KR100802683B1 - Seperator for fuel cell - Google Patents

Seperator for fuel cell Download PDF

Info

Publication number
KR100802683B1
KR100802683B1 KR1020060126527A KR20060126527A KR100802683B1 KR 100802683 B1 KR100802683 B1 KR 100802683B1 KR 1020060126527 A KR1020060126527 A KR 1020060126527A KR 20060126527 A KR20060126527 A KR 20060126527A KR 100802683 B1 KR100802683 B1 KR 100802683B1
Authority
KR
South Korea
Prior art keywords
cooling
metal
flow path
separator
cooling channel
Prior art date
Application number
KR1020060126527A
Other languages
Korean (ko)
Inventor
김세훈
양유창
금영범
정승훈
진상문
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060126527A priority Critical patent/KR100802683B1/en
Application granted granted Critical
Publication of KR100802683B1 publication Critical patent/KR100802683B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A metal separator for a polymer electrolyte fuel cell is provided to prevent the generation of bubbles, to improve the uniformity of cooling flow and to reduce the pressure difference of a cooling medium regardless of a gas channel of serpentine structure. A metal separator comprises a plurality of layers of a cell comprising a gasket(12,14), a membrane electrode assembly and a gas diffusion layer(13) which are adhered between separators, wherein the metal thin film of the separator is made by stamping method. The metal separator(10,11) is provided with a serpentine channel for delivering a reaction gas, the metal separators between the cells are adhered to form a cooling channel, a cooling channel entrance and a cooling channel exit are formed at the lower and upper ends of the separator, and the cooling water flowing into the entrance of the cooling channel moves through the cooling channel so as to be spread into the entire separator and so as to be discharged at the exit of the cooling channel, thereby flowing in the opposite direction of gravity.

Description

연료전지용 금속분리판{Seperator for fuel cell}Metal Separators for Fuel Cells {Seperator for fuel cell}

도 1은 본 발명에 따른 연료전지용 분리판의 일실시예를 나타내는 분해사시도이고,1 is an exploded perspective view showing an embodiment of a separator for a fuel cell according to the present invention;

도 2는 본 발명에 따른 금속분리판의 냉각수 흐름을 설명하기 위한 도면이다.2 is a view for explaining the cooling water flow of the metal separator according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10,11 : 금속분리판 12 : 제1가스켓10,11: metal separator 12: first gasket

13 : 막전극접합체 및 가스확산층13: membrane electrode assembly and gas diffusion layer

14 : 제2가스켓 15 : 냉각채널14: second gasket 15: cooling channel

16 : 냉각유로 입구 17 : 냉각유로 출구16 cooling channel inlet 17 cooling channel outlet

본 발명은 연료전지용 금속분리판에 관한 것으로서, 더욱 상세하게는 가스유로가 서스펜타인 구조를 가지면서도 균일한 냉각 유동 및 냉각유의 차압을 감소시 킬 수 있도록 한 연료전지용 금속 분리판에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal separator for fuel cells, and more particularly, to a metal separator for fuel cells in which a gas flow path has a suspender structure and a uniform cooling flow and a differential pressure of the cooling oil can be reduced.

고분자 전해질 연료전지는 고체 고분자 전해질막 양측에 설치되어 각각 전극 촉매 역할을 하는 애노드(Anode) 및 캐소드(Cathode)와, 이를 지지하는 분리판으로 구성되어 있다. The polymer electrolyte fuel cell is composed of an anode and a cathode installed on both sides of the solid polymer electrolyte membrane and serving as an electrode catalyst, and a separator supporting the same.

통상적으로 분리판은 흑연계 재료를 사용하여 기계가공을 통해 유로를 제작하는데, 이는 많은 제작 비용 뿐만 아니라 흑연의 강도 문제로 인해 분리판 박판화를 어렵게 하는 단점을 수반한다. Typically, the separator is made of graphite-based material to fabricate the flow path through machining, which entails not only a large manufacturing cost but also a disadvantage of making the separator thinner due to the strength problem of the graphite.

이러한 문제를 해결하기 위해 분리판의 재료로 강도가 우수하며 동시에 박판화가 용이한 금속을 채용한다. 이는 원소재 두께 0.1 ~ 0.2mm의 금속 박판을 스템핑 등의 성형공법을 이용하여 유로를 제작하는 방식으로 기계가공을 통해 유로를 제작하는 흑연 분리판에 비해 제작 시간 및 비용을 현저히 저감시 킬 수 있다.In order to solve this problem, a metal having excellent strength and easy thinness is employed as a material of the separator. This method can significantly reduce the production time and cost compared to the graphite separation plate that manufactures the flow path through the machining process by manufacturing the flow path by forming the thin metal plate with a raw material thickness of 0.1 ~ 0.2mm. have.

그러나, 금속 분리판 적용 시 몇 가지 해결해야 할 문제점이 있다.However, there are some problems to be solved when applying the metal separator plate.

첫째, 금속 소재의 특성 상, 금속 분리판의 부식 문제를 해결해야 하며, 둘째 두께 0.1 ~ 0.2mm의 금속 박판을 스탬핑 방식으로 유로를 제작하는 방식하게 되므로, 분리판 뒷면에도 동일한 형상이 나타나게 되어 가스 유로를 서펜타인(Serpentine) 구조로 가져갔을 시 냉각유로 설계에 제약조건이 된다. First, due to the nature of the metal material, the problem of corrosion of the metal separator plate must be solved. Second, since the flow path is manufactured by stamping a metal thin plate having a thickness of 0.1 to 0.2 mm, the same shape appears on the back of the separator plate. If the flow path is taken to the Serpentine structure, it is a constraint on the design of the cooling flow path.

즉, 연료전지에 금속분리판을 적용하기 위해 발생하는 구조적인 문제는 가스 유로의 박판 성형에 따른 냉각유로 설계의 어려움에 있다. 이를 해결하기 위해 크게 두가지 방법이 제안되어 있다.That is, a structural problem that occurs to apply a metal separator plate to a fuel cell is a difficulty in designing a cooling flow path due to the thin plate forming of the gas flow path. Two methods have been proposed to solve this problem.

미국특허 US20050186464에는 연료유로 및 공기유로를 동일한 직선으로 가져 감으로써 스탬핑으로 생기는 분리판 뒷면 형상을 그대로 냉각유로로 활용하는 방법이 개시되어 있다.US Patent US20050186464 discloses a method of utilizing the back surface of the separation plate resulting from stamping as a cooling flow path by bringing the fuel flow path and the air flow path in the same straight line.

이는 추가적인 작업 및 방법을 이용하지 않으면서도 한번의 작업으로 반응 가스와 냉각유의 유로를 생성할 수 있는 장점이 있다.This has the advantage of generating a flow path of the reaction gas and the cooling oil in one operation without using additional operations and methods.

그러나, 이러한 직선유로는 동일한 반응면적 내에서 서스펜타인 유로에 비해 반응기체의 확산 및 분포가 좋지 않아 성능 저하를 초래하는 문제점이 있다.However, such a linear flow path has a problem in that the diffusion and distribution of the reactant gas are not as good as those in the suspension path within the same reaction area, resulting in performance degradation.

미국특허 US20040219410는 연료유로 및 공기유로를 서스펜타인 구조로 가져감으로써, 입출구 단의 굴곡진 부분에서 냉각유로가 형성되지 않는 부분이 형성되어 있다.In US Patent US20040219410, the fuel flow path and the air flow path are brought into the suspension structure to form a portion in which the cooling flow path is not formed at the curved portion of the inlet and the outlet end.

이와 같은 문제를 해결하기 위해 대부분의 방법들은 흑연분리판과 같이 중앙부에 냉각유로 입출구가 존재하고 입출구와 유로 사이의 분배성을 위해 가스켓 및 버퍼부 등을 둔다.In order to solve this problem, most methods have a cooling oil inlet / outlet in the center, such as a graphite separator, and a gasket and a buffer part are provided for distribution between the inlet and outlet.

그러나, 이는 연료전지의 구조를 복잡하게 하여 추가적인 작업을 야기하며, 가스켓의 사용이 증가하여 분리판의 밀봉에 악영항을 미친다.However, this complicates the structure of the fuel cell and causes additional work, and the use of the gasket increases, adversely affecting the sealing of the separator plate.

또한, 일본특허 JP2004193110는 냉각유로의 입출구가 중력방향에 대해 일직선상에 존재함으로써, 냉각유 내 기포가 생길수 있고, 상기 일본 특허에서는 이를 제거하기 위해 냉각유로 내 기포를 제거할 수 있는 버퍼부를 추가적으로 제작하였다.In addition, Japanese Patent JP2004193110 has an inlet and outlet of the cooling passage in a straight line with respect to the direction of gravity, whereby bubbles may be generated in the cooling oil, and the Japanese patent additionally manufactures a buffer unit capable of removing the bubbles in the cooling oil passage to remove them. It was.

그러나, 이는 냉각유로의 구조 및 밀봉(SEAL) 형상을 복잡하게 하는 문제점이 있다.However, this has a problem of complicating the structure of the cooling flow path and the sealing (SEAL) shape.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 반응기체는 서펜타인 유로를 가지면서도 냉각수는 중력반대방향의 직선유로를 가짐으로써, 균일한 냉각 유동 및 냉각유의 차압을 감소시킬 수 있고, 별다른 추가장치 없이도 기포생성을 방지할 수 있도록 한 연료전지용 금속분리판을 제공하는데 그 목적이 있다.The present invention has been made in view of the above, the reactor body has a serpentine flow path, while the coolant has a straight flow path in the opposite direction of gravity, it is possible to reduce the uniform cooling flow and the differential pressure of the cooling oil, It is an object of the present invention to provide a fuel cell metal separator plate capable of preventing bubble generation without additional equipment.

상기한 목적을 달성하기 위한 본 발명은 분리판 사이에 가스켓, 막전극접합체 및 가스확산층이 접합되어 1셀로 이루어지되, 이러한 조합이 여러겹으로 적층된 고분자 전해질 연료전지용 금속분리판에 있어서,In the present invention for achieving the above object is a gasket, a membrane electrode assembly and a gas diffusion layer is bonded between the separator plate is made of one cell, the combination is laminated in multiple layers for a polymer electrolyte fuel cell metal separator,

상기 분리판은 금속박판을 스탬핑방식으로 제작하여, 상기 금속분리판에 반응가스가 이송되는 서펜타인 유로가 형성되되, 상기 셀 간의 금속분리판이 접합되어 냉각채널이 형성되고, 냉각유로의 입구 및 출구가 상기 분리판의 하단 및 상단에 형성되어, 냉각유로 입구로 유입된 냉각수가 상기 냉각채널을 통해 이동하여 분리판 전체로 퍼지고, 상기 냉각유로 출구로 배출되어 중력반대방향으로 유동하는 것을 특징으로 한다.The separation plate is manufactured by stamping a metal thin plate to form a serpentine flow path through which a reaction gas is transferred to the metal separation plate, wherein the metal separation plates are joined to each other to form a cooling channel, and an inlet to the cooling flow path and Outlets are formed at the lower and upper ends of the separation plate, the cooling water flowing into the cooling channel inlet is moved through the cooling channel to spread throughout the separation plate, discharged to the outlet of the cooling channel flows in the opposite direction of gravity do.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 냉각유로 입출구가 중력반대방향으로 구성되어 별도의 추가구성없이도 기포생성문제를 개선할 수 있도록 한 점에 주안점이 있다.The present invention has the main point that the inlet and outlet of the cooling oil flow in the opposite direction of gravity to improve the bubble generation problem without additional configuration.

본 발명은 가스유로가 서스펜타인 유로를 가지면서 균일한 냉각 유동 및 냉각유의 차압을 감소시킬 수 있는 금속분리판(10,11) 구조를 제공한다.The present invention provides a structure of the metal separation plates (10, 11) capable of reducing the uniform cooling flow and the differential pressure of the cooling oil while the gas flow path has a suspension flow path.

도 1은 본 발명에 따른 금속 분리판의 스택 구성도로서, 서스펜타인 형태의 가스유로가 형성된 금속분리판(10,11)과, 금속분리판(10,11) 사이에 반응 기체의 밀봉을 위한 제1가스켓(12)과, 막전극접합체(MEA) & 가스 확산층(13)이 적층되어 연료전지 1 셀을 이루게 된다. 1 is a stack configuration diagram of a metal separation plate according to the present invention, and the sealing of the reaction gas between the metal separation plates (10, 11) and the metal separation plates (10, 11) in which a gas flow path in the form of a suspension is formed is shown. The first gasket 12 and the membrane electrode assembly (MEA) & gas diffusion layer 13 are stacked to form one fuel cell.

이러한 조합이 여러겹으로 적층 되어 하나의 연료전지 스택을 이루게 되며, 각각의 셀이 겹치는 부분에는 냉각채널(15)이 형성되며, 냉각유로의 밀봉을 위해 금속 분리판 사이에 제2가스켓(14)이 삽입 된다. These combinations are stacked in multiple layers to form a single fuel cell stack. Cooling channels 15 are formed in the overlapping portions of the cells, and second gaskets 14 are disposed between the metal separation plates for sealing the cooling flow paths. Is inserted.

상기 셀이 겹치는 금속분리판(10,11)의 우측 하단에는 냉각유로 입구(16)가 형성되고, 금속분리판(10,11)의 좌측 상단에는 냉각유로 출구(17)가 형성되며, 상기 냉각유로 입구(16)를 통해 유입된 냉각수의 유동방향은 전체적으로 중력반대방향이다. 이때, 상기 냉각유로 입구 및 출구(16,17) 사이에는 냉각채널(15)이 위치한다.The cooling channel inlet 16 is formed at the lower right side of the metal separator plates 10 and 11 in which the cells overlap, and the cooling channel outlet 17 is formed at the upper left side of the metal separator plates 10 and 11. The flow direction of the coolant flowing through the flow path inlet 16 is generally against gravity. At this time, the cooling channel 15 is located between the cooling flow path inlet and the outlet 16 and 17.

이와 같은 구성에 의한 본 발명에 따른 냉각수의 작동상태를 설명하면 다음과 같다.Referring to the operating state of the coolant according to the present invention by such a configuration as follows.

도 2는 금속 분리판이 겹쳐져서 형성되는 냉각채널의 공간(두 분리판이 겹쳐졌을 때 생기는 빈 공간)을 나타내는 도면으로서, 냉각유로 입구(16)로 들어간 냉각수는 냉각채널(15)을 통해 반대편 끝단까지 흘러간 후(→), 각 채널을 통해 분리판 전반으로 퍼지게 되며 (→), 이후 냉각채널(15)의 끝단에서 냉각유로 출구(16) (→) 로 빠져 나가게 된다. FIG. 2 is a view showing a space of a cooling channel formed by overlapping metal separator plates (empty space generated when two separator plates overlap), in which cooling water entering the cooling flow path inlet 16 is connected to the opposite end through the cooling channel 15. After flowing (→), it spreads through the respective channels through the separator plate (→), and then exits from the end of the cooling channel 15 to the cooling channel outlet 16 (→).

즉 냉각유로 입출구(16,17)를 분리판(10,11) 상하 양 끝단으로 위치시킴으로써, 반응기체는 서펜타인 유로를 가지면서도, 냉각수는 직선유로를 가지게 되어 균일한 냉각유동 및 냉각유의 차압을 감소시킬 수 있게 된다.That is, by placing the inlet and outlet ports 16 and 17 at the upper and lower ends of the separation plates 10 and 11 as the cooling oil, the reactor body has a serpentine flow path, while the cooling water has a straight flow path, so that the cooling flow and the differential pressure of the cooling oil are uniform. Can be reduced.

상기와 같은 구조를 가짐으로써, 다음과 같은 이점을 가질 수 있다.By having the above structure, it can have the following advantages.

1. 금속분리판(10,11)의 가스 유로가 서펜타인으로 형성되면서도 냉각유로를 손쉽게 제작할 수 있다.1. Even though the gas flow paths of the metal separation plates 10 and 11 are made of serpentine, the cooling flow path can be easily manufactured.

2. 냉각수 매니폴드를 가스유로 입출구 중앙에 배치함으로써 야기되는 단점들을 해결 할 수 있다. 즉, 종래의 미국특허 US20040219410와 같이 가스류 입출구를 중앙에 위치시킴으로써 유로 구조가 연속적이지 못하거나, 가스켓 사용 부위가 많아져서 냉각수 매니폴드의 기밀 유지를 저해하며, 형상이 복잡해 지는 단점을 막을 수 있다. 2. The disadvantages caused by placing the coolant manifold in the center of the gas oil inlet and outlet can be solved. That is, by placing the gas flow inlet and outlet in the center, as in the conventional US patent US20040219410, the flow path structure is not continuous, or the gasket use area is increased, thereby preventing the airtightness of the cooling water manifold and preventing the complexity of the shape. .

3. 종래의 일본특허 JP2004193110과 같이 냉각수의 입·출구 배열을 중력방향에 수평으로 위치시켰을 경우, 냉각수 내 생길 수 있는 기포를 제거하는데 어려움이 있었으나, 본 발명은 냉각유로 입·출구(16,17) 배열을 중력 반대방향으로 위치시킴으로써, 별다른 추가장치 없이도 기포 생성 문제를 해결 할 수 있다. 3. When the inlet / outlet arrangement of the coolant is positioned horizontally in the direction of gravity as in the conventional Japanese patent JP2004193110, it is difficult to remove bubbles that may occur in the coolant. By placing the array in the opposite direction of gravity, the bubble generation problem can be solved without any additional equipment.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함 한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be implemented without departing from the spirit.

이상에서 본 바와 같이, 본 발명에 따른 연료전지용 금속분리판에 의하면, 반응기체는 서펜타인 유로를 가지면서도 냉각수는 중력반대방향의 직선유로를 가짐으로써, 균일한 냉각 유동 및 냉각유의 차압을 감소시킬 수 있고, 별다른 추가장치 없이도 기포생성을 방지할 수 있다.As described above, according to the fuel cell metal separator according to the present invention, the reactor body has a serpentine flow path and the cooling water has a straight flow path in the opposite direction of gravity, thereby reducing the uniform cooling flow and the differential pressure of the cooling oil. It is possible to prevent the formation of bubbles without any additional device.

Claims (1)

분리판 사이에 가스켓, 막전극접합체 및 가스확산층이 접합되어 1셀로 이루어지되, 이러한 조합이 여러겹으로 적층된 고분자 전해질 연료전지용 금속분리판에 있어서,Gasket, membrane electrode assembly and gas diffusion layer are bonded to each other between the separation plate is composed of one cell, the combination is laminated in multiple layers for a polymer electrolyte fuel cell metal separator, 상기 분리판은 금속박판을 스탬핑방식으로 제작하여, 상기 금속분리판(10,11)에 반응가스가 이송되는 서펜타인 유로가 형성되되, 상기 셀 간의 금속분리판이 접합되어 냉각채널(15)이 형성되고, 냉각유로 입구 및 출구(16,17)가 상기 분리판의 하단 및 상단에 형성되어, 냉각유로 입구(16)로 유입된 냉각수가 상기 냉각채널(15)을 통해 이동하여 분리판 전체로 퍼지고, 상기 냉각유로 출구(17)로 배출되어 중력반대방향으로 유동하는 것을 특징으로 하는 연료전지용 금속분리판.The separation plate is formed by stamping a metal thin plate, and a serpentine flow path through which a reaction gas is transferred to the metal separation plates 10 and 11 is formed, and the metal separation plates between the cells are joined to the cooling channel 15. Cooling flow path inlets and outlets (16, 17) are formed at the bottom and top of the separation plate, the cooling water flowing into the cooling flow path inlet 16 is moved through the cooling channel 15 to the entire separation plate It spreads, the cooling flow path is discharged to the outlet 17, the metal separator plate for a fuel cell, characterized in that flow in the direction opposite to gravity.
KR1020060126527A 2006-12-12 2006-12-12 Seperator for fuel cell KR100802683B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060126527A KR100802683B1 (en) 2006-12-12 2006-12-12 Seperator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060126527A KR100802683B1 (en) 2006-12-12 2006-12-12 Seperator for fuel cell

Publications (1)

Publication Number Publication Date
KR100802683B1 true KR100802683B1 (en) 2008-02-12

Family

ID=39343003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060126527A KR100802683B1 (en) 2006-12-12 2006-12-12 Seperator for fuel cell

Country Status (1)

Country Link
KR (1) KR100802683B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953273B1 (en) 2009-07-31 2010-04-16 현대하이스코 주식회사 Metal seperator for fuel cell and fuel cell stack having the same
KR102008250B1 (en) 2018-02-08 2019-08-07 군산대학교산학협력단 Metallic seperator of fuel cell with plastic manifold and fuel cells comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173795A (en) 2001-09-27 2003-06-20 Hitachi Metals Ltd Steel for solid oxide fuel cell separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173795A (en) 2001-09-27 2003-06-20 Hitachi Metals Ltd Steel for solid oxide fuel cell separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953273B1 (en) 2009-07-31 2010-04-16 현대하이스코 주식회사 Metal seperator for fuel cell and fuel cell stack having the same
WO2011013870A1 (en) * 2009-07-31 2011-02-03 현대하이스코 주식회사 Metal separator for fuel cell, and fuel cell stack provided with same
KR102008250B1 (en) 2018-02-08 2019-08-07 군산대학교산학협력단 Metallic seperator of fuel cell with plastic manifold and fuel cells comprising the same

Similar Documents

Publication Publication Date Title
KR101134429B1 (en) Separation plate having injection molding gasket
EP2631976B1 (en) Fuel cell
EP2461403B1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
US9350029B2 (en) Fuel cell stack
US20080292941A1 (en) Fuel cell
US7226688B2 (en) Fuel cell
US9843055B2 (en) Separator for use in fuel cell, and fuel cell
CN102136585A (en) Metal separator for a fuel cell
KR20110013963A (en) Separation plate for fuel cell
US8617756B2 (en) Fuel cell stack
CN101529626B (en) Metal separator for fuel cell and fuel cell stack having the same
KR20140075465A (en) Fuel cell stack having cooling plate for improving temperature distribution
KR100745742B1 (en) Bipolar plate and fuel cell providing stack including the same
KR100953273B1 (en) Metal seperator for fuel cell and fuel cell stack having the same
KR102173663B1 (en) Fuel cell
KR100802683B1 (en) Seperator for fuel cell
EP2054965B1 (en) Bipolar separators with improved fluid distribution
JP2006147258A (en) Separator and fuel battery stack
JP7202107B2 (en) Electrochemical cell stacks, fuel cells and hydrogen production equipment
JP2008123901A (en) Fuel cell
JP7322265B2 (en) Electrochemical cell stacks, fuel cells and hydrogen production equipment
US20230327142A1 (en) Separator for fuel cell and fuel cell stack
JP2010027332A (en) Fuel cell
US20230282841A1 (en) Fuel cell stack
JP2010027381A (en) Fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee