DCT 계수를 만들고, 역 스캔부(115)는 역 스캔을 수행하여 동영상(140)과 동일한 순서의 데이터를 생성한다. 즉, 역 스캔부(115)는 인코딩시 여러 가지 방법으로 스캔된 순서의 역으로, 값을 출력한다. 인코딩 시 양자화(Quantization)를 수행한 후, 주파수 대역 값의 분포에 따라 스캔 방향이 정의될 수 있다. 일반적으로는 지그-재그(zig-zag) 스캔 방식이 사용되나, 스캔 방식은 코덱별로 다양할 수 있다. When the transmitted bitstream 105 is parsed and parsed to extract header information and encoded video data, the variable length decoding unit 110 quantizes the Huffman table using a preset Huffman Table. The inverse scan unit 115 performs the inverse scan to generate data in the same order as the moving image 140. That is, the inverse scan unit 115 outputs a value in reverse of the order of scanning in various ways during encoding. After quantization is performed during encoding, a scan direction may be defined according to a distribution of frequency band values. In general, a zig-zag scan method is used, but the scan method may vary by codec.

Syntax 파싱은 가변장 디코딩부(110)에서 통합적으로 수행되거나, 가변장 디코딩부(110)에 선행하여 비트스트림(105)을 처리하는 임의의 구성 요소에서 수행될 수 있다. 이 경우, Syntax 파싱은 부호화기와 복호화기간에 적용되는 표준이 동일 하므로 해당 표준에 상응하도록 미리 지정된 기준에 의해서만 처리된다.Syntax parsing may be performed integrally in the variable length decoding unit 110 or may be performed in any component that processes the bitstream 105 prior to the variable length decoding unit 110. In this case, since syntax parsing is the same standard applied to the encoder and the decoding period, the syntax parsing is performed only by a predetermined standard corresponding to the standard.

역 DC/AC 예측부(120)는 주파수 대역에서 DCT 계수의 크기를 이용하여 예측을 위한 참조 블록의 방향성을 결정한다. The inverse DC / AC predictor 120 determines the direction of the reference block for prediction by using the magnitude of the DCT coefficient in the frequency band.

역 양자화부(125)는 역 스캔된 데이터를 역 양자화한다. 즉, 인코딩시 지정된 양자화값(QP, Quantization Parameter)을 이용하여 DC와 AC 계수를 환원한다. The inverse quantizer 125 inverse quantizes the inversely scanned data. That is, the DC and AC coefficients are reduced by using a quantization parameter (QP) specified during encoding.

역 DCT부(130)는 역 이산 여현 변환(Inverse Discrete Cosine Transform)을 수행함으로써 실제의 동영상 픽셀 값을 구하여 VOP(Video Object Plane)를 생성한다. The inverse DCT unit 130 performs an Inverse Discrete Cosine Transform to obtain an actual video pixel value to generate a VOP (Video Object Plane).

동영상 복원부(135)는 역 DCT부(130)에 의해 생성된 VOP를 이용하여 동영상 신호를 복원하여 출력한다. The video reconstruction unit 135 reconstructs and outputs a video signal by using the VOP generated by the inverse DCT unit 130.

도 2에 도시된 바와 같이, 일반적으로 MPEG-4 부호화기(200)는 DCT부(210), 양자화부(215), DC/AC 예측부(220), 스캔부(230), 가변장 인코딩부(235)를 포함한다. As shown in FIG. 2, the MPEG-4 encoder 200 generally includes a DCT unit 210, a quantizer 215, a DC / AC predictor 220, a scan unit 230, and a variable length encoder ( 235).

부호화기(200)에 포함된 각 구성요소는 각각 대응되는 복호화기(100)의 구성 요소의 역 기능을 수행하며, 이는 당업자에게 자명하다. 간단히 설명하면, 부호화기(200)는 동영상 신호(즉, 디지털 영상 픽셀 값)를 이산 여현 변환(Discrete Cosine Transform), 양자화(Quantization) 등을 통해 주파수 값으로 변환하여 부호화를 수행한 후, 이를 정보의 빈도 수에 따라 비트 길이를 차별화하는 가변장 인코딩을 수행하여 압축된 비트스트림 상태로 출력한다. Each component included in the encoder 200 performs the inverse function of each component of the corresponding decoder 100, which is obvious to those skilled in the art. In brief, the encoder 200 performs encoding by converting a video signal (ie, a digital image pixel value) into a frequency value through a discrete cosine transform, quantization, and the like, and then encoding the information. Variable length encoding that differentiates the bit length according to the frequency is performed and output in the compressed bitstream state.

도 3은 본 발명의 일 실시예에 따른 복호화기의 구성을 개략적으로 나타낸 도면이고, 도 4는 본 발명의 일 실시예에 따른 확장 비트스트림(universal bit-stream)의 구성을 간략히 나타낸 도면이다. 도 5는 본 발명의 일 실시예에 따른 코덱부의 구성을 개략적으로 나타낸 도면이며, 도 6은 본 발명의 일 실시예에 따른 SYN 파서(Syntax Parser)의 구성을 개략적으로 나타낸 도면이며, 도 7은 본 발명의 일 실시예에 따른 MB 처리부의 구성을 개략적으로 나타낸 도면이다.3 is a diagram schematically illustrating a configuration of a decoder according to an embodiment of the present invention, and FIG. 4 is a diagram schematically illustrating a configuration of a universal bit-stream according to an embodiment of the present invention. FIG. 5 is a diagram schematically showing a configuration of a codec unit according to an embodiment of the present invention, FIG. 6 is a diagram schematically showing a configuration of a SYN parser according to an embodiment of the present invention, and FIG. 2 is a diagram schematically illustrating a configuration of an MB processing unit according to an embodiment of the present invention.

도 3에 도시된 바와 같이, 본 발명에 따른 복호화기(300)는 종래의 복호화기(도 1 참조)와 상이한 구성을 가진다.As shown in FIG. 3, the decoder 300 according to the present invention has a configuration different from that of a conventional decoder (see FIG. 1).

즉, 본 발명의 일 실시예에 따른 복호화기(300)는 분리부(310), 디스크립션 디코더(DDD, Decoding Description Decoder)(320), 테이블 저장부(330) 및 코덱부(340)를 포함한다. 도시된 복호화기의 구성 요소(예를 들어, 분리부(310), 디스크립션 디코더(320), 코덱부(340) 등)중 하나 이상은 하기에서 설명될 기능을 수행하도록 구현된 소프트웨어 프로그램(또는 프로그램 코드들의 조합)으로 구현될 수도 있음은 자명하다.That is, the decoder 300 according to the embodiment of the present invention includes a separator 310, a description decoder (DDD) 320, a table storage unit 330, and a codec unit 340. . One or more of the components of the illustrated decoder (eg, the separation unit 310, the description decoder 320, the codec unit 340, etc.) may be a software program (or program) implemented to perform the functions described below. It is apparent that the implementation may be implemented in a combination of codes).

분리부(310)는 입력된 확장 비트스트림(Universal Bit-stream, 305)를 디코딩 디스크립션(DD, Decoding Description) 영역과 일반적인 비트스트림(105, 이하 '종래 비트스트림'이라 칭함) 영역으로 분리하여, 디코딩 디스크립션은 디스크립션 디코더(320)로 입력하고, 종래 비트스트림은 코덱부(340)로 입력한다. The separation unit 310 separates the input extended bitstream (Universal Bit-stream, 305) into a decoding description (DD, Decoding Description) region and a general bitstream 105 (hereinafter, referred to as a conventional bitstream) region, The decoding description is input to the description decoder 320 and the conventional bitstream is input to the codec unit 340.

즉, 본 발명에 따른 확장 비트스트림은 도 4에 예시된 바와 같이 디코딩 디 스크립션(410 내지 470)과 종래 비트스트림(105)을 포함할 수 있다. That is, the extended bitstream according to the present invention may include decoding descriptions 410 to 470 and a conventional bitstream 105 as illustrated in FIG. 4.

디코딩 디스크립션은 다양한 부호화 방식에 의해 부호화된 비트스트림 및/또는 여러 기능들 중 사용자가 선택한 기능들에 의해 부호화된 비트스트림을 공통적 해석 방식에 의해 파싱하기 위하여 종래 비트스트림(105) 구성 정보와 종래 비트스트림(105)이 부호화된 방식(또는 기능부(FU, Functional Unit)들간의 연결 정보) 등에 대한 정보이다. 디코딩 디스크립션은 확장 비트스트림(305)에 포함(되어 복호화기(310)로 제공(도 4, 9 내지 12 참조)되거나 독립된 비트스트림 또는 데이터의 형태로 복호화기(310)로 제공될 수 있음은 당연하다. 디코딩 디스크립션은 textual description이나 binary description 등의 기술 방식으로 기술될 수 있다.The decoding description may include a conventional bitstream 105 configuration information and a conventional bit in order to parse a bitstream encoded by various encoding schemes and / or a bitstream encoded by a user-selected function among various functions by a common interpretation scheme. Information about the manner in which the stream 105 is encoded (or connection information between functional units). The decoding description may be included in the extended bitstream 305 (provided to the decoder 310 (see FIGS. 4, 9 to 12)) or may be provided to the decoder 310 in the form of an independent bitstream or data. The decoding description may be described by a description method such as a textual description or a binary description.

디코딩 디스크립션은 FL(Functional unit List, 410), F-RT(Functional unit Rule Table, 420), FU-CSCIT(Functional Unit CSCIT, 430), CSCIT(Control Signal and Context Information Table, 440), SET(Syntax Element Table, 450), S-RT(Syntax-Rule Table, 460), DVT(Default Value Table, 470) 등을 포함할 수 있다. 디코딩 디스크립션 정보를 구성하기 위한 각 테이블들의 순서는 다양하게 변형될 수 있음은 자명하다.Decoding descriptions include Functional Unit List (FL), Functional Unit Rule Table (F-RT) 420, Functional Unit CSCIT (430), Control Signal and Context Information Table (440), and SET (Syntax). Element Table 450), Syntax-Rule Table 460, S-RT, Default Value Table 470, and the like. Obviously, the order of the tables for configuring the decoding description information may be modified in various ways.

여기서, FL(Functional unit List, 410), F-RT(Functional unit Rule Table, 420), FU-CSCIT(Functional Unit CSCIT, 430), CSCIT(Control Signal and Context Information Table, 440) 등은 각 기능부(FU)들의 연결 관계(connection)을 설정하기 위해 이용될 수 있다(해당 테이블들은 필요시 '제1 디코딩 디스크립션'라 칭할 수 있음). Here, the functional unit list (FL), the functional unit rule table (F-RT) 420, the functional unit CSCIT (430), the control signal and context information table (CSCIT), and the like are each functional units. (FU) may be used to establish a connection relationship (the corresponding tables may be referred to as 'first decoding description' if necessary).

이중, FU-CSCIT(440)는 MB 처리부(550) 내의 각 기능부와 CSCI 저장부(520)에 저장된 엘리먼트 정보간의 매핑(mapping)을 위한 디코딩 디스크립션 정보일 수도 있다. 이 경우, 엘리먼트 정보는 MB 처리부(550) 및/또는 SYN 파서(540) 내의 각 기능부에 대한 제어 변수로서 기능할 수 있다. The FU-CSCIT 440 may be decoding description information for mapping between each functional unit in the MB processing unit 550 and element information stored in the CSCI storage unit 520. In this case, the element information may function as a control variable for each functional unit in the MB processing unit 550 and / or the SYN parser 540.

또한, CSCIT(Control Signal and Context Information Table, 440), SET(Syntax Element Table, 450), S-RT(Syntax-Rule Table, 460), DVT(Default Value Table, 470) 등은 종래 비트스트림(105)의 파싱(Parsing)을 위해 이용될 수 있다(해당 테이블들은 필요시 '제2 디코딩 디스크립션'라 칭할 수 있음). 각 디코딩 디스크립션 정보의 형태 및 기능은 이후 상세히 설명하기로 한다.In addition, the control signal and context information table (CSCIT) 440, the syntax element table 450 (SET), the syntax-rule table 460 (S-RT), the default value table (DVT), and the like are conventional bitstreams 105. Can be used for parsing (the tables can be referred to as 'second decoding description' if necessary). The form and function of each decoding description information will be described later in detail.

디스크립션 디코더(320)는 분리부(310)로부터 입력된 디코딩 디스크립션을 코덱부(340)에서 인식할 수 있는 형태의 복수의 테이블들로 테이블 저장부(330)에 저장한다. 즉, 디스크립션 디코더(320)는 확장 비트스트림(305) 내에 바이너리 데이터 형태로 포함된 데이터를 SYN 파서(540)가 해석할 수 있는 테이블들로 변환하여 테이블 저장부(330)에 저장한다. The description decoder 320 stores the decoding description input from the separation unit 310 in the table storage unit 330 as a plurality of tables in a form that can be recognized by the codec unit 340. That is, the description decoder 320 converts the data included in the extended bitstream 305 in the form of binary data into tables that can be interpreted by the SYN parser 540 and stores the data in the table storage unit 330.

디스크립션 디코더(320)의 디코딩 디스크립션 분석에 의해 테이블 저장부(330)에 저장되는 테이블들로는 FL(410), F-RT(420), FU-CSCIT(440), CSCIT(440), SET(450), S-RT(460), DVT(470) 등이 포함될 수 있다. 디스크립션 디코더(320)는 도 10에 예시된 바와 같이 TI(Table Identifier, 1010)를 참조하여 각 테이블을 구분할 수 있다. Tables stored in the table storage unit 330 by the decoding description analysis of the description decoder 320 include FL 410, F-RT 420, FU-CSCIT 440, CSCIT 440, and SET 450. , S-RT 460, DVT 470, and the like. As illustrated in FIG. 10, the description decoder 320 may distinguish each table with reference to a table identifier (TI) 1010.

물론, 디코딩 디스크립션 내에는 모든 테이블들이 반드시 포함되어야 하는 것은 아니며, 도 8에 예시된 바와 같이 코덱 번호(Codec #, 920)와 프로파일 및 레벨 번호(Profile and level #, 930)가 포함되거나, 도 11에 예시된 바와 같이 일부 테이블에 대해서만 코덱 번호(Codec #, 1120)와 프로파일 및 레벨 번호(Profile and level #, 1130)가 포함될 수도 있다. 코덱 번호(Codec #)와 프로파일 및 레벨 번호(Profile and level #)가 포함된 경우, 디스크립션 디코더(320)는 전체 테이블 또는 일부 테이블에 대해서는 새로운 테이블을 생성하지 않고 테이블 저장부(330)에 미리 저장된 테이블들 중 상응하는 테이블이 디코딩시 이용되도록 선택할 수도 있다. 물론, 코덱 번호(Codec #), 프로파일 및 레벨 번호(Profile and level #)와 수정 정보가 포함된 경우, 디스크립션 디코더(320)는 테이블 저장부(330)에 미리 저장된 테이블들 중 해당 코덱에 상응하는 테이블을 추출하여 수정 정보를 반영한 새로운 테이블을 생성할 수도 있다. 물론, 코덱 번호(Codec #)와 프로파일 및 레벨 번호(Profile and level #)가 포함되지 않고 테이블 생성을 위한 테이블 디스크립션이 포함된 경우, 디스크립션 디코더(320)는 전체 테이블 또는 일부 테이블에 대해 디코딩시 이용하기 위한 새로운 테이블을 생성할 수도 있다.Of course, not all tables must be included in the decoding description, and as illustrated in FIG. 8, a codec number (Codec #, 920) and a profile and level # (930) are included, or FIG. 11. As illustrated in FIG. 2, only some tables may include a codec number (Codec #, 1120) and a profile and level # (1130). If a codec number (Codec #) and a profile and level # are included, the description decoder 320 does not create a new table for all or some of the tables, but is stored in the table storage unit 330 in advance. One of the tables may choose to have the corresponding one used for decoding. Of course, when the codec number (Codec #), profile and level # (Profile and level #) and the correction information is included, the description decoder 320 corresponds to the corresponding codec among the tables previously stored in the table storage unit 330 You can also extract a table to create a new table that reflects the modified information. Of course, if the codec number (Codec #) and the profile and level # (Profile and level #) is not included, the description decoder 320 is used to decode the entire table or a part of the table when the table description for creating the table is included. You can also create a new table to do this.

또한, 디코딩 디스크립션은 도 11에 예시된 바와 같이, 각 테이블들에 대한 디코딩 디스크립션(DD-T, 1210) 외에 갱신 정보(Revision Information, 1230)를 더 포함할 수도 있다. 각각의 확장 비트스트림의 구성에 대해서는 이후 관련 도면을 참조하여 상세히 설명한다.Also, as illustrated in FIG. 11, the decoding description may further include update information 1230 in addition to the decoding description DD-T 1210 for each table. The configuration of each extended bitstream will be described in detail later with reference to the accompanying drawings.

테이블 저장부(330)는 디스크립션 디코더(320)에 의해 분리된 각 테이블들이 저장된다. 물론, 테이블 저장부(330)는 확장 비트스트림(305)이 코덱 번호(Codec #, 920 또는 1120)와 프로파일 및 레벨 번호(Profile and level #, 930 또는 1130)가 포함된 경우 상응하는 하나 이상의 테이블들이 코덱부(340)에 의해 이용될 수 있도록 하기 위해, 하나 이상의 테이블들을 미리 저장할 수도 있다.The table storage unit 330 stores the tables separated by the description decoder 320. Of course, the table storage unit 330 may include one or more tables corresponding to the case where the extension bitstream 305 includes a codec number (Codec #, 920 or 1120) and a profile and level # (930 or 1130). In order for them to be used by the codec unit 340, one or more tables may be stored in advance.

코덱부(340)는 도 5에 도시된 바와 같이, 툴 박스(Tool-Box, 510), CSCI(Control Signal/Context Information, 제어 정보/문맥 정보) 저장부(520), 연결 제어부(530)를 포함할 수 있다.As illustrated in FIG. 5, the codec unit 340 may include a tool box (510), a control signal / context information (CSCI) storage unit 520, and a connection control unit 530. It may include.

툴 박스(510)는 SYN 파서(Syntax Parser, 540) 및 복수의 기능부(FU, Functional Unit)들을 포함한다. SYN 파서(540)도 하나의 기능부로 구현될 수도 있음은 자명하다. SYN 파서(540) 및 기능부들은 각각 프로그램 코드들의 조합으로 구현될 수도 있다.The tool box 510 includes a SYN parser 540 and a plurality of functional units. Obviously, the SYN parser 540 may also be implemented as one functional unit. The SYN parser 540 and the functional units may each be implemented in a combination of program codes.

즉, 툴 박스(510)는 각각의 기능을 수행하도록 구현된 기능부(FU, Functional Unit)들이 포함되는 영역으로, 각 기능부들은 연결 제어부(530)의 연결 제어에 따른 순차적인 연결 관계로 형성되어 종래 비트스트림(105)에 포함된 인코딩된 비디오 데이터를 동영상 데이터로 출력한다. 다만, 툴 박스(510)에 포함된 SYN 파서(540)는 연결 제어부(530)의 연결 제어 없이 종래 비트스트림(105)의 해석을 수행하도록 설정될 수도 있다. 이는 후속하는 기능부들이 SYN 파서(540)가 해석하여 CSCI 저장부(520)에 저장한 엘리먼트 정보(element information) 및/또는 SYN 파서(540)로부터 출력되는 매크로블록(MB) 사이즈의 동영상 데이터를 이용할 수 있기 때문이다.That is, the tool box 510 is an area including functional units (FU) implemented to perform respective functions, and each functional unit is formed in a sequential connection relationship according to the connection control of the connection controller 530. Then, the encoded video data included in the conventional bitstream 105 is output as video data. However, the SYN parser 540 included in the tool box 510 may be set to perform the analysis of the conventional bitstream 105 without the connection control of the connection controller 530. This means that the following functional units interpret the element information stored by the SYN parser 540 and stored in the CSCI storage unit 520 and / or the macroblock (MB) size video data output from the SYN parser 540. Because it is available.

SYN 파서(540)는 SET(450), S-RT(460), CSCIT(440), DVT(470) 등을 이용하여 입력된 종래 비트스트림(105)을 해석하여 신택스 파싱(syntax parsing)의 결과물인 엘리먼트 정보(element information)를 CSCI 저장부(520)에 저장한다. CSCI 저장부(520)는 예를 들어 버퍼 메모리일 수 있다. 엘리먼트 정보는 예를 들어 CSCI(Control Signal/Context Information, 제어 정보/문맥 정보)일 수 있다. SYN 파서(540)에 의해 파싱되어 CSCI 저장부(520)에 저장된 엘리먼트 정보는 해당 단계의 파싱 결과값임과 동시에 종래 비트스트림(105)의 후속하는 신택스를 결정하는 입력 값이 될 수도 있다.SYN parser 540 interprets the conventional bitstream 105 input using SET 450, S-RT 460, CSCIT 440, DVT 470, etc., resulting in syntax parsing. In element information is stored in the CSCI storage unit 520. The CSCI storage unit 520 may be, for example, a buffer memory. The element information may be, for example, Control Signal / Context Information (CSCI). The element information parsed by the SYN parser 540 and stored in the CSCI storage unit 520 may be an input value for determining subsequent syntax of the conventional bitstream 105 at the same time as the parsing result of the corresponding step.

또한, SYN 파서(540)는 신택스 파싱된 종래 비트스트림(105)의 헤더와 영상 데이터에 대한 엔트로피 디코딩을 수행하여 미리 지정된 매크로블록 사이즈의 동영상 데이터를 연결 제어부(530)의 연결 제어에 따른 후속하는 기능부(FU)로 출력한다. In addition, the SYN parser 540 performs entropy decoding on the header and the image data of the syntax-parsed conventional bitstream 105 to perform video data having a predetermined macroblock size according to the connection control of the connection controller 530. Output to the function unit (FU).

물론, SYN 파서(540)는 매크로블록 사이즈의 동영상 데이터를 미리 지정된 버퍼 메모리에 저장하고, 연결 제어부(530)의 연결 제어에 따른 후속하는 기능부가 해당 버퍼 메모리에서 매크로블록 사이즈의 동영상 데이터를 독출하여 처리한 후 후속하는 기능부의 처리를 위해 해당 버퍼 메모리에 처리한 동영상 데이터를 저장할 수도 있다. 즉, SYN 파서(540)는 매크로블록 사이즈의 동영상 데이터를 CSCI 저장부(520) 또는 별도의 버퍼 메모리에 저장한 후, 연결 제어부(530)가 저장된 매크로블록 사이즈의 동영상 데이터를 선택한 기능부로 제공하거나, 선택된 기능부가 CSCI 저장부(520) 또는 별도의 버퍼 메모리로부터 해당 동영상 데이터를 독출할 수도 있음은 자명하다. 다만, 이하에서는 SYN 파서(540)가 출력하는 매크로블록 사이 즈의 동영상 데이터가 연결 제어부(530)의 연결 제어에 따른 기능부로 직접 입력되는 경우를 가정하여 설명한다.Of course, the SYN parser 540 stores the macroblock sized video data in a predetermined buffer memory, and a subsequent function unit according to the connection control of the connection controller 530 reads out the macroblock sized video data from the corresponding buffer memory. After processing, the processed video data may be stored in a corresponding buffer memory for processing of a subsequent functional unit. That is, the SYN parser 540 stores the macroblock sized video data in the CSCI storage unit 520 or a separate buffer memory, and then the connection control unit 530 provides the stored macroblock sized video data to the selected function unit. It is apparent that the selected function unit may read the video data from the CSCI storage unit 520 or a separate buffer memory. However, hereinafter, it is assumed that the video data of the macroblock size output by the SYN parser 540 is directly input to the functional unit according to the connection control of the connection controller 530.

SYN 파서(540)는 하나의 소프트웨어 프로그램(프로그램 코드들의 조합을 포함함)으로 구현될 수 있다. 복수의 표준(예를 들어, MPEG-1/2/4/AVC 등)에 각각 대응되는 복수의 기능을 수행하도록 SYN 파서(540)가 구현될지라도 SET(450), S-RT(460), CSCIT(440), DVT(470) 등을 이용하여 상응하는 동작을 수행할 수 있기 때문이다. 물론, SYN 파서(540)는 도 6에 도시된 바와 같이 복수의 기능부들로 세분화되어 구현될 수도 있으며, 각 기능부들이 블록화된 프로그램 코드들의 조합으로 구현될 수 있음은 자명하다.SYN parser 540 may be implemented as a single software program (including a combination of program codes). Although the SYN parser 540 is implemented to perform a plurality of functions respectively corresponding to a plurality of standards (e.g., MPEG-1 / 2/4 / AVC, etc.), the SET 450, S-RT 460, This is because the corresponding operation may be performed using the CSCIT 440, the DVT 470, or the like. Of course, the SYN parser 540 may be implemented by being divided into a plurality of functional units as shown in FIG. 6, and each of the functional units may be implemented as a combination of blocked program codes.

도 6에 예시된 각 기능부들을 구체적으로 설명함으로써 SYN 파서(540)의 기능을 설명하면 다음과 같다. The function of the SYN parser 540 by describing each functional unit illustrated in FIG. 6 in detail is as follows.

SYN 파서(540)는 도 6에 예시된 바와 같이, NALP(Network Abstraction Layer Parsing) 기능부(FU, 610), SYNP(Syntax Parsing) 기능부(620), CTX(Context determination) 기능부(630), VLD(Variable Length Decoding) 기능부(640), RLD(Run Length Decoding) 기능부(650), MBG(Macro Block Generator) 기능부(660) 등을 포함할 수 있다. As illustrated in FIG. 6, the SYN parser 540 includes a network abstraction layer parsing (NALP) function (FU) 610, a syntax parsing (SYNP) function 620, and a context determination (CTX) function 630. And a variable length decoding function unit 640, a run length decoding function unit 650, a macro block generator (MBG) function unit 660, and the like.

물론, SYN 파서(540)에는 신택스 파싱을 위한 기능부라면 적용되는 표준에 관계없이 모두 포함될 수 있을 뿐 아니라 기술 발전과정에서 Syntax 파싱 등을 위해 필요한 기능부는 신규로 추가될 수 있고, 기존 기능부의 수정도 가능하며, 불필요한 기능부는 제거될 수 있음은 자명하다. 또한, SYN 파서(540) 내에 구비된 각 기능부는 각 표준에 독립적으로 존재하지 않고, 표준에 관계없이 동일한 처리가 가능한 기능부의 경우에는 하나의 기능부로 통합되어 구비될 수도 있음은 자명하다. 각 기능부의 기능은 당업자에게 자명한 사항이므로 간략히 설명하기로 한다.Of course, the SYN parser 540 may include all of the functional units for syntax parsing regardless of the applicable standard, and may add new functional units necessary for parsing Syntax in the process of technology development, and modify existing functional units. It is also possible that unnecessary functions can be removed. In addition, it is apparent that each functional unit provided in the SYN parser 540 does not exist independently in each standard, and in the case of a functional unit capable of the same processing regardless of the standard, it may be integrated into one functional unit. The function of each functional unit is obvious to those skilled in the art and will be described briefly.

NALP 기능부(610)는 MPEG-4 AVC의 NAL(Network Abstraction Layer)를 파싱(parsing)하는 기능부이고, SYNP 기능부(620)는 비트스트림의 신택스(syntax)를 파싱하는 기능부이다. SYNP 기능부(620)는 VLD 기능부(640)에 포함될 수도 있다. The NALP function unit 610 is a function unit for parsing a Network Abstraction Layer (NAL) of MPEG-4 AVC, and the SYNP function unit 620 is a function unit for parsing syntax of a bitstream. The SYNP function 620 may be included in the VLD function 640.

CTX 기능부(630)는 MPEG-4 AVC의 VLC 테이블을 결정하는 기능부이고, VLD 기능부(640)는 엔트로피(Entropy) 디코딩을 수행하는 기능부이다. The CTX function unit 630 is a function unit that determines a VLC table of MPEG-4 AVC, and the VLD function unit 640 is a function unit that performs entropy decoding.

RLD 기능부(650)는 AC값들을 엔트로피 디코딩하는 기능부이고, MBG 기능부(660)는 DC값 및 AC값들을 결합하여 하나의 MB(Macro Block) 데이터를 생성하는 기능부이다. 상기 언급한 SYN 파서(540) 내의 모든 기능부들 및 일부의 기능부들은 시스템 구현 방식에 따라 VLD 기능부(640)에 그 기능이 포함될 수 있을 것이다.The RLD function unit 650 is a function unit for entropy decoding AC values, and the MBG function unit 660 is a function unit for generating one MB (Macro Block) data by combining the DC value and the AC values. All of the functional units and some of the functional units in the aforementioned SYN parser 540 may be included in the VLD functional unit 640 depending on the system implementation.

상술한 바와 같이, SYN 파서(540)는 하나의 소프트웨어 프로그램으로 구현되거나, 복수의 소프트웨어 프로그램으로 구현(예를 들어 VLD 기능부(640) 등을 독립된 소프트웨어 프로그램으로 독립적 구현)될 수 있을 것이다. SYN 파서(540)가 제1 디스크립션 정보(즉, SET(450), S-RT(460), DVT(470) 및 CSCIT(440) 등 중 하나 이상)를 이용하여 엘리먼트 정보를 추출 또는 생성하여 CSCI 저장부(520)에 저장하는 과정은 이후 연결 제어부(530)의 설명 부분에서 상세히 설명하기로 한다.As described above, the SYN parser 540 may be implemented as one software program or may be implemented as a plurality of software programs (for example, the VLD function unit 640 may be independently implemented as an independent software program). The SYN parser 540 extracts or generates element information using the first description information (ie, one or more of SET 450, S-RT 460, DVT 470, CSCIT 440, etc.) to generate CSCI. The process of storing in the storage unit 520 will be described in detail later in the description of the connection controller 530.

MB 처리부(550)는 SYN 파서(540)로부터 입력되는(또는 SYN 파서(540)가 버퍼 메모리에 저장한) 매크로블록 단위의 동영상 데이터들을 디코딩하여 미리 지정된 크기의 동영상 데이터로서 출력한다. The MB processing unit 550 decodes the video data of the macroblock unit input from the SYN parser 540 (or stored in the buffer memory by the SYN parser 540) and outputs the video data as a predetermined size.

MB 처리부(550) 내에는 각 표준에 상응하여 상술한 기능을 수행하기 위한 기능부(FU)들이 포함될 수 있다. 각 기능부들은 독립된 처리 블록(예를 들어, 소프트웨어 프로그램, 명령어 코드들의 조합, 함수 등)으로 구현되어 MB 처리부(550)를 구성하거나, MB 처리부(550)가 하나의 통합된 처리 블록으로 구현될 수도 있을 것이다. MB 처리부(550)는 하나의 통합된 처리 블록으로 구현될지라도 연결 제어부(530)의 연결 제어에 의해 상응하는 처리가 수행될 수 있음은 자명하다.The MB processing unit 550 may include functional units FU for performing the above-described functions corresponding to each standard. Each functional unit may be implemented as an independent processing block (eg, a software program, a combination of instruction codes, a function, etc.) to configure the MB processing unit 550, or the MB processing unit 550 may be implemented as one integrated processing block. Could be Although the MB processing unit 550 is implemented as one integrated processing block, it is obvious that the corresponding processing may be performed by the connection control of the connection control unit 530.

MB 처리부(550)은 도 7에 도시된 바와 같이, DF(De-blocking Filter) 기능부(710), VR(VOP Reconstructor) 기능부(715), FFR(Frame Field Reordering) 기능부(720), IPR(Intra prediction and Picture Reconstruction) 기능부(730), IT(Inverse Transform) 기능부(735), IQ(Inverse Quantization) 기능부(745), IAP(Inverse AC Prediction) 기능부(755), IS(Inverse Scan) 기능부(760), DCR(DC Reconstruction) 기능부(765)를 포함한다. As illustrated in FIG. 7, the MB processing unit 550 includes a De-blocking Filter (DF) function 710, a VOP Reconstructor (VR) function 715, a Frame Field Reordering (FFR) function 720, Intra prediction and picture reconstruction (IPR) function 730, inverse transform (IT) function 735, inverse quantization (IQ) function 745, inverse AC prediction function 755 (ISA), IS ( An inverse scan function unit 760 and a DC Reconstruction (DCR) function unit 765.

IT4x4 기능부(740), IQ4x4 기능부(750) 및 DCR4x4 기능부(770)는 처리하는 블록 사이즈가 4x4인 것을 특징으로 한다. 이는 MPEG-1/2/4의 경우에는 Transform, Quantization, Prediction 시에 8x8 블록 사이즈로 데이터를 처리함에 비해, MPEG-4 AVC는 4x4 블록 사이즈로 데이터를 처리하는 경우가 존재하기 때문이다. The IT4x4 function unit 740, the IQ4x4 function unit 750, and the DCR4x4 function unit 770 are characterized in that the block size to be processed is 4x4. This is because MPEG-4 AVC processes data with 4x4 block size, whereas MPEG-1 / 2/4 processes data with 8x8 block size during Transform, Quantization, and Prediction.

MB 처리부(550)에는 데이터 디코딩 기능을 수행하기 위한 기능부라면 적용되는 표준에 관계없이 모두 포함될 수 있을 뿐 아니라 기술 발전과정에서 필요한 기능부는 추가될 수 있고, 기존 기능부의 수정도 가능하며, 불필요한 기능부는 제거 될 수 있음은 자명하다. 예를 들어, 복호화 처리를 위해 4x4 블록 사이즈로 데이터를 처리하는 IS4x4 기능부 등이 추가로 필요한 경우 해당 기능부들이 MB 처리부(550)에 추가될 수 있다. 또한, MPEG-4 AVC에서 인트라 예측(Intra Prediction) 수행을 위한 SPR(Special Prediction) 기능부(도시되지 않음) 등이 더 추가될 수도 있을 것이다.The MB processing unit 550 may include all of the functional units for performing the data decoding function regardless of the applicable standard, and may add necessary functions in the process of technology development, and may modify existing functions, and unnecessary functions. It is obvious that wealth can be removed. For example, if an IS4x4 function unit for processing data with a 4x4 block size is additionally required for the decoding process, the corresponding function units may be added to the MB processor 550. In addition, a special prediction (SPR) function (not shown) for performing intra prediction in MPEG-4 AVC may be further added.

MB 처리부(550) 내에 구비된 각 기능부는 각 표준에 독립적으로 존재하지 않고, 표준에 관계없이 동일한 처리가 가능한 기능부의 경우에는 하나의 기능부로 통합되어 구비될 수도 있음은 자명하다. 각 기능부의 기능은 당업자에게 자명한 사항이므로 간략히 설명하기로 한다.Each functional unit provided in the MB processing unit 550 does not exist independently in each standard, and in the case of a functional unit capable of the same processing irrespective of the standard, it may be apparent that the functional units may be integrated into one functional unit. The function of each functional unit is obvious to those skilled in the art and will be described briefly.

DF 기능부(710)는 MPEG-4 AVC의 디-블록킹 필터(de-blocking filter)이고, VR 기능부(715)는 복원된 픽셀값을 저장하는 기능부이다. The DF function 710 is a de-blocking filter of MPEG-4 AVC, and the VR function 715 is a function that stores the reconstructed pixel value.

FFR 기능부(720)는 interlaced 모드를 위한 기능부이고, IPR 기능부(730)는 MPEG-4 AVC의 인트라 예측(Intra prediction)을 한 후 복원된 픽셀값을 저장하는 기능부이다. 상술한 바와 같이, MPEG-4 AVC의 인트라 예측은 SPR 기능부에 의해 수행될 수 있을 것이다. The FFR function unit 720 is a function unit for the interlaced mode, and the IPR function unit 730 is a function unit for storing the reconstructed pixel value after intra prediction of MPEG-4 AVC. As described above, intra prediction of MPEG-4 AVC may be performed by the SPR function.

IT 기능부(735)는 DC값 및 AC값들의 역 변환(inverse transform)을 수행하는 기능부이고, IQ 기능부(745)는 AC 값들을 역 양자화(inverse quantization)하는 기능부이다.The IT function unit 735 is a function unit that performs inverse transform of the DC value and the AC values, and the IQ function unit 745 is a function unit that inverse quantizes the AC values.

IAP 기능부(755)는 AC값들을 역 예측(inverse AC prediction)하는 기능부이고, IS 기능부(760)는 AC값들을 역 스캔(inverse scan)하는 기능부이다. DCR 기능 부(765)는 DC값들의 역 예측 및 역 양자화를 수행하는 기능부이다.The IAP function unit 755 is a function unit for inverse AC prediction of AC values, and the IS function unit 760 is a function unit for inverse scan of AC values. The DCR function unit 765 is a function unit that performs inverse prediction and inverse quantization of DC values.

상술한 SYN 파서(540)와 MB 처리부(550)는 각 동작이 반드시 순차적으로 진행되어야 하는 것(즉, 신택스 파싱부의 동작이 완료된 후 MB 처리부의 동작 개시)은 아니며, 연결 제어부(530)의 연결 제어에 의해 병렬적인 처리도 가능함은 자명하다. 예를 들어, MB 처리부(550)의 현재 동작되는 기능부의 동작을 위해 필요한 최소한의 엘리먼트 정보만이 SYN 파서(540)에 의해 CSCI 저장부(520)에 저장되면 충분할 수 있기 때문이다.The above-described SYN parser 540 and the MB processing unit 550 are not necessarily operations that must be sequentially performed (that is, the operation of the MB processing unit after the operation of the syntax parsing unit is completed), and the connection of the connection controller 530 is performed. It is obvious that parallel processing is also possible by the control. For example, it may be sufficient that only the minimum element information necessary for the operation of the functional unit currently operated by the MB processing unit 550 is stored in the CSCI storage unit 520 by the SYN parser 540.

CSCI 저장부(520)에는 SYN 파서(540)에서 SET(450) 및 S-RT(460)를 이용한 신택스 파싱에 의한 결과값인 엘리먼트 정보(예를 들어, CSCI)가 CSCIT(440)에 상응하도록 저장된다. CSCI 저장부(520)는 예를 들어 버퍼 메모리(buffer memory)일 수 있다.In the CSCI storage unit 520, element information (eg, CSCI) that is a result of syntax parsing using the SET 450 and the S-RT 460 in the SYN parser 540 corresponds to the CSCIT 440. Stored. The CSCI storage unit 520 may be, for example, a buffer memory.

CSCI 저장부(520)에 저장된 엘리먼트 정보는 SYN 파서(540)에 의해 SET(450)의 프로세스 수행을 위한 입력 데이터로 이용되거나, S-RT(460)에서 후속하는 연결 인덱스를 결정하기 위한 제어 변수로 이용될 수 있다. The element information stored in the CSCI storage unit 520 is used as input data for performing the process of the SET 450 by the SYN parser 540 or a control variable for determining a subsequent connection index in the S-RT 460. It can be used as.

또한, CSCI 저장부(520)에 저장된 엘리먼트 정보는 연결 제어부(530)에 의해 F-RT(420)에서 후속하는 연결 인덱스를 결정하기 위한 제어 변수로 이용되거나, FU-CSCIT(430)에서 특정 기능부(FU)의 입력 CSCI를 CSCI 저장부(520)에 저장된 엘리먼트 정보들과 매핑하기 위해 이용될 수 있다.In addition, the element information stored in the CSCI storage unit 520 is used as a control variable for determining a subsequent connection index in the F-RT 420 by the connection control unit 530, or a specific function in the FU-CSCIT 430 The input FU may be used to map element information stored in the CSCI storage unit 520.

즉, CSCI 저장부(520)에 저장된 엘리먼트 정보는 SYN 파서(540)와 MB 처리부(550)간에 연동하도록 하는 역할을 한다.That is, the element information stored in the CSCI storage unit 520 serves to interwork between the SYN parser 540 and the MB processing unit 550.

연결 제어부(530)는 다양한 표준에 의해 인코딩된 비트스트림을 디코딩하기 위해 MB 처리부(550)에 포함된 각 기능부들의 연결 관계(connection)를 설정한다. 즉, 연결 제어부(530)는 MB 처리부(550)에 포함된 각 기능부들 중 적절한 기능부를 선택하여 선택된 기능부들간의 수행 순서를 결정한다. 이를 위하여, 연결 제어부(530)는 FL(410), F-RT(420) 및 CSCIT(440)를 이용하여 해당 기능부들을 연결하고, 각 기능부들이 SYN 파서(540)에 의해 제공된 엘리먼트 정보들을 이용하여 매크로블록 단위의 동영상 데이터를 복호화하도록 한다. The connection control unit 530 sets connections of respective functional units included in the MB processing unit 550 to decode bitstreams encoded by various standards. That is, the connection controller 530 selects an appropriate functional unit from among the functional units included in the MB processing unit 550 to determine an execution order between the selected functional units. To this end, the connection controller 530 connects the corresponding functional units by using the FL 410, the F-RT 420, and the CSCIT 440, and each of the functional units uses the element information provided by the SYN parser 540. Decode the video data in units of macroblocks.

연결 제어부(530)가 상술한 기능의 수행을 위해 이용하는 테이블들로는 FL(410), F-RT(420), FU-CSCIT(430) 및 CSCIT(440)가 있다. Tables used by the connection controller 530 to perform the above-described functions include the FL 410, the F-RT 420, the FU-CSCIT 430, and the CSCIT 440.

먼저, FL(FU List, 410)은 도 14에서 보여지는 바와 같이, MB 처리부(550) 내에 구비된 각 기능부들의 리스트, 해당 기능부들의 입출력 데이터와 기능부들을 제어하는 엘리먼트 정보를 담은 테이블이다. First, as shown in FIG. 14, the FL (FU List) 410 is a table containing a list of respective functional units included in the MB processing unit 550, input / output data of the corresponding functional units, and element information for controlling the functional units. .

FL(410)은 각 기능부에 대한 입력 데이터의 버퍼 메모리 명칭(또는 해당 데이터의 기록 주소 또는 해당 데이터가 기록된 버퍼 메모리 내의 주소)과 해당 기능부에 의한 출력 데이터의 버퍼 메모리 명칭(또는 해당 데이터의 기록 주소 또는 해당 데이터가 기록될 버퍼 메모리 내의 주소)을 더 포함할 수 있다. The FL 410 is a buffer memory name (or a write address of the data or an address in the buffer memory in which the data is recorded) of the input data for each functional unit and a buffer memory name (or the corresponding data) of the output data by the corresponding functional unit. May be further included).

따라서, 각 기능부는 FL(410)을 이용하여 입력 데이터를 읽고 처리한 출력 데이터를 기록할 수 있다. 또한, FL(410)에 기록된 정보를 이용하여 각 기능부간에 입출력 데이터가 전달되도록 하거나, 연결 제어부(530)가 각 기능부에 적절한 입력 데이터를 제공할 수도 있다.Accordingly, each functional unit may record output data read and processed by the input data using the FL 410. In addition, the input / output data may be transmitted between the respective functional units using the information recorded in the FL 410, or the connection controller 530 may provide appropriate input data to each functional unit.

그러나, FL(410)에는 엘리먼트 정보를 생성하는 SYN 파서(540)의 입력 데이터 및 출력 데이터는 기재되어 있지 않으나, 이는 SYN 파서(540)가 SET(450) 등의 정보를 이용하여 엘리먼트 정보를 생성하고 지정된 위치에 생성한 엘리먼트 정보를 기록하기 때문이다.However, the input data and output data of the SYN parser 540 that generates the element information are not described in the FL 410, which is generated by the SYN parser 540 using information such as the SET 450. This is because the element information created at the specified position is recorded.

FL(410)은 도 14에 예시된 바와 같이, 각 기능부를 구분하기 위한 구분자인 index(F), 각 기능부의 이름(FU Name), 해당 기능부에 필요한 입력제어(CSCI) 변수의 개수, 입력 데이터 및 출력 데이터를 포함할 수 있다. As illustrated in FIG. 14, the FL 410 includes an index (F), which is an identifier for distinguishing each functional unit, a name of each functional unit (FU Name), the number of input control (CSCI) variables required for the corresponding functional unit, and an input. Data and output data.

연결 제어부(530)에 의해 선택된 특정 기능부는 연결 제어부(530)로부터 입력 데이터를 제공받고, 미리 설정된 프로세스를 수행하여 출력 데이터를 생성한다. 여기서, 기능부는 MB 처리부(550)에 포함되며, 입력 데이터를 미리 지정된 프로세스로 처리하여 출력데이터를 생성하는 일련의 처리 과정(예를 들어, 기능, 알고리즘 또는 함수 등)을 의미한다. 해당 기능부는 출력 데이터를 후속하는 기능부(즉, 후속하여 연결 제어부(530)에 의해 선택된 기능부)의 처리를 위해 버퍼 메모리에 저장할 수 있다. 도 14에 예시된 기능부(FU) 들에 대해서는 앞서 MB 처리부(550)에 대한 설명 부분에서 이미 설명하였으므로, 그 설명은 생략한다. 또한, 도 14에서의 QFS, QFSP, PQF, QF 등은 MPEG 분야 등의 당업자에게 자명한 사항이므로 이에 대한 설명은 생략한다. 일 예로, QFS는 가변장 부호화를 한 출력값을 의미한다. The specific function unit selected by the connection control unit 530 receives input data from the connection control unit 530 and performs a preset process to generate output data. Here, the functional unit is included in the MB processing unit 550, and refers to a series of processes (for example, a function, an algorithm, or a function) for processing the input data in a predetermined process to generate output data. The function unit may store the output data in a buffer memory for processing of a subsequent function unit (ie, a function unit subsequently selected by the connection control unit 530). Since the functional units FU illustrated in FIG. 14 have already been described above in the description of the MB processing unit 550, the description thereof will be omitted. In addition, since QFS, QFSP, PQF, QF, etc. in FIG. 14 are obvious to those skilled in the MPEG field and the like, description thereof will be omitted. For example, QFS means an output value obtained by variable length coding.

코덱부(340)가 종래 비트스트림(105)에 포함된 인코딩된 비디오 데이터의 디코딩을 위해 하나의 표준만을 이용하면 충분한 경우, FL(410)은 해당 표준에서 상응하는 처리를 수행하기 위한 기능부들에 대한 정보만을 포함할 수 있다. If the codec unit 340 uses only one standard for decoding the encoded video data included in the conventional bitstream 105, then the FL 410 is provided to the functional units for performing the corresponding processing in that standard. It can only contain information.

그러나, 해당 비디오 데이터가 복수의 표준에 의해 인코딩된 경우(예를 들어, 복수의 프레임 단위로 인코딩 표준을 달리 적용한 경우)에는 해당 인코딩된 비디오 데이터의 디코딩을 위해 복수의 표준에 따른 기능부들의 정보가 필요할 것이다. 따라서, 이 경우 FL(410)은 상응하는 복수의 표준에 따른 모든 기능부들 중 인코딩된 비디오 데이터의 디코딩을 위해 필요한 복수의 표준에 따른 기능부들의 정보를 포함하여야 할 것이다.However, when the video data is encoded by a plurality of standards (for example, when the encoding standard is applied differently in units of a plurality of frames), the information of the functional units according to the plurality of standards for decoding the encoded video data. Will be needed. Accordingly, in this case, the FL 410 should include information of the functional units according to the plurality of standards necessary for decoding of encoded video data among all the functional units according to the corresponding plurality of standards.

물론, 비디오 데이터가 복수의 프레임 단위로 인코딩 표준을 달리 적용할지라도, 적용된 인코딩 표준별로 복수의 종래 비트스트림(105) 및 확장 비트스트림(305)이 생성되어 출력된다면 각각의 FL(410)은 각각 상응하는 표준에 따른 기능부들의 정보만을 포함하면 될 것이다.Of course, even if the video data is differently applied to the encoding standard in units of a plurality of frames, each FL 410 is each if a plurality of conventional bitstreams 105 and extension bitstreams 305 are generated and output for each applied encoding standard. It may be necessary to include only the information of the functional units according to the corresponding standard.

FL(410)은 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The FL 410 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar script language.

다음으로, F-RT(FU - Rule Table, 420)은 입력된 종래 비트스트림(105)을 복호화하기 위하여 사용될 기능부들의 연결 정보를 제공한다. Next, the F-RT (FU-Rule Table) 420 provides connection information of functional units to be used to decode the input conventional bitstream 105.

F-RT(420)는 도 15에서 보여지는 바와 같이, 각 연결 정보(Rule)를 구분하는 인덱스(Index, R), 해당 연결 인덱스에 상응하는 기능부(FU, F), 연결 제어를 위해 필요한 엘리먼트 정보(Input CS/CI, C), 후속하는 기능부와 연결되어질 수 있는 분기의 수(No. of branches), 분기의 수 만큼 필요한 각 분기 정보(branch information) (#1, #2, #3…) 등을 포함한다. As shown in FIG. 15, the F-RT 420 includes an index (Index, R) for distinguishing each connection information (Rule), a function unit (FU, F) corresponding to the corresponding connection index, and necessary for connection control. Element information (Input CS / CI, C), number of branches that can be connected to subsequent functional units, and branch information required by the number of branches (# 1, # 2, # 3…) and the like.

필요한 엘리먼트 정보는 분기의 수가 2 이상인 경우에만 존재하며, 이 경우는 필요한 엘리먼트 정보를 이용한 조건문의 판단 결과에 따라 연결 인덱스가 달라질 수 있다. 즉, 분기의 수가 1인 경우는 필요한 엘리먼트 정보가 존재하지 않으며, 분기 정보에서 지시하는 연결 인덱스로 진행한다. 해당 조건문 이후에는 후속하는 연결 인덱스(R)가 제시된다. Necessary element information exists only when the number of branches is 2 or more. In this case, the connection index may vary according to the determination result of the conditional statement using the required element information. That is, when the number of branches is 1, necessary element information does not exist and the process proceeds to the connection index indicated by the branch information. After that conditional statement, the subsequent connection index (R) is presented.

코덱부(340)가 종래 비트스트림(105)에 포함된 인코딩된 비디오 데이터의 디코딩을 위해 하나의 표준만을 이용하면 충분한 경우, F-RT(420)은 해당 표준만에서 상응하는 처리를 수행하기 위한 기능부들의 연결 관계 등을 지시할 것이다. If the codec unit 340 uses only one standard for decoding the encoded video data included in the conventional bitstream 105, the F-RT 420 may perform the corresponding processing only in the standard. The connection relationship between the functional units will be indicated.

그러나, 해당 비디오 데이터가 복수의 표준에 의해 인코딩된 경우(예를 들어, 복수의 프레임 단위로 인코딩 표준을 달리 적용한 경우)에는 해당 인코딩된 비디오 데이터의 디코딩을 위해 복수의 표준에 따른 기능부들의 연결 관계 등을 지정하기 위한 정보가 포함될 것임은 자명하다. 이는 이하에서 언급되는 각 테이블들도 복수의 표준에서 적용되기 위해 추가적인 정보들 및/또는 복수의 표준에 적용되기 위한 수정 등을 필요로 한다면 해당 정보들을 더 포함할 것임은 자명하다.However, if the video data is encoded by a plurality of standards (for example, if the encoding standard is applied differently in a plurality of frames), the connection of functional units according to the plurality of standards for decoding of the encoded video data. It is obvious that information for specifying a relationship will be included. It is obvious that each of the tables mentioned below will further include corresponding information if it needs additional information and / or a modification to be applied to a plurality of standards in order to apply in a plurality of standards.

F-RT(420)는 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The F-RT 420 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar script language.

도 15에 예시된 각 연결 정보(Rule)를 구분하는 인덱스(Index, R) 중 R0부터 R5 및 R12를 실시하기 위한 기능부(FU)는 F0이다. F0는 도 14의 FL(410)을 참조하면 SYN 파서(540)임을 알 수 있다. 따라서, 연결 제어부(530)가 툴 박스(510) 내에 구비된 각 기능부들(SYN 파서(540)를 포함함)의 동작상의 연결 관계를 제어함을 알 수 있다. 또한, 선택된 기능부가 SYN 파서(540)인 경우, SYN 파서(540)가 몇 번째 Syntax를 읽어 처리하여야 하는지에 관한 연결 정보(Rule)가 F-RT(420)에 포함됨을 알 수 있다(예를 들어, F0(R74) 등).The function unit FU for implementing R0 to R5 and R12 among the indexes R and R for distinguishing each connection information Rule illustrated in FIG. 15 is F0. Referring to FL 410 of FIG. 14, it may be understood that F0 is a SYN parser 540. Accordingly, it can be seen that the connection controller 530 controls the operational connection relationship of the respective functional units (including the SYN parser 540) included in the tool box 510. In addition, when the selected functional unit is the SYN parser 540, it can be seen that the F-RT 420 includes connection information (Rule) regarding how many Syntax the SYN parser 540 should read and process (eg, For example, F0 (R74) and the like.

또한, 인덱스 R1에는 기능부 항목에 'PROCESS1'이라 정의되어 있다. 예를 들어, 'PROCESS1'은 변수 선언, 메모리 설정, 변수 값 초기화 등과 같이 소프트웨어의 구현시 필요로 하는 기타 작업(즉, 신택스 파싱, 데이터 디코딩 이외의 작업)을 수행하기 위하여 호출되는 함수일 수 있다. 이와 같은 프로세스(PROCESS)는 소프트웨어의 수행을 위해 F-RT(420)의 필요 위치에 삽입되어 신택스 파싱 또는 데이터 디코딩 과정의 중간에 연결 제어부(530)에 의해 호출되어 실행될 수 있을 것이다. 도 15에는 하나의 프로세스만이 삽입되었으나, 각각 수행 동작이 동일하거나 상이한 복수의 프로세스가 F-RT(420)의 복수의 위치에 삽입될 수도 있음은 자명하다. In addition, the index R1 defines 'PROCESS1' as the functional part item. For example, 'PROCESS1' may be a function that is called to perform other tasks (ie, operations other than syntax parsing and data decoding) required for the software implementation, such as variable declaration, memory setting, and variable value initialization. Such a process may be inserted into a required location of the F-RT 420 for execution of software and called and executed by the connection controller 530 in the middle of a syntax parsing or data decoding process. Although only one process is inserted in FIG. 15, it is obvious that a plurality of processes having the same or different performing operation may be inserted at a plurality of positions of the F-RT 420.

다음으로, FU-CSCIT(FU CSCI Table, 430)은 CSCI 저장부(520)에 저장된 엘리먼트 정보와 각 기능부가 필요로 하는 엘리먼트 정보(input CSCI)를 연결하기 위한 테이블이다.Next, the FU-CSCIT (FU CSCI Table) 430 is a table for connecting element information stored in the CSCI storage unit 520 and element information (input CSCI) required by each function unit.

도 16에 예시된 바와 같이, FU-CSCIT(430)는 FL(410)의 인덱스와 엘리먼트 정보의 쌍으로서 나열되는 인덱스(F-C), 해당 엘리먼트 정보, 매핑을 위하여 CSCIT(440)에서 사용하는 인덱스(C)를 포함한다. 이외에 FU-CSCIT(430)는 엘리먼트 정보의 데이터 타입(data type)을 더 포함할 수 있다. 예를 들어, 데이터 타입은 9-bit integer, 1-bit flag 등의 형태로 기술될 수 있을 것이다.As illustrated in FIG. 16, the FU-CSCIT 430 is an index (FC) listed as a pair of indexes and element information of the FL 410, an index used by the CSCIT 440 for corresponding element information, and mapping ( C). In addition, the FU-CSCIT 430 may further include a data type of element information. For example, the data type may be described in the form of a 9-bit integer, a 1-bit flag, or the like.

FU-CSCIT(430)는 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The FU-CSCIT 430 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar script language.

예를 들어, F-RT(420) 에서 F1이 네 개의 엘리먼트 정보의 입력을 받는다면(도 14 참조), FU-CSCIT(430)에는 기능부별 엘리먼트 정보들이 리스트되어진다. 즉, F1-C1, F1-C2, F1-C3. F1-C4가 리스트되고 CSCIT(440)(도 17 참조)의 인덱스(C)를 사용하여 C54, C56, C58, C65와 같이 각 엘리먼트 정보가 매핑된다. For example, if F1 receives input of four element information in the F-RT 420 (see FIG. 14), the element information for each functional part is listed in the FU-CSCIT 430. That is, F1-C1, F1-C2, F1-C3. F1-C4 are listed and each element information is mapped, such as C54, C56, C58, C65, using index C of CSCIT 440 (see FIG. 17).

마찬가지로, F2가 2개의 엘리먼트 정보의 입력을 가진다면, F2-C1, F2-C2로 인덱싱하고 C56, C58 값으로 매핑된다. 여기서, C54, C56 등은 각각 해당하는 엘리먼트 정보가 저장된 주소(예를 들어, 기록 주소, 버퍼 메모리 명칭 또는 버퍼 메모리 내의 기록 주소)로서 인식될 수 있으며, 해당 기능부는 입력 데이터 및 인덱스(C)에 상응하는 엘리먼트 정보를 이용하여 출력 데이터를 생성하여 출력(또는 버퍼 메모리에 기록)할 수 있다. Similarly, if F2 has an input of two element information, it is indexed by F2-C1, F2-C2 and mapped to C56, C58 values. Here, C54, C56, etc. may be recognized as an address (for example, a write address, a buffer memory name, or a write address in the buffer memory) in which the corresponding element information is stored, and the corresponding function unit may correspond to the input data and the index C. Output data may be generated and output (or written to a buffer memory) using corresponding element information.

예를 들어, FL(410)에서 DCR은 QFS라는 입력 데이터를 처리하기 위하여 4개의 엘리먼트 정보를 필요로 하고, 4개의 엘리먼트 정보는 FU-CSCIT(430)에 의해 C54, C56, C58 및 C65인 것으로 인식되며, CSCI 저장부(520)에서 해당 인덱스(C)에 상응하는 엘리먼트 정보를 독출하여 QFSP를 생성할 수 있다.For example, in FL 410, DCR needs 4 element information to process input data called QFS, and the 4 element information is C54, C56, C58 and C65 by FU-CSCIT 430. Recognized, the CSCI storage unit 520 may generate element QFSP by reading element information corresponding to the corresponding index (C).

마지막으로, CSCIT(440)는 SYN 파서(540)가 SET(450) 및 S-RT(460)를 이용한 프로세스의 결과 정보인 엘리먼트 정보(예를 들어, CSCI)에 대한 상세 정보가 기술된 것이다. 즉, CSCIT(440)는 종래 비트스트림(105)으로부터 처리되어 CSCI 저장 부(520)에 저장되고, MB 처리부(550)에 의해 이용될 모든 의미있는 자료(즉, 엘리먼트 정보)들에 대한 정보를 가진다.Finally, the CSCIT 440 describes detailed information on element information (eg, CSCI) that is the result information of a process in which the SYN parser 540 uses the SET 450 and the S-RT 460. That is, the CSCIT 440 is processed from the conventional bitstream 105 and stored in the CSCI storage unit 520, and provides information on all meaningful data (i.e. element information) to be used by the MB processing unit 550. Have

도 17에 예시된 바와 같이, CSCIT(440)는 해당 엘리먼트 정보의 고유 번호로서 구분자인 인덱스(C), 플래그(flag), 해당 엘리먼트 정보의 이름(Element Name), 해당 엘리먼트 정보의 자료 구조적인 특성을 지정하기 위한 속성(예를 들어, 해당 엘리먼트 정보의 저장 공간 크기, 해당 엘리먼트 정보가 배열형(Array)인지 여부 등), 해당 엘리먼트 정보가 신택스 파싱 과정에서만 이용되는지 또는 전체적인 디코딩 과정에서 이용되는지를 나타내는 Global/Local 등을 포함한다. As illustrated in FIG. 17, the CSCIT 440 is a unique number of the corresponding element information, which is an index C, a flag, an element name of the element information, and a data structural characteristic of the element information. To specify whether the element information is used only in the syntax parsing process or the overall decoding process, for example, the storage space of the element information, whether the element information is an array, etc. Includes Global / Local, etc.

CSCIT(440)는 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The CSCIT 440 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar script language.

이어서, SYN 파서(540)가 종래 비트스트림(105)으로부터 엘리먼트 정보를 추출 또는 생성하여 CSCI 저장부(520)에 저장하기 위하여 이용하는 CSCIT(440), SET(450), S-RT(460) 및 DVT(470)에 관하여 설명하기로 한다. 다만, CSCIT(440)는 앞서 도 17을 참조하여 설명하였으므로 이에 대한 설명은 생략한다.Subsequently, the CSCIT 440, SET 450, S-RT 460, which the SYN parser 540 uses to extract or generate element information from the conventional bitstream 105, and store the element information in the CSCI storage unit 520. The DVT 470 will be described. However, since the CSCIT 440 has been described with reference to FIG. 17, description thereof will be omitted.

먼저, SET(450)는 입력된 종래 비트스트림(105)의 신택스(syntax)들에 대한 정보에 의해 구성된 테이블이다. First, the SET 450 is a table configured by information on the syntaxes of the conventional bitstream 105 input.

도 18 내지 도 21에 예시된 바와 같이, SET(450)는 각 신택스에 대한 인덱스(index), 엘리먼트 명칭(Element Name), 입력 데이터(input data), 출력 데이터(output data) 및 SET-프로세스(process by SET-PROC) 정보를 포함한다. 여기서 인덱스는 S-RT(460)에서 사용되는 각 신택스를 구분하는 구분자(S)이다. 엘리먼트 명칭은 신택스의 이름으로, 신택스의 의미나 역할에 따라 명명될 수 있다. 입력 데이터는 종래 비트스트림(105)에서 한 번에 입력되는 명목적 비트 길이이다. 출력 데이터는 엘리먼트 정보(즉, CSCI 정보(C))로서, 획득한 데이터를 저장할 때 참조하는 CSCIT(440)의 목록을 나타낸다. 여기서, 출력 데이터 필드는 생성된 엘리먼트 정보가 기록될 버퍼 메모리 명칭(또는 해당 데이터의 기록 주소 또는 해당 데이터가 기록된 버퍼 메모리 내의 주소)일 수 있다. 이를 이용하여, 추후 해당 엘리먼트 정보가 입력 데이터로서 필요한 경우 CSCI 정보(C)를 이용하여 해당 엘리먼트 정보를 리드(read)될 수 있다. SET-프로세스는 각 비트스트림 신택스를 입력 받아 어떤 가공 절차를 거쳐 출력 데이터인 엘리먼트 정보를 생성할 것인지의 과정을 기술한다.As illustrated in FIGS. 18 to 21, the SET 450 includes an index, an element name, input data, output data, and a SET-process (for each syntax). process by SET-PROC) information. Here, the index is a delimiter S for distinguishing each syntax used in the S-RT 460. The element name is a name of a syntax and may be named according to the meaning or role of the syntax. The input data is the nominal bit length input at one time in the conventional bitstream 105. The output data is element information (ie, CSCI information C) and represents a list of CSCITs 440 to which reference is made when storing acquired data. Here, the output data field may be a buffer memory name (or a write address of the corresponding data or an address in the buffer memory where the corresponding data is recorded) in which the generated element information is to be recorded. By using this, if the corresponding element information is needed later as input data, the corresponding element information may be read using the CSCI information (C). The SET-process describes the process of receiving each bitstream syntax and what processing procedure to generate element information, which is output data.

SET(450)는 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The SET 450 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar script language.

다음으로, S-RT(460)는 종래 비트스트림(105) 내의 각 신택스간의 연결 정보를 나타낸 것이다. 즉, S-RT(460)는 각 신택스를 호출하고 다음 신택스로 이동하도록 지시하는 정보를 가진다. SYN 파서(540)는 S-RT(460)를 이용하여 종래 비트스트림(105)을 읽어 들이거나 엘리먼트 정보가 CSCI 저장부(520)에 저장 및/또는 갱신되는 순서를 규정한다.Next, the S-RT 460 shows connection information between each syntax in the conventional bitstream 105. That is, the S-RT 460 has information instructing to call each syntax and move to the next syntax. The SYN parser 540 reads the conventional bitstream 105 using the S-RT 460 or defines the order in which element information is stored and / or updated in the CSCI storage 520.

하기 도 22 내지 도 25에 예시된 바와 같이, S-RT(460)는 인덱스(R), 신택스 의 인덱스(S), 입력 데이터(C), 분기의 수(No. of branches), 분기 정보를 포함한다. As illustrated in FIGS. 22 to 25, the S-RT 460 stores an index R, a syntax index S, input data C, a number of branches, and branch information. Include.

인덱스(R)은 각 연결 정보(Rule)를 구분하도록 한다. 신택스의 인덱스(S)는 특정 연결 인덱스에서 처리할 신택스를 지정하므로, SYN 파서(540)는 SET(450)을 이용하여 해당 신택스에 대해 지정된 프로세스를 수행한다. The index R distinguishes each connection information rule. Since the index S of the syntax designates a syntax to be processed at a specific connection index, the SYN parser 540 performs a process specified for the syntax using the SET 450.

입력 데이터는 해당 연결 인덱스에서의 연결 제어를 위한 조건 판단에 사용될 엘리먼트 정보의 목록을 나타낸다. The input data represents a list of element information to be used for determining a condition for connection control in the corresponding connection index.

분기의 수는 후속하는 신택스에 연결되어질 수 있는 경우의 수로서, 해당 연결 인덱스에서 가지는 분기 경로의 총 수를 나타낸다. 분기 정보는 분기의 수 만큼 필요한 분기 정보가 존재(#1, #2, #3… 등)하며, 다음에 어떤 연결 인덱스를 처리할 것인지를 결정하도록 하는 조건 판단 알고리즘이다. 분기 정보에 의해 어떤 순서에 따라 어떤 내용을 읽어 들일지가 직접적으로 판단될 수 있다. 도 22 내지 도 25에서 보여지는 바와 같이, 분기의 수가 1인 경우에는 입력 데이터가 존재하지 않으며, 분기 정보에 지정된 연결 인덱스를 처리하기 위해 즉시 진행한다. 그러나, 분기의 수가 2 이상인 경우에는 조건 판단이 수행(조건문 이후에는 다음 번 연결 정보(R)로 구성됨)되고 상응하는 연결 인덱스를 처리하기 위해 진행한다. The number of branches is the number of cases that can be linked to subsequent syntax, and represents the total number of branch paths that the connection index has. Branch information is a condition determination algorithm for determining the number of branch information necessary for the number of branches (# 1, # 2, # 3, etc.), and which connection index to process next. The branch information can directly determine which contents are read in what order. As shown in Figs. 22 to 25, when the number of branches is 1, there is no input data, and the process proceeds immediately to process the connection index specified in the branch information. However, if the number of branches is 2 or more, condition determination is performed (consisting of the next connection information R after the conditional statement) and proceeds to process the corresponding connection index.

SYN 파서(540)는 해당 연결 인덱스에서 정의한 신택스를 처리하여 CSCI 저장부(520)를 갱신한 후, 갱신된 CSCI 저장부(520)의 엘리먼트 정보를 참조하여 읽어들인 후 분기 조건 판단에 활용한다. 이는 예를 들어, 인덱스 R0의 분기 정보의 분기 조건인 'C0==1'에서의 C0는 신택스 S0를 처리한 후의 엘리먼트 정보 C0이다. The SYN parser 540 updates the CSCI storage unit 520 by processing the syntax defined in the corresponding connection index, reads the element information of the updated CSCI storage unit 520, and uses the same to determine branch conditions. This is, for example, C0 at 'C0 == 1' which is a branch condition of branch information of index R0 is element information C0 after processing syntax S0.

S-RT(460)는 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The S-RT 460 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar script language.

마지막으로, DVT(470)는 각 부호화기/복호화기에서 사용하는 허프만 테이블(Huffman table) 정보가 기록된 테이블이다. MPEG-1/2/4/AVC에서는 각 부호화 시 엔트로피 코딩(entropy coding)을 수행한다. 이 때 주로 허프만 코딩(Huffman coding) 방법이 이용되며, 이 경우 이용되는 정보가 허프만 테이블(Huffman table)이다. 통합 코덱을 구현하기 위해서는 각 복호 시 해당 복호화기에서 사용될 허프만 테이블(Huffman table) 정보가 제공되어야 한다. 따라서, 본 발명에 따른 디코딩 디스크립션 내에 신택스 파싱시 각 신택스(syntax)에 해당하는 허프만 테이블(Huffman table) 정보를 포함한다. 물론, 각 표준에 상응하는 허프만 테이블 정보가 이미 테이블 저장부(330)에 기록되어 있는 경우 DVT(470)의 전송은 생략되거나 도 11에 예시된 바와 같이 코덱 번호(Codec #, 1120)와 프로파일 및 레벨 번호(Profile and level #, 1130)만이 포함될 수도 있을 것이다.Finally, the DVT 470 is a table in which Huffman table information used in each encoder / decoder is recorded. In MPEG-1 / 2/4 / AVC, entropy coding is performed at each encoding. In this case, a Huffman coding method is mainly used, and the information used in this case is a Huffman table. To implement the integrated codec, Huffman table information to be used in the corresponding decoder must be provided for each decoding. Therefore, Huffman table information corresponding to each syntax is included in syntax parsing in the decoding description according to the present invention. Of course, if Huffman table information corresponding to each standard is already recorded in the table storage unit 330, transmission of the DVT 470 is omitted or as shown in FIG. 11, the codec number (Codec #, 1120) and the profile and Only the level number (Profile and level #, 1130) may be included.

도 26 내지 도 27에 예시된 바와 같이, DVT(470)는 각 허프만 테이블에 대한 이름(name), 허프만 코딩에 의해 압축되어 출력되는 실제 값(value) 및 압축된 실제 값이 종래 비트스트림(105)에 저장될 때 사용되는 코드 값(code)을 포함한다. 예를 들어, MCBPC 값을 압축하여 3이란 실제 값(value)을 얻었다면, 허프만 테이블 매핑(Huffman table mapping) 작업(예를 들어, SET(450)의 PROCESS 부분)에 의해 종래 비트스트림(105)에는 코드 값(code) 011이 기록된다. 다른 예로서, 앞서 예시 한 SET(450)의 인덱스 S77(도 18 내지 도 21 참조)의 Process 부분에는 VLD[1]이라 기록되어 있어 VLD라는 함수를 호출하게 된다. 이 함수에 의해 미리 지정된 길이(고정길이 또는 가변 길이)만큼 종래 비트스트림(105)을 읽어 코드 값(code)값을 얻은 후 허프만 테이블 매핑(Huffman table mapping) 작업에 의해 상응하는 실제 값(value)을 얻을 수 있다. 이 때 사용되는 Huffman table은 [1], 즉 1번째 테이블인 CBPY이다.As illustrated in FIGS. 26 to 27, the DVT 470 includes a name for each Huffman table, an actual value compressed and output by Huffman coding, and a compressed actual value. ) Contains the code value used when stored in). For example, if the MCBPC value is compressed to obtain an actual value of 3, the conventional bitstream 105 is performed by a Huffman table mapping operation (for example, the PROCESS portion of SET 450). The code value 011 is recorded. As another example, the VLD [1] is recorded in the process portion of the index S77 (see FIGS. 18 to 21) of the SET 450 illustrated above, thereby calling a function called VLD. This function reads a conventional bitstream 105 for a predetermined length (fixed or variable length), obtains a code value, and then performs a corresponding actual value by Huffman table mapping. Can be obtained. The Huffman table used at this time is [1], that is, the first table, CBPY.

DVT(470)는 textual description이나 binary description(비트 변환된 바이너리 코드 형태) 등의 기술 방식으로 기술될 수 있을 뿐 아니라, 상기 테이블 중 필요한 최소한의 데이터가 유사 스크립트 언어로 기술될 수도 있다.The DVT 470 may be described in a description manner such as a textual description or a binary description (in the form of a bit-converted binary code), and the minimum data required in the table may be described in a similar scripting language.

일 예로, DVT(470)는 아래와 같이 textual description될 수 있다.For example, the DVT 470 may be textual description as follows.

DVT{((0,1), (1,001), (2,010), (3,011), (4,0001), (5,000001), (6,000010), (7,000011), (8,000000001), (9,NULL)) ((0,0011), (1,00101), (2,00100), (3,1001), (4,00011),(5,0111), (6,000010), (7,1011), (8,00010), (9,000011), (10,0101), (11,1010), (12,0100), (13,1000), (14,0110), (15,11), (16,000000), (17,000001), (18,NULL)) ((0,011), (1,11), (2,10), (3,010), (4,001), (5,0001), (6,00001), (7,000001), (8,0000001), (9,00000001), (10,000000001), (11,0000000001), (12,00000000001), (13,NULL)) ((0,11), (1,10), (2,01), (3,001), (4,0001), (5,00001), (6,000001), (7,0000001), (8,00000001), (9,000000001), (10,0000000001), (11,00000000001), (12,000000000001), (13,NULL))...DVT {((0,1), (1,001), (2,010), (3,011), (4,0001), (5,000001), (6,000010), (7,000011), (8,000000001) , (9, NULL)) ((0,0011), (1,00101), (2,00100), (3,1001), (4,00011), (5,0111), (6,000010), (7,1011), (8,00010), (9,000011), (10,0101), (11,1010), (12,0100), (13,1000), (14,0110), (15 , (11), (16,000000), (17,000001), (18, NULL)) ((0,011), (1,11), (2,10), (3,010), (4,001), (5, 0001), (6,00001), (7,000001), (8,0000001), (9,00000001), (10,000000001), (11,0000000001), (12,00000000001), (13, NULL) ) ((0,11), (1,10), (2,01), (3,001), (4,0001), (5,00001), (6,000001), (7,0000001), (8 , 00000001), (9,000000001), (10,0000000001), (11,00000000001), (12,000000000001), (13, NULL)) ...

다른 예로서, DVT(470)는 아래와 같이 binary description될 수 있다.As another example, the DVT 470 may be binary described as follows.

0000001111111111111111111111111011111000011000110010001101000011011001000001001100000010011000001000110000011010010000000010000011111001000011001010010100101001000010010010010100011001000111001100000100010010110010100010001100000110010001010010010100010001000010010000010001100001011001100000000011000000100000111110001101100010110001010000110100001100100100000100101000010011000000100111000000101000000000010100100000000101010000000000101011000000000010000011111000101100010100001001000110010010000010010100001001100000010… 0000001111111111111111111111111011111000011000110010001101000011011001000001001100000010011000001000110000011010010000000010000011111001000011001010010100101001000010010010010100011001000111001100000100010010110010100010001100000110010001010010010100010001000010010000010001100001011001100000000011000000100000111110001101100010110001010000110100001100100100000100101000010011000000100111000000101000000000010100100000000101010000000000101011000000000010000011111000101100010100001001000110010010000010010100001001100000010 ...

각 테이블들은 binary description됨으로써 저장 공간을 감소시키고, 처리 효율을 증진시키며, 디코딩 디스크립션을 포함한 확장 비트스트림(305) 전송 시간을 감소시킬 수 있는 장점이 있다. 일 예로, MPEG-4 SP(Simple Profile)를 기준한 각 테이블에 대한 textual description과 binary description의 오버헤드 비트(overhead bit)는 아래 표 1과 같다. Each table has the advantage of being able to reduce storage space, improve processing efficiency, and reduce transmission time of the extended bitstream 305 including decoding description by binary description. For example, overhead bits of the textual description and the binary description of each table based on MPEG-4 Simple Profile (SP) are shown in Table 1 below.

표 1. Overhead of Textual/Binary Description (bytes)Table 1.Overhead of Textual / Binary Description (bytes)

TableTable namename Textual DescriptionTextual Description Binary DescriptionBinary Description SETSET 36533653 1089 1089 S-RTS-RT 42014201 1122 1122 F-RTF-RT 466466 142 142 CSCITCSCIT 808808 24 24 FU-CSCITFU-CSCIT 151151 37 37 FLFL 9898 28 28 DVTDVT 25992599 259 259 TotalTotal 11,97611,976 2,702 2,702

이하, SYN 파서(540) 및/또는 연결 제어부(530)에 의해 이용되는 각 테이블 간의 연동 과정을 설명한다. Hereinafter, the interworking process between the tables used by the SYN parser 540 and / or the connection controller 530 will be described.

본 발명에 따른 복호화기(300)의 코덱부(340)가 동작을 개시하는 방법은 다양할 수 있다. 이중 몇 가지 예만을 제시하면 다음과 같다. The method of starting the operation of the codec unit 340 of the decoder 300 according to the present invention may vary. Some examples are as follows.

첫 번째 실시예로, SYN 파서(540)가 독립적으로 동작을 개시(즉, 테이블 저장부(330)에 저장된 테이블들을 이용한 종래 비트스트림(105)의 신택스 파싱 개시)하여 종래 비트스트림에 대한 신택스 파싱을 완료하면 연결 제어부(530)가 테이블 저장부(330)에 저장된 테이블들을 이용하여 MB 처리부(550)의 각 기능부들의 연결 관계를 제어하는 방법이다. In the first embodiment, the SYN parser 540 independently starts operation (i.e., starts parsing syntax of the conventional bitstream 105 using the tables stored in the table storage 330) to parse syntax for the conventional bitstream. In this case, the connection controller 530 controls the connection relationship between the respective functional units of the MB processor 550 using the tables stored in the table storage unit 330.

이 경우, SYN 파서(540)는 테이블 저장부(330)에 필요한 테이블들의 저장이 완료되었음을 먼저 인식하여야 한다. 이를 위해, SYN 파서(540)가 테이블 저장부(330)로의 테이블 정보 저장 여부를 지속적으로 감시하거나, 테이블 정보의 저장을 완료한 디스크립션 디코더(320)가 이를 SYN 파서(540)로 통지하여야 할 것이다. In this case, the SYN parser 540 must first recognize that the storage of the tables necessary for the table storage unit 330 is completed. To this end, the SYN parser 540 continuously monitors whether the table information is stored in the table storage unit 330, or the description decoder 320 that has completed the storage of the table information should notify the SYN parser 540 of this. .

또한, 연결 제어부(530)는 SYN 파서(540)가 필요한 일부의/전체의 엘리먼트 정보를 CSCI 저장부(520)에 저장 완료하였는지 여부를 먼저 인식하여야 한다. 이를 위해, 연결 제어부(530)가 CSCI 저장부(520)로의 필요한 엘리먼트 정보가 저장되었는지 여부를 지속적으로 감시하거나, 엘리먼트 정보를 저장한 SYN 파서(540)가 이를 연결 제어부(530)로 통지(예를 들어, S-RT(460)의 인덱스 R72와 같이 제어 권한이 연결 제어부(530)로 리턴되도록 함)하여야 할 것이다. 물론, 연결 제어부(530, 또는 연결 제어부(530)에 의해 선택된 임의의 기능부) 및/또는 SYN 파서(540)는 테이블 저장부(330)나 CSCI 저장부(520)에 필요한 정보가 저장 완료되었는지 감시할 필요없이 동작 개시한 상태에서 해당 저장부에 필요한 정보가 저장될 때까지 대기할 수도 있음은 자명하다. In addition, the connection controller 530 must first recognize whether the SYN parser 540 has completed storing some / all required element information in the CSCI storage unit 520. To this end, the connection control unit 530 continuously monitors whether necessary element information to the CSCI storage unit 520 has been stored, or the SYN parser 540 storing the element information is notified to the connection control unit 530 (eg, For example, the control authority is returned to the connection control unit 530, such as index R72 of the S-RT 460). Of course, the connection control unit 530 or any functional unit selected by the connection control unit 530) and / or the SYN parser 540 may determine whether information necessary for the table storage unit 330 or the CSCI storage unit 520 has been stored. Obviously, it is possible to wait until the necessary information is stored in the storage unit in the state of starting operation without monitoring.

두 번째 실시예로, 연결 제어부(530)가 테이블 저장부(330)에 저장된 테이블들을 이용하여 SYN 파서(540) 및 MB 처리부(550)의 각 기능부들의 연결 관계를 제어하는 방법이다. 이는 앞서 예시한 F-RT(420)에서도 보여지는 바와 같이, 우선 SYN 파서(540)의 동작 개시를 지시하여 종래 비트스트림을 신택스 파싱한 엘리먼트 정보가 CSCI 저장부(520)에 저장되도록 한 후, 제어 권한이 연결 제어부(530)로 리턴(예를 들어, S-RT(460)의 인덱스 R72와 같이 제어 권한이 연결 제어부(530)로 리턴되도록 함)되면 상응하는 기능부(FU)가 후속하는 동작을 처리하도록 각 기능부들의 연결 관계를 제어한다. 이 경우, 연결 제어부(530)는 테이블 저장부(330)에 필요한 테이블들의 저장이 완료되었음을 먼저 인식하여야 한다. 이를 위해, 연결 제어부(530)가 테이블 저장부(330)로의 테이블 정보 저장 여부를 지속적으로 감시하거나, 테이블 정보의 저장을 완료한 디스크립션 디코더(320)가 이를 연결 제어부(530)로 통지하여야 할 것이다. 물론, 연결 제어부(530, 또는 연결 제어부(530)에 의해 선택된 임의의 기능부) 및/또는 SYN 파서(540)는 테이블 저장부(330)나 CSCI 저장부(520)에 필요한 정보가 저장 완료되었는지 감시할 필요없이 동작 개시한 상태에서 해당 저장부에 필요한 정보가 저장될 때까지 대기할 수도 있음은 자명하다.In the second embodiment, the connection controller 530 controls the connection relationship between the functional units of the SYN parser 540 and the MB processor 550 using the tables stored in the table storage 330. As shown in the above-described F-RT 420, first, the operation of the SYN parser 540 is instructed so that element information obtained by syntax parsing the conventional bitstream is stored in the CSCI storage unit 520. When the control right is returned to the connection control unit 530 (for example, such that the control right is returned to the connection control unit 530, such as index R72 of the S-RT 460), the corresponding functional unit FU is followed. Control the connection of each functional unit to handle the operation. In this case, the connection controller 530 must first recognize that the storage of the tables necessary for the table storage unit 330 is completed. To this end, the connection control unit 530 continuously monitors whether the table information is stored in the table storage unit 330, or the description decoder 320 that has completed storing the table information should notify the connection control unit 530 of this. . Of course, the connection control unit 530 or any functional unit selected by the connection control unit 530) and / or the SYN parser 540 may determine whether information necessary for the table storage unit 330 or the CSCI storage unit 520 has been stored. Obviously, it is possible to wait until the necessary information is stored in the storage unit in the state of starting operation without monitoring.

세 번째 실시예로, 트리거(trigger)가 연결 제어부(530) 및/또는 SYN 파서(540)의 동작 개시를 지시하도록 구현하는 방법이다. 트리거는 확장 비트스트 림(305)이 수신된 경우 이를 인식하여 우선 분리부(310)의 동작을 지시하고, 디코딩 디스크립션에 상응하는 복수의 테이블들이 테이블 저장부(330)에 저장 완료되면 이를 인식하여 코덱부(즉, 연결 제어부(530) 및/또는 SYN 파서(540))의 동작 개시를 지시할 수 있다. 트리거를 구비함으로써, 상술한 각 실시예들에서 연결 제어부(530) 및/또는 SYN 파서(540)는 언제 동작 개시할 것인지를 판단하기 위해 테이블 저장부(330) 등을 감시할 필요가 없어진다. In a third embodiment, a trigger is implemented to instruct operation of the connection controller 530 and / or the SYN parser 540 to start. The trigger recognizes when the extended bitstream 305 is received and instructs the operation of the separation unit 310 first, and recognizes when a plurality of tables corresponding to the decoding description are stored in the table storage unit 330. The operation of the codec unit (ie, the connection controller 530 and / or the SYN parser 540) may be instructed. By providing a trigger, in each of the above-described embodiments, the connection control unit 530 and / or the SYN parser 540 does not need to monitor the table storage unit 330 or the like to determine when to start operation.

이하, 상술한 두 번째 실시예를 중심으로 SYN 파서(540) 및/또는 연결 제어부(530)에 의해 이용되는 각 테이블간의 연동 과정을 설명한다. Hereinafter, the interworking process between the tables used by the SYN parser 540 and / or the connection controller 530 will be described based on the second embodiment described above.

먼저, 연결 제어부(530)는 테이블 저장부(330)에서 F-RT(420)의 첫 번째 규칙 정보(Rule)을 읽어 해당 기능부를 호출한다. 연결 제어부(530)는 F-RT(420)에 보여지는 바와 같이 가장 먼저 F0(R0)을 읽고, SYN 파서(540)로 처리를 지시한다. 이는, SYN 파서(540)에 상응하는 프로그램 코드들의 처리 블록이 활성화되도록 하는 것일 수 있다. FL(410)에 의하면 F0가 SYN 파서(540)임을 알 수 있으며, 선택한 기능부(FU)가 SYN 파서(540)인 경우 몇 번째 신택스를 읽어 처리하여야 하는지에 관한 정보가 함께 기재된다(예를 들어, F0(R0), F0(R114) 등).First, the connection controller 530 reads the first rule information (Rule) of the F-RT 420 from the table storage unit 330 and calls the corresponding function unit. The connection control unit 530 first reads F0 (R0) as shown by the F-RT 420, and instructs the SYN parser 540 to process it. This may be to cause a processing block of program codes corresponding to SYN parser 540 to be activated. According to the FL 410, it can be seen that F0 is the SYN parser 540. If the selected functional unit FU is the SYN parser 540, information about the number of syntaxes to be read and processed is described together (for example, For example, F0 (R0), F0 (R114) and the like).

SYN 파서(540)는 S-RT(460)의 규칙 정보(Rule)들 중 연결 제어부(530)에 의해 지정된(즉, F-RT(420)에 의해 지정된) 규칙 정보를 읽어 해당 Syntax를 읽는다. 위에서, F-RT(420)에 의해 지적된 규칙 정보가 F0(R0)였으므로, SYN 파서(540)는 인덱스 R0부터 처리를 개시한다. SYN 파서(540)는 S-RT(460)에 의해 인덱스 R0에서 처리할 신택스가 S0이고, S0는 SET(450)에 의해 Visual Object Sequence Start Code임을 인식하고, 종래 비트스트림(105)에서 상응하는 비트(즉, SET(450)에 입력값으로 설정된 32비트)를 읽어 상응하는 출력값(즉, 엘리먼트 정보로서, C0)를 생성하여 CSCI 저장부(520)에 저장한다. CSCI 저장부(520)에 저장된 당해 엘리먼트 정보가 무엇인지는 CSCIT(440)에 기재되어 있다. 이어서, SYN 파서(540)는 CSCI 저장부(520)에 저장된 엘리먼트 정보(즉, C0)를 S-RT(460)의 상응하는 분기 정보에 대입하고, 그 결과에 상응하는 인덱스의 처리를 위해 진행한다. 예를 들어, 인덱스 R0에 상응하는 분기 정보는 'C0==1'이므로 이를 만족하면 인덱스 R1으로 진행할 것이고, 그렇지 않으면 Error 처리한다. 이러한 과정은 'GO RT'를 만나 제어 권한이 F-RT(420)(즉, 연결 제어부(530))로 이전될 때까지 지속된다(예를 들어, S-RT(460)의 인덱스 R72). The SYN parser 540 reads corresponding syntax by reading rule information designated by the connection controller 530 (that is, designated by the F-RT 420) among the rule information (Rules) of the S-RT 460. Since the rule information indicated by the F-RT 420 was F0 (R0), the SYN parser 540 starts processing from the index R0. The SYN parser 540 recognizes that the syntax to be processed at the index R0 by the S-RT 460 is S0, and S0 is the Visual Object Sequence Start Code by the SET 450, and corresponds to the corresponding bitstream 105 in the related art. The bit (ie, 32 bits set as an input value in the SET 450) is read, and a corresponding output value (ie, C0 as element information) is generated and stored in the CSCI storage unit 520. What is the element information stored in the CSCI storage unit 520 is described in the CSCIT 440. Subsequently, the SYN parser 540 substitutes element information (i.e., C0) stored in the CSCI storage unit 520 into corresponding branch information of the S-RT 460, and proceeds to process the index corresponding to the result. do. For example, since the branch information corresponding to the index R0 is 'C0 == 1', if the content is satisfied, the branch information proceeds to the index R1, otherwise, an error process is performed. This process continues until it encounters a 'GO RT' and control authority is transferred to the F-RT 420 (ie, the connection control unit 530) (eg, index R72 of the S-RT 460).

그러나, SYN 파서(540)가 SET(450)를 이용하여 엘리먼트 정보를 생성하여 CSCI 저장부(520)에 저장하는 과정에서, VLD 함수가 호출되면(예를 들어, SET(450)의 인덱스 S74) DVT(470)를 이용하여 엔트로피 디코딩을 수행한다. 이 과정에서 엘리먼트 정보가 생성되면 CSCI 저장부(520)에 저장한다. However, when the SYN parser 540 generates element information using the SET 450 and stores the element information in the CSCI storage unit 520, when the VLD function is called (for example, the index S74 of the SET 450). Entropy decoding is performed using the DVT 470. When the element information is generated in this process, it is stored in the CSCI storage unit 520.

SYN 파서(540)의 처리 과정에서 'GO RT'를 만나 제어 권한이 F-RT(420)(즉, 연결 제어부(530))로 이전(예를 들어, S-RT(460)의 인덱스 R72)되면, 연결 제어부(530)는 F-RT(420)의 인덱스 R0의 입력값인 C63(즉, 신택스 파싱 과정에서의 SET(450)의 인덱스 S57에 따른 엘리먼트 정보)를 CSCI 저장부(520)에서 독출하고, 분기 정보(즉, ((C63==1)||(C63==2)) 또는 ((C63==3)||(C63==4)))에 대입하므로써 이후에 처리할 인덱스를 지정한다. 즉, 분기 정보의 만족 여부에 따라 인덱스 R1으 로 진행할지, 종료(END)할지 또는 Error 처리할지 여부가 결정된다.During the processing of the SYN parser 540, 'GO RT' is met and control authority is transferred to the F-RT 420 (i.e., the connection control unit 530) (for example, the index R72 of the S-RT 460). If the connection control unit 530 receives the C63 (that is, the element information according to the index S57 of the SET 450 in the syntax parsing process) that is the input value of the index R0 of the F-RT 420, the CSCI storage unit 520 receives the C-value. Index to read and assign to branch information (ie, ((C63 == 1) || (C63 == 2)) or ((C63 == 3) || (C63 == 4))) Specifies. That is, it is determined whether to proceed to the index R1, end (END), or error processing depending on whether the branch information is satisfied.

인덱스 R1으로 진행하는 경우, 미리 지정된 처리(예를 들어, 변수 선언, 메모리 설정, 변수 값 초기화 등)를 수행한 후 후속하여 처리될 인덱스가 결정된다.When proceeding to the index R1, after performing a predetermined process (eg, variable declaration, memory setting, variable value initialization, etc.), an index to be subsequently processed is determined.

상술한 바와 같이, SYN 파서(540)의 처리에 의해 전체/일부의 엘리먼트 정보가 CSCI 저장부(520)에 저장되면, 연결 제어부(530)는 인덱스 R6에서 기능부 F1을 호출한다. F1은 FL(410)에 의해 DCR(DC Reconstruction)임이 인식된다. As described above, when all / part of element information is stored in the CSCI storage unit 520 by the processing of the SYN parser 540, the connection control unit 530 calls the function unit F1 at the index R6. It is recognized by the FL 410 that F1 is a DC Reconstruction (DCR).

DCR은 FU-CSCIT(430)를 참조하여 입력값이 4개(즉, C54, C56, C58, C65)임을 인식하고, CSCI 저장부(520)에서 해당 엘리먼트 정보들을 독출한다. 해당 엘리먼트 정보들이 무엇인지는 CSCIT(440)와의 매핑(mapping)을 통해 인식할 수 있다. DCR은 독출한 엘리먼트 정보들을 이용하여 해당 기능부에 대해 미리 지정된 매크로블록 크기의 동영상 데이터 처리를 완료하고, 처리된 동영상 데이터를 버퍼 메모리 또는 CSCI 저장부(520)에 저장한다.The DCR recognizes that there are four input values (that is, C54, C56, C58, and C65) with reference to the FU-CSCIT 430, and reads corresponding element information from the CSCI storage unit 520. What the corresponding element information is may be recognized through mapping with the CSCIT 440. The DCR completes the processing of the video data of the macroblock size predetermined for the corresponding functional unit by using the read element information, and stores the processed video data in the buffer memory or the CSCI storage unit 520.

이러한 과정은 F-RT(420)에 예시된 바와 같이 인덱스 R6부터 R11까지 연속된다. 이에 의해, DCR, IS, IAP, IQ, IT, VR 등이 순차적으로 연결되도록 제어된다. 연결 제어부(530)는 임의의 기능부가 처리를 완료하였는지 여부를 인식할 수 있으며, 선행하는 기능부의 처리가 완료되면 후속하는 기능부의 처리를 지시한다. 또한, 선행하는 기능부는 후행하는 기능부의 동영상 데이터 처리를 위해 처리한 데이터를 미리 설정된 버퍼 메모리 또는 CSCI 저장부(520)에 저장한다. 연결 제어부(530)는 임의의 기능부가 처리를 완료하였는지 여부를 인식하는 방법은 당업자에게 자명하므로 이에 대한 설명은 생략한다.This process continues from index R6 to R11 as illustrated in F-RT 420. Thereby, the DCR, IS, IAP, IQ, IT, VR and the like are controlled so as to be sequentially connected. The connection control unit 530 may recognize whether any functional unit has completed the processing, and when the processing of the preceding functional unit is completed, instructs the processing of the subsequent functional unit. In addition, the preceding function unit stores the data processed for moving image data processing in a subsequent function unit in a preset buffer memory or CSCI storage unit 520. Since the connection control unit 530 recognizes whether any function has completed the processing, it will be apparent to those skilled in the art, and a description thereof will be omitted.

연결 제어부(530)가 상술한 과정, 즉 F-RT(420)에 기술된 인덱스 순서 및/또는 분기 조건에 따른 인덱스 순서에 의한 처리가 수행되도록 제어함으로써 코덱부(340)는 입력된 종래 비트스트림(105)에 상응하는 동영상 데이터를 출력할 수 있다.The codec unit 340 inputs the conventional bitstream by controlling the connection control unit 530 to perform the above-described process, that is, processing according to the index order described in the F-RT 420 and / or the index order according to the branch condition. Video data corresponding to 105 may be output.

상술한 설명을 통해 이해되는 바와 같이, 본 발명에 따른 테이블간의 연동 루프(loop)는 크게 둘로 구분할 수 있다. 즉, F-RT 루프는 F-RT(420), FL(410), FU-CSCIT(430), F-RT(420), CSCIT(분기 조건 적용 등), F-RT (다음 번 rule)로 구성되고, S-RT 루프는 S-RT(460), SET(450), CSCIT(440), S-RT(460), CSCIT(분기 조건 적용 등), S-RT(다음 번 rule)로 구성된다.As will be understood from the above description, the interworking loop between tables according to the present invention can be largely divided into two. That is, the F-RT loop is divided into F-RT (420), FL (410), FU-CSCIT (430), F-RT (420), CSCIT (branch condition application, etc.), F-RT (next rule). S-RT loop consists of S-RT (460), SET (450), CSCIT (440), S-RT (460), CSCIT (branch condition application, etc.), S-RT (next rule) do.

또한, F-RT 루프는 다음과 같이 둘로 구분할 수 있다. 먼저, MB 처리부(550)의 실행을 지시하는 경우에는 F-RT(420), FL(410), FU-CSCIT(440), F-RT(420), CSCIT(분기 조건 적용 등), F-RT(다음 번 rule)로 구성된다. 다음으로, SYN 파서(540)의 실행을 지시하는 경우에는 F-RT(420), FL(410), (S-RT 루프), F-RT(420), CSCIT(분기 조건 적용 등), F-RT(다음 번 rule)로 구성된다.In addition, the F-RT loop can be divided into two as follows. First, when instructing execution of the MB processing unit 550, F-RT 420, FL 410, FU-CSCIT 440, F-RT 420, CSCIT (branch condition application, etc.), F- It consists of RT (next rule). Next, when instructing execution of the SYN parser 540, F-RT 420, FL 410, (S-RT loop), F-RT 420, CSCIT (branch condition application, etc.), F It consists of -RT (next rule).

또한, S-RT 루프는 다음과 같이 둘로 구분할 수 있다. 다음 번 규칙 정보(rule)로 분기하는 경우에는 S-RT(460), SET(450), CSCIT(440), S-RT(460), CSCIT(분기 조건 적용), S-RT(다음 번 rule)로 구성되고, F-RT(420)로 리턴(return)하는 경우에는 S-RT(460), SET(450), CSCIT(440), S-RT(460), CSCIT(분기 조건 적용 등), F-RT(호출한 F-RT(420)의 인덱스)로 구성된다.In addition, the S-RT loop can be divided into two as follows. When branching to the next rule information, S-RT (460), SET (450), CSCIT (440), S-RT (460), CSCIT (branch condition apply), S-RT (next rule) ), And when returning to the F-RT 420, S-RT (460), SET (450), CSCIT (440), S-RT (460), CSCIT (branch condition application, etc.) , F-RT (index of the called F-RT 420).

F-RT(420)에 따른 연결 제어부(530)의 연결 제어에 의해 툴 박스(510) 내에 구비된 각 기능부들의 연결 관계는 상이해질 수 있다.By the connection control of the connection controller 530 according to the F-RT 420, the connection relationship between the respective functional units provided in the tool box 510 may be different.

이하, 각 테이블들을 구성하는 명령어들에 대해 상세히 설명하기로 한다.Hereinafter, the commands constituting each table will be described in detail.

도 28에는 syntax 파싱을 위하여 각 테이블들에서 이용되는 명령어들이 예시되어 있다. 예시된 각각의 명령어들을 이용하여 MPEG-2/MPEG-4/MPEG-4 AVC와 같은 표준의 syntax를 파싱하기 위한 정보(즉, 테이블)를 구성 할 수 있다. 이하에서는 MPEG-2 MP(Main Profile) Intra coding된 syntax를 파싱하기 위한 테이블들의 예와 각 테이블간의 연동 관계를 중심으로 설명하기로 한다.FIG. 28 illustrates the commands used in each table for syntax parsing. Each of the illustrated instructions can be used to construct information (ie, tables) for parsing standard syntax such as MPEG-2 / MPEG-4 / MPEG-4 AVC. Hereinafter, an example of tables for parsing MPEG-2 MP (Main Profile) intra coded syntax and an interworking relationship between the tables will be described.

도 28에 예시된 바와 같이, 각 테이블들을 구성하기 위한 명령어들로는 READ, SEEK, FLUSH, IF, WHILE, UNTIL, DO~WHILE, DO~UNTIL, BREAK, SET, STOP, PUSH 등이 있다. 물론, 모든 명령어가 각 테이블 내에 모두 이용되어야 하는 것은 아니며, 각 테이블별로 임의의 명령어가 선택적으로 이용될 수 있음은 자명하다. 이하, 각 명령어의 용도를 간략히 설명하도록 한다.As illustrated in FIG. 28, instructions for configuring each table include READ, SEEK, FLUSH, IF, WHILE, UNTIL, DO ~ WHILE, DO ~ UNTIL, BREAK, SET, STOP, PUSH, and the like. Of course, not all commands need to be used in each table, and it is obvious that any command may be selectively used for each table. Hereinafter, the purpose of each command will be briefly described.

먼저, READ는 비트스트림에서 일정 비트를 읽어들이기 위한 명령어이다. 예를 들어, "READ bits B > CSCI;"와 같이 표현될 수 있다. 여기서, "bits"는 읽어들일 비트 수를 나타내고, "B"는 Byte-alignment 플래그이고, "> CSCI"는 저장할 CSCI 인덱스를 나타낸다. "B"와 "> CSCI"는 옵션(option)으로 이용되며, "> CSCI"가 지정되지 않으면 변수 IBS에만 저장하도록 설정된다.First, READ is a command for reading a certain bit from the bitstream. For example, it may be expressed as "READ bits B> CSCI;". Here, "bits" represents the number of bits to be read, "B" represents a Byte-alignment flag, and "> CSCI" represents a CSCI index to be stored. "B" and "> CSCI" are used as options. If "> CSCI" is not specified, it is set to store only in the variable IBS.

다음으로, SEEK는 비트스트림에서 일정 비트를 읽어들이되, 파일 포인터를 이동하지 않도록 하는 명령어이다. 파일 포인터란 일정 비트를 읽어들이는 등의 동작시 기준 위치를 의미한다. SEEK 명령어의 파라미터는 앞서 설명한 READ와 동일하 게 적용할 수 있다. Next, SEEK reads a bit from the bitstream but does not move the file pointer. The file pointer means a reference position during an operation such as reading a predetermined bit. The parameters of the SEEK command can be applied in the same way as the READ described above.

다음으로, FLUSH는 비트스트림에서 일정 비트 수 만큼 파일 포인트를 이동하는 명령어이다. 파라미터는 READ와 유사하게 적용할 수 있다.Next, FLUSH is a command for moving a file point by a certain number of bits in the bitstream. Parameters can be applied similarly to READ.

다음으로, IF는 "IF (condition) { ~ } ELSE { ~ }"의 형태로 이용될 수 있으며, 주어진 조건에 따른 분기를 제공하는 명령어이다.Next, IF may be used in the form of "IF (condition) {~} ELSE {~}", and is an instruction that provides a branch according to a given condition.

다음으로, WHILE은 "WHILE (condition) { ~ }"의 형태로 이용될 수 있으며, 주어진 조건이 참(True)인 동안 지정된 블록을 반복하여 수행하도록 하는 명령어이다.Next, WHILE can be used in the form of "WHILE (condition) {~}", and is a command to repeatedly execute a designated block while a given condition is true.

다음으로, UNTIL은 "UNTIL (condition) { ~ }"의 형태로 이용될 수 있으며, 주어진 조건이 참이 될 때까지 지정된 블록을 반복하여 수행하도록 하는 명령어이다.Next, UNTIL can be used in the form of "UNTIL (condition) {~}", which is a command to repeatedly execute a designated block until a given condition becomes true.

다음으로, DO~WHILE은 "DO { ~ } WHILE (condition)"의 형태로 이용될 수 있으며, WHILE문을 변형하여 조건 판단에 앞서 블록을 실행하도록 하는 명령어이다.Next, DO ~ WHILE can be used in the form of "DO {~} WHILE (condition)", and it is a command to transform a WHILE statement to execute a block before determining a condition.

다음으로, DO~UNTIL은 "DO { ~ } UNTIL (condition)"의 형태로 이용될 수 있으며, UNTIL문을 변형하여 조건 판단에 앞서 블록을 실행하도록 하는 명령어이다.Next, DO ~ UNTIL can be used in the form of "DO {~} UNTIL (condition)", which is a command to transform a UNTIL statement to execute a block before determining a condition.

다음으로, ( ~ ) (compute)라는 명령어는 예를 들어 "(C11=(V2+3));"의 형태로 이용된다. 즉, SET-PROC의 모든 계산식이 괄호 안에 기록되도록 할 수 있으며, 사칙연산, 대입, 비교, 가산/감산 (++/--), 비트 연산, 논리합/논리곱, CSCI 사용여부 체크 등의 연산자가 이용될 수 있다.Next, the command (~) (compute) is used in the form of "(C11 = (V2 + 3));". In other words, all calculations of SET-PROC can be written in parentheses. Operators such as arithmetic, assignment, comparison, addition / subtraction (++ /-), bitwise operation, logical sum / logical product, and check whether CSCI is used or not Can be used.

다음으로, BREAK는 가장 가까운 루프 구조로부터 이탈하도록 하는 명령어이 다.Next, BREAK is a command to break out of the nearest loop structure.

다음으로, SET은 지정된 CSCI들에 대한 사용 여부 플래그를 설정하는 명령어로서, 플래그를 지정할 CSCI들이 나열되며 콤마(,)에 의해 구분(예를 들어, SET C0, C2;)될 수 있다.Next, SET is a command for setting whether to use flags for designated CSCIs, and CSCIs for designating flags are listed and separated by commas (eg, SET C0, C2;).

다음으로, STOP은 현재 수행중인 신택스 엘리먼트(Syntax Element)의 처리를 중단하고 다음으로 넘어가도록 하는 명령어이다.Next, STOP is a command for stopping the processing of the currently executing syntax element and moving on to the next.

다음으로, PUSH는 배열형 CSCI에서, 데이터가 기록된 맨 마지막 지점에서부터 주어진 데이터를 추가하도록 하는 명령어로서, 추가된 값들이 나열되며(예를 들어, PUSH C8 8, 16, 32;) 콤마에 의해 구분된다.Next, PUSH is an instruction to add a given data from the last point in which data was recorded in the array CSCI, and the added values are listed (for example, PUSH C8 8, 16, 32;) by comma. Are distinguished.

다음으로, GO는 지정한 위치로 분기하도록 하는 명령어이다. 예를 들어, GO R#;;인 경우 R#으로 분기하라는 명령이며, GO RT는 호출한 곳으로 복귀(return)하라는 명령이다.Next, GO tells you to branch to the specified location. For example, GO R # ;; is a command to branch to R #, and GO RT is a command to return to where it was called.

다음으로, HEX는 HEX 명령어 뒤에 나오는 값이 16진수임을 나타내는 명령어이다.Next, HEX is a command that indicates that the value following the HEX command is hexadecimal.

다음으로, RLD는 MPEG-4에서 지원되는 RLD 함수를 위한 인터페이스로서, "RLD index, level, run, islastrun, t#;"의 형태로 이용될 수 있다. 여기서, index, level, run 및 islastrun는 RLD 반환값을 저장하는 CSCI 혹은 내부 변수를 나타내고, t#는 RLD에 사용되는 Huffman Table ID를 나타낸다.Next, RLD is an interface for an RLD function supported in MPEG-4, and may be used in the form of "RLD index, level, run, islastrun, t #;". Here, index, level, run, and islastrun represent CSCI or internal variables storing the RLD return value, and t # represents the Huffman Table ID used for the RLD.

다음으로, VLD2는 MPEG-2용 VLD 함수로서, "VLD2 [t#] in > v1, v2, v3;"의 형태로 이용될 수 있다. 여기서, t#는 VLD에 사용되는 Huffman Table ID이고, in은 입력되는 index값을 나타내며, v1~v3은 출력 결과값을 나타낸다.Next, VLD2 is a VLD function for MPEG-2, and may be used in the form of "VLD2 [t #] in> v1, v2, v3;". Here, t # is a Huffman Table ID used for the VLD, in represents an index value to be input, and v1 to v3 represent an output result value.

마지막으로, VLD4는 MPEG-4용 VLD 함수로서, "VLD4 [T#] > CSCI;"의 형태로 이용될 수 있다. 여기서, t#는 VLD에 사용되는 Huffman Table ID를 나타내고, "> CSCI"는 저장할 CSCI 인덱스를 나타낸다. "> CSCI"는 옵션(option)으로, 지정하지 않으면 변수 IBS에만 저장되도록 한다.Finally, VLD4 is a VLD function for MPEG-4, and may be used in the form of "VLD4 [T #]> CSCI;". Here, t # represents a Huffman Table ID used for the VLD, and "> CSCI " represents a CSCI index to be stored. "> CSCI" is an option. If not specified, it is stored only in the variable IBS.

상술한 명령어들에 의해 구성된 각 테이블들(즉, MPEG-2 MP Intra 코딩용 신택스 처리를 위한 각 테이블)의 상세 예시도가 도 29 내지 도 53에 예시되어 있다. 구체적으로, SET(450)는 도 29 내지 도 35에, S-RT(460)는 도 36 내지 도 40에, CSCIT(440)는 도 41 내지 도 44에, FL(410)는 도 45에, F-RT(420)는 도 46에, FU-CSCIT(430)는 도 47에, DVT(470)는 도 48 내지 도 53에 각각 예시되어 있다.Details of each table configured by the above-described instructions (that is, each table for syntax processing for MPEG-2 MP Intra coding) are illustrated in FIGS. 29 to 53. Specifically, SET 450 is shown in FIGS. 29 to 35, S-RT 460 is shown in FIGS. 36 to 40, CSCIT 440 is shown in FIGS. 41 to 44, FL 410 is shown in FIG. 45, The F-RT 420 is illustrated in FIG. 46, the FU-CSCIT 430 is illustrated in FIG. 47, and the DVT 470 is illustrated in FIGS. 48 through 53, respectively.

앞서 각 테이블들간의 연동 관계에 대해 상세히 설명하였으므로, 여기서는 이를 일반화하여 간단히 설명하기로 한다.Since the interworking relationship between the tables has been described in detail above, the description will be briefly described in general here.

신택스 파싱을 위한 테이블들간의 연동은 먼저 F-RT(420)(도 46 참조)의 인덱스 순으로 진행된다. 즉, F-RT(420)의 인덱스 R0로부터 개시된다.Interworking between tables for syntax parsing first proceeds in index order of the F-RT 420 (see FIG. 46). In other words, it starts from the index R0 of the F-RT 420.

F-RT(420)에서 현재 처리될 인덱스 번호(R#)에 상응하는 FU의 인덱스 번호(F#)을 인식한다. 예를 들어, 현재 처리될 인덱스 번호가 R0라면 F0(즉, FL(410)의 Syntax Parser)가 인식될 것이고, 현재 처리될 인덱스 번호가 R9라면 F1(즉, FL(410)의 DCR)이 인식될 것이다.The F-RT 420 recognizes the index number F # of the FU corresponding to the index number R # to be currently processed. For example, if the index number to be processed is R0, F0 (i.e., Syntax Parser of FL 410) will be recognized, and if the index number to be processed is R9, F1 (i.e. DCR of FL 410) will be recognized. Will be.

먼저, 인식된 인덱스 번호에 의해 해당 FU가 Syntax Parser(즉, FL(410)의 인덱스 번호 F0)인 경우를 설명한다.First, the case where the corresponding FU is a Syntax Parser (that is, index number F0 of FL 410) by the recognized index number will be described.

F-RT(420)의 "FU" 필드에 기록된 "F#(R#)" 정보를 이용하여 R#을 인식하고, S-RT(460)에서 인덱스 번호 R#에 상응하는 인덱스 S#을 인식한다. 예를 들어, F-RT(420)의 인덱스 R0의 "FU" 필드에는 "F0(R0)"가 기록되어 있고, R0는 S-RT(460)의 Syntax 필드의 S0에 대응된다. Recognize R # using "F # (R #)" information recorded in the "FU" field of the F-RT 420, and recognize the index S # corresponding to the index number R # in the S-RT 460. do. For example, "F0 (R0)" is recorded in the "FU" field of the index R0 of the F-RT 420, and R0 corresponds to S0 of the Syntax field of the S-RT 460.

이어서, 인식된 S#에 상응하는 "Process by SET-PROC"를 SET(450)에서 인식한다. 예를 들어, S-RT(460)의 Syntax 필드의 S0에 대응되는 SET의 "Process by SET-PROC"는 "READ 32 B; IF (IBS== HEX:000001B3) C72=1; IF (IBS== HEX:000001B8) C72=2; IF (IBS== HEX:00000100) C72=3; IF (IBS== HEX:000001B7) C72=4;"이다. Subsequently, the SET 450 recognizes "Process by SET-PROC" corresponding to the recognized S #. For example, "Process by SET-PROC" of the SET corresponding to S0 in the Syntax field of the S-RT 460 is "READ 32 B; IF (IBS == HEX: 000001B3) C72 = 1; IF (IBS = = HEX: 000001B8) C72 = 2; IF (IBS == HEX: 00000100) C72 = 3; IF (IBS == HEX: 000001B7) C72 = 4;

SET(450)의 "Process by SET-PROC"의 연산 결과는 해당 인덱스(S#)의 "Output" 필드의 C#에 상응하도록 저장된다. 예를 들어, S-RT(460)의 Syntax 필드의 S0에 대응되는 SET의 "Process by SET-PROC"는 C72로서 저장된다.The operation result of "Process by SET-PROC" of SET 450 is stored to correspond to the C # of the "Output" field of the corresponding index (S #). For example, "Process by SET-PROC" of the SET corresponding to S0 of the Syntax field of the S-RT 460 is stored as C72.

연산 결과의 저장이 완료되면, 다시 S-RT(460)를 참조하여 저장된 CSCI 정보가 어떤 분기 조건을 만족하는지 판단된다. 만일, S-RT(460)의 인덱스 R0인 경우, CSCI 정보 C72가 분기조건 "1: (C72==1) GO R1; 2: (C72==2) GO R39; 3: (C72==3) GO R47; 4: (C72==4) GO RT;" 중 어느 것을 만족하는지 판단된다. 상술한 4가지 조건 중 1 내지 3중 어느 하나를 만족하는 경우 S-RT(460) 내에서 상응하는 인덱스 R#로 진행하여 상술한 과정을 반복하지만, 4번째 조건(즉, (C72==4) GO RT)을 만족하는 경우에는 F-RT(420)로 복귀(return)한다.When the storage of the calculation result is completed, the S-RT 460 determines whether the stored CSCI information satisfies the branching condition. If the index R0 of the S-RT 460, the CSCI information C72 is the branching condition "1: (C72 == 1) GO R1; 2: (C72 == 2) GO R39; 3: (C72 == 3 ) GO R47; 4: (C72 == 4) GO RT; " It is determined which one is satisfied. If any one of 1 to 3 of the above 4 conditions is satisfied, the above process is repeated by going to the corresponding index R # in the S-RT 460, but the 4th condition (that is, (C72 == 4). GO RT) is returned to the F-RT 420.

다음으로, 인식된 인덱스 번호에 의해 해당 FU가 Syntax Parser(즉, FL(410) 의 인덱스 번호 F0)가 아닌 경우를 설명한다.Next, the case where the corresponding FU is not Syntax Parser (i.e., index number F0 of FL 410) by the recognized index number will be described.

F-RT(420)의 "FU" 필드에 기록된 "F#" 정보 및 FL(410)을 이용하여 해당 F#에 상응하는 입력 CSCI(Input CSCI)의 수를 인식한다. 예를 들어, F-RT(420)의 인덱스 R9의 "FU" 필드에는 "F1"이 기록되어 있고, FL(410)에는 F1이 DCR이고 4개의 입력 CSCI를 요구함이 기록되어 있다.By using the " F # " information recorded in the " FU " field of the F-RT 420 and the FL 410, the number of input CSCIs corresponding to the corresponding F # is recognized. For example, "F1" is recorded in the "FU" field of the index R9 of the F-RT 420, and it is recorded in the FL 410 that F1 is a DCR and requires four input CSCIs.

FL(410)을 참조하여 요구되는 입력 CSCI의 수가 0이 아니라면, FU-CSCIT(440)를 참조하여 "F#(C#)" 필드들에 상응하는 CSCI 값(C#)을 인식하고 CSCI 저장부(520)에서 상응하는 값을 독출한다. If the number of input CSCIs required by referring to the FL 410 is not zero, the CSCI storage unit 520 recognizes a CSCI value (C #) corresponding to the "F # (C #)" fields by referring to the FU-CSCIT 440. ) Reads the corresponding value.

이어서, 해당 FU는 입력된 데이터(예를 들어, MB 데이터) 및 입력 CSCI값들을 이용하여 출력 데이터를 생성한 후, F-RT(420)로 복귀한다.Subsequently, the FU generates output data using the input data (eg, MB data) and input CSCI values, and then returns to the F-RT 420.

앞서 설명한 바와 같이, 해당 FU가 Syntax Parser(즉, FL(410)의 인덱스 번호 F0)인 경우에는 "GO RT"를 만족하는 경우에, 해당 FU가 Syntax Parser가 아닌 경우에는 미리 지정된 동작을 완료한 후 F-RT(420)로 복귀한다.As described above, when the corresponding FU satisfies "GO RT" when it is a Syntax Parser (that is, index number F0 of the FL 410), when the corresponding FU is not Syntax Parser, a predetermined operation is completed. After that, the process returns to the F-RT 420.

F-RT(420)는 현재 단계의 C# 값에 따라 분기 조건을 판단하여 상응하는 단계로 진행한다. 만일 만족되는 조건이 END인 경우(예를 들어, (C72==4) GO END;)에는 Syntax 파싱을 종료하고, 만족되는 조건이 R#을 지시하는 경우(예를 들어, GO R1)에는 해당 인덱스로 진행한다.The F-RT 420 determines the branch condition according to the C # value of the current step and proceeds to the corresponding step. If the satisfied condition is END (e.g. (C72 == 4) GO END;), then Syntax parsing ends, and if the satisfied condition indicates R # (e.g. GO R1) Proceed to index.

도 8은 본 발명의 제1 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이고, 도 9는 본 발명의 제2 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이며, 도 10은 본 발명의 제3 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이고, 도 11은 본 발명의 제4 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이다.8 is a diagram illustrating a configuration of an extended bitstream according to the first embodiment of the present invention, FIG. 9 is a diagram illustrating a configuration of an extended bitstream according to the second embodiment of the present invention, and FIG. FIG. 11 is a diagram illustrating a configuration of an extended bitstream according to a third embodiment, and FIG. 11 is a diagram illustrating a configuration of an extended bitstream according to a fourth embodiment of the present invention.

도 8 내지 도 10에 예시된 바와 같이, 본 발명에 따른 확장 비트스트림(305)에 포함되는 디코딩 디스크립션은 테이블 정보를 포함하지 않고 적용된 표준 정보만을 포함하도록 구성되거나(No table), 테이블 정보를 모두 포함하도록 구성되거나(Full tables), 일부의 테이블 정보만이 포함되도록 구성될 수 있다(Partial tables). 이들 각각을 구분하기 위하여, 디코딩 디스크립션 정보는 SI(Stream Identifier) 정보를 포함할 수 있고, SI 정보는 아래의 표 2와 같이 구분될 수 있다.As illustrated in FIGS. 8 to 10, the decoding description included in the extended bitstream 305 according to the present invention is configured not to include table information but to include only applied standard information (No table), or to include all table information. It may be configured to include (Full tables) or may be configured to include only some table information (Partial tables). To distinguish each of them, the decoding description information may include stream identifier information (SI), and the SI information may be divided as shown in Table 2 below.

표 2. Stream IdentifierTable 2. Stream Identifier

SISI Decoding DescriptionDecoding Description 0000 No tableNo table 0101 Full tablesFull tables 1010 Partial tablesPartial tables

도 8에 도시된 바와 같이, 확장 비트스트림(305)은 디코딩 디스크립션으로서, 테이블 정보를 포함하지 않음을 표시하는 SI(910, 즉 00), 코덱 번호(Codec #, 920)과 프로파일 및 레벨 번호(Profile and level #, 930)을 포함할 수 있다. As shown in FIG. 8, the extended bitstream 305 is a decoding description, and includes an SI 910 (that is, 00), a codec number (Codec #, 920) and a profile and level number (indicative of not including table information). Profile and level #, 930).

이는 테이블 정보를 보내지 않고 테이블 저장부(330)에 이미 저장된 테이블 정보들을 사용하는 경우이다. 해당 종래 비트스트림(105)이 어떤 코덱과 프로파일 및 레벨을 사용하는지에 대한 기본 정보만 보낼지라도, 코덱부(340)는 지시된 테이블들을 이용하여 복호화할 수 있다.This is a case of using the table information already stored in the table storage unit 330 without sending the table information. Although only the basic information on which codec, profile and level is used by the conventional bitstream 105, the codec unit 340 can decode using the indicated tables.

이를 위해, SET(450), CSCIT(440), FL(410), FU-CSCIT(430), DVT(470) 등이 적용 표준(즉, 코덱)별로 기술되고, F-RT(420), S-RT(460) 등은 각 적용 표준의 프로파일(profile) 별로 기술 될 수 있다(표 3 및 4 참조). For this purpose, SET 450, CSCIT 440, FL 410, FU-CSCIT 430, DVT 470, and the like are described for each application standard (i.e., codec), F-RT 420, S The RT 460 may be described for each profile of the applicable standard (see Tables 3 and 4).

표 3. 코덱별 테이블 구분Table 3. Table Breakdown by Codec

표준Standard 테이블 구분Table separator MPEG-1MPEG-1 SET #1SET # 1 FL #1FL # 1 FU-CSCIT #1FU-CSCIT # 1 CSCIT #1CSCIT # 1 DVT #1DVT # 1 MPEG-2MPEG-2 SET #2SET # 2 FL #2FL # 2 FU-CSCIT #2FU-CSCIT # 2 CSCIT #2CSCIT # 2 DVT #2DVT # 2 MPEG-4MPEG-4 SET #3SET # 3 FL #3FL # 3 FU-CSCIT #3FU-CSCIT # 3 CSCIT #3CSCIT # 3 DVT #3DVT # 3 AVCAVC SET #4SET # 4 FL #4FL # 4 FU-CSCIT #4FU-CSCIT # 4 CSCIT #4CSCIT # 4 DVT #4DVT # 4

표 4. Profile and level별 테이블 구분Table 4. Table Classification by Profile and Level

SISI 테이블 구분Table separator MPEG-1MPEG-1 F-RT #1-1F-RT # 1-1 S-RT #1-1S-RT # 1-1 MPEG-2 MPMPEG-2 MP F-RT #2-1F-RT # 2-1 S-RT #2-1S-RT # 2-1 MPEG-4 SPMPEG-4 SP F-RT #3-1F-RT # 3-1 S-RT #3-1S-RT # 3-1 MPEG-4 ASPMPEG-4 ASP F-RT #3-2F-RT # 3-2 S-RT #3-2S-RT # 3-2 AVC BPAVC BP F-RT #4-1F-RT # 4-1 S-RT #4-1S-RT # 4-1

MPEG-4 SP의 경우 SET#3, FL#3, CSCIT#3, FU-CSCIT#3, DVT#3, F-RT#3-1, S-RT#3-1을 사용하여 복호화 방법을 설명 할 수 있으며, 코덱 번호를 3으로 프로파일 및 레벨 번호를 2로 지정하여 전송하면 코덱부(340)는 이에 해당하는 테이블들을 참조하여 복호화 작업을 수행할 수 있다.For MPEG-4 SP, the decoding method is explained using SET # 3, FL # 3, CSCIT # 3, FU-CSCIT # 3, DVT # 3, F-RT # 3-1, and S-RT # 3-1. If the codec number is 3 and the profile and level number are 2 and transmitted, the codec unit 340 may perform a decoding operation with reference to the tables.

또한, 도 9에 도시된 바와 같이, 확장 비트스트림(305)은 디코딩 디스크립션으로서, 앞서 설명한 모든 테이블 정보들을 포함할 수 있다. 이 경우, SI(910)는 표 2를 참조할 때 01로 설정될 것이다. 각 테이블들은 테이블 식별자(TI, Table Identifier)(1010), 테이블 시작 코드(TS Code, Table Start Code)(1020), 테이블 디스크립션(TD, Table Description)(1030), 테이블 종료 코드(TE Code, Table End Code)(1040)를 포함할 수 있다. 테이블 식별자(1010)와 테이블 시작 코드(1020)의 순서는 변경될 수 있으며, 테이블 디스크립션(1030)은 바이너리 디스크립션 형태로 기술될 수 있다. 물론, 각 테이블들의 순서는 변경될 수 있다. In addition, as illustrated in FIG. 9, the extended bitstream 305 may include all table information described above as a decoding description. In this case, the SI 910 will be set to 01 when referring to Table 2. Each table includes a table identifier (TI) 1010, a table start code (TS Code) 1020, a table description (TD) 1030, and a table end code (TE Code, Table). End Code) 1040 may be included. The order of the table identifier 1010 and the table start code 1020 may be changed, and the table description 1030 may be described in the form of a binary description. Of course, the order of each table can be changed.

또한, 도 10에 도시된 바와 같이, 확장 비트스트림(305)은 디코딩 디스크립션으로서, 앞서 설명한 일부의 테이블 정보들과 일부의 테이블 정보에 상응하는 코덱 번호 등을 포함할 수 있다. 이 경우, SI(910)는 표 2를 참조할 때 10으로 설정될 것이다. 다만, 이 경우는 테이블 정보들의 형식이 통일되지 않았으므로, 해당 테이블 정보가 어떤 형식으로 구성된 것인지를 판단할 수 있도록 구성 식별자(1110)을 테이블 식별자(1010) 후단에 더 구비함이 바람직할 것이다. In addition, as shown in FIG. 10, the extended bitstream 305 may include a decoding description and may include some table information and a codec number corresponding to some table information. In this case, the SI 910 will be set to 10 when referring to Table 2. However, in this case, since the format of the table information is not uniform, it may be preferable to further include a configuration identifier 1110 at the rear of the table identifier 1010 so as to determine what format the table information is configured.

또한, 도 11에 도시된 바와 같이, 확장 비트스트림은 테이블 정보에 대한 디코딩 디스크립션(T-DD, 1210)과 갱신 정보를 더 포함할 수 있다. 테이블 정보에 대한 디코딩 디스크립션(1210)은 앞서 도 8 내지 도 10을 참조하여 설명한 디코딩 디스크립션들 중 어느 하나일 수 있으며, SI(910)는 상응하는 값으로 설정될 것이다. 갱신 정보는 갱신 시작 코드(RS code, Revision Start code)(1220)과 갱신 내용(Revision, 1230)을 포함할 수 있다.In addition, as illustrated in FIG. 11, the extended bitstream may further include decoding description (T-DD) 1210 and update information about table information. The decoding description 1210 for the table information may be any one of the decoding descriptions described above with reference to FIGS. 8 to 10, and the SI 910 may be set to a corresponding value. The update information may include an update start code (RS code, Revision Start code) 1220 and an update content (Revision 1230).

갱신 내용(1230)은 임의의 테이블의 규칙 정보(Rule)을 추가하거나 삭제하거나 갱신하는 등의 내용일 수 있다. 그 형태는 'insert index into table-name (…);', 'delete index from table-name;', 'update index in table-name(…);' 등일 수 있다. The update content 1230 may be content such as adding, deleting, or updating rule information of an arbitrary table. Its form is 'insert index into table-name (…);', 'delete index from table-name;', 'update index in table-name (…);' And the like.

예를 들어, SET#4에 S100을 추가하고자 하는 경우, 갱신 내용(1230)은 'insert S100 into SET#4 ("READ 1;IF(IBS==1){SET C31;}");'과 같이 구성될 수 있다. 또한, S-RT#3-1에서 R31을 지우고자 하는 경우, 갱신 내용(1230)은 'delete R31 from S-RT#3-1;'과 같이 구성될 수 있다. 또한, F-RT#2-1에서 R7을 수정하고자 하는 경우, 갱신 내용(1230)은 'update R7 in F-RT#2-1 (F6, 1: (C66<=6) GO R5;2: (C65<=C67) GO R4; 3: GO R12;);'과 같이 구성될 수 있다. For example, if you want to add S100 to SET # 4, the update content 1230 is 'insert S100 into SET # 4 ("READ 1; IF (IBS == 1) {SET C31;}");' It can be configured together. In addition, in the case of deleting R31 in S-RT # 3-1, the update contents 1230 may be configured as 'delete R31 from S-RT # 3-1;'. In addition, in the case where it is desired to modify R7 in F-RT # 2-1, the update contents 1230 are 'update R7 in F-RT # 2-1 (F6, 1: (C66 <= 6) GO R5; 2: (C65 <= C67) GO R4; 3: GO R12;); '.

위와 같은 갱신 내용(1230)을 디스크립션 디코더(320)가 읽어 들여 해당 확장 비트스트림(305)에 대한 디코딩이 수행되는 동안은 테이블 저장부(330)에 변경된 내용의 테이블들이 저장되도록 한다. 그러나, 복호화가 완료되면 테이블 저장부(330)에 저장된 해당 테이블들을 원상태대로 복원하여야 할 것이다. 복호화의 완료 여부는 코덱부(340) 또는 트리거가 완료 통지를 디스크립션 디코더(320)로 제공하거나, 디스크립션 디코더(320)가 코덱부(340)의 완료 여부를 감시함으로써 인식할 수 있을 것이다.The description decoder 320 reads the update contents 1230 as described above, so that the table of the changed contents is stored in the table storage unit 330 while the decoding of the corresponding extended bitstream 305 is performed. However, when decryption is completed, the tables stored in the table storage unit 330 will be restored to their original state. Whether the decoding is completed may be recognized by the codec unit 340 or the trigger by providing the completion notification to the description decoder 320 or by the description decoder 320 monitoring whether the codec unit 340 is completed.

상술한 바와 같이, 본 발명에 따르면 종래의 표준(즉, 코덱)에서 제공하는 기능부들을 사용하여 기존의 프로파일(profile)을 사용할 수도 있고, 기존의 기능부들을 이용하여 새로운 복호화기를 구성할 수도 있으며, 새로운 기능부를 이용하여 새로운 복호화기를 구현 할 수 도 있다. 즉, 다양한 또한 제한없는 복호화기 구현이 가능하다.As described above, according to the present invention, an existing profile may be used by using functional units provided by a conventional standard (ie, a codec), or a new decoder may be configured by using existing functional units. In addition, new decoders can be used to implement new decoders. That is, various and unlimited decoder implementations are possible.

다만, 새로운 기능부(Functional Unit)를 툴 박스(510)에 추가하는 경우, 해당 기능부에 대한 알고리즘(즉, 기능부에 대한 디스크립션)을 추가하고 해당 정보를 FL(410)에 추가하여야 할 것이다. 이 경우 상기 알고리즘에 대한 컴파 일(compile) 과정이 추가적으로 필요할 수도 있다.However, when adding a new functional unit (Functional Unit) to the tool box 510, it is necessary to add the algorithm for the functional unit (that is, description of the functional unit) and add the corresponding information to the FL 410. . In this case, a compile process for the algorithm may be additionally required.

통합 코덱을 구현하기 위해서는 다양한 부호화 방식에 의해 압축된 비트스트림을 파싱하여 해당 부호화 방식에 대응되는 복호화 방식으로 비트스트림을 디코딩하도록 각 구성 요소를 유기적으로 제어 할 수 있어야 한다. In order to implement the integrated codec, each component must be organically controlled to parse a bitstream compressed by various coding methods and decode the bitstream by a decoding method corresponding to the corresponding coding method.

이 경우, 해당 비트스트림은 여러 가지 표준(코덱)을 혼합한 다양한 모양으로 구성된 비트스트림이거나 하나의 표준 내에서 다양한 부호화 방식에 의해 생성된 다양한 형태의 비트스트림일 수 있다. 또한 다양한 부호화/복호화 방법을 지원하기 위해서는 여러 가지 표준에서 사용되는 다양한 기능들을 별개의 유닛(Unit)으로 구분하고, 사용자가 원하고 필요로 하는 기능만을 선별하여 한 가지의 코덱(encoder and decoder)을 만들 수 있어야 한다.In this case, the corresponding bitstream may be a bitstream composed of various shapes in which various standards (codecs) are mixed or various types of bitstreams generated by various coding schemes within one standard. In addition, in order to support various encoding / decoding methods, various functions used in various standards are divided into separate units, and only one function and a function required by the user are selected to select one codec (encoder and decoder). You should be able to make it.

상술한 바와 같이, 본 발명은 디코딩 디스크립션이 함께 제공되도록 함으로써 비트스트림이 부호화된 부호화 방식에 관계없이 동일한 정보 해석 방법으로 각 기능부들을 유기적으로 연결하고 제어할 수 있는 장점을 가진다.As described above, the present invention has an advantage that the functional description can be organically connected and controlled by the same information interpretation method regardless of the encoding scheme in which the bitstream is encoded by providing the decoding description together.

또한, 본 발명의 다른 장점으로는 비트스트림의 신택스(syntax)가 변경되거나 새롭게 추가 될지라도, S-RT(460)에 해당 정보만의 수정 또는 추가 정보의 삽입 만으로도 능동적 대응이 가능하도록 할 수 있다. 또한 비트스트림 레벨(bit stream-level), 프레임 레벨(frame-level), 매크로블록 레벨(MB-level) 등의 처리 단위로 사용자가 원하는 기능을 선별하여 F-RT(420)를 구성함으로써 해당 복호화기의 MB 처리부(550) 기능부들의 연결 관계를 설정할 수 있는 장점도 있다.In addition, another advantage of the present invention is that even if the syntax of the bitstream is changed or newly added, the S-RT 460 may enable active response by only modifying the corresponding information or inserting additional information. . In addition, the F-RT 420 is configured by selecting a function desired by the user in units of processing such as a bit stream level, a frame level, a macro block level, and an MB-level to decode the corresponding decoding. There is also an advantage that can establish the connection relationship between the MB processing unit 550 functional units.

도 12a는 본 발명의 제5 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이고, 도 12b는 본 발명의 제6 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이며, 도 12c는 본 발명의 제7 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이고, 도 12d는 본 발명의 제8 실시예에 따른 확장 비트스트림의 구성을 나타낸 도면이다.12A is a diagram showing the configuration of an extended bitstream according to the fifth embodiment of the present invention, FIG. 12B is a diagram showing the configuration of an extended bitstream according to the sixth embodiment of the present invention, and FIG. 12 is a diagram illustrating a configuration of an extended bitstream according to a seventh embodiment, and FIG. 12D is a diagram illustrating a configuration of an extended bitstream according to an eighth embodiment of the present invention.

본 발명에 따른 확장 비트스트림(305)은 디코딩 디스크립션(DD, Decoding Description) 영역과 종래 비트스트림(105)으로 구성된다. 종래 비트스트림(105)이 코딩된 비디오 데이터(또는/및 코딩된 오디오 데이터)로 구성됨은 당업자에게 자명하다.The extended bitstream 305 according to the present invention is composed of a decoding description region (DD) and a conventional bitstream 105. It will be apparent to those skilled in the art that the conventional bitstream 105 consists of coded video data (or / and coded audio data).

여기서, 디코딩 디스크립션 영역은 종래 비트스트림(105)을 디코딩하기 위해 적용될 코덱 특성에 따라 상이한 구조로 형성할 수 있다. 즉, 첫번째, 종래에 표준화된 하나의 코덱을 사용하는 경우 제1 디코딩 디스크립션 구조가 적용될 수 있다.Here, the decoding description region may be formed in a different structure according to the codec characteristic to be applied to decode the conventional bitstream 105. That is, first, when using one codec standardized in the prior art, the first decoding description structure may be applied.

두번째, 종래에 표준화된 하나의 코덱 중 일부 내용을 수정하여 사용(즉, 상술한 7개의 테이블들 중 일부 테이블은 해당 코덱에 상응하는 테이블 내용을 그대로 사용하고 다른 일부 테이블들을 수정하여 사용)하는 경우 제2 디코딩 디스크립션 구조가 적용될 수 있다.Second, when modifying and using some of the contents of one standardized codec (that is, some of the above seven tables use the table contents corresponding to the corresponding codec and modify some other tables). The second decoding description structure can be applied.

세번째, 종래에 표준화된 복수의 코덱의 테이블 정보를 가공하여 사용(즉, 상술한 7개의 테이블들 중 일부 테이블들은 종래의 복수 코덱의 테이블 내용을 선택적으로 사용하고 다른 일부 테이블들은 수정하여 사용)하는 경우 제3 디코딩 디스크립션 구조가 적용될 수 있다.Third, processing and using table information of a plurality of standardized codecs (that is, some of the seven tables described above selectively use the contents of a table of the conventional plurality of codecs and modify some other tables). In this case, a third decoding description structure may be applied.

네번째, 종래에 표준화되지 않은 새로운 코덱을 사용(즉, 새로운 내용으로 구성된 상술한 7개의 테이블들을 모두 포함하여 전송)하는 경우 제4 디코딩 디스크립션 구조가 적용될 수 있다.Fourth, the fourth decoding description structure may be applied when using a new codec that is not conventionally standardized (i.e., including all seven tables described above with new contents).

상술한 네가지 디코딩 디스크립션 구조는 각각 상이한 코덱 타입(codec_type) 정보로서 구분될 수 있다. 예를 들어, 제1 디코딩 디스크립션 구조인 경우 "codec_type = 0"으로 설정되고, 제2 디코딩 디스크립션 구조인 경우 "codec_type = 1"으로 설정되며, 제3 디코딩 디스크립션 구조인 경우 "codec_type = 2"로 설정되고, 제4 디코딩 디스크립션 구조인 경우 "codec_type = 3"으로 설정될 수 있다. The four decoding description structures described above may be divided as different codec type information. For example, "codec_type = 0" for the first decoding description structure, "codec_type = 1" for the second decoding description structure, and "codec_type = 2" for the third decoding description structure. In case of the fourth decoding description structure, it may be set to "codec_type = 3".

도 12a에 제1 디코딩 디스크립션 구조가 예시되어 있다. A first decoding description structure is illustrated in FIG. 12A.

도 12a에 예시된 제1 디코딩 디스크립션 구조에 따를 때, 디코딩 디스크립션 영역은 코덱 타입(codec_type)(1250), 코덱 번호(codec_num)(1252) 및 프로파일 및 레벨 번호(profile_level_num)(1254)로 구성될 수 있다. 즉, 제1 디코딩 디스크립션 구조에 따르면 디코딩 디스크립션 영역에는 적용될 코덱에 관한 정보만을 중심으로 기술된다. 도면에는 각 필드가 8비트인 것으로 예시되어 있으나, 각 필드의 크기는 표현될 정보의 크기에 따라 가감될 수 있음은 자명하다.According to the first decoding description structure illustrated in FIG. 12A, the decoding description area may include a codec type (codec_type) 1250, a codec number (codec_num) 1252, and a profile and level number (profile_level_num) 1254. have. That is, according to the first decoding description structure, only the information about the codec to be applied is described in the decoding description area. Although each field is illustrated as 8 bits in the figure, it is obvious that the size of each field may be added or subtracted according to the size of information to be represented.

코덱 타입(1250)은 0(zero)으로 설정(즉, codec_type=0)될 것이며, 이는 종래 표준화된 다양한 코덱들 중 하나의 코덱을 그대로 이용하는 경우를 의미한다.The codec type 1250 will be set to zero (ie, codec_type = 0), which means that the codec type 1250 uses one of various codecs standardized in the prior art.

도 12b에 제2 디코딩 디스크립션 구조가 예시되어 있다.A second decoding description structure is illustrated in FIG. 12B.

도 12b에 예시된 제2 디코딩 디스크립션 구조에 따를 때, 디코딩 디스크립션 영역은 코덱 타입(codec_type)(1250), 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254) 및 테이블 디스크립션(1256)으로 구성될 수 있다. 즉, 제2 디코딩 디스크립션 구조에 따르면 디코딩 디스크립션 영역에는 적용될 코덱에 관한 정보와 7개의 테이블들 중 수정되는 내용을 중심으로 기술된다. 여기서, 테이블 디스크립션은 7개의 테이블 각각에 대해 개별적으로 구비된다. 즉, 디코딩 디스크립션 영역에 7개의 테이블 디스크립션이 존재할 수 있다.According to the second decoding description structure illustrated in FIG. 12B, the decoding description area includes a codec type (codec_type) 1250, a codec number (codec_num) 1252, a profile and level number (profile_level_num) 1254, and a table description ( 1256). That is, according to the second decoding description structure, the decoding description area is described based on information about a codec to be applied and contents to be modified among seven tables. Here, the table description is provided separately for each of the seven tables. That is, there may be seven table descriptions in the decoding description area.

각 테이블 디스크립션(1256)은 예시된 바와 같이, 테이블 시작 코드(Table_start_code)(1258), 테이블 식별자(Table_identifier)(1260), 테이블 타입(Table_type)(1262), 내용(1263) 및 테이블 종료 코드(Table_end_code)(1264)를 포함할 수 있다. 물론 각 필드의 사이즈는 필요에 따라 증감될 수 있다. 또한 이하에서 설명되는 바와 같이, 내용(1263)은 테이블 타입(1262)의 정보에 따라 생략되거나 포함될 수 있다.Each table description 1256 has a table start code (Table_start_code) 1258, a table identifier (Table_identifier) 1260, a table type (Table_type) 1262, a content 1263, and a table end code (Table_end_code) as illustrated. 1264 may be included. Of course, the size of each field can be increased or decreased as needed. In addition, as described below, the content 1263 may be omitted or included according to the information of the table type 1262.

예를 들어, 테이블 타입(1262)의 값이 0이면 기존 테이블(즉, 코덱 타입(codec_type)(1250), 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)과 테이블 식별자(1260)에 의해 인식된 테이블)의 수정없이 적용되도록 인식될 수 있다. 이 경우, 내용(1263)은 생략될 수 있다.For example, if the value of the table type 1262 is 0, an existing table (that is, a codec type (codec_type) 1250, a codec number (codec_num) 1252), a profile and level number (profile_level_num) 1254, and a table identifier (Recognized by 1260) can be recognized to be applied without modification. In this case, the content 1263 can be omitted.

그러나, 테이블 타입(1262)의 값이 1이면 기존 테이블(즉, 코덱 타입(codec_type)(1250), 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)과 테이블 식별자(1260)에 의해 인식된 테이블)을 일부 수정(즉, 내용(1263)에 정의된 내용으로 수정)하여 사용하도록 인식될 수 있다. 이 경우, 내용(1263)에는 수정된 내용(예를 들어, update command 등)이 기술될 수 있다. 예를 들어, 수정된 내용(예를 들어, update command 등)은 업데이트(update), 삽입(insert) 또는/및 삭제(delete) 등과 같은 명령어들이 포함되어 해당 테이블의 상응하는 인덱스의 테이블 내용을 수정하도록 하는 정보일 수 있다.However, if the value of the table type 1262 is 1, an existing table (ie, codec type (codec_type) 1250, codec number (codec_num) 1252), profile and level number (profile_level_num) 1254, and table identifier 1260 Table), which is recognized by), may be recognized for use with some modification (i.e., with content defined in content 1263). In this case, the modified content (for example, an update command, etc.) may be described in the content 1263. For example, modifications (such as update commands) may include commands such as update, insert, and / or delete to modify the table contents of the corresponding index of that table. It may be information to be made.

그러나, 테이블 타입(1262)의 값이 2이면 기존 테이블(즉, 코덱 타입(codec_type)(1250), 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)과 테이블 식별자(1260)에 의해 인식된 테이블)을 완전히 변경(즉, 내용(1263)에 정의된 내용으로 변경)하여 사용하도록 인식될 수 있다. 이 경우, 내용(1263)에는 변경된 내용(예를 들어, new command 등과 같이 해당 테이블을 새로 정의하기 위한 내용)이 기술될 수 있다. However, if the value of the table type 1262 is 2, an existing table (ie, codec type (codec_type) 1250, codec number (codec_num) 1252), profile and level number (profile_level_num) 1254, and table identifier 1260 Table) is recognized to be used in its entirety (i.e., with the content defined in content 1263). In this case, the changed contents 1263 may describe the changed contents (for example, contents for newly defining a corresponding table such as a new command).

도 12c에 제3 디코딩 디스크립션 구조가 예시되어 있다.A third decoding description structure is illustrated in FIG. 12C.

도 12c에 예시된 제3 디코딩 디스크립션 구조에 따를 때, 디코딩 디스크립션 영역은 코덱 타입(codec_type)(1250) 및 테이블 디스크립션(1256)으로 구성될 수 있다. 즉, 제3 디코딩 디스크립션 구조에 따르면 디코딩 디스크립션 영역에는 적용될 코덱에 관한 정보와 7개의 테이블들 중 수정되는 내용을 중심으로 기술된다. 여기서, 테이블 디스크립션은 7개의 테이블 각각에 대해 개별적으로 구비된다. 즉, 디코딩 디스크립션 영역에 7개의 테이블 디스크립션이 존재할 수 있다.According to the third decoding description structure illustrated in FIG. 12C, the decoding description area may be composed of a codec type 1250 and a table description 1256. That is, according to the third decoding description structure, the decoding description area is described based on information about a codec to be applied and contents to be modified among seven tables. Here, the table description is provided separately for each of the seven tables. That is, there may be seven table descriptions in the decoding description area.

각 테이블 디스크립션(1256)은 예시된 바와 같이, 테이블 시작 코드(Table_start_code)(1258), 테이블 식별자(Table_identifier)(1260), 테이블 타입(Table_type)(1262), 내용(1263) 및 테이블 종료 코드(Table_end_code)(1264)를 포함할 수 있다. 물론 각 필드의 사이즈는 필요에 따라 증감될 수 있다. Each table description 1256 has a table start code (Table_start_code) 1258, a table identifier (Table_identifier) 1260, a table type (Table_type) 1262, a content 1263, and a table end code (Table_end_code) as illustrated. 1264 may be included. Of course, the size of each field can be increased or decreased as needed.

예를 들어, 테이블 타입(1262)의 값이 0이면 기존 테이블(즉, 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)와 테이블 식별자(1260)에 의해 인식된 테이블)의 수정없이 적용되도록 인식될 수 있다. 즉, 내용(1263) 필드 내에 적용될 테이블에 상응하는 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)가 기술된다.For example, if the value of the table type 1262 is 0, an existing table (that is, a table recognized by the codec number (codec_num) 1252, the profile and level number (profile_level_num) 1254 and the table identifier 1260) It can be recognized to apply without modification of. That is, the codec number (codec_num) 1252, profile and level number (profile_level_num) 1254 corresponding to the table to be applied in the content 1262 field are described.

그러나, 테이블 타입(1262)의 값이 1이면 기존 테이블(즉, 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)와 테이블 식별자(1260)에 의해 인식된 테이블)을 일부 수정(즉, 수정 내용(1266)에 정의된 내용으로 수정)하여 사용하도록 인식될 수 있다. 이 경우, 내용(1263) 필드 내에 적용될 테이블에 상응하는 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254)가 기술되고, 수정 내용(1266) 필드에는 수정된 내용(예를 들어, update command 등)이 기술될 수 있다.However, if the value of the table type 1262 is 1, the existing table (that is, the table recognized by the codec number (codec_num) 1252, the profile and level number (profile_level_num) 1254 and the table identifier 1260) is partially selected. It may be recognized for use as a modification (ie, modification as defined in modification 1266). In this case, the codec number (codec_num) 1252, profile and level number (profile_level_num) 1254 corresponding to the table to be applied in the content 1262 field are described, and the modified content 1266 field is a modified content (e.g., For example, an update command) may be described.

그러나, 테이블 타입(1262)의 값이 2이면 기존 테이블(즉, 테이블 식별자(1260)에 의해 인식된 테이블)을 완전히 변경(즉, 내용(1263) 필드에 정의된 내용으로 변경)하여 사용하도록 인식될 수 있다. 이 경우, 내용(1263) 필드에는 변경된 내용(예를 들어, new command 등과 같이 해당 테이블을 새로 정의하기 위한 내용)이 기술될 수 있다. 즉, 상술한 바와 같이 테이블 타입(1262)가 0 또는 1인 경우라면 특정 코덱이 그대로 이용되거나 일부 테이블이 수정되어 이용되므로 코덱에 관한 정보(즉, 코덱 번호(codec_num)(1252), 프로파일 및 레벨 번호(profile_level_num)(1254))가 요구되지만, 테이블 타입(1262)가 2인 경우라면 완전히 새로운 테이블 정보가 정의되므로 별도의 코덱 정보는 불필요하다.However, if the value of the table type 1262 is 2, it is recognized that the existing table (that is, the table recognized by the table identifier 1260) is completely changed (that is, changed to the content defined in the Content 1262 field) to be used. Can be. In this case, the changed contents (1263) field may describe the changed contents (for example, contents for newly defining the table such as a new command). That is, when the table type 1262 is 0 or 1 as described above, since a specific codec is used as it is or some tables are modified and used, information about the codec (that is, codec number (codec_num) 1252, profile, and level) is used. Number (profile_level_num) 1254) is required, but if the table type 1262 is 2, completely new table information is defined, so no separate codec information is needed.

도 12d에 제4 디코딩 디스크립션 구조가 예시되어 있다.A fourth decoding description structure is illustrated in FIG. 12D.

도 12d에 예시된 제4 디코딩 디스크립션 구조에 따를 때, 디코딩 디스크립션 영역은 코덱 타입(codec_type)(1250) 및 테이블 디스크립션(1256)으로 구성될 수 있다. 즉, 제4 디코딩 디스크립션 구조에 따르면 디코딩 디스크립션 영역에는 7개의 테이블들을 중심으로 기술되며, 테이블 디스크립션은 7개의 테이블 각각에 대해 개별적으로 구비된다. According to the fourth decoding description structure illustrated in FIG. 12D, the decoding description area may be composed of a codec type (codec_type) 1250 and a table description 1256. That is, according to the fourth decoding description structure, the decoding description area is described with respect to seven tables, and the table description is provided for each of the seven tables separately.

각 테이블 디스크립션(1256)은 예시된 바와 같이, 테이블 시작 코드(Table_start_code)(1258), 테이블 식별자(Table_identifier)(1260), 테이블 타입(Table_type)(1262), 내용(1263) 및 테이블 종료 코드(Table_end_code)(1264)를 포함할 수 있다. 물론 각 필드의 사이즈는 필요에 따라 증감될 수 있다. Each table description 1256 has a table start code (Table_start_code) 1258, a table identifier (Table_identifier) 1260, a table type (Table_type) 1262, a content 1263, and a table end code (Table_end_code) as illustrated. 1264 may be included. Of course, the size of each field can be increased or decreased as needed.

예를 들어, 테이블 타입(1262)의 값이 미리 지정된 값(예를 들어, 2) 이면 내용(1263) 필드에는 테이블 식별자(1260)에 상응하는 새로운 테이블을 기술하기 위한 정보(예를 들어, new command 등과 같이 해당 테이블을 새로 정의하기 위한 내용)가 표시된다. 상술한 바와 같이, 코덱 타입(1250)이 3인 경우에는 새로운 테이블들을 이용하여 디코딩을 수행하는 것으로 인식되므로, 테이블 타입(1262)은 하나만으로 지정되거나, 테이블 타입(1262)가 생략될 수 있다.For example, if the value of the table type 1262 is a predetermined value (for example, 2), the content 1263 field contains information for describing a new table corresponding to the table identifier 1260 (for example, new). For defining a new table, such as a command). As described above, when the codec type 1250 is 3, it is recognized that decoding is performed by using new tables. Therefore, only one table type 1262 may be designated, or the table type 1262 may be omitted.

이하, 디코딩 디스크립션 영역의 syntax 구조 및 각 필드의 syntax 구조를 각각의 표로서 예시하기로 한다.Hereinafter, the syntax structure of the decoding description area and the syntax structure of each field will be exemplified as respective tables.

표 5. 디코딩 디스크립션Table 5. Decoding Description

Decoder_Description() {Decoder_Description () { No. of bitsNo. of bits codec_type codec_type 88 if ((codec_type==0x00) || (codec_type==0x01)) {if ((codec_type == 0x00) || (codec_type == 0x01)) { Codec_Description()Codec_Description () }} if (codec_type!=0x00) {if (codec_type! = 0x00) { do {do { Table_Description()Table_Description () } while (next_bits()==table_idetifier)} while (next_bits () == table_idetifier) }} }}

표 6. 코덱 디스크립션Table 6. Codec description

Codec_Description() {Codec_Description () { No. of bitsNo. of bits codec_numcodec_num 88 profile_level_numprofile_level_num 88 }}

표 7. 테이블 디스크립션Table 7. Table Description

Table_Description() {Table_Description () { No. of bitsNo. of bits table_start_codetable_start_code 2424 tabletable __ identifieridentifier 44 table_typetable_type 44 if ((table_type =='0000') || (table_type =='0001')) {if ((table_type == '0000') || (table_type == '0001')) { if (codec_type==0x02)if (codec_type == 0x02) Codec_Description()Codec_Description () if (table_type =='0001')if (table_type == '0001') Update_Description()Update_Description () }} if (table_type =='0010') {if (table_type == '0010') { New_Description()New_description () }} table_end_codetable_end_code 2424 }}

표 8. 업데이트(update) 디스크립션Table 8. Update description

Update_Description() {Update_Description () { No. of bitsNo. of bits MnemonicMnemonic Update_Command  Update_Command vlclbfvlclbf }}

표 9. 뉴(new) 디스크립션Table 9. New description

New_Description() {New_Description () { No. of bitsNo. of bits MnemonicMnemonic New_CommandNew_command vlclbfvlclbf }}

이하, 디코더 디스크립션의 semantics를 각각의 표로서 설명한다.The semantics of the decoder description are described below as respective tables.

표 10. 디코딩 디스크립션Table 10. Decoding description

codec_typecodec_type MeaningMeaning 0x000x00 A profile@level of an existing MPEG standardA profile @ level of an existing MPEG standard 0x010x01 Some parts of the existing one profile@level changedSome parts of the existing one profile @ level changed 0x020x02 Some parts of the existing multiple profile@level changedSome parts of the existing multiple profile @ level changed 0x030x03 A new decoding solutionA new decoding solution 0x04-0xFF0x04-0xFF RESERVEDRESERVED

여기서, 코덱 타입은 8비트 코드로서, 코덱의 타입을 식별하기 위한 정보일 수 있다.Here, the codec type is an 8-bit code and may be information for identifying the type of the codec.

표 11. 코덱 디스크립션Table 11. Codec description

codec_numcodec_num MPEG standards and othersMPEG standards and others 0101 MPEG-1MPEG-1 0202 MPEG-2MPEG-2 0303 MPEG-4 Part 2MPEG-4 Part 2 0404 MPEG-4 Part 10 (AVC)MPEG-4 Part 10 (AVC) 05-FF05-FF RESERVEDRESERVED

여기서, 코덱 번호(codec_num)는 8비트 코드로서, 사용된 코덱의 코드를 나타내는 정보일 수 있다. 또한, 프로파일 및 레벨 번호(profile_level_num)는 8비트 코드로서, 코덱에 대한 프로파일과 레벨의 번호를 지시하기 위한 정보일 수 있다. 프로파일 및 레벨 번호는 각 MPEG 표준의 프로파일 및 레벨 번호와 일치할 수 있다.Here, the codec number codec_num is an 8-bit code and may be information indicating a code of a used codec. In addition, the profile and level number (profile_level_num) is an 8-bit code and may be information for indicating the number of the profile and the level for the codec. The profile and level numbers may match the profile and level numbers of each MPEG standard.

표 12. 테이블 디스크립션(테이블 식별자)Table 12. Table description (table identifier)

table_identifiertable_identifier table nametable name 00000000 SET (Syntax Element Table)SET (Syntax Element Table) 00010001 S-RT (Syntax Rule Table)Syntax Rule Table (S-RT) 00100010 CSCIT (CSCI Table)CSCIT (CSCI Table) 00110011 DVT (Default Value Table)DVT (Default Value Table) 01000100 FL (FU List)FL (FU List) 01010101 F-RT (FU Rule Table)F-RT (FU Rule Table) 01100110 FU-CSCIT (FU CSCI Table)FU-CSCIT (FU CSCI Table) 0111-11110111-1111 RESERVEDRESERVED

여기서, 테이블 시작 코드(table_start_code)는 16진수의 26비트 문자열 0xFFFFFE일 수 있고, 이는 테이블 디스크립션의 시작을 의미할 수 있다. 테이블 식별자(table_identifier)는 위의 표 12와 같이 각각의 4비트 코드일 수 있다.Here, the table start code (table_start_code) may be a 26-bit string 0xFFFFFE in hexadecimal, which may mean the start of a table description. The table identifier (table_identifier) may be each 4-bit code as shown in Table 12 above.

표 13. 테이블 디스크립션(테이블 타입)Table 13. Table description (table type)

table_typetable_type MeaningMeaning 00000000 conventional tableconventional table 00010001 updated tableupdated table 00100010 new tablenew table 0011-11110011-1111 RESERVEDRESERVED

여기서, 테이블 타입은 4비트 값으로 기존의 테이블을 유지할 것인지, 기존의 테이블을 업데이트할 것인지 아니면 새로운 테이블을 생성할 것인지를 판단하도록 하는 정보이다. 테이블 종료 코드(table_end_code)는 16진수의 26비트 문자열 0xFFFFFF일 수 있고, 이는 테이블 디스크립션의 끝을 의미할 수 있다.Here, the table type is information for determining whether to maintain an existing table with a 4-bit value, update an existing table, or create a new table. The table end code (table_end_code) may be a 26-bit string 0xFFFFFF in hexadecimal, which may mean the end of the table description.

표 14. 업데이트 커맨드(update_command)를 위한 지시 세트Table 14. Instruction set for update command (update_command)

CodeCode InstructionInstruction UsageUsage 0000 UPDATEUPDATE UPDATE [index#] in [table#] [a record];UPDATE [index #] in [table #] [a record]; 0101 INSERTINSERT INSERT into [table#] [a record];INSERT into [table #] [a record]; 1010 DELETEDELETE DELETE [index#] from [table#];DELETE [index #] from [table #]; 1111 RESERVEDRESERVED

여기서, index#은 임의의 테이블의 인텍스 번호를 지시하는 4비트 문자열일 수 있고, table#은 테이블 식별자로서의 32비트 문자열일 수 있다.Here, index # may be a 4-bit string indicating an index number of an arbitrary table, and table # may be a 32-bit string as a table identifier.

표 15. 뉴 커맨드(new_command)를 위한 지시 세트Table 15. Instruction set for new command (new_command)

CodeCode InstructionInstruction UsageUsage 0000000100000001 READREAD READ bits B > CSCI;READ bits B> CSCI; 0000001000000010 SEEKSEEK SEEK bits B > CSCI;SEEK bits B> CSCI; 0000001100000011 FLUSHFLUSH FLUSH bits B;FLUSH bits B; 0000010000000100 IFIF IF (condition) { ~ } ELSE { ~ }IF (condition) {~} ELSE {~} 0000010100000101 WHILEWHILE WHILE (condition) { ~ }WHILE (condition) {~} 0000011000000110 UNTILUNTIL UNTIL (condition) { ~ }UNTIL (condition) {~} 00000111~000000111 ~ 0 DO~WHILEDO-WHILE DO { ~ } WHILE (condition)DO {~} WHILE (condition) 00000111~100000111 ~ 1 DO~UNTILDO ~ UNTIL DO { ~ } UNTIL (condition)DO {~} UNTIL (condition) 0000100000001000 ( ~ ) (compute)(~) (compute) ( ……… )(………) 0000100100001001 BREAKBREAK BREAK;BREAK; 0000101000001010 SETSET SET CSCI, CSCI;SET CSCI, CSCI; 0000101100001011 STOPSTOP STOP;STOP; 0000110000001100 PUSHPUSH PUSH CSCI Value, Value ;PUSH CSCI Value, Value; 0000110100001101 RLDRLD RLD index, level, run, islastrun, t#;RLD index, level, run, islastrun, t #; 0001001000010010 VLD2VLD2 VLD2 [T#] in > v1, v2, v3;VLD2 [T #] in> v1, v2, v3; 0001010000010100 VLD4VLD4 VLD4 [T#] > CSCI;VLD4 [T #]> CSCI;

여기서, 비트(bits)는 요구되는 비트의 수를 나타내는 3 내지 34 비트 중 임의의 값이며, B는 바이트 얼라인먼트(byte alignment)를 나타내는 1비트 문자열이다. ">"는 좌측의 출력을 프린트하기 위한 1비트 문자열이고, VLD2(for MPEG-2)와 VLD4(for MPEG-4)는 엔트로피 코딩을 위한 기능들이다.Here, bits are any of 3 to 34 bits indicating the number of bits required, and B is a 1-bit string indicating byte alignment. ">" Is a 1-bit string for printing the output on the left, and VLD2 (for MPEG-2) and VLD4 (for MPEG-4) are functions for entropy coding.

도 13는 본 발명의 일 실시예에 따른 부호화기의 블록 구성도이다.13 is a block diagram of an encoder according to an embodiment of the present invention.

본 발명에 따른 부호화기(1300)는 앞서 도 2를 참조하여 설명한 종래의 부호화기(200)에 비해 확장 비트스트림 생성 및 출력부(1310)를 더 포함한다. 확장 비트스트림 생성 및 출력부(1310)는 전단까지의 처리에 의해 생성된 종래 비트스트림(105) 생성 과정에서의 제어 정보(예를 들어, 사용한 기능부들의 목록 및 연결 관계, 해당 기능부들의 입력 데이터, 신택스 정보, 신택스 연결 정보 등)를 이용하여 디코딩 디스크립션 을 생성한다. 또한, 생성된 디코딩 디스크립션 및 종래 비트스트림(105)를 이용하여 확장 비트스트림(305)을 생성하여 복호화기(300)로 전송한다. 디코딩 디스크립션의 생성 방법은 앞서 설명한 사항만으로 당업자가 충분히 이해할 수 있을 것이므로 이에 대한 설명은 생략한다.The encoder 1300 according to the present invention further includes an extension bitstream generation and output unit 1310 as compared to the conventional encoder 200 described with reference to FIG. 2. The extended bitstream generation and output unit 1310 may control information (eg, a list and connection relations of the used functional units and input of the corresponding functional units in the process of generating the conventional bitstream 105 generated by the process up to the front end). Data, syntax information, syntax connection information, etc.) to generate a decoding description. In addition, the extended bitstream 305 is generated using the generated decoding description and the conventional bitstream 105 and transmitted to the decoder 300. The method of generating the decoding description will be fully understood by those skilled in the art based on the above descriptions, and thus description thereof will be omitted.

또한, 본 명세서에서 가변장 인코딩부(230)는 부호화기(1300) 내에서 종래 비트스트림(105)을 생성하기 위하여 최종적으로 부호화를 수행하는 임의의 구성 요소(예를 들어, 부호화부)를 지칭한 것일 뿐 이에 제한되는 것은 아니며, 또한 이로 인해 본 발명의 권리범위가 제한되지는 않는다.In addition, in the present specification, the variable length encoder 230 refers to an arbitrary component (eg, an encoder) that performs encoding in order to generate the conventional bitstream 105 in the encoder 1300. The present invention is not limited thereto, and the scope of the present invention is not limited thereto.

도 13는 디코딩 디스크립션 정보 및 종래 비트스트림(105)을 이용하여 생성한 확장 비트스트림(305)이 복호화기로 제공되는 경우를 가정한 도면이다.FIG. 13 is a diagram illustrating a case in which an extended bitstream 305 generated using decoding description information and a conventional bitstream 105 is provided to a decoder.

그러나, 상술한 바와 같이, 디코딩 디스크립션은 별도의 데이터 또는 비트스트림 등의 형태로 복호화기(300)로 전달될 수도 있다. 이 경우는 가변장 인코딩부(235) 후단에 확장 비트스트림 생성 및 출력부(1310)가 위치하지 않고, 종래의 인코딩부(200)와 독립적으로 확장 비트스트림 생성 및 출력부(1310)가 위치하여 독립적으로 생성한 정보를 복호화기(300)로 제공할 수도 있음은 자명하다.However, as described above, the decoding description may be delivered to the decoder 300 in the form of separate data or bitstream. In this case, the extended bitstream generation and output unit 1310 is not positioned after the variable length encoding unit 235, and the extended bitstream generation and output unit 1310 is positioned independently of the conventional encoding unit 200. Obviously, the independently generated information may be provided to the decoder 300.

이제까지 본 발명에 따른 통합 코덱 장치 및 방법을 설명함에 있어 복호화기를 중심으로 설명하였으나, 복호화기와 부호화기간의 상호 관계가 당업자에게 자명하며 복호화기에 대한 상세한 설명만으로도 부호화기의 구성이 용이한 점을 고려할 때 본 발명이 복호화기에 제한되지 않음은 자명하다.In the description of the integrated codec apparatus and method according to the present invention, the decoder has been described with reference to the decoder. However, the interrelationship between the decoder and the encoding period is apparent to those skilled in the art. Obviously, the invention is not limited to decoders.

상술한 바와 같이 본 발명에 따른 통합 코덱 장치 및 방법은 하나의 표준(또는 코덱) 내에서 또는 다른 표준(또는 코덱) 간에 syntax 엘리먼트의 해석 및 기능부들의 연결 제어를 용이하게 한다. 즉, 특정 표준에 따라 생성되는 비트스트림 내의 syntax 엘리먼트들의 순서를 변경하거나, 새로운 syntax 엘리먼트들을 삽입하거나, 기존의 syntax 엘리먼트들을 삭제함에 문제되지 않는다. As described above, the integrated codec device and method according to the present invention facilitate the interpretation of syntax elements and control of the connection of functional units within one standard (or codec) or between different standards (or codecs). That is, it is not a problem to change the order of syntax elements, insert new syntax elements, or delete existing syntax elements in a bitstream generated according to a specific standard.

또한, 종래기술에 따르면 이와 같은 syntax 엘리먼트의 조작시 복호화기에서는 해당 비트스트림을 정상적으로 디코딩할 수 없는 문제점이 있었다. 예를 들어, 비트스트림 정보가 ABC이던 것을 ACB로 순서를 바꾸어 비트스트림을 구성하여 전송하면, 복호화기는 이를 인식할 수 없어 정상적인 디코딩이 불가능하다. 또한, 신규로 F를 삽입하여 ABFC로 구성하거나, B를 삭제하여 AC로 비트스트림을 구성하는 경 우에도 동일하다.In addition, according to the related art, when the syntax element is manipulated, the decoder cannot decode the corresponding bitstream normally. For example, if the bitstream information is ABC and the bitstream is changed to ACB to configure and transmit the bitstream, the decoder cannot recognize the bitstream and thus normal decoding is not possible. The same is also true when a new F is inserted into an ABFC or a B is deleted to form a bitstream with AC.

그러나, 본 발명에 따른 통합 코덱 장치 및 방법을 이용하면, 확장 비트스트림 내에 포함되거나 또는 독립된 데이터로 디코딩 디스크립션 정보가 제공되므로 복호화기(300)의 원활한 복호화 동작이 가능해진다.However, using the integrated codec apparatus and method according to the present invention, since the decoding description information is provided as data included in the extended bitstream or as independent data, the decoder 300 can perform a smooth decoding operation.

이제까지 본 발명에 따른 복호화 장치 및 비트스트림 복호화를 위한 구문 해석 방법을 설명함에 있어 MPEG-4 AVC를 기준으로 설명하였으나, MPEG-1, MPEG-2, MPEG-4 및 이외의 동영상 인코딩/디코딩 표준에 아무런 제한없이 동일하게 적용할 수 있음은 당연하다.So far, the decoding apparatus and the syntax parsing method for decoding the bitstream according to the present invention have been described based on MPEG-4 AVC, but the MPEG-1, MPEG-2, MPEG-4 and other video encoding / decoding standards Naturally, the same can be applied without any limitation.

또한, 각 테이블들에 포함되는 정보 역시 하나의 표준에 의한 디코딩 수행을 위한 기능부들의 연결 관계, 해당 기능부에 요구되는 처리 프로세스 등에 관한 정보만으로 기술되지 않고, 복수의 표준에 의한 디코딩 수행을 위한 정보로 기술될 수도 있음은 자명하다.In addition, the information included in each table is not described only with information on connection relations between functional units for performing decoding by one standard, processing processes required for the corresponding functional unit, and the like. It is obvious that information may be described.

예를 들어, 확장 비트스트림에 포함된 인코딩된 비디오 데이터의 초기 복수의 프레임은 MPEG-2로 인코딩되고, 후속하는 복수의 프레임은 MPEG-4로 인코딩되며, 나머지 프레임은 MPEG-1으로 인코딩되었다고 가정하자. 이 경우, 인코딩된 비디오 데이터의 디코딩을 위해 디코딩 디스크립션에 포함되는 테이블 정보들은 인코딩 방법을 달리하는 각 프레임들이 툴 박스(510)에 포함된 각 표준에 따른 기능부들이 유기적으로 결합되어 동작될 수 있도록 구현될 것임은 자명하다.For example, assume that an initial plurality of frames of encoded video data included in the extended bitstream are encoded in MPEG-2, subsequent frames are encoded in MPEG-4, and the remaining frames are encoded in MPEG-1. lets do it. In this case, the table information included in the decoding description for decoding the encoded video data is used so that each frame having a different encoding method may be functionally combined with the functional units according to each standard included in the tool box 510. It is obvious that it will be implemented.

상술한 바와 같이 본 발명에 따른 통합 코덱 장치 및 방법은 각 표준(예를 들어, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC 등)에 따른 다양한 형식(syntax, semantics)으로 부호화된 비트스트림을 동일한 정보 인식 방식으로 복호화(decoding)할 수 있는 효과가 있다.As described above, the integrated codec apparatus and method according to the present invention are encoded in various formats (syntax, semantics) according to each standard (for example, MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC, etc.). The decoded bitstream can be decoded with the same information recognition scheme.

또한, 본 발명은 다양한 부호화 방식으로 압축된 비트스트림을 동일한 정보 분석 방법에 의해 파싱(parsing)하고, 파싱된 데이터를 이용하여 복호화를 위한 각 기능부(FU, Functional Unit)들을 유기적으로 제어할 수 있는 효과도 있다.In addition, the present invention parses a bitstream compressed by various encoding schemes by the same information analysis method, and can organically control functional units (FU) for decoding using the parsed data. There is also an effect.

또한, 본 발명은 다양한 형태의 비트스트림을 복호화하기 위한 syntax 해석 방법을 공통적으로 적용할 수 있는 효과도 있다.In addition, the present invention has the effect that can be commonly applied to the syntax analysis method for decoding various types of bitstream.

또한, 본 발명은 다양한 형태의 비트스트림을 공통된 Syntax 해석 방법으로 파싱할 수 있도록 하기 위한 새로운 명령어들의 집합을 적용할 수 있는 효과도 있다.In addition, the present invention has the effect of applying a new set of instructions for parsing various types of bitstreams with a common syntax analysis method.

또한, 본 발명은 syntax 엘리먼트의 변경이나 추가시에도 복호화기가 용이하게 비트스트림을 복호화할 수 있는 효과도 있다.In addition, the present invention also has the effect that the decoder can easily decode the bitstream even when the syntax element is changed or added.

또한, 본 발명은 해석된 syntax의 엘리먼트 정보(element information, 즉 syntax 파싱에 의한 결과물)를 비트스트림 복호화를 위해 이용되는 구성 요소들이 공유할 수 있도록 하는 효과도 있다.In addition, the present invention has an effect that allows the components used for bitstream decoding to share the element information (the result of parsing the syntax) of the parsed syntax.

또한, 본 발명은 해석된 syntax의 엘리먼트 정보를 후속하는 비트스트림 syntax 엘리먼트의 해석을 위해 이용할 수 있도록 하는 효과도 있다.In addition, the present invention also has the effect that the element information of the parsed syntax can be used for the interpretation of subsequent bitstream syntax elements.

또한, 본 발명은 MPEG-1, MPEG-2, MPEG-4, MPEG-4 AVC 외의 블록 단위의 처리를 하는 동영상, 정지영상 코덱의 통합시에 사용할 수 있는 효과도 있다.In addition, the present invention also has an effect that can be used when integrating a moving picture or still picture codec that processes block units other than MPEG-1, MPEG-2, MPEG-4, and MPEG-4 AVC.

또한, 본 발명은 여러 표준(코덱)에서 제안하는 다양한 디코딩 방법을 구성하는 기능들을 각기 기능부(FU, Functional Unit)대로 분할하여 툴박스에 저장할 수 있는 효과도 있다.In addition, the present invention has an effect that can be stored in a toolbox by dividing the functions constituting various decoding methods proposed by various standards (codecs) into functional units (FU).

또한, 본 발명은 다양한 형태로 부호화 된 비트스트림을 복호화하기 위해 툴박스에서 필요한 기능부들만을 선별하여 디코딩할 수 있는 효과도 있다.In addition, the present invention has the effect that it is possible to selectively decode only the functional units required in the toolbox to decode the bitstream encoded in various forms.

또한, 본 발명은 툴박스에 저장된 기능부의 변경이나 추가, 삭제가 용이한 효과도 있다.In addition, the present invention has an effect that it is easy to change, add, or delete a function unit stored in a toolbox.

상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to embodiments of the present invention, those skilled in the art may variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. And can be changed.

Claims (72)

테이블 저장부;A table storage unit; 입력된 디코딩 디스크립션에 상응하는 n(임의의 자연수)개의 테이블 (table)을 생성하여 상기 테이블 저장부에 저장하는 디스크립션 디코더;A description decoder for generating n (random natural numbers) tables corresponding to the input decoding description and storing the tables in the table storage unit; 상기 테이블 저장부에 저장된 상기 테이블을 이용하여 상기 디코딩 디스크립션에 상응하도록 입력된 비트스트림에 포함된 인코딩된 비디오 데이터를 동영상 데이터로 디코딩(decoding)하여 출력하는 코덱부를 포함하는 복호화 장치.And a codec unit configured to decode encoded video data included in a bitstream input to correspond to the decoding description into video data using the table stored in the table storage unit. 제1항에 있어서,The method of claim 1, 상기 코덱부는,The codec unit, 미리 지정된 프로세스를 처리하도록 각각 구현된 복수의 기능부를 포함하는 툴 박스;A tool box including a plurality of functional units each implemented to process a predetermined process; 상기 복수의 기능부 중 하나 이상의 기능부에 의한 상기 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보가 저장되는 CSCI(Control Signal/Context Information) 저장부; 및A Control Signal / Context Information (CSCI) storage unit for storing a plurality of element information generated by syntax parsing of the bitstream by at least one of the plurality of functional units; And 미리 지정된 하나 이상의 테이블을 참조하여 복수의 기능부들의 처리 순서를 인식하고 상응하는 기능부가 활성화되도록 제어하는 연결 제어부를 포함하는 것을 특징으로 하는 복호화 장치.And a connection controller for recognizing a processing order of the plurality of functional units and controlling the corresponding functional units to be activated by referring to one or more predetermined tables. 제2항에 있어서,The method of claim 2, 상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현된 것을 특징으로 하는 복호화 장치.A predetermined process of each of the functional units is implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream. 제3항에 있어서,The method of claim 3, 상기 인코딩된 비디오 데이터가 복수의 표준에 의해 인코딩된 경우, 상기 연결 제어부는 상기 테이블을 참조하여 복수의 표준에 따른 프로세스를 수행하는 복수의 기능부를 순차적으로 활성화하여 상기 인코딩된 비디오 데이터가 상기 동영상 데이터로 디코딩되도록 하는 것을 특징으로 하는 복호화 장치.When the encoded video data is encoded by a plurality of standards, the connection controller sequentially activates a plurality of functional units performing a process according to a plurality of standards by referring to the table so that the encoded video data is the video data. Decoding apparatus characterized in that the decoding to. 제2항에 있어서,The method of claim 2, 상기 툴 박스는,The tool box, 상기 비트스트림의 신택스 파싱에 의해 복수의 엘리먼트 정보를 생성하여 상기 CSCI 저장부에 저장하고, 상기 인코딩된 비디오 데이터를 미리 지정된 크기의 매크로블록 데이터로 생성하여 순차적 출력하는 파싱 기능부; 및A parsing function unit which generates a plurality of element information by syntax parsing of the bitstream and stores the plurality of element information in the CSCI storage unit, and generates and sequentially outputs the encoded video data as macroblock data having a predetermined size; And 상기 매크로블록 데이터를 상기 동영상 데이터로 변환하기 위하여 처리할 프로세스가 각각 지정된 복수의 처리 기능부들을 포함하는 것을 특징으로 하는 복호화 장치.And a plurality of processing functional units each having a process to be processed for converting the macroblock data into the moving image data. 제5항에 있어서,The method of claim 5, 상기 n개의 테이블은 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 복수의 기능부(FU)들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함하는 것을 특징으로 하는 복호화 장치.The n tables include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. (Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) indicating detailed information on the element information, F-RT (Fu-Rule Table) for sequential selection of a plurality of functional units (FU), the function FL (FU List) indicating a list of parts, FU-CSCIT indicating element information to be input to the selected functional unit. 제6항에 있어서,The method of claim 6, 상기 SET(Syntax Element Table), 상기 S-RT(Syntax - Rule Table) 및 상기 F-RT(FU-Rule Table)는 파일 포인터를 이동하여 k(임의의 자연수) 비트를 독출하는 리드(READ) 명령, 파일 포인터 이동없이 k 비트를 독출하는 시크(SEEK) 명령, 파일 포인터에서 k비트 만큼 파일 포인트를 이동하는 플러시(FLUSH) 명령, 인덱스간의 분기를 지시하는 고(GO) 명령, 엘리먼트 정보의 플래그를 설정하는 세트(SET) 명령 중 하나 이상을 포함하여 구성되는 것을 특징으로 하는 복호화 장치.The SET (Syntax Element Table), the S-RT (Syntax-Rule Table), and the F-RT (FU-Rule Table) read a k (arbitrary natural number) bit by moving a file pointer. Instructions, a seek command that reads k bits without moving the file pointer, a flush command that moves file points by k bits from the file pointer, a GO instruction that indicates a branch between indexes, and element information. And at least one of a set (SET) instruction for setting a flag. 제6항에 있어서,The method of claim 6, 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함하는 것을 특징으로 하는 복호화 장치.And a default value table (DVT) indicating a relationship between an actual value and a code value during entropy coding. 제6항에 있어서,The method of claim 6, 상기 연결 제어부는 상기 F-RT를 이용하여 상기 파싱 기능부 및 상기 복수의 처리 기능부들 중 선택된 복수의 기능부들이 활성화될 순서를 지정하는 것을 특징으로 하는 복호화 장치.And the connection controller specifies an order in which the plurality of selected functional units of the parsing function unit and the plurality of processing function units are activated using the F-RT. 제9항에 있어서,The method of claim 9, 상기 연결 제어부에 의해 활성화된 처리 기능부는 미리 지정된 엘리먼트 정보 및 직전의 기능부에 의한 출력 데이터를 이용하여 미리 지정된 프로세스를 수행하는 것을 특징으로 하는 복호화 장치.And a processing function unit activated by the connection control unit performs a predetermined process by using predetermined element information and output data by a previous function unit. 제6항에 있어서,The method of claim 6, 상기 파싱 기능부는 상기 SET, 상기 S-RT 및 상기 CSCIT를 이용하여 상기 엘리먼트 정보를 생성하는 것을 특징으로 하는 복호화 장치.And the parsing function unit generates the element information using the SET, the S-RT, and the CSCIT. 제1항에 있어서,The method of claim 1, 상기 디코딩 디스크립션 및 상기 비트스트림이 통합된 확장 비트스트림이 입력되는 경우, 상기 디코딩 디스크립션 및 상기 비트스트림을 분리하기 위한 분리부를 더 포함하는 복호화 장치.And a separation unit for separating the decoding description and the bitstream when the decoding description and the extension bitstream in which the bitstream are integrated are input. 제1항 또는 제12항에 있어서,The method according to claim 1 or 12, wherein 상기 디코딩 디스크립션은 하나 이상의 테이블 영역으로 구성되고, 각 테이블 영역에는 상기 테이블을 구성하기 위한 하나 이상의 테이블 정보가 삽입되는 것을 특징으로 하는 복호화 장치.The decoding description is composed of one or more table areas, and each table area is inserted one or more table information for configuring the table. 제13항에 있어서,The method of claim 13, 상기 테이블 정보는 상기 비트스트림을 복호화하기 위한 코덱 번호(Codec No.), 프로파일 및 레벨 번호(Profile and level No.)에 상응하는 지정 정보를 포함하고,The table information includes designation information corresponding to a codec number (Codec No.), a profile and a level number (Profile and level No.) for decoding the bitstream, 상기 디스크립션 디코더는 상기 테이블 저장부에 미리 저장된 복수의 테이블들 중 상기 지정 정보에 상응하는 n개의 테이블들을 추출하는 것을 특징으로 하는 복호화 장치.And the description decoder extracts n tables corresponding to the specified information among a plurality of tables previously stored in the table storage unit. 제13항에 있어서,The method of claim 13, 상기 n개의 테이블 영역에 각각 삽입되는 테이블 정보는 각각의 테이블을 구성하기 위한 바이너리 코드 정보를 포함하고,Table information respectively inserted into the n table areas includes binary code information for constituting each table, 상기 디스크립션 디코더는 상기 바이너리 코드 정보를 이용하여 n개의 테이블들을 생성하여 상기 테이블 저장부에 저장하는 것을 특징으로 하는 복호화 장치.And the description decoder generates n tables using the binary code information and stores the n tables in the table storage unit. 제13항에 있어서,The method of claim 13, 상기 n개의 테이블 영역 중 m(임의의 자연수)개의 테이블 영역에는 상응하는 테이블에 대한 코덱 번호(Codec No.)와 프로파일 및 레벨 번호(Profile and level No.)에 상응하는 지정 정보가 포함되고, k(n-m인 임의의 수)개의 테이블 영역에는 상응하는 테이블을 구성하기 위한 바이너리 코드 정보를 포함되며,M (arbitrary natural numbers) of the n table areas include designation information corresponding to a codec number (Codec No.) and a profile and level number (Profile and level No.) for the corresponding table, k (any number of nm) table areas contain binary code information for constructing corresponding tables, 상기 디스크립션 디코더는 상기 테이블 저장부에 미리 저장된 복수의 테이블 들 중 상기 지정 정보에 상응하는 m개의 테이블들을 추출하고, 상기 바이너리 코드 정보를 이용하여 k개의 테이블들을 생성하여 상기 테이블 저장부에 저장하는 것을 특징으로 하는 복호화 장치.The description decoder extracts m tables corresponding to the designated information among a plurality of tables previously stored in the table storage unit, generates k tables using the binary code information, and stores the k tables in the table storage unit. Decoding apparatus characterized by. 복수의 테이블들을 저장하는 테이블 저장부;A table storage unit for storing a plurality of tables; 상기 테이블 저장부에 저장된 하나 이상의 테이블을 이용하여, 입력된 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보를 엘리먼트 정보 저장부에 저장하고, 상기 비트스트림에 포함된 인코딩된 비디오 데이터에 상응하는 매크로블록 데이터를 순차적 출력하는 신택스 파서;Stores a plurality of element information generated by syntax parsing of an input bitstream using one or more tables stored in the table storage unit, and stores the element information in an element information storage unit, and encodes the encoded video included in the bitstream. A syntax parser for sequentially outputting macroblock data corresponding to the data; 각각 미리 설정된 프로세스를 처리하도록 구현된 복수의 기능부를 포함하는 MB 처리부; 및 An MB processing unit including a plurality of functional units each configured to process a preset process; And 상기 테이블 저장부에 저장된 하나 이상의 테이블을 참조하여 복수의 기능부이 선택적으로 활성화되도록 제어하는 연결 제어부를 포함하되, And a connection controller for controlling a plurality of functional units to be selectively activated by referring to one or more tables stored in the table storage unit. 상기 연결 제어부에 의해 활성화된 임의의 기능부는 상기 엘리먼트 정보 저장부에 저장된 엘리먼트 정보 중 미리 지정된 엘리먼트 정보를 이용하여 상기 매크로블록 데이터를 처리하여 출력하는 것을 특징으로 하는 복호화 장치.And any functional unit activated by the connection control unit processes and outputs the macroblock data using predetermined element information among element information stored in the element information storage unit. 제17항에 있어서,The method of claim 17, 상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현된 것을 특징으로 하는 복호화 장치.A predetermined process of each of the functional units is implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream. 제17항에 있어서,The method of claim 17, 상기 연결 제어부는 미리 지정된 테이블을 참조하여 상기 신택스 파서의 동작을 제어하는 것을 특징으로 하는 복호화 장치.And the connection controller controls an operation of the syntax parser with reference to a predetermined table. 제17항에 있어서,The method of claim 17, 상기 비트스트림에 상응하는 디코딩 디스크립션이 더 입력되면, 상기 디코딩 디스크립션에 상응하는 n(임의의 자연수)개의 테이블(table)을 생성하여 상기 테이블 저장부에 저장하는 디스크립션 디코더를 더 포함하는 복호화 장치.And a description decoder configured to generate n (random natural numbers) tables corresponding to the decoding description and store them in the table storage unit when the decoding description corresponding to the bitstream is further input. 제20항에 있어서,The method of claim 20, 상기 디코딩 디스크립션 및 상기 비트스트림이 통합된 확장 비트스트림이 입력되는 경우, 상기 디코딩 디스크립션 및 상기 비트스트림을 분리하여 상기 신택스 파서와 상기 디스크립션 디코더로 각각 입력하는 분리부를 더 포함하는 복호화 장치.And a splitter configured to separate the decoding description and the bitstream and input them to the syntax parser and the description decoder, respectively, when the decoding description and the extension bitstream in which the bitstream are integrated are input. 제20항에 있어서,The method of claim 20, 상기 디스크립션 정보는 독립된 데이터 또는 비트스트림 형태로 입력되는 것을 특징으로 하는 복호화 장치.And the description information is input in the form of independent data or bitstream. 제17항에 있어서,The method of claim 17, 상기 연결 제어부는 선행하여 활성화된 기능부의 결과 데이터가 후행하여 활성화되는 기능부로 입력되도록 제어하는 것을 특징으로 하는 복호화 장치.And the connection controller controls the result data of a previously activated functional unit to be input to a later activated functional unit. 제17항에 있어서, The method of claim 17, 선행하여 활성화된 기능부는 결과 데이터를 후행하여 활성화되는 기능부가 접근할 수 있는 버퍼 메모리에 기록하는 것을 특징으로 하는 복호화 장치.And the resultant data is written to a buffer memory accessible by the function to be activated later. 제24항에 있어서,The method of claim 24, 상기 신택스 파서에 의해 순차적 출력되는 매크로블록 데이터는 상기 버퍼 메모리에 기록되는 것을 특징으로 하는 복호화 장치.And the macroblock data sequentially output by the syntax parser is written to the buffer memory. 제20항에 있어서,The method of claim 20, 상기 디스크립션 정보는 바이너리 코드로 구성되는 것을 특징으로 하는 복호화 장치.And the description information comprises a binary code. 제26항에 있어서,The method of claim 26, 상기 디스크립션 정보는 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 신택스 파서 또는 상기 기능부들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함하는 것을 특징으로 하는 복호화 장치.The description information may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) representing detailed information about the element information, FL (FU List) representing the list of the functional units, the syntax parser or the sequential selection of the functional units And a FU-CSCIT indicating element information to be input to the selected functional unit. 제27항에 있어서,The method of claim 27, 상기 SET(Syntax Element Table), 상기 S-RT(Syntax - Rule Table) 및 상기 F-RT(FU-Rule Table)는 파일 포인터를 이동하여 k(임의의 자연수) 비트를 독출하는 리드(READ) 명령, 파일 포인터 이동없이 k 비트를 독출하는 시크(SEEK) 명령, 파일 포인터에서 k비트 만큼 파일 포인터를 이동하는 플러시(FLUSH) 명령, 인덱스간의 분기를 지시하는 고(GO) 명령, 엘리먼트 정보의 플래그를 설정하는 세트(SET) 명령 중 하나 이상을 포함하여 구성되는 것을 특징으로 하는 복호화 장치.The SET (Syntax Element Table), the S-RT (Syntax-Rule Table), and the F-RT (FU-Rule Table) read a k (arbitrary natural number) bit by moving a file pointer. Command, a SEEK instruction that reads k bits without moving the file pointer, a FLUSH instruction that moves the file pointer by k bits from the file pointer, a GO instruction that indicates a branch between indexes, and element information And at least one of a set (SET) instruction for setting a flag. 제27항에 있어서,The method of claim 27, 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함하는 것을 특징으로 하는 복호화 장치.And a default value table (DVT) indicating a relationship between an actual value and a code value during entropy coding. 제27항에 있어서,The method of claim 27, 상기 신택스 파서는 상기 S-RT를 이용하여 처리할 비트스트림 신택스를 선택하고, 상기 SET에 기록된 상기 프로세스를 이용하여 상기 엘리먼트 정보를 생성하고, 생성된 상기 엘리먼트 정보를 상기 CSCIT에 상응하도록 상기 엘리먼트 정보 저 장부에 저장하는 것을 특징으로 하는 복호화 장치.The syntax parser selects a bitstream syntax to be processed using the S-RT, generates the element information using the process recorded in the SET, and sets the element information to correspond to the CSCIT. A decoding apparatus, characterized in that stored in the information storage. 제30항에 있어서,The method of claim 30, 상기 연결 제어부는 상기 F-RT를 이용하여 상기 신택스 파서 또는 어느 하나의 기능부를 선택하고, 상기 FL을 이용하여 상기 신택스 파서 또는 상기 기능부의 특성을 인식하며, 상기 FU-CSCIT 및 상기 CSCIT를 이용하여 상기 선택된 기능부에 입력될 엘리먼트 정보를 상기 엘리먼트 정보 저장부에서 추출하여 상기 선택된 기능부로 입력하는 것을 특징으로 하는 복호화 장치.The connection controller selects the syntax parser or any one functional unit using the F-RT, recognizes the syntax parser or the characteristics of the functional unit using the FL, and uses the FU-CSCIT and the CSCIT. And the element information to be input to the selected function unit is extracted from the element information storage unit and input to the selected function unit. 복수의 기능부들을 순차적으로 이용하여 입력된 동영상을 미리 지정된 부호화 방식에 따른 비트스트림으로 변환하는 인코딩부; 및An encoding unit which converts an input video into a bitstream according to a predetermined encoding scheme using a plurality of functional units in sequence; And 상기 비트스트림의 신택스 정보 및 상기 기능부들의 연결 관계(connection)에 따른 디스크립션 정보를 생성하는 디스크립션 정보 생성부를 포함하되,A description information generator configured to generate description information according to a connection relationship between the syntax information of the bitstream and the functional units; 상기 비트스트림 및 상기 디스크립션 정보는 복호화 장치로 제공되는 것을 특징으로 하는 부호화 장치.And the bitstream and the description information are provided to a decoding device. 제32항에 있어서,33. The method of claim 32, 상기 비트스트림 및 상기 디스크립션 정보는 하나의 확장 비트스트림으로 생성되어 상기 복호화 장치로 제공되는 것을 특징으로 하는 부호화 장치.And the bitstream and the description information are generated as one extension bitstream and provided to the decoding device. 제32항에 있어서,33. The method of claim 32, 상기 디스크립션 정보는 독립된 데이터 또는 비트스트림 형태로 상기 복호화 장치로 제공되는 것을 특징으로 하는 부호화 장치.And the description information is provided to the decoding apparatus in the form of independent data or bitstream. 제32항 내지 제34항 중 어느 한 항에 있어서,The method of any one of claims 32 to 34, wherein 상기 디스크립션 정보는 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 상기 기능부들에 상응하는 상기 복호화 장치의 기능부 리스트를 나타내는 FL(FU List), 상기 복호화 장치의 기능부들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함하는 것을 특징으로 하는 부호화 장치.The description information may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) representing detailed information about the element information, FL (FU List) representing a functional unit list of the decoding apparatus corresponding to the functional units, And a FU-CSCIT indicating element information to be input to the selected functional unit. 제35항에 있어서,36. The method of claim 35 wherein 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함하는 것을 특징으로 하는 부호화 장치.And a default value table (DVT) indicating a relationship between an actual value and a code value during entropy coding. (a) 비트스트림 및 디스크립션 정보를 입력받는 단계;(a) receiving a bitstream and description information; (b) 상기 디스크립션 정보에 상응하는 복수의 테이블을 생성하여 저장하는 단계;(b) generating and storing a plurality of tables corresponding to the description information; (c) 하나 이상의 테이블을 이용하여 상기 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보를 엘리먼트 정보 저장부에 저장하는 단계;(c) storing a plurality of element information generated by syntax parsing of the bitstream using at least one table in an element information storage unit; (d) 상기 비트스트림의 인코딩된 비디오 데이터를 미리 지정된 크기의 매크로블록으로 변환하여 순차적 출력하는 단계;(d) converting the encoded video data of the bitstream into macroblocks having a predetermined size and sequentially outputting the macroblocks; (e) 하나 이상의 테이블 정보를 참조하여 임의의 기능부를 활성화하는 단계; 및(e) activating any functional unit with reference to one or more table information; And (f) 상기 활성화된 기능부가 상기 엘리먼트 정보 저장부에 저장된 엘리먼트 정보를 이용한 미리 지정된 프로세스를 수행하여 결과 데이터를 출력하는 단계를 포함하되,(f) performing the predetermined process by using the element information stored in the element information storage unit by the activated functional unit to output the result data, 상기 단계 (e) 및 상기 단계 (f)는 상기 결과 데이터가 상기 인코딩된 비디오 데이터에 상응하는 동영상 데이터가 될 때까지 반복되는 것을 특징으로 하는 복호화 방법.And said step (e) and said step (f) are repeated until said result data becomes moving picture data corresponding to said encoded video data. 제37항에 있어서,The method of claim 37, 상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현된 것을 특징으로 하는 복호화 방법.A predetermined process of each of the functional units is implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream. 제37항에 있어서,The method of claim 37, 상기 단계 (e) 및 상기 단계 (f)의 반복 수행도중, 상기 단계 (e)에 의해 선택될 기능부에 요구되는 엘리먼트 정보가 상기 엘리먼트 정보 저장부에 저장되지 않은 경우 상기 단계(b)의 재수행 후 상기 단계 (e) 및 상기 단계 (f)의 반복 수행을 재개하는 것을 특징으로 하는 복호화 방법.During the repeated execution of step (e) and step (f), if the element information required for the functional unit to be selected by step (e) is not stored in the element information storage unit, the step (b) And repeating the steps (e) and (f) after the execution. 제37항에 있어서,The method of claim 37, 선행하여 활성화된 기능부의 결과 데이터는 후행하여 활성화되는 기능부가 접근할 수 있는 버퍼 메모리에 기록되는 것을 특징으로 하는 복호화 방법.And the result data of the previously activated functional section is written to a buffer memory accessible by the later activated functional section. 제40항에 있어서,The method of claim 40, 상기 단계 (b)에서, 상기 순차적 출력되는 매크로블록은 상기 버퍼 메모리에 기록되는 것을 특징으로 하는 복호화 방법.In the step (b), the sequential output macroblock is written to the buffer memory. 제37항에 있어서,The method of claim 37, 상기 디스크립션 정보는 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 기능부들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함하는 것을 특징으로 하는 복호화 방법.The description information may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) representing detailed information about the element information, FL (FU List) representing the list of functional units, F-RT (for sequential selection of the functional units) FU-Rule Table), and a FU-CSCIT indicating element information to be input to the selected functional unit. 제42항에 있어서,The method of claim 42, wherein 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함하는 것을 특징으로 하는 복호화 방법.And a default value table (DVT) indicating a relationship between an actual value and a code value during entropy coding. 제43항에 있어서,The method of claim 43, 상기 단계 (c)에서, 상기 SET, 상기 S-RT, 상기 CSCIT 및 상기 DVT가 이용되는 것을 특징으로 하는 복호화 방법.In step (c), the SET, the S-RT, the CSCIT and the DVT are used. 제42항에 있어서,The method of claim 42, wherein 상기 단계 (c), 상기 단계 (d) 및 상기 단계 (f)를 수행하기 위한 기능부는 상기 F-RT에 의해 결정되는 것을 특징으로 하는 복호화 방법.And a functional unit for performing the step (c), the step (d) and the step (f) is determined by the F-RT. 제42항에 있어서,The method of claim 42, wherein 상기 단계 (c)는, Step (c) is, (g) 상기 S-RT를 이용하여 처리할 비트스트림 신택스를 선택하는 단계;(g) selecting a bitstream syntax to be processed using the S-RT; (h) 상기 SET에 기록된 상기 프로세스를 이용하여 상기 엘리먼트 정보를 생성하는 단계; 및(h) generating the element information using the process recorded in the SET; And (i) 상기 생성된 엘리먼트 정보를 상기 CSCIT에 상응하도록 상기 엘리먼트 정보 저장부에 저장하는 단계를 포함하되,(i) storing the generated element information in the element information storage to correspond to the CSCIT, 상기 단계 (g) 내지 상기 단계 (i)는 모든 비트스트림 신택스에 상응하는 엘리먼트 정보가 생성되어 저장될 때까지 반복되는 것을 특징으로 하는 복호화 방법.The steps (g) to (i) are repeated until element information corresponding to all bitstream syntaxes is generated and stored. 제37항에 있어서,The method of claim 37, 상기 비트스트림 및 상기 디스크립션 정보가 하나의 확장 비트스트림으로 입력되는 경우 상기 단계 (b)는, When the bitstream and the description information are input into one extension bitstream, the step (b) may include: 상기 확장 비트스트림에서 상기 비트스트림 및 상기 디스크립션 정보를 분할하는 단계가 선행하는 것을 특징으로 하는 복호화 방법.And dividing the bitstream and the description information in the extended bitstream. 제37항에 있어서,The method of claim 37, 상기 디스크립션 정보는 독립된 데이터 또는 비트스트림 형태로 입력되는 것을 특징으로 하는 복호화 방법.And the description information is input in the form of independent data or bitstream. 제47항 또는 제48항에 있어서,49. The method of claim 47 or 48, 상기 디스크립션 정보는 바이너리 코드로 구성되는 것을 특징으로 하는 복호화 방법.And the description information comprises a binary code. (a) 입력된 동영상을 복수의 기능부들을 순차적으로 이용하여 미리 지정된 부호화 방식에 따른 비트스트림으로 변환하는 단계; (a) converting the input video into a bitstream according to a predetermined encoding scheme by sequentially using a plurality of functional units; (b) 상기 비트스트림의 신택스 정보 및 상기 기능부들의 연결 관계(connection)에 따른 디스크립션 정보를 생성하는 단계; 및(b) generating description information according to a connection relationship between the syntax information of the bitstream and the functional units; And (c) 상기 비트스트림 및 상기 디스크립션 정보를 복호화 장치로 전송하는 단계를 포함하는 부호화 방법.(c) transmitting the bitstream and the description information to a decoding apparatus. 제50항에 있어서,51. The method of claim 50, 상기 단계 (c)는,Step (c) is, 상기 비트스트림 및 상기 디스크립션 정보를 포함하는 하나의 확장 비트스트림을 생성하는 단계; 및Generating one extended bitstream including the bitstream and the description information; And 상기 확장 비트스트림을 상기 복호화 장치로 전송하는 단계를 포함하는 것을 특징으로 하는 부호화 방법.And transmitting the extended bitstream to the decoding apparatus. 복호화 방법을 수행하기 위해 복호화 장치에서 실행될 수 있는 명령어들의 프로그램이 유형적으로 구현되어 있으며, 상기 복호화 장치에 의해 판독될 수 있는 프로그램이 기록된 기록 매체에 있어서In a recording medium in which a program of instructions that can be executed in a decoding apparatus is tangibly implemented to perform a decoding method, and in which a program that can be read by the decoding apparatus is recorded. (a) 입력된 디스크립션 정보에 상응하는 복수의 테이블을 생성하여 저장하는 단계;(a) generating and storing a plurality of tables corresponding to the input description information; (b) 상기 저장된 하나 이상의 테이블을 이용하여, 입력된 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보를 저장하는 단계;(b) storing a plurality of element information generated by syntax parsing of an input bitstream using the stored one or more tables; (c) 상기 비트스트림의 인코딩된 비디오 데이터를 미리 지정된 크기의 매크로블록으로 변환하여 순차적 출력하는 단계; 및(c) converting the encoded video data of the bitstream into macroblocks having a predetermined size and sequentially outputting the macroblocks; And (d) 상기 매크로블록 데이터를 상기 동영상 데이터로 변환하기 위하여 처리할 프로세스가 각각 지정된 복수의 처리 기능부 중 상기 저장된 하나 이상의 테이블 정보를 참조하여 하나의 처리 기능부를 호출하는 단계를 실행하되,(d) executing a step of calling one processing function by referring to the stored one or more table information among a plurality of processing functions each having a process to be processed to convert the macroblock data into the video data, 상기 호출된 처리 기능부는 상기 저장된 복수의 엘리먼트 정보 중 미리 지정된 엘리먼트 정보를 이용하여 지정된 프로세스를 수행한 결과 데이터를 출력하고,The called processing function unit outputs a result data of performing a specified process using predetermined element information among the plurality of stored element information, 상기 단계 (d)는 상기 결과 데이터가 상기 인코딩된 비디오 데이터에 상응하는 동영상 데이터가 될 때까지 반복되는 것을 특징으로 하는 프로그램을 기록한 기록매체.And said step (d) is repeated until said result data becomes moving picture data corresponding to said encoded video data. 제52항에 있어서,The method of claim 52, wherein 상기 단계 (d)의 반복 수행도중, 상기 단계 (d)에 의해 선택될 기능부에 요구되는 엘리먼트 정보가 상기 엘리먼트 정보 저장부에 저장되지 않은 경우 상기 단계(b)의 재수행 후 상기 단계 (d)의 반복 수행을 재개하는 것을 특징으로 하는 프로그램을 기록한 기록매체.During the repetition of the step (d), if the element information required for the functional unit to be selected by the step (d) is not stored in the element information storage unit, the step (d) after the redo of the step (b) Recording medium recording a program, characterized in that to repeat the repeated execution of). 제52항에 있어서,The method of claim 52, wherein 상기 처리 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현된 것을 특징으로 하는 프로그램을 기록한 기록매체.And a predetermined process of each of said processing functions is implemented to independently perform each of the functions proposed by a plurality of standards for decoding said bitstream. 하나 이상의 테이블 정보들을 저장하는 테이블 저장부;A table storage unit for storing one or more table information; 부호화기로부터 수신된 디코딩 디스크립션에 상응하는 n(0 또는 m이하인 임의의 자연수)개의 테이블(table) 정보를 생성하여 상기 테이블 저장부에 저장하거나 k(m-n인 임의의 수)개의 테이블 정보를 상기 테이블 저장부에서 선택하는 디스크립션 디코더;Generate n (any number less than 0 or m) table information corresponding to the decoding description received from the encoder and store it in the table storage, or store k (any number being mn) table information in the table storage. A description decoder selected from the portion; 상기 디스크립션 디코더에 의해 생성 또는 선택된 m(n과 같거나 그 이상인 임의의 자연수)개의 테이블 정보를 이용하여 상기 부호화기로부터 수신된 비트스트림에 포함된 인코딩된 비디오 데이터에 상응하는 동영상 데이터를 생성하여 출력하는 코덱부를 포함하는 복호화 장치.Generating and outputting moving image data corresponding to encoded video data included in a bitstream received from the encoder using m (any natural number equal to or greater than n) table information generated or selected by the description decoder. Decoding device comprising a codec unit. 제55항에 있어서,The method of claim 55, 상기 디코딩 디스크립션이 상기 비트스트림이 부호화된 코덱 번호(Codec No.), 프로파일 및 레벨 번호(Profile and level No.)에 상응하는 지정 정보를 포함하는 경우 상기 m개의 테이블 정보는 상기 테이블 저장부에서 선택되는 것을 특징으로 하는 복호화 장치.The m table information is selected by the table storage unit when the decoding description includes designation information corresponding to a codec number (Codec No.), a profile and a level number (Codec No.) in which the bitstream is encoded. Decoding apparatus, characterized in that. 제55항에 있어서,The method of claim 55, 상기 디코딩 디스크립션은 m개의 테이블 영역으로 구성되고, 각 테이블 영역에는 상기 테이블을 구성하기 위한 테이블 정보가 삽입되는 것을 특징으로 하는 복호화 장치.And the decoding description is composed of m table areas, and table information for configuring the table is inserted in each table area. 제57항에 있어서,The method of claim 57, 임의의 테이블 정보에 상응하는 테이블 영역에 생성 정보가 포함된 경우, 상기 디스크립션 디코더는 상기 생성 정보를 이용하여 상응하는 테이블을 신규 생성하는 것을 특징으로 하는 복호화 장치.And when the generation information is included in a table area corresponding to arbitrary table information, the description decoder newly generates a corresponding table using the generation information. 제57항에 있어서,The method of claim 57, 임의의 테이블 정보에 상응하는 테이블 영역에 수정 정보가 포함된 경우, 상기 디스크립션 디코더는 상기 수정 정보를 이용하여 상응하는 테이블을 수정하는 것을 특징으로 하는 복호화 장치.And when the modification information is included in a table area corresponding to arbitrary table information, the description decoder modifies the corresponding table by using the modification information. 제59항에 있어서,The method of claim 59, 임의의 테이블 정보에 상응하는 테이블 영역 또는 상기 테이블 영역 이전에 코덱 번호(Codec No.), 프로파일 및 레벨 번호(Profile and level No.)가 더 포함된 경우, 상기 디스크립션 디코더는 상기 코덱에 상응하는 상기 테이블 정보를 상기 수정 정보에 의해 수정하는 것을 특징으로 하는 복호화 장치.When a table area corresponding to any table information or a codec number (Codec No.), a profile and a level number (Profile and level No.) are further included before the table area, the description decoder is further configured to correspond to the codec. And decoding table information by the correction information. 제55항에 있어서,The method of claim 55, 상기 코덱부는,The codec unit, 미리 지정된 프로세스를 처리하도록 각각 구현된 복수의 기능부를 포함하는 툴 박스;A tool box including a plurality of functional units each implemented to process a predetermined process; 상기 복수의 기능부 중 하나 이상의 기능부에 의한 상기 비트스트림의 신택스 파싱(syntax parsing)에 의해 생성된 복수의 엘리먼트 정보가 저장되는 CSCI(Control Signal/Context Information) 저장부; 및A Control Signal / Context Information (CSCI) storage unit for storing a plurality of element information generated by syntax parsing of the bitstream by at least one of the plurality of functional units; And 미리 지정된 하나 이상의 테이블을 참조하여 복수의 기능부들의 처리 순서를 인식하고 상응하는 기능부가 활성화되도록 제어하는 연결 제어부를 포함하는 것을 특징으로 하는 복호화 장치.And a connection controller for recognizing a processing order of the plurality of functional units and controlling the corresponding functional units to be activated by referring to one or more predetermined tables. 제61항에 있어서,62. The method of claim 61, 상기 기능부 각각의 미리 지정된 프로세스는 상기 비트스트림의 디코딩을 위해 복수의 표준들에 의해 제안된 기능들 각각을 독립적으로 수행하도록 구현된 것을 특징으로 하는 복호화 장치.A predetermined process of each of the functional units is implemented to independently perform each of the functions proposed by a plurality of standards for decoding the bitstream. 제62항에 있어서,The method of claim 62, 상기 인코딩된 비디오 데이터가 복수의 표준에 의해 인코딩된 경우, 상기 연결 제어부는 상기 테이블을 참조하여 복수의 표준에 따른 프로세스를 수행하는 복수의 기능부를 순차적으로 활성화하여 상기 인코딩된 비디오 데이터가 상기 동영상 데이터로 디코딩되도록 하는 것을 특징으로 하는 복호화 장치.When the encoded video data is encoded by a plurality of standards, the connection controller sequentially activates a plurality of functional units performing a process according to a plurality of standards by referring to the table so that the encoded video data is the video data. Decoding apparatus characterized in that the decoding to. 제61항에 있어서,62. The method of claim 61, 상기 툴 박스는,The tool box, 상기 비트스트림의 신택스 파싱에 의해 복수의 엘리먼트 정보를 생성하여 상기 CSCI 저장부에 저장하고, 상기 인코딩된 비디오 데이터를 미리 지정된 크기의 매크로블록 데이터로 생성하여 순차적 출력하는 파싱 기능부; 및A parsing function unit which generates a plurality of element information by syntax parsing of the bitstream and stores the plurality of element information in the CSCI storage unit, and generates and sequentially outputs the encoded video data as macroblock data having a predetermined size; And 상기 매크로블록 데이터를 상기 동영상 데이터로 변환하기 위하여 처리할 프로세스가 각각 지정된 복수의 처리 기능부들을 포함하는 것을 특징으로 하는 복호화 장치.And a plurality of processing functional units each having a process to be processed for converting the macroblock data into the moving image data. 제64항에 있어서,65. The method of claim 64, 상기 m개의 테이블은 비트스트림 신택스(syntax)에 대한 정보 및 상기 비트스트림 신택스에 상응하는 엘리먼트 정보를 생성하기 위한 프로세스를 나타내는 SET(Syntax Element Table), 상기 비트스트림 신택스간의 연결 정보를 나타내는 S-RT(Syntax - Rule Table), 상기 엘리먼트 정보에 대한 상세 정보를 나타내는 CSCIT(Control Signal and Context Information Table), 복수의 기능부(FU)들의 순차적 선택을 위한 F-RT(FU-Rule Table), 상기 기능부들의 리스트를 나타내는 FL(FU List), 상기 선택된 기능부에 입력될 엘리먼트 정보를 나타내는 FU-CSCIT를 포함하는 것을 특징으로 하는 복호화 장치.The m tables may include a Syntax Element Table (SET) indicating a process for generating information on bitstream syntax and element information corresponding to the bitstream syntax, and an S-RT indicating connection information between the bitstream syntax. (Syntax-Rule Table), CSCIT (Control Signal and Context Information Table) indicating detailed information on the element information, F-RT (Fu-Rule Table) for sequential selection of a plurality of functional units (FU), the function FL (FU List) indicating a list of parts, FU-CSCIT indicating element information to be input to the selected functional unit. 제65항에 있어서,66. The method of claim 65, 상기 SET(Syntax Element Table), 상기 S-RT(Syntax - Rule Table) 및 상기 F-RT(FU-Rule Table)는 파일 포인터를 이동하여 s(임의의 자연수) 비트를 독출하는 리드(READ) 명령, 파일 포인터 이동없이 s 비트를 독출하는 시크(SEEK) 명령, 파일 포인터에서 s비트 만큼 파일 포인터를 이동하는 플러시(FLUSH) 명령, 인덱스간의 분기를 지시하는 고(GO) 명령, 엘리먼트 정보의 플래그를 설정하는 세트(SET) 명령 중 하나 이상을 포함하여 구성되는 것을 특징으로 하는 복호화 장치.The SET (Syntax Element Table), the S-RT (Syntax-Rule Table), and the F-RT (FU-Rule Table) move a file pointer to read s (arbitrary natural numbers) bits. Command, a SEEK instruction that reads the s bits without moving the file pointer, a FLUSH instruction that moves the file pointer by s bits in the file pointer, a GO instruction that indicates a branch between indexes, and element information And at least one of a set (SET) instruction for setting a flag. 제65항에 있어서,66. The method of claim 65, 엔트로피 코딩(entropy coding)시의 실제 값과 코드값의 관계를 나타내는 DVT(Default Value Table)를 더 포함하는 것을 특징으로 하는 복호화 장치.And a default value table (DVT) indicating a relationship between an actual value and a code value during entropy coding. 제65항에 있어서,66. The method of claim 65, 상기 연결 제어부는 상기 F-RT를 이용하여 상기 파싱 기능부 및 상기 복수의 처리 기능부들 중 선택된 복수의 기능부들이 활성화될 순서를 지정하는 것을 특징으로 하는 복호화 장치.And the connection controller specifies an order in which the plurality of selected functional units of the parsing function unit and the plurality of processing function units are activated using the F-RT. 제68항에 있어서,The method of claim 68, 상기 연결 제어부에 의해 활성화된 처리 기능부는 미리 지정된 엘리먼트 정보 및 직전의 기능부에 의한 출력 데이터를 이용하여 미리 지정된 프로세스를 수행하는 것을 특징으로 하는 복호화 장치.And a processing function unit activated by the connection control unit performs a predetermined process by using predetermined element information and output data by a previous function unit. 제65항에 있어서,66. The method of claim 65, 상기 파싱 기능부는 상기 SET, 상기 S-RT 및 상기 CSCIT를 이용하여 상기 엘리먼트 정보를 생성하는 것을 특징으로 하는 복호화 장치.And the parsing function unit generates the element information using the SET, the S-RT, and the CSCIT. 제55항에 있어서,The method of claim 55, 상기 부호화기로부터 상기 디코딩 디스크립션 및 상기 비트스트림이 통합된 확장 비트스트림이 수신되는 경우, 상기 디코딩 디스크립션 및 상기 비트스트림을 분리하기 위한 분리부를 더 포함하는 복호화 장치.And a separating unit for separating the decoding description and the bitstream when the decoding description and the extended bitstream in which the bitstream are integrated are received from the encoder. 삭제delete
KR1020060065139A 2006-03-31 2006-07-11 Device and Method for unified codecs KR100807100B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020060065139A KR100807100B1 (en) 2006-07-11 2006-07-11 Device and Method for unified codecs
PCT/KR2007/001542 WO2007114586A1 (en) 2006-03-31 2007-03-29 Device and method for unified codecs
US12/242,563 US8711946B2 (en) 2006-03-31 2008-09-30 Device and method for unified codes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060065139A KR100807100B1 (en) 2006-07-11 2006-07-11 Device and Method for unified codecs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020060135371A Division KR20080006430A (en) 2006-12-27 2006-12-27 Device and method for unified codecs

Publications (2)

Publication Number Publication Date
KR20080006243A KR20080006243A (en) 2008-01-16
KR100807100B1 true KR100807100B1 (en) 2008-03-03

Family

ID=39220099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060065139A KR100807100B1 (en) 2006-03-31 2006-07-11 Device and Method for unified codecs

Country Status (1)

Country Link
KR (1) KR100807100B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177478A1 (en) * 2020-03-02 2021-09-10 엘지전자 주식회사 Signal processing device and image display device comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444907B1 (en) * 2008-06-24 2014-10-01 (주)휴맥스 홀딩스 Reconfigurable AVC Adaptive Video Decoder and Method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245296A (en) 2000-02-28 2001-09-07 Toshiba Corp Video coder and video-coding method
KR20050065102A (en) * 2003-12-24 2005-06-29 엘지전자 주식회사 Image processing apparatus and method
KR20060004707A (en) * 2001-08-31 2006-01-12 마쯔시다덴기산교 가부시키가이샤 Image decoding method and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245296A (en) 2000-02-28 2001-09-07 Toshiba Corp Video coder and video-coding method
KR20060004707A (en) * 2001-08-31 2006-01-12 마쯔시다덴기산교 가부시키가이샤 Image decoding method and apparatus thereof
KR20050065102A (en) * 2003-12-24 2005-06-29 엘지전자 주식회사 Image processing apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177478A1 (en) * 2020-03-02 2021-09-10 엘지전자 주식회사 Signal processing device and image display device comprising same

Also Published As

Publication number Publication date
KR20080006243A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
KR101305491B1 (en) Bitstream decoding device and method
KR101232780B1 (en) Device and Method for unified codecs
US8711946B2 (en) Device and method for unified codes
KR101305514B1 (en) Bitstream decoding device and method
KR100813435B1 (en) Device and method for encoding/decoding bit-stream
KR101372418B1 (en) Bitstream decoding device and method
US20100208829A1 (en) Bitstream decoding device and method having decoding solution
KR100807100B1 (en) Device and Method for unified codecs
KR100767606B1 (en) Device and Method for unified codecs
KR101380825B1 (en) Bitstream decoding device and method having decoding solution
KR20080006430A (en) Device and method for unified codecs
KR100970145B1 (en) Device and Method for encoding/decoding
KR101305517B1 (en) Bitstream decoding device and method having decoding solution
KR20090002508A (en) Device and method for encoding/decoding video data
KR20100115238A (en) Device and method for codec design
KR101305516B1 (en) Bitstream decoding device and method having decoding solution
KR20100040625A (en) Device and method for encoding/decoding
KR20100094709A (en) Device and method for encoding/decoding
KR100841558B1 (en) Device and Method for encoding/decoding bit-stream
US8565320B2 (en) Device and method for encoding/decoding video data
KR101305513B1 (en) Device and Method for encoding/decoding Video data
KR20070098459A (en) Device and method for unified codecs
KR20080035421A (en) Device and method for encoding/decoding bit-stream
KR20090002507A (en) Device and method for encoding/decoding video data
KR20070075270A (en) Device and method for unified codecs

Legal Events

Date Code Title Description
A201 Request for examination
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130208

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140204

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee