KR100800436B1 - Bio sensor - Google Patents

Bio sensor Download PDF

Info

Publication number
KR100800436B1
KR100800436B1 KR1020060134756A KR20060134756A KR100800436B1 KR 100800436 B1 KR100800436 B1 KR 100800436B1 KR 1020060134756 A KR1020060134756 A KR 1020060134756A KR 20060134756 A KR20060134756 A KR 20060134756A KR 100800436 B1 KR100800436 B1 KR 100800436B1
Authority
KR
South Korea
Prior art keywords
chamber
signal
analyte
sample
biosensor
Prior art date
Application number
KR1020060134756A
Other languages
Korean (ko)
Inventor
이금필
Original Assignee
이금필
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이금필 filed Critical 이금필
Priority to KR1020060134756A priority Critical patent/KR100800436B1/en
Application granted granted Critical
Publication of KR100800436B1 publication Critical patent/KR100800436B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A bio-sensor is provided to be easy to manufacture and carry, have a simple structure, be mass-produced at low cost and quantitatively or qualitatively analyze an analyte without a washing step by moving particles using centrifugal force. A bio-sensor comprises at least one sample inlet(40) where a sample including an analyte is injected; at least one reaction chamber(50) which is communicated with the sample inlet and has a first binding material fixed at microparticles which recognize a specific portion of the analyte to be coupled to each other and a second binding material where a signal generation material recognizing the other portion of the analyte to be coupled thereto is fixed; at least one signal generation chamber(60) which is communicated with the reaction chamber and includes a signal inducing material generating a spectroscopic signal or an electrochemical signal by being reacted with the signal generation material; at least one particle capturing chamber(70) which is communicated with the signal generation chamber and captures the microparticles by centrifugal force; and at least one particle capturing chamber air outlet(78) which is communicated with the particle capturing chamber and discharges air existing in each of the chambers in accordance with the inflow of the sample, where the microparticle is an organic or an inorganic polymer particle such as latex bead, polystyrene bead, silica bead, agarose bead and dextrane bead; a metal particle such as magnet particle, god particle or silver particle; an organic or an inorganic polymer particle coated by the magnet, gold or silver particle; or a magnet, gold, or silver particle coated by the organic or inorganic polymer particle, the binding material is protein, protein A, protein G, DNA, RNA, peptide, antigen, antibody, avidin, biotin or a combination thereof, and the signal generation material is enzyme, organic or inorganic fluorescent material or a chelate compound binding to the fluorescent material.

Description

바이오 센서{Bio sensor}Bio sensor

도 1은 본 발명의 일실시 형태에 따른 바이오 센서의 일측면도이다. 1 is a side view of a biosensor according to an embodiment of the present invention.

도 2는 본 발명의 일실시 형태에 따른 바이오 센서의 전체 구성도이다. 2 is an overall configuration diagram of a biosensor according to an embodiment of the present invention.

도 3은 본 발명의 일실시 형태에 따른 바이오 센서의 단면도이다. 3 is a cross-sectional view of the biosensor according to one embodiment of the present invention.

도 4a는 본 발명의 일실시 형태에 따른 바이오 센서의 상부 기질의 윗면을 나타내는 도면이다. 4A is a view showing the top surface of the upper substrate of the biosensor according to one embodiment of the present invention.

도 4b는 본 발명의 일실시 형태에 따른 바이오 센서의 상부 기질의 아랫면을 나타내는 도면이다. 4B is a view showing the underside of the upper substrate of the biosensor according to one embodiment of the present invention.

도 4c는 본 발명의 일실시 형태에 따른 바이오 센서의 상부 기질의 측면을 나타내는 도면이다. 4C is a view showing the side of the upper substrate of the biosensor according to one embodiment of the present invention.

도 5는 본 발명의 일실시형태에 따른 바이오 센서의 중간 기질을 나타내는 도면이다. 5 is a view showing an intermediate substrate of a biosensor according to an embodiment of the present invention.

도 6은 본 발명의 일실시형태에 따른 바이오 센서 내 챔버들의 모양을 나타내는 도면이다. 6 is a view showing the shape of the chambers in the biosensor according to an embodiment of the present invention.

도 7a는 본 발명의 일실시형태에 따른 바이오 센서의 하부 기질을 나타내는 도면이다. 7A is a view showing a lower substrate of a biosensor according to an embodiment of the present invention.

도 7b는 본 발명의 일실시형태에 따른 바이오 센서의 하부 기질을 나타내는 도면이다. 7B is a view showing a lower substrate of the biosensor according to one embodiment of the present invention.

도 7c는 본 발명의 일실시형태에 따른 바이오 센서의 하부 기질을 나타내는 도면이다. 7C is a diagram illustrating a lower substrate of a biosensor according to one embodiment of the present invention.

도 7d는 본 발명의 일실시형태에 따른 바이오 센서의 하부 기질을 나타내는 도면이다. 7D is a diagram illustrating a lower substrate of a biosensor according to one embodiment of the present invention.

도 8은 본 발명의 일실시예에 따른 바이오 센서 내에서 신호를 발생시키는 반응을 나타내는 도면이다. 8 is a view showing a reaction for generating a signal in a biosensor according to an embodiment of the present invention.

도 9는 본 발명의 일실시예에 따른 바이오 센서 내에서 신호를 발생시키는 반응을 나타내는 도면이다. 9 is a view showing a reaction for generating a signal in the biosensor according to an embodiment of the present invention.

도 10은 본 발명의 일실시예에 따른 바이오 센서의 작동원리를 나타내는 도면이다. 10 is a view showing the operating principle of the biosensor according to an embodiment of the present invention.

도 11은 본 발명의 일실시예에 따른 바이오 센서의 작동원리를 나타내는 도면이다. 11 is a view showing the operating principle of the biosensor according to an embodiment of the present invention.

<주요 부분에 대한 부호의 설명><Description of the code for the main part>

10: 상부 기질 20: 중간 기질10: upper substrate 20: intermediate substrate

30: 하부 기질 40: 시료 주입구30: lower substrate 40: sample inlet

45: 시료 주입구 홀 50: 반응 챔버45: sample inlet hole 50: reaction chamber

51: 반응 챔버 유로 55: 반응 챔버 홀51: reaction chamber flow path 55: reaction chamber hole

60: 시료 발생 챔버 61: 신호 발생 챔버 유로60: sample generating chamber 61: signal generating chamber flow path

65: 시료 발생 챔버 홀 70: 입자 포집 챔버65: sample generating chamber hole 70: particle collection chamber

71: 입자 포집 챔버 유로 75: 입자 포집 챔버 홀71: particle collection chamber flow path 75: particle collection chamber hole

77: 공기 배출로 78: 공기 배출구77: air outlet 78: air outlet

80: 폐기물 저장 챔버 81: 폐기물 저장 챔버 유로80: waste storage chamber 81: waste storage chamber flow path

85: 폐기물 저장 챔버 홀 90: 고정홈85: waste storage chamber hole 90: fixing groove

100: 바이오 센서 200: 작동 전극100: biosensor 200: working electrode

210: 기준 전극 220: 시료 인식 전극210: reference electrode 220: sample recognition electrode

230: 시료 인식 전극 240: 기준 전극 리드 선230: sample recognition electrode 240: reference electrode lead wire

250: 시료 인식 리드 선 260: 작동 전극 리드 선250: sample recognition lead wire 260: working electrode lead wire

270: 시료 인식 리드 선 280: 바이오 센서 인식 전극270: sample recognition lead wire 280: biosensor recognition electrode

300: 반응층 310: 신호 발생층300: reaction layer 310: signal generating layer

601: 미세 입자 603: 분석물질601: fine particles 603: analyte

604: 분석물질의 특정 부위 610: 유사분석물질604: Specific region of the analyte 610: Similar analyte

본 발명은 원심력에 의한 미세 입자의 이동을 이용한 바이오 센서에 관한 것이다.The present invention relates to a biosensor using the movement of fine particles by centrifugal force.

바이오 센서란 특정한 물질에 대한 인식기능을 갖는 생물학적 수용체가 전기 또는 광학적 변환기와 결합되어 생물학적 상호작용 및 인식반응을 전기적 또는 광학적 신호로 변환함으로써 분석하고자 하는 물질을 선택적으로 감지할 수 있는 소자이며, 여기서 물질은 DNA, 항체, 항원 또는 혈당과 같은 생체물질뿐만 아니라 일반적인 화학물질을 포함한다. 생물학적 수용체는 분석물질을 선택적으로 인식함과 동시에 변환기가 측정할 수 있는 신호를 발생시키는 역할을 하는 생체분자로서 효소, 단백질, DNA, 세포, 호르몬, 생체막, 티슈 등이 사용된다. 발생된 생체신호 또는 인식반응 등을 유용한 신호로 변환시키는 데 전기화학, 광학, 자기, 압전, 전자 등 다양한 물리화학적인 방법이 적용되고 있으며, 궁극적으로는 전기신호가 얻어진다.A biosensor is a device capable of selectively detecting a substance to be analyzed by combining a biological receptor having a recognition function with a specific substance with an electrical or optical transducer to convert biological interaction and recognition reaction into an electrical or optical signal. Substances include common chemicals as well as biomaterials such as DNA, antibodies, antigens or blood sugar. Biological receptors are biomolecules that selectively recognize analytes and generate signals that can be measured by the transducer, and enzymes, proteins, DNA, cells, hormones, biofilms, tissues, and the like are used. Electrochemical, optical, magnetic, piezoelectric and electronic methods are used to convert the generated biosignals or recognition reactions into useful signals. Ultimately, electrical signals are obtained.

바이오 센서의 구조는 기존의 물리, 화학센서의 표면에 생물학적 감지요소(biological detection element)를 결합시킨 형태이다. 즉, 분석물질(analyte)이나 기질(substrate)과 선택적으로 결합 및 반응하는 생물학적 감지요소의 고선택성과 고감도의 특성을 이용하기 위한 구조이다. 따라서 바이오 센서에서는 사용되는 생물학적 감지요소와 신호변환기 그리고 이 둘을 연결시키기 위한 고정방법(immobilization method)의 3가지가 핵심요소이다. 생물학적 감지요소로는 효소반응의 효소/기질(enzyme/substrate), 면역반응의 항체/항원(antibody/antigen), DNA의 상보서열간의 수소결합, 각종 수용체(receptor), 미생물(microorganism), 세 포/근육/기관(cell/tissue/organ) 등이 사용된다. 이러한 생물학적 감지요소의 고정방법에는 흡착(adsorption), 마이크로캡슐화(microencapsulation), 포집(entrapment), 교차결합(cross-linking), 공유결합(covalent bonding) 등의 방법이 사용되고 있다. 마지막으로 사용되는 신호변환기로는 전기화학식(electrochemical), 광학식(optical), 압전소자(piezoelectric), 표면탄성파(surface acoustic wave), 온도감지식(thermal) 변환기 등이 사용된다.The structure of the biosensor is a form in which a biological detection element is coupled to the surface of a conventional physical and chemical sensor. That is, it is a structure for utilizing the characteristics of high selectivity and high sensitivity of the biological sensing element that selectively binds and reacts with analyte or substrate. Thus, in biosensors, three key elements are the biological sensing element used, the signal transducer, and the immobilization method for connecting the two. Biological sensing elements include enzyme / substrate of enzyme reaction, antibody / antigen of immune response, hydrogen bonding between complementary sequences of DNA, receptors, microorganisms, cells / Muscle / organ (cell / tissue / organ) and the like is used. Adsorption, microencapsulation, entrapment, cross-linking, covalent bonding, and the like are used for fixing the biological sensing element. Finally, as the signal converters used, electrochemical, optical, piezoelectric, surface acoustic wave, and thermal transducers are used.

바이오 센서는 1962년 Clark가 효소 전극(enzyme electrode)을 처음으로 제안하여 글루코오스 옥시다아제(glucoseoxidase; 이하 GOD)를 산소 센서(O2 sensor)와 결합시킨 혈당 센서(glucose sensor)로 처음 알려졌다. 그 이후 혈당 센서는 가장 성공적인 바이오 센서로 임상에 널리 사용되고 있다. The biosensor glucose oxidase to offer 1962 Clark first enzyme electrode (enzyme electrode); first known as blood glucose sensor (glucose sensor) that combines (glucoseoxidase below GOD) and an oxygen sensor (O 2 sensor). Since then, blood glucose sensors have been widely used in clinical practice as the most successful biosensors.

바이오 센서의 응용분야는 크게 의료용, 환경용, 산업용으로 나눌 수 있는데 가장 큰 시장인 의료용 바이오 센서로는 혈당과 같은 대사물질 센서, 미생물 검출 센서, 호르몬 센서, 각종 질병의 표지자(marker)용 센서 등이 시판/개발되고 있다. 이외에도 환경용 센서로는 BOD(biological oxygen demand) 센서를 비롯한 각종 오염물질 검출 센서, 중금속 및 독성물질 검출 센서, 생화학무기 검출 센서 등이 있고, 산업용으로는 식품 및 생물공정용 센서로서 발효검사, 식품안전성 검사, 동·식물 질병 및 품질관리용 센서, 생물공정 계측 및 제어용 센서 등이 있다. The application fields of biosensors can be broadly divided into medical, environmental, and industrial applications. Medical biosensors, the largest market, include metabolic sensors such as blood sugar, microbial detection sensors, hormone sensors, and marker markers for various diseases. This is marketed / developed. In addition, environmental sensors include BOD (biological oxygen demand) sensors, various pollutant detection sensors, heavy metal and toxic substance detection sensors, biochemical weapon detection sensors, etc., and industrial food and bioprocess sensors as fermentation test and food Safety testing, animal and plant diseases and quality control sensors, and bioprocess measurement and control sensors.

지금까지 유체 내 소량의 분석종 탐지를 위한 대부분의 임상 진단 분석 장치에는 다중 샘플 준비 및 자동화된 시약 첨가용 장치를 설계하고 병렬 또는 직렬로 수많은 테스트 샘플을 분석하기 위한 장치를 설계함으로써 효율성 및 경제성이 개선되었다. 종종 이러한 자동화된 시약 준비장치 및 자동화된 다중 분석기가 단일 장치에 집적된다. 이러한 형태의 임상실험 분석기는 한 시간 이내에 소량의 샘플과 시약을 가지고 수 백가지 분석을 자동 또는 반자동으로 정확히 수행할 수 있다.To date, most clinical diagnostic analytical devices for detecting small amounts of analytes in fluids are designed for efficiency and economics by designing devices for multiple sample preparation and automated reagent addition and for analyzing large numbers of test samples in parallel or in series. Improvements were made. Often these automated reagent preparation devices and automated multiple analyzers are integrated into a single device. This type of clinical analyzer can accurately and automatically perform hundreds of analyzes with a small sample and reagents within an hour.

그러나, 이러한 분석기는 크기가 크고, 비싸기 때문에 중앙집중 실험실과 병원에서만 이들을 구매하여 사용하였다. 이 경우, 실험실과 병원으로의 샘플 운송을 필요로 하며 종종 시간이 긴급한 샘플을 신속하게 분석할 수 없다는 문제가 있다. 따라서 이러한 문제를 극복하기 위하여 저렴하고 누구나 손쉽게 다룰 수 있는 임상분석 장치가 절실히 필요하다.However, these analyzers were large and expensive, so they were purchased and used only in central laboratories and hospitals. This requires the transport of samples to laboratories and hospitals and often leads to the inability to quickly analyze urgent samples. Therefore, in order to overcome these problems, there is an urgent need for a clinical analysis device that can be easily handled by anyone.

최근 이러한 소형 임상 분석장치로서 바이오 디스크가 개발되고 있다.Recently, a bio disc has been developed as such a small clinical analysis device.

일반적으로 공지된 기술로서 광학적 컴팩트 디스크(Optical Compact Disc)를 사용한 분석장치로서 'Confocal compact scanning optical microscope based on compact disc technology'(1991, Vol.30, No,10, Applied Optics), 'Gradient-index pobjectives for CD applications'(April, 1987, Vol26, Issue 7, Applied Optics)가 논문에 발표되어 있다.In general, as a known technique, an analysis apparatus using an optical compact disc is known as 'Confocal compact scanning optical microscope based on compact disc technology' (1991, Vol. 30, No, 10, Applied Optics), and 'Gradient-index'. pobjectives for CD applications' (April, 1987, Vol26, Issue 7, Applied Optics) is published in the paper.

또한, 디스크상의 주입구에 주입된 샘플을 원심력을 이용하여, 디스크의 표면에 유체막을 형성시키기 위한 장치로서, 유럽 등록특허 제1075800호에 'Disc for centrifuge'와 디스크상의 주입구에 주입된 유체 샘플을 원심력을 이용하여 채널과 챔버로 이동시켜 가면서 샘플을 분리하는 장치로서 유럽 등록특허 제3,335,946호에 'Separating disks for centrifuge'가 개시되어 있다.In addition, as a device for forming a fluid film on the surface of the disk using the centrifugal force of the sample injected into the injection hole on the disc, the centrifugal force of the 'Disc for centrifuge' and the fluid sample injected into the injection hole on the disc in EP 1075800 Separating disks for centrifuge is disclosed in European Patent No. 3,335,946 as an apparatus for separating a sample while moving to a channel and a chamber using the.

나아가, 디스크상에서 원심력과 광학적 측정에 의해 화학 분석하는 장치로서 미국 등록특허 제4,311,039호에 'Disc centrifuge photosedimentometer'가 개시되어 있다.Furthermore, as a device for chemical analysis by centrifugal force and optical measurement on a disc, 'Disc centrifuge photosedimentometer' is disclosed in US Patent No. 4,311,039.

대한민국 등록특허 제590902호에서는 핵산 및 올리고뉴클오티드의 상보적 이중가닥 또는 단일가닥에 특이적으로 반응하는 절단 기법을 이용한 핵산혼성 분석 방법 및 장치를 개시하고 있다. 상기 분석 방법은 (a) 핵산 혼성 분석 장치에 설치된 디스크의 중앙 부근에 있는 샘플 주입구에 샘플을 적하시키는 단계; (b) 디스크를 회전시켜 샘플 전면이 디스크 외곽 끝부분에 도달한 후에는 회전을 멈추는 단계; (c) 디스크를 실온에서 정체상태로 배양을 하는 혼성 반응 단계; (d) 디스크를 강하게 회전시키면서 완충액을 세척액으로 첨가하는 제1세정단계; (e) 염기서열의 이중가닥 또는 단일가닥만을 절단하는 제한효소 용액을 넣어 주고 디스크는 정체 상태로 배양을 하는 절단 단계; (f) 디스크를 강하게 회전시키면서 완충액을 첨가하여 세정하든지, 외부의 전계 혹은 자계를 가해 세정하는 제2세정 과정 단계; 및 (e) 상기 디스크를 건조시키고, 절단 가능한 신호요소가 침착된 미리 결정된 부위를 검사하도록 프로그램된, 상기 광학, 전기화학 또는 커패시턴스 및 임피던스 장치를 포함하는 탐지기에 의해 판독하는 단계를 포함한다.Korean Patent No. 590902 discloses a nucleic acid hybridization method and apparatus using a cleavage technique that specifically reacts with complementary double or single strands of nucleic acids and oligonucleotides. The analysis method includes the steps of: (a) dropping the sample into the sample inlet near the center of the disk installed in the nucleic acid hybrid analysis device; (b) rotating the disk to stop the rotation after the sample front reaches the outer edge of the disk; (c) a hybrid reaction step of culturing the disk at a room temperature at a steady state; (d) a first washing step of adding the buffer solution to the washing liquid while strongly rotating the disk; (e) a cutting step of placing a restriction enzyme solution that cuts only double strands or single strands of the nucleotide sequence and incubating the disk in a stagnant state; (f) a second washing process step of washing by adding a buffer while strongly rotating the disk, or by applying an external electric or magnetic field; And (e) drying the disk and reading by a detector comprising the optical, electrochemical or capacitance and impedance device, programmed to inspect a predetermined site on which a cleavable signal element is deposited.

대한민국 특허공개 제2005-0118651호에서는 유체의 흐름 또는 유량을 제어하기 위한 초소형 구슬을 이용한 미세 밸브 장치를 포함하는 핵산 분석 장치를 개시하고 있다. 구체적으로 상기 핵산 분석 장치는 핵산을 함유하는 샘플을 주입하기 위한 샘플 주입 수단; 상기 샘플로부터 DNA 또는 RNA를 준비하기 위한 프렙 챔버; 상기 DNA 또는 RNA를 증폭하기 위한 PCR 챔버; 상기 DNA 또는 RNA를 캡처 프로브와 혼성화시키기 위한 어레이 챔버; 상기 혼성화되지 않은 찌거기들을 모으기 위한 트레쉬 챔버; 상기 각각의 공정에 필요한 각종 효소와 버퍼 용액을 저장하기 위한 복수개의 챔버들을 포함하는 핵산 분석 장치에 있어서, 상기 챔버들 사이에 유체를 이동시키기 위하여 미세 밸브 장치를 사용하는 것을 특징으로 한다.Korean Patent Laid-Open Publication No. 2005-0118651 discloses a nucleic acid analysis device including a microvalve device using a microbead for controlling the flow or flow of a fluid. Specifically, the nucleic acid analysis device includes sample injection means for injecting a sample containing a nucleic acid; A preparation chamber for preparing DNA or RNA from the sample; A PCR chamber for amplifying the DNA or RNA; An array chamber for hybridizing the DNA or RNA with a capture probe; A trech chamber for collecting the unhybridized debris; A nucleic acid analysis apparatus including a plurality of chambers for storing various enzymes and buffer solutions required for each process, characterized in that to use a microvalve device to move the fluid between the chambers.

그러나, 상기 종래 기술들은 생물학적 감지요소가 기판에 고정되어 있어 세정과정이 필요하고, 장치가 복잡한 단점이 있다.However, the prior arts have a disadvantage in that the biological sensing element is fixed to the substrate, which requires a cleaning process and the device is complicated.

이에, 본 발명자는 제조가 간편하고 휴대하기 용이하며 구조가 단순하여 저렴하게 대량생산 할 수 있는 바이오 센서를 개발하기 위하여 연구하던 중, 바이오 센서 내에 생물학적 감지요소가 고정된 미세 입자를 사용하면 회전에 의한 원심력에 의해 입자를 이동시킬 수 있으므로 세척과정 없이 분석물질을 정성, 정량 분석할 수 있음을 확인하고 본 발명을 완성하였다.Therefore, the present inventors are researching to develop a biosensor that is easy to manufacture, easy to carry, and has a simple structure, and can be mass-produced at low cost. Particles can be moved by centrifugal force, thereby confirming that the analyte can be qualitatively and quantitatively analyzed without washing, thereby completing the present invention.

본 발명의 목적은 원심력에 의한 미세 입자의 이동을 이용하여 세척과정이 필요하지 않은 바이오 센서를 제공하는 것이다.An object of the present invention is to provide a biosensor that does not require a cleaning process by using the movement of fine particles by centrifugal force.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention

중심축에 위치하거나 동심원 상에 위치하며, 분석물질을 함유한 시료가 주입되는 적어도 1개 이상의 시료 주입구; At least one sample inlet located on a central axis or on a concentric circle, into which a sample containing the analyte is injected;

상기 시료 주입구와 방사상으로 연통되며, 상기 시료 내 분석물질의 특정부위를 선택적으로 인식하여 상호 결합하는 미세 입자에 고정된 1차 결합물질과, 상기 분석물질에 대해 1차 결합물질의 인식부위와 다른 특정 부위를 인식하여 결합하는 신호발생물질이 고정된 2차 결합물질을 구비하며 형성된 적어도 1개 이상의 반응 챔버;The primary binding material that is radially in communication with the sample inlet and is fixed to the fine particles that selectively recognize specific sites of the analyte in the sample and binds to each other, and is different from the recognition site of the primary binding material for the analyte. At least one reaction chamber formed with a secondary binding material having a fixed signal generating material for recognizing and binding a specific site;

상기 반응 챔버와 연통되며, 상기 신호발생물질과 반응하여 분광학적 신호 또는 전기화학적 신호를 발생시키는 신호유발물질이 도입되어 있는 적어도 1개 이상의 신호 발생 챔버;At least one signal generating chamber in communication with the reaction chamber, the signal inducing material reacting with the signal generating material to generate a spectroscopic signal or an electrochemical signal;

상기 신호 발생 챔버와 연통되며, 상기 미세 입자가 원심력에 의해 포집되는 적어도 1개 이상의 입자 포집 챔버; 및At least one particle collecting chamber in communication with the signal generating chamber, wherein the fine particles are collected by centrifugal force; And

상기 입자 포집 챔버와 연통되며, 상기 시료의 유입에 따라 각각의 챔버 내에 존재하는 공기를 배출하기 위한 적어도 1개 이상의 입자 포집 챔버 공기 배출구;At least one particle collection chamber air outlet in communication with the particle collection chamber and configured to discharge air present in each chamber according to the inflow of the sample;

를 포함하여 구성되는 바이오센서를 제공한다.It provides a biosensor configured to include.

대안적으로, 상기 반응 챔버는 상기 시료 주입구와 연통되며, 상기 시료 내 분석물질의 특정부위를 선택적으로 인식하여 상호 결합하는 미세 입자에 고정된 결합물질과, 상기 분석물질 또는 상기 결합물질이 선택적으로 인식하여 상호 결합하는 상기 분석물질의 특정부위를 갖는 유사분석물질에 신호발생물질이 고정되어 도입된 적어도 1개 이상의 반응 챔버일 수 있다.Alternatively, the reaction chamber is in communication with the sample inlet, a binding material fixed to the fine particles to selectively recognize and bind to a specific portion of the analyte in the sample, the analyte or the binding material selectively It may be at least one reaction chamber in which a signal generator is fixedly introduced into a similar analyte having a specific portion of the analyte that recognizes and binds to each other.

또한, 대안적으로, 상기 반응 챔버는 상기 시료 주입구와 연통되며, 상기 시료 내 분석물질의 특정부위를 선택적으로 인식하여 상호 결합하는 신호발생물질이 고정된 결합물질과, 상기 분석물질 또는 상기 결합물질이 선택적으로 인식하여 상호 결합하는 상기 분석물질의 특정부위를 갖는 유사분석물질이 미세입자에 고정되어 도입된 적어도 1개 이상의 반응 챔버일 수 있다.Further, alternatively, the reaction chamber is in communication with the sample inlet, the binding material is fixed to the signal generating material that selectively recognizes and binds to a specific portion of the analyte in the sample, the analyte or the binding material The selective analyte having a specific portion of the analyte that selectively recognizes and binds to each other may be at least one or more reaction chambers fixedly introduced into the microparticles.

이하, 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

도 1은 본 발명의 일실시 형태에 따른 바이오 센서의 일측면도이다. 1 is a side view of a biosensor according to an embodiment of the present invention.

본 발명에 따른 바이오 센서는 2개 이상의 기판을 적재하여 구성되며, 바람직하게는 2개 내지 3개의 기판이 적재되어 이루어질 수 있다.Biosensor according to the present invention is configured by loading two or more substrates, preferably two to three substrates may be loaded.

도 2도 3은 각각 본 발명의 일실시 형태에 따른 바이오 센서의 전체 구성도 및 이의 단면도이다. 2 and 3 are an overall configuration diagram and a cross-sectional view of the biosensor according to an embodiment of the present invention, respectively.

본 발명에 따른 바이오 센서에 있어서, 상기 시료 주입구(40)는 중심축 또는 동심원 상에 1개 이상 위치할 수 있으며, 분석물질을 함유한 시료가 주입된다. 주입된 시료는 유로를 통하여 반응 챔버(50), 신호 발생 챔버(60) 및 입자 포집 챔버(70)로 이동한다. 상기 시료가 용이하게 주입되기 위하여 상기 바이오 센서 내부의 공기를 배출시키기 위해 입자 포집 챔버(70) 말단에 공기 배출로(77)와 공기 배출구(78)가 구비되어 있다. 상기 입자 포집 챔버 공기 배출구(78)는 상기 바이오 센서의 회전에 의해 액체 시료가 외부로 유출되는 것을 방지하기 위해 시료주입구(40)로부터 적어도 신호 발생 챔버 유로(61)보다 가까운 곳에 위치하는 것이 바람직하며, 신호 발생 챔버를 기준으로 위 측, 아래 측, 좌측, 우측 등 다양한 방향으로 형성될 수 있다.In the biosensor according to the present invention, one or more sample injection holes 40 may be positioned on a central axis or concentric circles, and a sample containing analyte is injected. The injected sample moves to the reaction chamber 50, the signal generating chamber 60, and the particle collecting chamber 70 through the flow path. An air outlet 77 and an air outlet 78 are provided at the end of the particle collection chamber 70 to discharge the air inside the biosensor for easy injection of the sample. The particle collection chamber air outlet 78 is preferably located at least closer to the signal generation chamber flow path 61 from the sample inlet 40 to prevent the liquid sample from flowing out by the rotation of the biosensor. The signal generating chamber may be formed in various directions, such as an upper side, a lower side, a left side, and a right side.

본 발명에 따른 바이오 센서에 있어서, 상기 반응 챔버(50)는 상기 시료 주입구(40)와 방사상으로 연통되며, 상기 반응 챔버(50)의 내부에는 상기 시료 내 분석물질, 신호발생물질이 결합된 분석물질, 및 상기 분석물질과 유사한 구조를 갖는 유사 분석물질 중에서 적어도 1종 이상을 선택적으로 인식하여 상호 결합하는 결합 물질이 서로 독립적 또는 혼합되어 미세 입자에 고정되어 있다.In the biosensor according to the present invention, the reaction chamber 50 is in radial communication with the sample inlet 40, and the analysis of the analyte and the signal generating material in the sample is coupled to the inside of the reaction chamber 50. A substance and a binding substance that selectively recognizes at least one or more of the similar analytes having a structure similar to the analyte and bind to each other are fixed to the fine particles independently or mixed with each other.

이때, 상기 미세 입자는 라텍스 비드, 폴리스티렌 비드, 실리카 비드, 아가로즈 비드, 덱스트래인 비드를 포함하는 유기 또는 무기 고분자 입자; 자석 입자, 금 입자, 은 입자를 포함하는 금속 입자; 상기 유기 또는 무기 고분자 입자에 금 또는 은이 일부 또는 전부 코팅된 입자; 자석 입자, 금 입자, 은 입자 표면에 고분자가 코팅된 입자 등을 사용할 수 있으며, 상기 미세 입자의 크기는 직경 0.001 ~ 3 mm, 바람직하게는 0.01 ~ 2 mm, 더 바람직하게는 0.05 ~ 1.1 mm이다. 상기 미세입자의 크기가 직경 0.001 mm 미만이면 원심력에 의한 미세 입자의 이동이 어려우며, 상기 미세입자의 크기가 3 mm를 초과하면 상기 미세 입자 표면에 고정되는 결합 물질의 밀도가 낮아져 반응성이 낮아지는 문제가 있다.At this time, the fine particles are organic or inorganic polymer particles including latex beads, polystyrene beads, silica beads, agarose beads, dextrin beads; Metal particles including magnet particles, gold particles, and silver particles; Particles in which gold or silver is partially or entirely coated on the organic or inorganic polymer particles; Magnetic particles, gold particles, particles coated with a polymer on the surface of the silver particles may be used, the size of the fine particles is 0.001 to 3 mm in diameter, preferably 0.01 to 2 mm, more preferably 0.05 to 1.1 mm. . When the size of the microparticles is less than 0.001 mm in diameter, it is difficult to move the microparticles by centrifugal force, and when the size of the microparticles exceeds 3 mm, the density of the binding material fixed to the surface of the microparticles is lowered, thereby lowering the reactivity. There is.

상기 결합 물질은 단백질, 단백질 A, 단백질 G, DNA, RNA, 펩타이드, 항원, 항체, 아비딘(avidin), 바이오틴(biotin) 또는 이들의 조합을 사용할 수 있다.The binding agent may be protein, protein A, protein G, DNA, RNA, peptide, antigen, antibody, avidin, biotin, or a combination thereof.

상기 신호발생물질은 효소, 유기 또는 무기 형광 물질, 또는 상기 형광 물질과 결합하는 킬레이트 화합물, 화학발광물질, 전기화학발광물질 등을 사용할 수 있으며, 이때 상기 효소는 글루코오스 산화 효소, 글루코오스 탈수소 효소, 알칼리 포스파타제, 과산화효소 등을 사용할 수 있고, 상기 형광 물질로는 Sm3 + 이온, Eu3 + 이온, Tb3 + 이온 등의 란탄족 계열의 형광 물질 또는 상기 란탄족 계열의 형광물질과 결합하여 형광 신호를 증폭하는 물질을 바람직하게 사용할 수 있다.The signaling material may be an enzyme, an organic or inorganic fluorescent material, or a chelating compound, a chemiluminescent material, an electrochemical light emitting material, etc. which bind to the fluorescent material, wherein the enzyme is glucose oxidase, glucose dehydrogenase, alkali phosphatase, can be used for peroxidase, etc., in the fluorescent material is Sm 3 + ion, Eu 3 + ions, Tb 3 + of the lanthanide series of ions, such as a fluorescent material or a fluorescence signal in combination with the phosphor of the lanthanide series The substance which amplifies can be used preferably.

상기 결합물질이 고정된 미세 입자는 공지된 방법을 사용하여 제조하거나, 시판되는 것을 사용할 수 있으며, 일반적으로 결합물질이 고정된 미세 입자가 함유된 용액을 반응층에 도포한 뒤 건조하여 반응층을 형성할 수 있다.The fine particles to which the binder is fixed may be prepared using a known method or commercially available, and in general, a solution containing the fine particles to which the binder is fixed may be applied to the reaction layer and dried to form a reaction layer. Can be formed.

또한, 상기 반응 챔버(50) 내부에 결합물질이 고정된 미세 입자로 이루어진반응층을 안정하게 형성하기 위해 고분자 결합제를 사용하는 것이 바람직한 바, 이는 건조된 후에도 외부의 물리적 충격에 의해 상기 반응층이 파괴되는 것을 방지하기 때문이다.In addition, it is preferable to use a polymer binder in order to stably form a reaction layer made of fine particles in which a binding material is fixed in the reaction chamber 50. The reaction layer is formed by external physical impact even after drying. This is because it prevents destruction.

이때, 사용되는 고분자로는 폴리비닐피롤리돈(PVP), 폴리비닐알콜(PVA), 카복시메틸 셀룰로오즈(CMC), 하이드록시에틸 셀룰로오즈(HEC), 하이드록시프로필 셀룰로오즈(HPC), 셀룰로오즈 아세테이트, 폴리아미드, 폴리에틸렌 글리콜(PEG), 검(gum), 젤라틴, 아가로즈, 덱스트란, 폴리아크릴산 등의 수용성 고분자를 사용할 수 있으며, 상기 고분자의 함량은 0.02 ~ 5%인 것이 바람직하다. 상기 고분자의 함량이 0.02% 미만이면 상기 고분자의 결합 능력이 너무 낮아 외부충격에 반응층이 파괴될 수 있으며, 5%를 초과하면 상기 고분자의 결합 능력이 너무 강하여 시료 용액을 주입시 결합제가 풀리지 않아 반응성이 낮아지는 문제가 있다.At this time, the polymer used may be polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), cellulose acetate, poly Water-soluble polymers such as amide, polyethylene glycol (PEG), gum, gelatin, agarose, dextran, polyacrylic acid can be used, and the content of the polymer is preferably 0.02-5%. If the content of the polymer is less than 0.02%, the binding capacity of the polymer is too low to destroy the reaction layer in the external impact. If it exceeds 5%, the binding capacity of the polymer is so strong that the binder does not loosen when the sample solution is injected. There is a problem of low reactivity.

상기 반응 챔버(50)에 시료가 유입되면, 시료 내에 존재하는 분석물질과 상기 미세입자에 고정된 결합물질 및 그 외에 신호발생을 유발하는 신호발생물질이 결합하여 복합체(compelx)를 형성하며, 상기 복합체의 형성시 반응 메카니즘은 통상적으로 사용되는 바이오센서 내부에서 사용되는 메카니즘이 사용될 수 있으며, 일례로는 도 8에 나타낸 바와 같다.When the sample is introduced into the reaction chamber 50, the analyte present in the sample and the binding material fixed to the microparticles and other signal generating materials that cause signal generation combine to form a complex (compelx), In the formation of the complex, the reaction mechanism used in the conventionally used biosensor may be used, for example, as shown in FIG . 8 .

도 8의 (a)는 상기 반응 챔버 내부에 분석 물질(603)의 특정부위(604)와 선택적으로 반응하여 결합하는 1차 결합물질(602)이 미세 입자(601) 표면에 화학적 또는 물리적 흡착에 의해 고정되어 있는 미세 입자와, 분석 물질의 다른 특정부위와 선택적으로 반응하여 결합하며 신호발생물질이 결합되어 있는 2차 결합물질이 도입되어 있는 경우, 시료 유입시 상기 두 결합물질이 분석물질의 서로 다른 부분을 선택적으로 인식하여 결합하여 복합체를 형성함을 나타낸다. 8A illustrates that a primary binding material 602 that selectively reacts with and binds to a specific portion 604 of an analyte 603 in the reaction chamber is subjected to chemical or physical adsorption on the surface of the fine particles 601. When a second particle that is fixed by the microparticles and selectively reacts with other specific portions of the analyte and binds therein and is coupled with a signal generating material is introduced, the two binders are separated from each other when the sample is introduced. It is shown that other parts are selectively recognized and combined to form a complex.

도 8의 (b)는 반응 챔버 내 상기 분석 물질(603)의 특정 부위(604)를 선택적으로 인식하여 결합하는 결합물질(602)이 화학적으로 또는 물리적 흡착에 의해 미세 입자(601) 표면에 고정되어 있는 미세 입자(601)와, 상기 분석 물질의 특정 부위(604)를 갖는 유사분석물질(610)에 신호발생물질(607)이 도입되어 있는 경우, 시료 유입시 상기 분석물질(603)은 상기 반응 챔버 내에 도입되어 있는 유사분석물질(610)과 경쟁적으로 반응하여 복합체를 형성함을 나타낸다. 8B illustrates that a binding material 602 that selectively recognizes and binds a specific portion 604 of the analyte 603 in the reaction chamber is fixed to the surface of the fine particles 601 by chemical or physical adsorption. When the signal generating material 607 is introduced into the analogous material 610 having the fine particles 601 and the specific region 604 of the analyte, when the sample is introduced, the analyte 603 is Reacts competitively with the analogous analyte 610 introduced into the reaction chamber to form a complex.

도 8의 (c)는 상기 반응 챔버 내부에 유사분석물질(610)이 고정되어 있는 미세 입자(601)와, 분석물질(603) 또는 유사분석물질(610)의 특정 부위(604)와 선택적으로 반응하여 결합하며 신호발생물질(607)이 결합된 결합물질(602)이 도입되어 있는 경우, 시료 유입시 상기 분석 물질(603)과 미세입자(601)에 고정된 유사분석물질(610)이 상기 결합물질(602)과 경쟁적으로 반응하여 복합체를 형성함을 나타낸다.(C) of FIG. 8 selectively shows the fine particles 601 in which the analog analyte 610 is fixed inside the reaction chamber, and the specific region 604 of the analyte 603 or the analog analyte 610. In the case where the binding material 602 in which the reaction material binds to the signal generating material 607 is introduced, the analyte 603 and the analogous analyte 610 fixed to the microparticles 601 at the time of the sample inflow are introduced. Competitively reacts with the binding material 602 to form a complex.

상기 반응 챔버(50)에서 형성된 미세입자-결합물질-분석물질-신호발생물질 복합체(complex)는 상기 바이오 센서의 회전에 의해 신호 발생 챔버(60)로 이동하게 된다.The microparticle-binding material-analyte-signal complex formed in the reaction chamber 50 is moved to the signal generating chamber 60 by the rotation of the biosensor.

본 발명에 따른 바이오 센서에 있어서, 상기 신호 발생 챔버(60)는 반응 챔버와 연통되며, 상기 반응 챔버(50)에서 형성된 미세입자-결합물질-분석물질-신호발생물질 복합체에서 활성화되는 신호발생물질이 상기 신호 발생 챔버 내의 신호유발물질과 반응하여 분광학적 신호 또는 전기화학적 신호를 발생한다. 따라서 발생된 신호는 분광학적 또는 전기화학적으로 측정할 수 있다.In the biosensor according to the present invention, the signal generating chamber 60 is in communication with the reaction chamber, the signal generating material activated in the microparticle-binding material-analyte-signaling complex formed in the reaction chamber 50. The spectroscopic signal or the electrochemical signal is generated by reacting with the signal generating material in the signal generating chamber. The signal generated can thus be measured spectroscopically or electrochemically.

상기 분광학적 측정이란 발색 시약의 농도 변화를 흡광, 반사광, 화학발광 또는 투과도로 측정하거나 화학발광, 전기화학발광, 형광 물질에 의해 생성된 형광 신호를 측정하는 방법을 의미하며, 상기 전기화학적 측정은 반응 챔버(50)에서 유입된 신호발생물질과 신호 발생 챔버(60)에 존재하는 신호유발물질간의 반응에 의해 생성 또는 소모된 산화/환원이 가능한 물질의 산화 또는 환원 전류를 측정하는 방법을 의미한다.The spectroscopic measurement refers to a method of measuring a change in concentration of a coloring reagent by absorbance, reflected light, chemiluminescence, or transmittance, or measuring a fluorescence signal generated by a chemiluminescence, electrochemiluminescence, or fluorescent material. It refers to a method of measuring the oxidation or reduction current of a material capable of oxidation / reduction produced or consumed by a reaction between a signal generating material introduced from the reaction chamber 50 and a signal generating material present in the signal generating chamber 60. .

예를 들면, 상기 신호를 분광학적으로 측정할 경우, 상기 신호 발생 챔버에서 상기 신호유발물질이 구비된 면 또는 마주보는 면 중 적어도 하나의 면은 가시광 투과율이 50% 이상인 재질로 구성되는 것이 바람직하며, 상기 재질은 유리, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리스티렌 고분자 등을 포함하는 것이 바람직하다.For example, when the signal is spectroscopically measured, at least one of the surfaces provided with the signal inducing material or the opposite surfaces in the signal generating chamber is preferably made of a material having a visible light transmittance of 50% or more. , The material preferably contains glass, polycarbonate, polyethylene terephthalate, polystyrene polymer and the like.

상기 신호를 전기화학적으로 측정할 경우에는 상기 신호 발생 챔버에서 상기 신호유발물질이 구비된 면 또는 마주보는 면 중 적어도 하나의 면 또는 양면에 상기 신호발생물질과 상기 신호유발물질의 반응에 의해 생성된 물질의 산화 또는 환 원 반응을 유발하거나, 상기 신호발생물질과 상기 신호유발물질의 반응에 의해 소모되고 남아 있는 신호유발물질의 산화 또는 환원 반응을 유발하는 작동전극과 기준전극 및 리드선이 구비되는 것이 바람직하다.When the signal is measured electrochemically, the signal generating chamber is generated by the reaction of the signal generating material and the signal generating material on at least one or both surfaces of the signal generating material or the surface facing each other in the signal generating chamber. It is provided with a working electrode, a reference electrode and a lead wire which induce an oxidation or reduction reaction of a substance or cause an oxidation or reduction reaction of a signal inducing substance that is consumed by the reaction between the signal generating substance and the signal inducing substance. desirable.

추가로, 본 발명에 따른 바이오센서는 위치 인식 및 회전 속도를 측정하기 위한 전도성 물질로 구성된 바이오센서 인식 전극; 및 상기 바이오센서 내부로 유입되는 시료의 정상 유입 여부를 검출하기 위한 적어도 1개 이상의 시료 인식 전극 또는 리드 선을 적어도 하나의 기질 면에 구비할 수 있다.In addition, the biosensor according to the present invention comprises a biosensor recognition electrode made of a conductive material for measuring position recognition and rotation speed; And at least one sample recognition electrode or lead wire on at least one substrate surface for detecting whether the sample flowing into the biosensor is normally introduced.

상기 센서 인식 전극(280)은 상기 바이오 센서의 종류, 위치 인식 및 회전 속도 등을 측정하기 위해 전도성 물질로 구성된 전극으로서, 적어도 하나의 기질 면에 구비할 수 있으며, 상기 센서 인식 전극(280)의 수는 제한되지 않는다.The sensor recognition electrode 280 is an electrode made of a conductive material to measure the type, location recognition, and rotation speed of the biosensor, and may be provided on at least one substrate surface. The number is not limited.

상기 시료 인식 전극(220, 230)은 전극 쌍으로 사용하는 것이 바람직하며, 도 7d에 나타낸 바와 같이, 하나는 반응 챔버 유로(51)에 형성되는 것이 바람직하고, 나머지 한 개는 입자 포집 챔버(70)의 일측 말단 또는 공기 배출로(77)에 형성되는 것이 바람직하다. 시료 주입 후, 상기 시료 인식 전극(220, 230)간의 저항을 측정하거나 전도도를 측정하여 충분한 시료 유입 또는 유입된 시료에 기포의 존재 여부를 확인할 수 있다. 상기 시료 인식 전극(220, 230)의 수는 제한되지 않는다.The sample recognition electrodes 220 and 230 are preferably used as electrode pairs, and as shown in FIG . 7D , one is preferably formed in the reaction chamber flow path 51, and the other is the particle collecting chamber 70. It is preferably formed at one end of the) or the air discharge passage (77). After the sample is injected, the resistance between the sample recognition electrodes 220 and 230 may be measured or the conductivity may be measured to determine whether sufficient sample is introduced or bubbles are present in the sample. The number of sample recognition electrodes 220 and 230 is not limited.

상기 전극들 또는 리드 선은 후막 인쇄된 탄소, 흑연, 은, 염화은; 박막 코팅된 금, 염화은, 팔라듐, 티탄산화물을 포함하는 전도성 물질, 또는 상기 전도성 물질을 함유하는 고분자로 구성되는 물질 등을 사용할 수 있으며, 상기 전극 또는 리드 선의 수 또는 형성 위치는 제한되지 않는다.The electrodes or lead wires may be thick film printed carbon, graphite, silver, silver chloride; Thin film coated gold, silver chloride, palladium, titanium oxide, a conductive material, or a material composed of a polymer containing the conductive material, etc. may be used, and the number or formation position of the electrode or lead wire is not limited.

상기 후막은 스크린 인쇄(screen printing)기법을 사용하는 것이 바람직하며, 박막 코팅은 스퍼터링(supptering) 기법으로 형성할 수 있다. It is preferable that the thick film uses a screen printing technique, and the thin film coating may be formed by a sputtering technique.

도 7c에 나타낸 바와 같이, 상기 전극과 리드 선은 일부를 절연막(290)으로 코팅할 수 있으며, 이때 상기 절연막(290)은 비수용성 물질로 구성된다. 상기 절연막(290)은 전극 또는 리드 선을 절연, 화학적 부식 또는 물리적 충격으로부터 보호한다.As shown in FIG . 7C , a portion of the electrode and the lead wire may be coated with the insulating layer 290, wherein the insulating layer 290 is made of a water-insoluble material. The insulating film 290 protects the electrode or lead wire from insulation, chemical corrosion or physical shock.

상기 신호유발물질로는 신호발생물질인 효소와 반응하여 산화/환원이 가능한 효소 기질; 또는 형광물질과 반응하여 형광 신호를 증폭하는 물질, 화학발광물질 등을 사용할 수 있다. 예를 들면, 글루코오스, 과산화수소(H2O2), 페리시아나이드(ferricyanide, Fe(CN)6 3-) 이온, 헥사아민루세늄(hexamine ruthenium(Ⅲ), Ru(NH3)6 3+), 페로센, 3,3′,5,5′-테트라메틸벤지딘(3,3′,5,5′-tetramethylbenzidine, TMB), o-페닐렌디아민 디하이드로클로라이드(o-phenylenediamine dihydrochloride, OPD), 2,2′-아지노-디-[3-에틸-벤조티아졸린-6-술폰산]디암모늄염(2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid] diammonium salt, ABTS), 3-메틸-2-벤조티아졸리논 하이드라존(3-methyl-2-benzothiazolinone hydrazone, MBTH), p-니트로페닐-포스페이트(p-nitrophenyl- phosphate, pNPP), AMPPD(adamantly methoxy phosphoryloxyphenyl dioxetane) 등을 포함하는 매개체(mediator); 발색 시약 등을 사용할 수 있다.The signal inducing material includes an enzyme substrate capable of oxidation / reduction by reacting with an enzyme that is a signal generating material; Alternatively, a material for amplifying a fluorescent signal by reacting with a fluorescent material, a chemiluminescent material, or the like may be used. For example, glucose, hydrogen peroxide (H 2 O 2 ), ferricyanide (Fe (CN) 6 3- ) ions, hexamine ruthenium (III), Ru (NH 3 ) 6 3+ ) , Ferrocene, 3,3 ', 5,5'-tetramethylbenzidine (3,3', 5,5'-tetramethylbenzidine, TMB), o-phenylenediamine dihydrochloride (OPD), 2 , 2'-azino-di- [3-ethyl-benzothiazoline-6-sulfonic acid] diammonium salt (2,2'-azino-di- [3-ethyl-benzothiazoline-6-sulfonic acid] diammonium salt, ABTS) , 3-methyl-2-benzothiazolinone hydrazone (MBTH), p-nitrophenyl-phosphate (pNPP), adamantly methoxy phosphoryloxyphenyl dioxetane (AMPPD) Mediators including the like; A coloring reagent, etc. can be used.

상기 형광 신호를 증폭하는 물질은 Sm3 + 이온, Eu3 + 이온, Tb3 + 이온 등의 란탄족 계열의 형광 물질 또는 란탄족 계열의 형광물질과 결합하여 형광 신호를 증폭하는 물질을 사용할 수 있으며, 예를 들면 형광물질과 반응하여 형광 신호를 증폭하는 물질은 2-나프토일트리플루오로아세톤(2-naphthoyltrifluoroacetone, β-NTA), 트리옥틸포스피네옥사이드(trioctylphosphineoxide, TOPO), 3,4-비스[4-(4,4,5,5,6,6,6,-헵타플루오로-1,3-디옥소헥실)페닐]벤젠술포닐 클로라이드(3,4-Bis[4-(4,4,5,5,6,6,6,-heptafluoro-1,3-dioxohexyl)phenyl]benzenesulfonyl choride, BHHCT), N,N,N′,N′[2,6-비스(3′-아미노메틸-1′-피라졸일)-4-페닐피리딘]테트라키스(아세트산)(N,N,N′,N′[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-phenylpyridine]tetrakis-(acetic acid), BPTA), 5-(4′-클로로술포-1′,1′-디페닐-4′-일)-1,1,1,2,2-펜타플로로-3,5′-펜탄디온(5-(4′-chlorosulfo-1′,1′-diphenyl-4′-yl)-1,1,1,2,2-pentafluoro-3,5′-pentanedione, CDPP), 4-메틸-엄벨리페릴 포스페이트(4-methyl-umbelliferyl phosphate, 4-MUP), 8-아닐리노-1-나프탈렌술폰산(8-anilino-1-napthalenesulfonic acid, ANS), 벤지딘(benzidine), 프루시안 블루(prussian blue), 4-아미노페나존(4-aminophenazone), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노안티피린(4-aminoantipyrin, AAP), 하이드로 퀴논(hydroquinone) 등을 사용할 수 있다. The material for amplifying the fluorescent signal may be used a lanthanide-based fluorescent material such as Sm 3 + ions, Eu 3 + ions, Tb 3 + ions or a material that amplifies the fluorescent signal by combining with a lanthanide-based fluorescent material. For example, a material that reacts with a fluorescent material to amplify a fluorescent signal is 2-naphthoyltrifluoroacetone (β-NTA), trioctylphosphineoxide (TOPO), 3,4-bis [4- (4,4,5,5,6,6,6, -heptafluoro-1,3-dioxohexyl) phenyl] benzenesulfonyl chloride (3,4-Bis [4- (4,4 , 5,5,6,6,6, -heptafluoro-1,3-dioxohexyl) phenyl] benzenesulfonyl choride (BHHCT), N, N, N ', N' [2,6-bis (3'-aminomethyl- 1′-pyrazolyl) -4-phenylpyridine] tetrakis (acetic acid) (N, N, N ′, N ′ [2,6-bis (3′-aminomethyl-1′-pyrazolyl) -4-phenylpyridine] tetrakis -(acetic acid), BPTA), 5- (4'-chlorosulfo-1 ', 1'-diphenyl-4'-yl) -1,1,1,2,2-pentafluoro-3,5 ′ -Pentanedione ( 5- (4'-chlorosulfo-1 ', 1'-diphenyl-4'-yl) -1,1,1,2,2-pentafluoro-3,5'-pentanedione, CDPP), 4-methyl-umbeli Peryl phosphate (4-methyl-umbelliferyl phosphate (4-MUP), 8-anilino-1-naphthalenesulfonic acid (ANS), benzidine, prussian blue, 4-aminophenazone, 4-aminophenazone, 2,4-dichlorophenol, 4-aminoantipyrin (AAP), hydroquinone, and the like can be used.

상기 화학발광물질은 루미놀(luminol), 페놀, p-요오도페놀(p-iodophenol), 아크리단(acridan), 아실 하이드라지드(acyl hydrazide), 이미다졸(imidazole), 아크리디늄 에스테르(acridinium ester), 퍼옥시옥살레이트(peroxyoxalate), 트리스(2,2'-바이피리딘)루데늄(tris(2,2'-bipyridine)ruthenium) 등을 사용할 수 있다.The chemiluminescent material is luminol (luminol), phenol, p-iodophenol (p-iodophenol), acridan (acridan), acyl hydrazide, imidazole, acridinium ester ( acridinium ester), peroxyoxalate, tris (2,2'-bipyridine) ruthenium, and the like can be used.

본 발명에 따른 바이오 센서에 있어서, 입자 포집 챔버(70)는 상기 신호 발생 챔버와 연통되며, 상기 미세 입자가 원심력에 의해 포집되는 공간으로, 상기 신호 발생 챔버(60)에서 상기 바이오 센서의 회전에 의해 상기 미세 입자가 입자 포집 챔버(70)로 이동하게 된다.In the biosensor according to the present invention, the particle collecting chamber 70 communicates with the signal generating chamber and is a space in which the fine particles are collected by centrifugal force, and the rotation of the biosensor in the signal generating chamber 60 is performed. As a result, the fine particles are moved to the particle collection chamber 70.

본 발명에 따른 바이오 센서에 있어서, 상기 챔버들의 형상은 원형, 반원형, 타원형; 삼각, 사각을 포함하는 다각 형상; 또는 상기 다각 형상에 곡선 또는 굴곡이 첨가된 형상 등으로 구성될 수 있으며, 상기 챔버들은 미세 유로에 의해 연통되거나, 미세 유로 없이 서로 연통 형성될 수 있다. 예를 들면, 도 6에 나타낸 바와 같이, 상기 입자 포집 챔버(70)는 상기 입자 포집 챔버 유로(71)에 의해 신호 발생 챔버(60)와 연결되거나 상기 입자 포집 챔버 유로(71) 없이 직접 신호 발생 챔버(60)에 연결될 수 있으며, 또는 신호 발생 챔버(60) 일부에 입자 포집 챔버(70)가 형성될 수도 있다. 또한, 상기 반응 챔버, 신호 발생 챔버 및 입자 포집 챔버가 미세 유로 없이 직접 연통되어 형성될 수 있다.In the biosensor according to the present invention, the shapes of the chambers are circular, semicircular, elliptical; Polygon shapes including triangles and squares; Alternatively, the polygonal shape may include a shape in which curves or bends are added to the polygonal shape, and the chambers may communicate with each other by a microchannel, or may communicate with each other without a microchannel. For example, as shown in FIG . 6 , the particle collecting chamber 70 is connected to the signal generating chamber 60 by the particle collecting chamber flow path 71 or directly generates a signal without the particle collecting chamber flow path 71. The particle collection chamber 70 may be formed in a portion of the signal generating chamber 60 or the chamber 60. In addition, the reaction chamber, the signal generation chamber and the particle collection chamber may be formed in direct communication without a micro-channel.

본 발명에 따른 바이오 센서에 있어서, 폐기물 저장 챔버(80)는 시료가 과량으로 주입되어 상기 반응 챔버(50), 신호 발생 챔버(60), 입자 포집 챔버(70) 등을 채운 후에 남은 시료를 포집하는 공간으로, 상기 남은 시료는 상기 폐기물 저장 챔버 유로(81)를 따라 상기 폐기물 저장 챔버(80)로 유입되며, 상기 남은 시료의 유입을 원활히 하기 위해 상기 폐기물 저장 챔버(80)의 소정의 위치에 폐기물 저장 챔버 공기 배출구(82)가 형성되어 있으며, 그 수와 위치는 제한되지 않는다.In the biosensor according to the present invention, the waste storage chamber 80 collects a sample remaining after the sample is injected in an excessive amount to fill the reaction chamber 50, the signal generating chamber 60, the particle collection chamber 70, and the like. The remaining sample is introduced into the waste storage chamber 80 along the waste storage chamber flow path 81, and at a predetermined position of the waste storage chamber 80 to facilitate the inflow of the remaining sample. A waste storage chamber air outlet 82 is formed, the number and location of which are not limited.

고정 홈(90)은 상기 바이오 센서를 신호 측정 기기 회전체에 고정하기 위해 형성된 홈이다. The fixing groove 90 is a groove formed for fixing the biosensor to the signal measuring device rotor.

본 발명에 따른 바이오 센서에 있어서, 상기 바이오센서의 형상은 원형; 삼각, 사각을 포함하는 다각 형상; 또는 상기 다각 형상에 곡선 또는 굴곡이 첨가된 형상 등으로 구성될 수 있다.In the biosensor according to the present invention, the shape of the biosensor is circular; Polygon shapes including triangles and squares; Or it may be configured as a shape in which a curve or bend is added to the polygonal shape.

도 4a, 도 4b 및 도 4c는 본 발명의 일실시형태에 따른 바이오 센서의 상부 기질을 나타낸다. 이때, 도 4a는 상기 상부 기질의 윗면을 나타내고, 도 4b는 상기 상부 기질의 아랫면을 나타내며, 도 4c는 상기 상부 기질의 측면을 나타낸다. 4A, 4B and 4C illustrate an upper substrate of a biosensor in accordance with one embodiment of the present invention. 4A shows the top surface of the upper substrate, FIG. 4B shows the bottom surface of the upper substrate, and FIG. 4C shows the side surface of the upper substrate.

도 4a, 도 4b 및 도 4c에 나타낸 바와 같이, 상기 상부 기질(10)은 기질 중앙에 위치된 원형의 시료주입구(40), 상기 시료주입구로부터 방사형으로 위치된 반 응 챔버 유로(51), 상기 반응 챔버 유로로부터 소정거리 이격된 신호 발생 챔버 유로(61), 상기 기질 말단 부분에 중간 기질(20) 및 하부 기질(30)과 결합하여 형성되는 폐기물 저장 챔버(80), 상기 폐기물 저장 챔버(80) 소정 위치에 형성된 폐기물 저장 챔버 공기 배출구(82), 상기 시료주입구 일측으로부터 상기 폐기물 저장 챔버(80)와 일체로 연결되도록 형성된 폐기물 저장 챔버 유로(81), 상기 중간 기질(20) 및 하부 기질(30)과 결합하여 형성되는 입자 포집 챔버(70) 말단 부분에 형성된 공기 배출로(77) 및 상기 공기 배출로(77) 말단에 형성된 공기 배출구(78)를 포함하여 이루어진다.As shown in Figures 4a, 4b and 4c , the upper substrate 10 is a circular sample inlet 40 located in the center of the substrate, a reaction chamber flow path 51 radially located from the sample inlet, The signal generating chamber flow path 61 spaced apart from the reaction chamber flow path by a predetermined distance, the waste storage chamber 80 formed by combining with the intermediate substrate 20 and the lower substrate 30 at the substrate end portion, the waste storage chamber 80 The waste storage chamber air outlet 82 formed at a predetermined position, the waste storage chamber flow path 81 formed to be integrally connected with the waste storage chamber 80 from one side of the sample inlet, the intermediate substrate 20 and the lower substrate ( It comprises an air discharge passage 77 formed in the end portion of the particle collection chamber 70 formed in combination with 30) and an air outlet 78 formed at the end of the air discharge passage (77).

상기 상부 기질(10)의 재질은 투명 또는 불투명 플라스틱 또는 유리인 것이 바람직하며, 당업계에서 널리 쓰이는 방법으로 사출하여 제작할 수 있다.The material of the upper substrate 10 is preferably transparent or opaque plastic or glass, it can be produced by injection by a method widely used in the art.

도 5는 본 발명의 일실시형태에 따른 바이오 센서의 중간 기질(20)을 나타낸다. 5 shows an intermediate substrate 20 of a biosensor in accordance with one embodiment of the present invention.

도 5에 나타낸 바와 같이, 상기 중간 기질(20)은 상기 상부 기질(10) 및 상기 하부 기질(30)과 함께 결합하여 시료주입구를 형성하기 위한 시료주입구 홀(45), 상기 상부 기질(10) 및 상기 하부 기질(30)과 함께 결합하여 반응 챔버(50)를 형성하기 위한 반응 챔버홀(55), 상기 상부 기질(10) 및 상기 하부 기질(30)과 함께 결합하여 신호 발생 챔버(60)를 형성하기 위한 신호 발생 챔버 홀(65), 상기 상부 기질(10) 및 상기 하부 기질(30)과 함께 결합하여 입자 포집 챔버(70)를 형성하기 위한 입자 포집 챔버 홀(75) 및 상기 상부 기질(10) 및 상기 하 부 기질(30)과 함께 결합하여 폐기물 저장 챔버(80)를 형성하기 위한 폐기물 저장 챔버 홀(85)을 포함하여 이루어진다.As shown in FIG . 5 , the intermediate substrate 20 is combined with the upper substrate 10 and the lower substrate 30 to form a sample inlet hole 45 and the upper substrate 10. And a reaction chamber hole 55 for coupling with the lower substrate 30 to form the reaction chamber 50, the signal generating chamber 60 in combination with the upper substrate 10, and the lower substrate 30. Particle collection chamber hole 75 and the upper substrate to form a particle collection chamber 70 in combination with the signal generating chamber hole 65, the upper substrate 10 and the lower substrate 30 to form a And a waste storage chamber hole 85 for combining with the lower substrate 30 to form a waste storage chamber 80.

상기 중간 기질(20)에서 형성하는 반응 챔버 홀(55), 신호 발생 챔버 홀(65) 또는 입자 포집 챔버 홀(75)의 형태는 삼각형, 사각형 등의 다각형 형상이거나 다각형 형상에 곡선 또는 굴곡이 첨가된 형상, 또는 원형 반원형 타원형 등으로 구성될 수 있다. 또한, 상기 입자 포집 챔버 홀(75)은 도 6에 나타낸 바와 같이, 신호 발생 챔버 홀(65)과 독립적으로 형성되거나 상기 신호 발생 챔버 홀(65)에 연결되어 형성될 수 있다. 도 6에서 (a)는 입자 포집 챔버(70)가 입자 포집 챔버 유로(71)에 의해 신호 발생 챔버(60)와 연결된 일실시 형태를 나타내고, (b)는 입자 포집 챔버 유로(51) 없이 직접 신호 발생 챔버(60)에 연결된 일실시 형태를 나타내며, (c)는 신호 발생 챔버(60) 일부에 입자 포집 챔버(70)가 형성된 일실시 형태이며, (d)는 반응 챔버(50), 신호 발생 챔버(60), 입자 포집 챔버(70)가 연결 유로 없이 구성된 형태이다. The reaction chamber hole 55, the signal generating chamber hole 65, or the particle collection chamber hole 75 formed in the intermediate substrate 20 may have a polygonal shape such as a triangle or a quadrangle, or a curved or curved shape may be added to the polygonal shape. Shape, or circular semicircular oval or the like. In addition, as shown in FIG . 6 , the particle collecting chamber hole 75 may be formed independently of the signal generating chamber hole 65 or may be connected to the signal generating chamber hole 65. In FIG. 6 , (a) shows an embodiment in which the particle collecting chamber 70 is connected to the signal generating chamber 60 by the particle collecting chamber flow path 71, and (b) shows directly without the particle collecting chamber flow path 51. (C) is an embodiment in which a particle collecting chamber 70 is formed in a part of the signal generating chamber 60, and (d) is a reaction chamber 50, a signal. The generating chamber 60 and the particle collecting chamber 70 are configured without a connecting flow path.

상기 중간 기질(20)의 재질은 투명 또는 불투명 고분자인 것이 바람직하며, 상부 기질(10)을 부착하기 위한 접착제 층과 하부 기질(30)을 부착하기 위한 접착제 층 및 상기 두 접착제 층을 고정하기 위한 접착제 기질로 구성된다.The material of the intermediate substrate 20 is preferably a transparent or opaque polymer, and an adhesive layer for attaching the upper substrate 10 and an adhesive layer for attaching the lower substrate 30 and for fixing the two adhesive layers. It consists of an adhesive substrate.

상기 중간 기질(20)의 두께는 0.1 ~ 5 mm인 것이 바람직하며, 0.1 ~ 0.3 mm인 것이 더 바람직하다.The thickness of the intermediate substrate 20 is preferably 0.1 to 5 mm, more preferably 0.1 to 0.3 mm.

도 7a 내지 7d는 본 발명의 일실시형태에 따른 바이오 센서의 하부 기 질(30)을 나타낸다. Figures 7a-7d shows a lower quality group 30 of the biosensor in accordance with one embodiment of the invention.

도 7a에 나타낸 바와 같이, 상기 하부 기질(30)은 기질의 일측면에 신호 측정 기기 회전체에 고정하기 위한 고정홈(90)을 포함하여 이루어진다. 상기 고정 홈은 1개 이상을 구비하는 것이 바람직하며, 형성 위치는 상기 하부 기질 뿐만 아니라 다른 기질에 형성될 수 있다. 추가로 7b에 나타낸 바와 같이, 상기 신호 발생 챔버(60)에서 생성 또는 소모된 신호물질을 산화 또는 환원시켜 전기적인 신호를 측정하기 위한 기준 전극(210), 기준 전극 리드 선(240), 작동 전극(200) 및 작동 전극 리드 선(260), 바이오 센서 내부로 유입되는 시료를 인식하기 위한 시료 인식 전극(220, 230) 및 시료 인식 전극 리드 선(250, 270) 등이 형성될 수 있다.As shown in Figure 7a , the lower substrate 30 comprises a fixing groove 90 for fixing to the signal measuring device rotating body on one side of the substrate. Preferably, the fixing groove is provided with at least one, and the forming position may be formed in the lower substrate as well as the other substrate. As further shown in FIG . 7B , A reference electrode 210, a reference electrode lead wire 240, a working electrode 200, and a working electrode lead wire for measuring an electrical signal by oxidizing or reducing a signal material generated or consumed in the signal generation chamber 60. 260, sample recognition electrodes 220 and 230 and sample recognition electrode lead lines 250 and 270 for recognizing a sample flowing into the biosensor may be formed.

상기 하부 기질(30)의 재질은 투명 또는 불투명 플라스틱, 또는 유리를 사용할 수 있다. 특히, 형광, 인광, 화학발광, 흡광, 반사, 투과 등의 분광학적 신호를 측정하는 경우의 하부 기질(30)의 재질은 450 nm 파장의 빛 투과율이 50% 이상인 유리, 폴리카보네이트 고분자 또는 폴리에틸렌-테레프탈레이트, 폴리스티렌, 폴리비닐클로라이드 등의 투명한 재질의 고분자를 사용하는 것이 바람직하다. The lower substrate 30 may be made of transparent or opaque plastic or glass. In particular, the material of the lower substrate 30 in the case of measuring spectroscopic signals such as fluorescence, phosphorescence, chemiluminescence, absorption, reflection, and transmission is made of glass, polycarbonate polymer or polyethylene having a light transmittance of 50% or more at 450 nm wavelength. It is preferable to use a polymer made of a transparent material such as terephthalate, polystyrene, and polyvinyl chloride.

상기 신호 측정시 전기적인 신호를 측정하는 경우, 도 7b에 나타낸 바와 같이, 상기 하부 기질(30)은 신호 측정 물질의 산화(oxidation)또는 환원(reduction) 반응에 의해 생성된 전류를 측정하기 위한 다수의 작동 전극(200), 기준 전극(210)으로 구성될 수 있으며, 상기 전극과 신호 측정 기기와 연결을 위해 다수의 작동 전극 리드 선(260)과 기준 전극 리드 선(240)을 기질(30)의 일측면에 구비하며, 상기 기준 전극(210) 및 작동 전극(200)은 상기 신호 발생 챔버(60) 내부에 형성된 다. 전류법(amperometry)을 일례로 들면, 측정 기기에서 기준 전극 리드 선(240) 과 작동 전극 리드 선(260)을 통해 기준 전극(210)을 기준으로 작동 전극(200)에 일정한 전압을 인가하며, 신호 측정 물질은 작동 전극의 표면에서 산화하여 산화 전류를 생성하거나 또는 환원하여 환원 전류를 생산한다. 이때 생성된 산화 전류 또는 환원 전류의 양은 분석물질의 농도에 의존하므로 전류를 측정함으로써 농도를 알 수 있다. 1개의 작동 전극(200)에는 1개의 기준 전극(210)을 형성하는 것이 일반적이나, 본 명세서에서는 기준 전극(210)의 수 및 형성위치를 제한하지 않는다. In the case of measuring the electrical signal when measuring the signal, as shown in FIG . 7B , the lower substrate 30 is used to measure the current generated by the oxidation or reduction reaction of the signal measuring material. It may be composed of a working electrode 200, a reference electrode 210, a plurality of working electrode lead wires 260 and the reference electrode lead wires 240 to the substrate 30 for connection with the electrode and the signal measuring device It is provided on one side of the, the reference electrode 210 and the working electrode 200 is formed in the signal generating chamber (60). Taking amperometry as an example, a constant voltage is applied to the working electrode 200 with reference to the reference electrode 210 through the reference electrode lead wire 240 and the working electrode lead wire 260 in the measuring instrument. The signal measuring material is oxidized at the surface of the working electrode to produce an oxidizing current or to reduce a producing current. The amount of oxidation current or reduction current generated depends on the concentration of the analyte, so the concentration can be determined by measuring the current. It is common to form one reference electrode 210 in one working electrode 200, but the number and position of forming the reference electrode 210 are not limited in this specification.

또한, 도 7c 또는 도 7d에 나타낸 바와 같이, 상기 하부 기질(30)에 바이오 센서 내부로의 시료의 정상 유입 여부를 검출하기 위해 추가적으로 다수의 시료 인식 전극(220, 230) 및 이와 연결된 시료 인식 전극 리드 선(250, 270)을 구비할 수 있다. 상기 시료 인식 전극(220, 230)은 전극 쌍으로 사용하는 것이 바람직하며, 이때 하나는 반응 챔버 유로(51)에 형성되는 것이 바람직하고, 나머지 한 개는 입자 포집 챔버(70)의 일측 말단 또는 공기 배출로(77)에 형성되는 것이 바람직하다. 시료 주입 후, 상기 시료 인식 전극(220, 230)간의 저항을 측정하거나 전도도를 측정하여 충분한 시료 유입 또는 유입된 시료에 기포의 존재 여부를 확인할 수 있다. 상기 시료 인식 전극(220, 230)의 수 및 형성 위치는 제한되지 않는다.In addition, as shown in FIG . 7C or 7D , a plurality of sample recognition electrodes 220 and 230 and sample recognition electrodes connected thereto are additionally used to detect whether the sample is normally introduced into the biosensor into the lower substrate 30. Lead wires 250 and 270 may be provided. It is preferable to use the sample recognition electrodes 220 and 230 as electrode pairs, in which one is preferably formed in the reaction chamber flow path 51, and the other is one end or air of the particle collection chamber 70. It is preferable that it is formed in the discharge path 77. After the sample is injected, the resistance between the sample recognition electrodes 220 and 230 may be measured or the conductivity may be measured to determine whether sufficient sample is introduced or bubbles are present in the sample. The number and formation positions of the sample recognition electrodes 220 and 230 are not limited.

상기 전극과 리드 선을 구성하는 물질은 후막 인쇄된 탄소, 흑연, 은, 박막 코팅된 금, 은, 타이타니아 등의 전도성 물질 또는 상기 전도성 물질을 함유하는 고분자로 구성된다. 상기 후막은 스크린 인쇄기법을 사용하는 것이 바람직하며, 박막 코팅은 스퍼터링 기법으로 기질(30)상에 형성할 수 있다. The material constituting the electrode and the lead wire is composed of a conductive material such as thick film printed carbon, graphite, silver, thin film coated gold, silver, titania, or a polymer containing the conductive material. The thick film is preferably a screen printing technique, and the thin film coating may be formed on the substrate 30 by the sputtering technique.

또한, 상기 전극과 리드 선은 일부를 절연막(290)으로 코팅할 수 있으며, 이때 상기 절연막(290)은 비수용성 물질로 구성된다. 상기 절연막(290)은 전극 또는 리드 선을 절연, 화학적 부식 또는 물리적 충격으로부터 보호한다.In addition, a portion of the electrode and the lead wire may be coated with the insulating film 290, wherein the insulating film 290 is made of a water-insoluble material. The insulating film 290 protects the electrode or lead wire from insulation, chemical corrosion or physical shock.

상기 바이오 센서의 작동 원리는 다음과 같다.The operating principle of the biosensor is as follows.

시료주입구를 통해 시료가 주입되면 상기 시료는 반응 챔버 유로(51), 반응 챔버(50), 신호 발생 챔버 유로(61), 신호 발생 챔버(60), 입자 포집 챔버 유로(71), 입자 포집 챔버(70)를 채우게 되며, 과량의 시료는 폐기물 저장 챔버 유로(81)를 통하여 폐기물 저장 챔버(80)로 이동한다. 일정 시간 동안 반응 챔버(50)에서는 직접 또는 경쟁반응을 통해 분석 물질과 미세 입자에 고정된 결합물질 및 신호발생물질 사이에 결합 반응이 일어난다. 일정 시간 결합 반응 후 바이오 센서의 회전에 의해 반응 챔버(50)에 존재하던 결합물질이 고정된 미세 입자는 원심력에 의해 신호 발생 챔버(60)로 이동하며, 이때 상기 결합물질에 결합한 분석 물질과 상기 분석물질에 결합된 신호발생물질도 같이 이동하며, 결합하지 않은 신호발생물질 또는 분석 물질은 반응 챔버(50)에 잔류한다. 신호 발생 챔버(60)로 이동한 결합물질에 고정된 신호발생물질은 신호유발물질과 반응하여 생성물을 생성한다. 일정시간 효소 반응 후 바이오 센서를 회전하면 신호 발생 챔버(60)에 존재하는 미세 입자는 입자 포집 챔버(70)로 이동하고, 신호 발생 챔버(60)에는 신호유발물질과 반응 생성물이 잔류하게 되며, 상기 생성물 또는 신호유발물질은 특정한 파장의 빛을 흡수하거나, 일정 전압 인가시 산화 또는 환원 가능하거나, 특정 파장 의 빛을 방출하는 특성을 가지므로, 상기 특성을 이용하여 효소 기질의 소모 또는 반응 생성물을 측정하여, 시료 내에 존재하는 분석 물질을 정성 또는 정량적으로 측정할 수 있다. When the sample is injected through the sample inlet, the sample is reacted to the reaction chamber flow path 51, the reaction chamber 50, the signal generation chamber flow path 61, the signal generation chamber 60, the particle collection chamber flow path 71, and the particle collection chamber. 70 is filled, and the excess sample moves to the waste storage chamber 80 through the waste storage chamber flow path 81. In the reaction chamber 50 for a predetermined time, a binding reaction occurs between the analyte and the binding agent and the signal generator fixed to the microparticles, either directly or through a competition reaction. After the binding reaction for a predetermined time, the microparticles in which the binding substance in the reaction chamber 50 is fixed by the rotation of the biosensor are moved to the signal generating chamber 60 by centrifugal force. The signaling material bound to the analyte also moves together, and the unbound signaling or analyte remains in the reaction chamber 50. The signaling material fixed to the binding material that has moved to the signaling chamber 60 reacts with the signaling material to produce a product. When the biosensor rotates after a predetermined time, the microparticles existing in the signal generating chamber 60 move to the particle collecting chamber 70, and the signal inducing substance and the reaction product remain in the signal generating chamber 60. The product or signal-producing material absorbs light of a specific wavelength, is oxidized or reduced upon application of a constant voltage, or emits light of a specific wavelength. By measuring, the analyte present in the sample can be determined qualitatively or quantitatively.

상기 바이오 센서 내에서 신호를 발생시키는 반응에는 공지된 여러가지 반응을 이용할 수 있으며, 예를 들면 다음과 같은 반응을 이용할 수 있다.Various reactions known in the biosensor may be used as a reaction for generating a signal. For example, the following reaction may be used.

도 8은 상기 바이오 센서 내에서 신호를 발생시키는 반응의 일례로, 상기 반응은 도 8(a)에 나타낸 바와 같이, 미세 입자(601) 표면에 분석 물질(603)의 특정부위(604)와 선택적으로 반응하여 결합하는 1차 결합물질(602)이 화학적으로 또는 물리적 흡착에 의해 고정되어 반응 챔버 내에 도입되고, 분석 물질(603)의 다른 특정부위(605)과 선택적으로 반응하여 결합하는 2차 결합물질(606)에는 신호발생물질인 효소(607)가 결합되어 반응 챔버 내부에 도입되며, 시료 유입 시 상기 두 결합물질은 분석 물질(603)의 서로 다른 부분을 선택적으로 인식하여 결합하거나, 도 8(b)에 나타낸 바와 같이, 상기 미세 입자(601) 표면에 분석 물질(603)의 특정 부위(604)를 선택적으로 인식하여 결합하는 결합물질(602)이 화학적으로 또는 물리적 흡착에 의해 고정되어 반응 챔버에 구성되며, 상기 분석물질(603)과 동일한 물질 또는 분석 물질의 특정 부위(604)를 갖는 유사분석물질(610)에 신호발생물질인 효소(607)가 고정되어 반응 챔버에 도입되며, 상기 효소가 고정된 유사분석물질(610)은 분석물질(603)과 경쟁적으로 결합물질(602)과 결합할 수 있으며, 또는 도 8(c)에 나타낸 바와 같이, 상기 미세 입자(601)표면에 분석물질(603) 또는 분석물질의 특정 부위(604)를 갖는 유사 분석물질(610)이 화학적으로 또는 물리적 흡착에 의해 고정되어 반응 챔버에 도입되며, 상기 분석물질(603) 또는 유사분석물질(610)의 특정부위(604)를 선택적으로 인식하여 결합하는 결합물질(602)에는 신호발생물질인 효소(607)이 고정되어 반응 챔버에 도입되며, 상기 결합물질(602)은 시료내에 존재하는 분석물질(603)과 미세 입자(601)에 고정된 유사분석물질(610)과 경쟁적으로 반응하여 결합할 수 있다. 상기 신호발생물질인 효소(607)와 반응하는 신호유발물질인 효소 기질(substrate)(608)은 신호 발생 챔버에 도입되며, 효소(607)와 반응하여 생성물(609)을 생성하며, 효소 기질(608)의 소모 또는 반응 생성물(609)을 측정하여, 시료 내에 존재하는 분석 물질(603)을 정성 또는 정량적으로 측정한다. 상기 생성물(609) 또는 효소 기질(608)은 특정한 파장의 빛을 흡수하거나, 일정 전압 인가시 산화 또는 환원 가능하거나, 특정파장의 빛을 방출하는 특성을 갖는다. 보다 효율적으로 큰 측정 신호를 획득하기 위해 상기 2차 결합물질(606) 또는 유사 분석물질(610) 또는 결합물질(602)에 효소(607)를 직접 고정하는 대신 바이오틴(biotin)을 각각 고정하고, 효소(607)에도 바이오틴을 고정한 후, 반응 챔버에 아비딘(avidin)을 첨가하면, 아비딘-바이오틴 결합에 의해 보다 많은 수의 효소(607)를 2차 결합물질(606), 유사 분석물질(610) 또는 결합물질(602) 각각에 고정할 수 있다. 일반적으로 효소(607)에는 다수의 바이오틴이 고정될 수 있으며, 1개의 아비딘은 4개의 바이오틴과 결합 할 수 있으므로 아비딘-바이오틴 컴플랙스에 의해 많은 수의 효소가 2차 결합물질(606), 유사 분석물질(610) 또는 결합물질(602)과 결합이 가능하다An example of the reaction of Figure 8 generates a signal in the biosensor, and the reaction is specific portion 604 of, the fine particles 601 on the surface of the analyte 603, as illustrated in (a) of FIG. 8 The primary binding material 602 that selectively reacts and binds is introduced into the reaction chamber by being fixed chemically or by physical adsorption, and the secondary that selectively reacts and binds with other specific portions 605 of the analyte 603. The binding material 606 is coupled to the enzyme 607, which is a signal generating material, is introduced into the reaction chamber, and when the sample is introduced, the two binding materials selectively recognize and bind different portions of the analyte 603, or FIG. As shown in (b) of FIG. 8 , a binding material 602 that selectively recognizes and binds a specific portion 604 of the analyte 603 to the surface of the fine particles 601 is fixed by chemical or physical adsorption. Been in the reaction chamber The enzyme 607, which is a signaling material, is fixed to the analogous material 610 having the same material as the analyte 603 or a specific site 604 of the analyte, and is introduced into the reaction chamber. fixed Similar analyte 610 analyte 603 and competitively can be combined with a binding material (602), or, wherein the microparticles (601) analysis of the surface material as shown in (c) of FIG. 8 603 or a similar analyte 610 having a specific site 604 of the analyte is introduced into the reaction chamber fixed by chemical or physical adsorption, and the analyte 603 or similar analyte 610 The binding material 602 that selectively recognizes and binds to a specific site 604 is fixed to the enzyme 607 as a signal generating material and introduced into the reaction chamber, and the binding material 602 is an analyte 603 present in the sample. ) And the similar analyte 610 fixed to the fine particle 601 It may be bonded to the reactions. An enzyme substrate (608), which is a signal inducing substance that reacts with the enzyme (607), which is a signal generating material, is introduced into a signal generating chamber, and reacts with the enzyme (607) to produce a product (609). The consumption of 608 or reaction product 609 is measured to qualitatively or quantitatively determine analyte 603 present in the sample. The product 609 or the enzyme substrate 608 has a characteristic of absorbing light of a specific wavelength, oxidizing or reducing when a constant voltage is applied, or emitting light of a specific wavelength. In order to more efficiently obtain a large measurement signal, instead of directly fixing the enzyme 607 to the secondary binding material 606 or similar analyte 610 or binding material 602, biotin is fixed respectively. If biotin is fixed to the enzyme 607 and then avidin is added to the reaction chamber, the avidin-biotin bond causes a greater number of enzymes 607 to be bound to the secondary binding material 606 and similar analyte 610. Or fixed to each of the binding materials 602. In general, a large number of biotin may be immobilized to the enzyme 607, and one avidin may bind to four biotin, so that a large number of enzymes are secondary binding material 606 by an avidin-biotin complex. 610 or can be combined with the binding material 602

상기 효소는 글루코오스 산화 효소, 글루코오스 탈수소 효소, 알칼리 포스파타제, 과산화효소 등을 사용할 수 있으며, 상기 효소 기질은 글루코오스, 과산화수소, 페리시아나이드 이온, 페로시아나이드 이온, 헥사아민루세늄, 페로센 및 페로센 유도체, 퀴논 및 퀴논 유도체, 3,3′,5,5′-테트라메틸벤지딘, o-페닐렌디아민 디하이드로클로라이드, 2,2′-아지노-디-[3-에틸-벤조티아졸린-6-술폰산]디암모늄염, 3-메틸-2-벤조티아졸리논 하이드라존, p-니트로페닐-포스페이트, 4-메틸-엄벨리페릴 포스페이트, 8-아닐리노-1-나프탈렌술폰산, 벤지딘, 프루시안 블루, 4-아미노페나존, 2,4-디클로로페놀, 4-아미노안티피린, 하이드로 퀴논 등을 사용할 수 있다.The enzyme may be used for glucose oxidase, glucose dehydrogenase, alkaline phosphatase, peroxidase, etc. The enzyme substrate is glucose, hydrogen peroxide, ferricyanide ion, ferrocyanide ion, hexaaminerucenium, ferrocene and ferrocene derivatives, Quinones and quinone derivatives, 3,3 ', 5,5'-tetramethylbenzidine, o-phenylenediamine dihydrochloride, 2,2'-azino-di- [3-ethyl-benzothiazoline-6-sulfonic acid] Diammonium salt, 3-methyl-2-benzothiazolinone hydrazone, p-nitrophenyl-phosphate, 4-methyl-umbelliferyl phosphate, 8-anilino-1-naphthalenesulfonic acid, benzidine, prussian blue, 4 -Aminophenazone, 2,4-dichlorophenol, 4-aminoantipyrine, hydroquinone and the like can be used.

9은 상기 바이오 센서 내에서 신호를 발생시키는 반응의 일례로, 미세 입자(601), 1차 결합물질(602), 분석 물질(603), 분석 물질의 특정 부위(604, 605) 및 2차 결합물질(606)은 상기 8에서 기술한 내용과 동일하며, 상기 8에서 사용한 효소(607) 대신 형광물질(651)이 2차 결합물질(606) 또는 분석물질(603) 또는 유사분석물질(610) 또는 결합물질(602)에 비형광 킬레이트(650)를 통하여 결합되어 있으며, 상기 8에서 사용된 효소 기질(608) 대신 형광 증폭 킬레이트(652)가 사용된다. 상기 비형광 킬레이트 화합물(650)은 일반적으로 형광 현상이 없는 물질이며, pH 7 이상의 조건에서는 형광물질(651)과 결합하지만, pH 4 이하의 산성 조건에서는 결합한 형광물질(651)을 해리시키는 특성을 갖는다. 상기 형광 물 질(651)은 Sm3 + 이온, Eu3 + 이온, Tb3 + 이온 등의 란탄족 계열의 금속 이온을 사용하며, 상기 금속 이온은 UV 영역의 여기광(excitation light)을 흡수하여 가시광선 영역의 빛을 방출함으로 큰 스트로크 이동(Stoke's shift)을 보이며, 형광의 수명이 길어 TRF(Time-resolved fluorometry) 방법으로 측정이 가능한 장점을 가지고 있다. FIG. 9 illustrates an example of a signal generating reaction in the biosensor, including fine particles 601, a primary binding agent 602, an analyte 603, specific regions 604 and 605, and a secondary of an analyte. The binding material 606 is the same as described in FIG. 8 , and the fluorescent material 651 is the secondary binding material 606 or the analyte 603 or similar analyte instead of the enzyme 607 used in FIG. 8 . It is coupled via a non-fluorescent chelate 650 to 610 or a binding material (602), and the enzyme substrate 608, instead of fluorescent amplification chelating 652 in FIG. 8 are used. The non-fluorescent chelate compound 650 is generally a material having no fluorescence, and binds to the fluorescent material 651 at pH 7 or higher, but dissociates the bound fluorescent material 651 at pH 4 or lower. Have The fluorescent material 651 uses lanthanide-based metal ions such as Sm 3 + ions, Eu 3 + ions, and Tb 3 + ions, and the metal ions absorb excitation light in the UV region. It emits light in the visible region and shows a large stroke's shift. The long lifetime of fluorescence has the advantage that it can be measured by the time-resolved fluorometry (TRF) method.

형광 신호를 측정하기 위해서는, 산성 조건에서 형광물질(651)을 비형광 킬레이트(650)로부터 해리시킨 후 형광 증폭 킬레이트(652)를 사용하여 형광 신호를 증폭시킨다. 상기 형광 증폭 킬레이트(652)는 산성 조건에서도 형광물질과 결합하여 안정적인 착화합물(653)을 형성하여 비형광 킬레이트의 결합보다 큰 형광 신호를 발생한다.In order to measure the fluorescence signal, the phosphor 651 is dissociated from the non-fluorescence chelate 650 under acidic conditions, and then the fluorescence signal is amplified using the fluorescence amplification chelate 652. The fluorescence amplification chelate 652 combines with a fluorescent material to form a stable complex 653 even under acidic conditions to generate a greater fluorescence signal than the combination of non-fluorescence chelate.

도 10은 상기 8의 신호발생 반응을 이용한 본 발명의 바이오 센서의 작동 원리의 일례를 나타낸다. 10 shows an example of the operating principle of the biosensor of the present invention using the signaling reaction of FIG. 8 .

도 10 (a)는 본 발명에 따른 바이오 센서의 일실시형태에 있어서, 시료주입 전의 바이오 센서의 일단면을 나타내는 것으로, 상기 반응 챔버에는 1차 결합물질(602)이 고정된 미세 입자(601)와 효소(607)가 결합된 2차 결합물질(606)이 반응 챔버(50)에 건조된 상태로 하부 기질(30) 위에 반응층(300)을 형성하며, 효소(607)와 반응하는 효소 기질(608)은 신호 발생 챔버(60)에 건조된 상태로 하부 기질(30)위에 형성한다. Figure 10 (a) is according to one embodiment of the biosensor according to the present invention, represents the end face of the before sample injection biosensor, in the reaction chamber, the first binding material 602. The microparticles (601 fixed ) And the second binding material 606 combined with the enzyme 607 forms the reaction layer 300 on the lower substrate 30 in a state where the secondary binding material 606 is dried in the reaction chamber 50, and the enzyme reacts with the enzyme 607. The substrate 608 is formed on the lower substrate 30 in a dry state in the signal generating chamber 60.

도 10 (b)는 시료가 주입된 상태이며, 시료는 반응 챔버 유로(51), 반응 챔버(50), 신호발생 챔버 유로(61), 신호발생 챔버(60), 입자 포집 챔버 유로(71) 및 입자 포집 챔버(70)를 채우게 되며, 일정 시간 동안 반응 챔버(50)에서는 분석 물질(603)과 미세 입자에 고정된 1차 결합물질(602), 2차 결합물질(606) 사이에 결합 반응이 일어난다. 일정 시간 결합 반응 후 바이오 센서(100)의 회전에 의해 도 10(c)에 나타낸 바와 같이, 반응 챔버(50)에 존재하던 1차 결합물질(602)이 고정된 미세 입자(601)는 원심력에 의해 신호 발생 챔버(60)로 이동하며, 이때 1차 결합물질(602)와 결합한 분석 물질(603)에 결합된 2차 결합물질(606)도 같이 이동하며, 결합하지 않은 2차 결합물질은 반응 챔버(50)에 잔류한다. 신호 발생 챔버(60)로 이동한 2차 결합물질에 고정된 효소(607)는 효소 기질(608)과 반응하여 생성물(609)을 생성한다. 일정시간 효소 반응 후 바이오 센서를 회전하면 도 10(d)에서 나타낸 바와 같이, 신호 발생 챔버(60)에 존재하는 1차 결합물질(602)이 고정된 미세 입자(601)와 효소(607)는 입자 포집 챔버(70)으로 이동하며, 신호 발생 챔버(60)에는 효소 기질(608)과 반응 생성물(609)이 잔류하게 되며, 상기 생성물(609) 또는 효소 기질(608)은 특정한 파장의 빛을 흡수하거나, 일정 전압 인가 시 산화 또는 환원 가능하거나, 특정파장의 빛을 방출하는 특성을 갖기 때문에, 효소 기질(608)의 소모 또는 반응 생성물(609)을 측정하여, 시료 내에 존재하는 분석 물질(603)을 정성 또는 정량적으로 측정할 수 있다.Of Figure 10 (b) is a sample injection conditions, the sample reaction chamber flow path 51, the reaction chamber 50, a signal generating chamber flow path 61, a signal generating chamber 60, a particle collecting chamber passage (71 ) And the particle collection chamber 70, and the reaction chamber 50 binds between the analyte 603 and the primary binder 602 and the secondary binder 606 fixed to the fine particles for a predetermined time. Reaction takes place. As shown in (c) of FIG . 10 by the rotation of the biosensor 100 after a predetermined time binding reaction, the fine particles 601 to which the primary binding material 602 fixed in the reaction chamber 50 is fixed are centrifugal force. By moving to the signal generating chamber 60, wherein the secondary binding material 606 coupled to the analyte 603 bound to the primary binding material 602 also moves together, the secondary binding material that is not bound It remains in the reaction chamber 50. The enzyme 607 immobilized on the secondary binding material that has moved to the signaling chamber 60 reacts with the enzyme substrate 608 to produce the product 609. When the biosensor is rotated after the enzyme reaction for a predetermined time, as shown in FIG . 10 (d) , the fine particles 601 and the enzyme 607 to which the primary binding material 602 existing in the signal generating chamber 60 is fixed are fixed. Is moved to the particle collection chamber 70, the enzyme substrate 608 and the reaction product 609 remains in the signal generating chamber 60, the product 609 or enzyme substrate 608 is a light of a specific wavelength Absorbs, oxidizes or reduces when a certain voltage is applied, or emits light having a specific wavelength. Therefore, the consumption of the enzyme substrate 608 or the reaction product 609 is measured to determine the analyte present in the sample ( 603) can be measured qualitatively or quantitatively.

도 11은 상기 9의 신호발생 반응을 이용한 본 발명의 바이오 센서의 작동 원리의 일례를 나타낸다. FIG. 11 shows an example of the operating principle of the biosensor of the present invention using the signaling reaction of FIG. 9 .

도 11 (a)는 본 발명에 따른 바이오 센서의 일실시형태에 있어서, 시료주입 전의 바이오 센서의 일단면을 나타내는 것으로, 상기 반응 챔버에는 1차 결합물질(602)이 고정된 미세 입자(601)와 형광물질(651)이 결합된 2차 결합물질(606)이 반응 챔버(50)에 건조된 상태로 하부 기질(30) 위에 반응층(300)을 형성하며, 형광물질(651)과 반응하는 형광 증폭 킬레이트(652)는 신호 발생 챔버(60)에 건조된 상태로 하부 기질(30)위에 신호 발생 층(310)을 형성한다.Of Figure 11 (a) is according to one embodiment of the biosensor according to the present invention, represents the end face of the before sample injection biosensor, in the reaction chamber, the first binding material 602. The microparticles (601 fixed ) And the secondary binding material 606, to which the fluorescent material 651 is coupled, forms the reaction layer 300 on the lower substrate 30 in a state where the secondary binding material 606 is dried in the reaction chamber 50, and reacts with the fluorescent material 651. The fluorescent amplification chelate 652 forms a signal generating layer 310 on the lower substrate 30 in a dried state in the signal generating chamber 60.

도 11 (b)는 시료가 주입된 상태이며, 시료는 반응 챔버 유로(51), 반응 챔버(50), 신호발생 챔버 유로(61), 신호발생 챔버(60), 입자 포집 챔버 유로(71) 및 입자 포집 챔버(70)를 채우게 되며, 일정 시간 동안 반응 챔버(50)에서는 분석 물질(603)과 미세 입자에 고정된 1차 결합물질(602), 2차 결합물질(606) 사이에 결합 반응이 일어난다. 일정 시간 결합 반응 후 바이오 센서(100)의 회전에 의해 도 11(c)에 나타낸 바와 같이, 반응 챔버(50)에 존재하던 1차 결합물질(602)이 고정된 미세 입자(601)는 원심력에 의해 신호 발생 챔버(60)로 이동하며, 이때 1차 결합물질(602)과 결합한, 분석 물질(603)에 결합된 2차 결합물질(606)도 같이 이동하며, 결합하지 않은 2차 결합물질은 반응 챔버(50)에 잔류한다. 신호 발생 챔버(60)로 이동한 2차 결합물질에 고정된 형광물질(651)은 해리되어 형광 증폭 킬레이트(652)와 반응하여 형광 증폭 착화합물(653)을 형성한다. 일정시간 착화합물 형성 반응 후 바이오 센서를 회전하면 도 11(d)에서 나타낸 바와 같이, 신호 발생 챔버(60)에 존재하는 1차 결합물질(602)이 고정된 미세 입자(601)와 형광물 질(651)이 해리된 2차 결합물질(606)은 입자 포집 챔버(70)로 이동하며, 상기 신호 발생 챔버(60)에는 형광 증폭 착화합물(653)이 잔류한다. 상기 잔류한 착화합물(653)의 형광을 측정하여, 분석물질을 정성 또는 정량 분석할 수 있다.Of Figure 11 (b) is a sample injection conditions, the sample reaction chamber flow path 51, the reaction chamber 50, a signal generating chamber flow path 61, a signal generating chamber 60, a particle collecting chamber passage (71 ) And the particle collection chamber 70, and the reaction chamber 50 binds between the analyte 603 and the primary binder 602 and the secondary binder 606 fixed to the fine particles for a predetermined time. Reaction takes place. As shown in (c) of FIG . 11 by the rotation of the biosensor 100 after a certain time binding reaction, the fine particles 601 to which the primary binding material 602 fixed in the reaction chamber 50 is fixed are centrifugal force. Moves to the signal generating chamber 60 by the secondary binding material 606 coupled to the analyte 603, which is bound to the primary binding material 602, and moves together with the secondary binding material that is not bound. Remains in the reaction chamber 50. The fluorescent material 651 fixed to the secondary binding material that has moved to the signal generation chamber 60 is dissociated to react with the fluorescent amplification chelate 652 to form a fluorescent amplification complex 653. When the biosensor is rotated after a complex compound formation reaction for a predetermined time, as shown in FIG . 11 (d) , the fine particles 601 and the fluorescent material having the primary binding material 602 fixed in the signal generating chamber 60 are fixed. The secondary binding material 606 in which 651 is dissociated moves to the particle collection chamber 70, and the fluorescent amplification complex 653 remains in the signal generating chamber 60. By measuring the fluorescence of the remaining complex compound 653, the analyte can be qualitatively or quantitatively analyzed.

또한, 본 발명은 상기 바이오 센서의 제조방법을 제공한다.The present invention also provides a method of manufacturing the biosensor.

상기 바이오 센서는 하부 기질에 중간 기질을 부착하여 반응 챔버, 신호 발생 챔버를 포함하는 챔버들을 형성한 후, 상기 형성된 반응 챔버 및 신호 발생 챔버에 각각 반응 물질과 신호발생물질이 함유된 용액을 주입한 후 건조하여 반응층과 신호발생층을 제작하고, 여기에 상부 기질을 결합하여 바이오 센서를 제조한다.The biosensor attaches an intermediate substrate to a lower substrate to form chambers including a reaction chamber and a signal generating chamber, and then injects a solution containing a reactant and a signal generating substance into the formed reaction chamber and the signal generating chamber, respectively. After drying to produce a reaction layer and a signal generating layer, by combining the upper substrate to produce a biosensor.

이때, 하부 기질 또는 상부 기질에 중간 기질을 부착하는 방법은 당업계에서 널리 쓰이는 방법을 사용할 수 있다.At this time, the method of attaching the intermediate substrate to the lower substrate or the upper substrate may use a method widely used in the art.

본 발명에 따른 바이오 센서는 디스크 형태의 장치 내 반응 챔버에서 입자를 사용하기 때문에 반응 후, 회전에 의한 원심력에 의해 이동이 가능하므로 세척 과정이 필요하지 않으며 제조가 간편하고 휴대하기 용이하며 구조가 단순하여 저렴하게 대량생산 할 수 있으므로 경제적이다. 또한, 저가 장비에도 판독할 수 있으며, 손쉽게 사용할 수 있으므로 각종 진단에 유용하고 편리하게 사용될 수 있다.Since the biosensor according to the present invention uses particles in a reaction chamber in a disk-type device, it can be moved by centrifugal force by rotation after the reaction, and thus does not require a cleaning process, is simple to manufacture, easy to carry, and simple in structure. It is economical because it can be mass produced inexpensively. In addition, it can be read even in low-cost equipment, and can be easily used for various diagnostics.

이하, 실시예를 통하여 본 발명을 자세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are merely to illustrate the invention, the present invention is not limited by the following examples.

<< 실시예Example 1> 바이오 센서의 제조 1 1> Manufacture of biosensors 1

<1-1> 항-알파 <1-1> anti-alpha 융모성선자극호르몬Chorionic gonadotropin 항체에 알칼린 포스파테이즈(Alkaline phosphatase; ALP) 효소 고정 Alkaline phosphatase (ALP) Enzyme Fixation in Antibodies

0.5 M의 NaCl을 포함하는 0.1 M의 2-[N-모폴리노]에탄 술폰산(이하 MES, pH 6) 완충용액 1 ㎖에 항-알파 융모성선자극호르몬(HCG, Human Chorionic Gonadotropin hormone) 항체 1 mg과 ALP 효소를 1 mg을 첨가한 후, 완전히 용해시켰다. 상기 용액에 0.4 mg의 EDC(1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride)와 1.1 mg의 sulfo-NHS(N-hydroxysulfosuccinimide)를 첨가한 후, 2시간 동안 실온에서 반응시킨 후, 10 mM이 되도록 하이드록실아민을 첨가하고 20분간 실온에서 반응시켰다. 이후, 원심분리용 MWCO(molecular weight cut-off) 100 KDa인 Nanosep(Pall corporation, MI, USA) 튜브를 사용하여 14,000 중력으로 10분 동안 원심분리하여 분자량이 100 KDa 미만인 분자를 제거한 후, 상층에 남아있는 ALP 효소가 고정된 항-알파 융모성선자극호르몬 항체에 0.5 M NaCl을 포함하는 0.1 M의 MES 완충 용액 1 ㎖을 첨가하여 ALP가 결합된 항-알파 융모성선자극호르몬 항체 용액을 제조하였다.Anti-alpha chorionic gonadotropin (HCG) antibody 1 in 1 ml of 0.1 M 2- [N-morpholino] ethane sulfonic acid (hereinafter referred to as MES, pH 6) buffer containing 0.5 M NaCl. 1 mg of mg and ALP enzyme were added and then completely dissolved. 0.4 mg of EDC (1-ethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride) and 1.1 mg of sulfo-NHS (N-hydroxysulfosuccinimide) were added to the solution, followed by reaction at room temperature for 2 hours, followed by 10 mM. To this, hydroxylamine was added and reacted at room temperature for 20 minutes. Subsequently, centrifugation was carried out for 10 minutes at 14,000 gravity using a Nanosep (Pall corporation, MI, USA) tube, which is a molecular weight cut-off (MWCO) 100 KDa for centrifugation, to remove molecules having a molecular weight of less than 100 KDa. ALP-bound anti-alpha chorionic stimulating hormone antibody solution was prepared by adding 1 ml of 0.1 M MES buffer solution containing 0.5 M NaCl to the remaining ALP enzyme-immobilized anti-alpha chorionic stimulating hormone antibody.

<1-2> 미세 입자에 항-베타 융모성선자극호르몬 항체 고정<1-2> Anti-beta chorionic stimulating hormone antibody immobilized on fine particles

1 ㎖의 폴리스티렌 카복실(직경 약 9 ㎛, 10%, bangs laboratories, Inc., 미국)입자 용액에 <1-1>에서 사용한 MES 완충용액을 5 ㎖ 첨가한 후, 원심분리하여 상층 액을 제거하고 부피가 1 ㎖가 되도록 상기 완충용액을 첨가하였다. 상기 용액에 <1-1>에서 사용한 동일 농도의 EDC 및 sulfo-NHS를 첨가한 후, 30분간 실온에서 반응시키고, 5 ㎖의 MES 완충용액을 첨가한 후 원심분리 하여 상층 액을 제거하였다. 상기 침전물에 MES 완충용액을 첨가하여 부피가 1 ㎖가 되게 한 후, 1 mg의 항-베타-HCG 항체를 첨가하여 2시간 동안 실온에서 반응시켰다. 이후, 0.1% 소혈 청 알부민(BSA, Bovine serum albumin)을 첨가한 후 실온에서 30분간 반응시켰다.5 ml of the MES buffer used in <1-1> was added to 1 ml of polystyrene carboxyl (diameter: about 9 µm, 10%, bangs laboratories, Inc., USA), followed by centrifugation to remove the supernatant. The buffer was added so that the volume was 1 ml. EDC and sulfo-NHS of the same concentration used in <1-1> were added to the solution, followed by reaction at room temperature for 30 minutes, 5 ml of MES buffer was added, and then centrifuged to remove the supernatant. After adding MES buffer to the precipitate to a volume of 1 ml, 1 mg of anti-beta-HCG antibody was added and reacted at room temperature for 2 hours. Thereafter, 0.1% bovine serum albumin (BSA) was added thereto, followed by reaction at room temperature for 30 minutes.

<1-3> 반응 층 제작<1-3> reaction layer fabrication

상기 <1-1> 및 <1-2>에서 제작한 용액을 각각 0.5 ㎖씩 분취하여 혼합한 후, 0.05% PVP(polyvinylpyrrolidone K15), 0.1% Tritone X-100(New England Nuclear Corp.)을 첨가하여 완전히 용해시킨 후 투명한 하부 기질에 중간 기질을 부착하여 형성한 반응 챔버에 15 ㎕를 분주하여 30 ℃ 오븐에서 30분간 건조하여 제작하였다.0.5 ml of each of the solutions prepared in <1-1> and <1-2> was aliquoted and mixed, followed by addition of 0.05% PVP (polyvinylpyrrolidone K15) and 0.1% Tritone X-100 (New England Nuclear Corp.). After the complete dissolution, 15 μl was dispensed into the reaction chamber formed by attaching the intermediate substrate to the transparent lower substrate, and dried for 30 minutes in an oven at 30 ° C.

<1-4> 신호 발생 층 제작 및 바이오 센서 제조<1-4> Manufacture of signal generating layer and manufacture of bio sensor

0.5 mM의 MgCl2가 용해되어 있는 1 M, pH 9.8, 디에탄올아민 완충 용액 20 ㎖에 0.1% PVP, 0.1% Triton X-100을 완전히 용해시킨 후, p-니트로페닐 포스페이트(p-nitrophenyl phosphate, 이하 pNPP, 이나트륨염(disodium salt))를 5 mM이 되도록 용해시켰다. 이후, 상기 용액 10 ㎕를 투명한 하부 기질에 중간 기질을 부착 하여 형성한 신호 발생 챔버에 분주 후, 30 ℃ 오븐에서 30분간 건조하였다. 건조후, 여기에 투명한 상부기질을 결합하여 바이오 센서를 제작하였다.After completely dissolving 0.1% PVP and 0.1% Triton X-100 in 20 ml of 1 M, pH 9.8, diethanolamine buffer solution containing 0.5 mM MgCl 2 , p-nitrophenyl phosphate, PNPP, disodium salt was dissolved to 5 mM. Thereafter, 10 μl of the solution was dispensed into a signal generation chamber formed by attaching an intermediate substrate to a transparent lower substrate, and then dried in an oven at 30 ° C. for 30 minutes. After drying, a biosensor was manufactured by combining a transparent upper substrate thereto.

<< 실시예Example 2> 바이오 센서의 제조 2 2> Manufacture of biosensor 2

<2-1> 항-알파 <2-1> anti-alpha 융모성선자극호르몬Chorionic gonadotropin 항체에 글루코오스 산화효소( Antibody to glucose oxidase ( GOxGOx ) 고정A) fixed

상기 항-알파 융모성선자극호르몬 항체 용액을 제조하는 방법은 상기 실시예 1의 <1-1>과 동일한 방법으로 수행하였으며, 상기 항-알파 융모성선자극호르몬 항체 용액에 ALP 효소 대신 글루코오스 산화효소(glucose oxidase)를 1 mg 첨가한 후 2시간 동안 실온에서 반응시켰다. 이후 최종 농도가 10 mM이 되도록 하이드록실아민을 첨가한 후 20분간 실온에서 반응시켜 상기 항-알파 융모성선자극호르몬 항체에 글루코오스 산화효소를 고정시켰다.The anti-alpha chorionic stimulating hormone antibody solution was prepared in the same manner as in Example 1-1, and the anti-alpha chorionic stimulating hormone antibody solution in place of ALP enzyme glucose oxidase ( After the addition of 1 mg glucose oxidase) was reacted for 2 hours at room temperature. Thereafter, hydroxylamine was added to a final concentration of 10 mM, followed by reaction at room temperature for 20 minutes to fix glucose oxidase on the anti-alpha chorionic gonadotropin antibody.

<2-2> 반응 층 제작<2-2> reaction layer preparation

상기 알칼린 포스파테이즈 효소가 결합된 항-알파 융모성선자극호르몬 항체 대신 상기 글루코오스 산화효소가 결합된 항-알파 융모성선자극호르몬 항체를 사용하는 것을 제외하고는 실시예 1의 <1-3>과 동일한 방법으로 수행하였다.<1-3> of Example 1 except for using the anti-alpha chorionic stimulating hormone antibody conjugated with the glucose oxidase in place of the anti-alpha chorionic stimulating hormone antibody conjugated to the alkaline phosphatase enzyme It was carried out in the same way as.

<2-3> 신호 발생 층 제작 및 바이오 센서 제조<2-3> Manufacture of signal generating layer and manufacture of biosensor

200 mM 글루코오스와 250 mM 포타슘페리시아나이드(potassium ferricyanide, K3Fe(CN)6)가 녹아 있는 100 mM, pH 7.4의 트리스 완충 용액 20 ㎖에 0.05% PVP, 0.1% Triton X-100을 완전히 용해 후, 작동전극과 기준전극이 도입된 신호 발생 챔버에 상기 용액 20 ㎕를 분주 후 30 ℃ 오븐에서 30분간 건조하였다. 건조후, 여기에 투명한 상부기질을 결합하여 바이오 센서를 제작하였다.Complete dissolution of 0.05% PVP, 0.1% Triton X-100 in 20 ml of 100 mM, pH 7.4 Tris buffer solution containing 200 mM glucose and 250 mM potassium ferricyanide (K 3 Fe (CN) 6 ) Then, 20 μl of the solution was dispensed into a signal generating chamber into which the working electrode and the reference electrode were introduced, and then dried in a 30 ° C. oven for 30 minutes. After drying, a biosensor was manufactured by combining a transparent upper substrate thereto.

<< 실시예Example 3> 바이오 센서의 제조 3 3> Manufacture of biosensor 3

<3-1> 항-알파 <3-1> anti-alpha 융모성선자극호르몬Chorionic gonadotropin 항체에  On antibodies 바이오틴Biotin (( biotinbiotin ) 고정A) fixed

50 mM 포스페이트(phosphate) 완충용액(pH 7.3)에 1 mg 항-알파 융모성선자극호르몬 항체를 완전히 용해시킨 후, Sulfo-NHS-LC-Biotin(PIERCE사, 미국)의 농도가 10 mM이 되도록 첨가하여 실온에서 1시간동안 반응 시킨 후, 원심분리용 MWCO(molecular weight cut-off) 100 KDa인 Nanosep(Pall corporation, MI, USA) 튜브를 사용하여 14,000 중력으로 10분 동안 원심분리하여 분자량이 100 KDa 미만인 분자를 제거하였다. 이후, 상층에 남아있는 바이오틴이 고정된 항-알파 융모성선자극호르몬 항체에 0.5 M NaCl을 포함하는 0.1 M MES 완충 용액 1 ㎖를 첨가하여 바이오틴이 결합된 항-알파 융모성선자극호르몬 항체 용액을 제조하였다. After complete dissolution of 1 mg anti-alpha chorionic gonadotropin antibody in 50 mM phosphate buffer (pH 7.3), the concentration of Sulfo-NHS-LC-Biotin (PIERCE, USA) was added to 10 mM. After reacting at room temperature for 1 hour, using a Nanosep (Pall corporation, MI, USA) tube, which is a molecular weight cut-off (MWCO) 100 KDa for centrifugation, centrifuged at 14,000 gravity for 10 minutes to obtain a molecular weight of 100 KDa. Less than molecules were removed. Thereafter, 1 ml of 0.1 M MES buffer solution containing 0.5 M NaCl was added to the biotin-immobilized anti-alpha chorionic stimulating hormone antibody remaining in the upper layer to prepare a biotin-binding anti-alpha chorionic stimulating hormone antibody solution. It was.

<3-2> <3-2> 글루코스Glucose 산화효소( Oxidase ( glucoseglucose oxidaseoxidase )에 )on 바이오틴Biotin 고정 fixing

항-알파 융모성선자극호르몬 항체 대신 글루코스 산화효소를 사용하여 바이오틴을 효소에 고정화하는 것을 제외하고는 상기 실시예 1의 <1-2>과 동일하게 수 행하였다.The procedure was performed in the same manner as in <1-2> of Example 1, except that the biotin was immobilized to the enzyme using glucose oxidase instead of the anti-alpha chorionic stimulating hormone antibody.

<3-3> <3-3> 반응층Reaction layer 제작 making

상기 <3-1>, <3-2> 및 <1-2>에서 제작한 용액을 각각 0.5 ㎖씩 분취하여 혼합한 후, 0.05% PVP(polyvinylpyrrolidone K15), 0.1% Tritone X-100을 첨가하여 완전히 용해시킨 후 반응 챔버 일측에 10 ㎕를 분주하여 30 ℃ 오븐에서 30분간 건조하여 제작하였다. 또한 0.05% PVP 와 0.1%가 용해된 50 mM 포스페이트(phosphate) 완충용액(pH 7.3) 2 ㎖에 스트랩트 아비딘(Streptavidin, PIERCE사, 미국) 0.1 mg을 완전히 용해시킨 후 3 ㎕를 상기 반응 챔버의 다른 일측에 분주하여 30 ℃ 오븐에서 30분간 건조하여 제작하였다.0.5 ml each of the solutions prepared in the above <3-1>, <3-2> and <1-2> was aliquoted and mixed, followed by addition of 0.05% PVP (polyvinylpyrrolidone K15) and 0.1% Tritone X-100. After complete dissolution, 10 μl was dispensed on one side of the reaction chamber, and dried in a 30 ° C. oven for 30 minutes. Also, after completely dissolving 0.1 mg of strap avidin (Streptavidin, PIERCE, USA) in 2 ml of 50 mM phosphate buffer (pH 7.3) containing 0.05% PVP and 0.1%, 3 μl of the reaction chamber was The other side was dispensed and dried for 30 minutes in an oven at 30 ℃.

<3-4> 신호 발생 층 제작 및 바이오 센서 제조<3-4> Manufacture of Signal Generation Layer and Manufacture of Biosensor

신호 발생 층 제작 및 바이오 센서 제작은 실시예 2의 <2-3>과 동일한 방법으로 수행하였다.Fabrication of the signal generating layer and fabrication of the biosensor were performed in the same manner as in <2-3> of Example 2.

<< 실험예Experimental Example > 신호 발생 > Signal Generation 챔버chamber 내에 존재하는 미세 입자에 의한 신호 측정 영향 Signal measurement influence due to fine particles present in

(1) 신호 발생 챔버 내에 존재하는 미세 입자에 의한 흡광도 측정 영향(1) Effect of absorbance measurement by fine particles present in the signal generating chamber

본 발명의 바이오 센서에 있어서, 신호 발생 챔버 내에 존재하는 미세 입자에 의하여 흡광도를 측정하는 데 어떤 영향을 미치는지 알아보지 위해 다음과 같은 실험을 수행하였다.In the biosensor of the present invention, the following experiment was performed to determine the effect of measuring the absorbance by the fine particles present in the signal generating chamber.

파이펫(pipet)을 사용하여 융모성선자극호르몬이 일정 농도 녹아있는 뇨(urin) 시료를 실시예 1에서 제조된 바이오 센서의 시료 주입구에 주입한 후, 10초간 60 rpm(rotation per minute)으로 회전하여 시료를 반응 챔버, 신호 발생 챔버, 입자 포집 챔버에 완전히 채운 후, 10분간 정지 상태를 유지한 다음, 20초간 550 rpm으로 바이오 센서를 회전하여 반응 챔버 내에 존재하는 미세 입자를 신호 발생 챔버로 이동시켰다. 이후 10분간 멈춤을 유지한 후, 30초간 2000 rpm으로 회전하여, 미세 입자를 입자 포집 챔버로 이동시킨 후, 신호 발생 챔버의 흡광도를 측정하였다. 상기 흡광도 측정에서 광원(light source)은 405 nm의 발광다이오드 (LED, light emitting diode)를, 검출기(detector)는 포토다이오드(photodiode)를 사용하였다(실험군).A urine sample in which villi gonadotropin is dissolved at a certain concentration is injected into a sample inlet of the biosensor prepared in Example 1 using a pipet, and then rotated at 60 rpm (rotation per minute) for 10 seconds. After the sample is completely filled in the reaction chamber, the signal generating chamber, and the particle collecting chamber, the sample is maintained for 10 minutes and then the biosensor is rotated at 550 rpm for 20 seconds to move the fine particles in the reaction chamber to the signal generating chamber. I was. After stopping for 10 minutes, and then rotated at 2000 rpm for 30 seconds to move the fine particles to the particle collection chamber, the absorbance of the signal generating chamber was measured. In the absorbance measurement, a light source used a light emitting diode (LED) of 405 nm and a photodiode as a detector (experimental group).

비교군으로서 미세 입자를 입자 포집 챔버로 이동시키는 과정을 생략하는 것 이외의 모든 과정은 상기 실험군과 동일한 조건으로 수행하고, 30초간 바이오 센서를 멈춘 후 신호 발생 챔버의 흡광도를 측정하였다. As a comparison group, all processes except the step of moving the fine particles to the particle collection chamber were performed under the same conditions as the experimental group, and the absorbance of the signal generation chamber was measured after stopping the biosensor for 30 seconds.

상기 실험을 5개의 hCG 농도에 대해 각각 10회 실험하여, 평균과 CV%를 구하여 그 결과를 표 1에 나타내었다.The experiment was conducted ten times for each of the five hCG concentrations, and the average and CV% were obtained, and the results are shown in Table 1.

hCG 농도 (IU/㎖)hCG concentration (IU / ml) 미세 입자가 신호 발생 챔버에 존재하는 상태에서의 측정값Measured value with fine particles present in the signal generating chamber 미세 입자가 신호 발생 챔버에서 제거된 후의 측정값Measured value after fine particles are removed from signal generation chamber 평균(Digit)Digit CV%CV% 평균(Digit)Digit CV%CV% 2020 1.411.41 8.88.8 0.420.42 3.33.3 4040 1.541.54 6.46.4 0.510.51 4.14.1 8080 1.671.67 3.43.4 0.660.66 5.15.1 160160 1.821.82 4.54.5 0.920.92 3.13.1 320320 1.981.98 10.110.1 1.41.4 2.42.4

표 1에 나타낸 바와 같이, 신호 발생 챔버 내에 미세 입자가 존재할 경우, 미세 입자에 의한 빛의 산란 또는 빛의 투과에 방해가 일어남으로써 각각의 hCG 농도 측정시 CV%가 3.4 ~ 10.1로 높은 값을 나타내므로 정량분석이 어려운 반면, 미세 입자가 입자 포집 챔버로 이동된 경우, CV%가 2.4 ~ 5.1의 값으로 상대적으로 낮게 나타나므로 재현성이 우수한 것으로 나타났으며, hCG 농도에 대한 검정곡선의 직선성도 미세 입자가 입자 포집 챔버로 이동된 경우에 우수한 것으로 나타났다.As shown in Table 1, when the microparticles are present in the signal generating chamber, the scattering of light or the transmission of light by the microparticles is disturbed, resulting in a high CV% of 3.4 to 10.1 at the measurement of each hCG concentration. Therefore, when quantitative analysis is difficult, when the fine particles are moved to the particle collection chamber, the CV% is relatively low with a value of 2.4 to 5.1, and thus the reproducibility is excellent, and the linearity of the calibration curve for the hCG concentration is fine. It was found to be good when the particles were transferred to the particle collection chamber.

(2) 신호 발생 (2) signal generation 챔버chamber 내에 존재하는 미세 입자에 의한 전류 측정 영향 Current measurement effect due to fine particles present in

본 발명의 바이오 센서에 있어서, 신호 발생 챔버 내에 존재하는 미세 입자에 의하여 전류를 측정하는 데 어떤 영향을 미치는지 알아보지 위해 다음과 같은 실험을 수행하였다.In the biosensor of the present invention, the following experiment was conducted to see how the microparticles present in the signal generation chamber affect the current measurement.

파이펫을 사용하여 융모성선자극호르몬이 일정 농도 녹아있는 뇨 시료를 실시예 2에서 제조된 바이오 센서의 시료 주입구에 주입한 후, 상기 (1)의 방법으로 상기 미세 입자를 입자 포집 챔버로 이동시킨 후, 기준 전극을 기준으로 작동 전극에 +0.5 V의 전압을 인가하여 글루코오스 산화효소와 반응하여 생성된 환원상태의 페로시아나이드(Fe(CN)6 2+) 이온을 작동 전극에서 산화시켜 생성된 산화전류를 측정하여 시료 내에 존재하는 융모성선자극호르몬을 정량하였다(실험군).After injecting a urine sample with a certain concentration of chorionic gonadotropin using a pipette into the sample inlet of the biosensor prepared in Example 2, the fine particles were moved to the particle collection chamber by the method (1). Thereafter, a voltage of +0.5 V is applied to the working electrode based on the reference electrode to oxidize the reduced ferrocyanide (Fe (CN) 6 2+ ) ions generated by reacting with glucose oxidase at the working electrode. The oxidation current was measured to quantify the chorionic stimulating hormone present in the sample (experimental group).

비교군으로서 미세 입자를 입자 포집 챔버로 이동시키는 과정을 생략하는 것 이외의 모든 과정은 상기 실험군과 동일한 조건으로 수행하고, 30초간 바이오 센서를 멈춘 후 신호 발생 챔버의 산화전류를 측정하였다. All the procedures except the step of moving the fine particles to the particle collection chamber as a comparison group were performed under the same conditions as the above experimental group, and the oxidation current of the signal generation chamber was measured after stopping the biosensor for 30 seconds.

상기 실험을 5개의 hCG 농도에 대해 각각 10회 실험하여, 평균과 CV%를 구하여 그 결과를 표 2에 나타내었다.The experiment was conducted ten times for each of the five hCG concentrations, and the average and CV% were obtained, and the results are shown in Table 2.

hCG 농도 (IU/㎖)hCG concentration (IU / ml) 미세 입자가 신호 발생 챔버에 존재하는 상태에서의 측정 전류Measurement current in the presence of fine particles in the signal generating chamber 미세 입자가 신호 발생 챔버에서 제거된 후의 측정 전류Measurement current after fine particles are removed from the signaling chamber 평균(Digit)Digit CV%CV% 평균(Digit)Digit CV%CV% 2020 3737 4.34.3 4848 3.43.4 4040 4848 3.53.5 5757 4.14.1 8080 7272 4.44.4 7272 3.33.3 160160 8585 3.23.2 9999 4.14.1 320320 151151 5.05.0 161161 3.73.7

표 2에 나타낸 바와 같이, 신호 발생 챔버 내에 미세입자가 존재할 경우, 효소 반응에 의해 생성된 페로시아나이드가 전극 표면으로 확산하는데 미세입자가 방해하므로 상대적으로 CV%가 높아지지만 그 차이가 크지 않아 상기 (1)에서 측정한 흡광도 측정보다 미세입자에 의한 영향이 적은 것을 알 수 있다.As shown in Table 2, when microparticles are present in the signal generating chamber, the microparticles interfere with diffusion of the ferrocyanide produced by the enzymatic reaction to the electrode surface, so that the CV% is relatively high, but the difference is not large. It can be seen that the influence of the fine particles is less than the absorbance measurement measured in (1).

(3) (3) 아비딘Avidin -- 바이오틴Biotin 결합에 의한 신호 증폭 효과 Signal amplification effect by combining

본 발명의 바이오 센서에 있어서, 아비딘-바이오틴의 결합에 의한 측정 신호 증폭에 미치는 영향을 알아보지 위해 다음과 같은 실험을 수행하였다.In the biosensor of the present invention, the following experiment was performed to investigate the effect on the measurement signal amplification by the binding of avidin-biotin.

시예 2에서 제조된 바이오 센서의 시료 주입구에 주입한 후, 상기 (1)의 방법으로 상기 미세 입자를 입자 포집 챔버로 이동시킨 후, 기준 전극을 기준으로 작동 전극에 +0.5 V의 전압을 인가하여 글루코오스 산화효소와 반응하여 생성된 환원상태의 페로시아나이드(ferrocyanide, Fe(CN)6 2+) 이온을 작동 전극에서 산화시켜 생성된 산화전류를 측정하여 시료 내에 존재하는 융모성선자극호르몬을 정량하고, 그 결과를 표 3에 나타내었다.After the injection into the sample inlet of the biosensor prepared in Example 2, by moving the fine particles to the particle collection chamber by the method of (1), by applying a voltage of +0.5 V to the working electrode based on the reference electrode Determination of chorionic stimulating hormone present in the sample by measuring the oxidation current generated by oxidizing the reduced ferrocyanide (Fe (CN) 6 2+ ) ions produced by the reaction with glucose oxidase at the working electrode The results are shown in Table 3.

hCG 농도 (IU/㎖)hCG concentration (IU / ml) 아비딘-바이오틴 결합을 사용하지 않을 때의 측정 전류Measured Current Without Avidin-Biotin Bond 아비딘-바이오틴 결합을 사용시 측정 전류Current measured using avidin-biotin bond 평균(Digit)Digit CV%CV% 평균(Digit)Digit CV%CV% 2020 4848 3.43.4 6666 3.33.3 4040 5757 4.14.1 9090 2.42.4 8080 7272 3.33.3 130130 3.73.7 160160 9999 4.14.1 177177 4.54.5 320320 161161 3.73.7 280280 3.83.8

표 3에 나타낸 바와 같이, 아비딘-바이오틴 결합을 사용할 경우(66 ~ 280 Digit) 전기적 신호가 증폭되어 아비딘-바이오틴 결합을 사용하지 않을 때(48 ~ 161 Digit)보다 전기적 신호가 더 크게 측정됨을 확인하였다.As shown in Table 3, it was confirmed that the use of avidin-biotin binding (66 ~ 280 Digit), the electrical signal is amplified so that the electrical signal is measured larger than without the use of avidin-biotin binding (48 ~ 161 Digit) .

이상에서 살펴본 바와 같이, 본 발명에 따른 바이오 센서는 디스크 형태의 장치 내 반응 챔버에서 생물학적 감지요소가 고정되어 있는 입자를 사용하기 때문에 반응 후, 회전에 의한 원심력에 의해 이동이 가능하므로 세척 과정이 필요하지 않으며 제조가 간편하고 휴대하기 용이하며 구조가 단순하여 저렴하게 대량생산 할 수 있으므로 경제적이다. 또한, 저가 장비에도 판독할 수 있으며, 손쉽게 사용할 수 있으므로 각종 진단에 유용하고 편리하게 사용될 수 있다.As described above, since the biosensor according to the present invention uses particles in which a biological sensing element is fixed in a reaction chamber in a disk-type device, it is possible to move by centrifugal force after the reaction, and thus a washing process is required. It is economical because it can be mass-produced at low cost because it is simple to manufacture, easy to carry and simple in structure. In addition, it can be read even in low-cost equipment, and can be easily used for various diagnostics.

Claims (17)

분석물질을 함유한 시료가 주입되는 적어도 1개 이상의 시료 주입구; At least one sample injection port into which a sample containing the analyte is injected; 상기 시료 주입구와 연통되며, 상기 시료 내 분석물질의 특정부위를 선택적으로 인식하여 상호 결합하는 미세 입자에 고정된 1차 결합물질과, 상기 분석물질에 대해 1차 결합물질의 인식부위와 다른 특정 부위를 인식하여 결합하는 신호발생물질이 고정된 2차 결합물질을 구비하며 형성된 적어도 1개 이상의 반응 챔버;A primary binding material in communication with the sample inlet and fixed to fine particles that selectively recognize a specific site of the analyte in the sample and bind to each other; and a specific site that is different from the recognition site of the primary binding material for the analyte At least one or more reaction chambers formed with a secondary binding material having a fixed signal generating material for recognizing and binding the same; 상기 반응 챔버와 연통되며, 상기 신호발생물질과 반응하여 분광학적 신호 또는 전기화학적 신호를 발생시키는 신호유발물질이 도입되어 있는 적어도 1개 이상의 신호 발생 챔버;At least one signal generating chamber in communication with the reaction chamber, the signal inducing material reacting with the signal generating material to generate a spectroscopic signal or an electrochemical signal; 상기 신호 발생 챔버와 연통되며, 상기 미세 입자가 원심력에 의해 포집되는 적어도 1개 이상의 입자 포집 챔버; 및At least one particle collecting chamber in communication with the signal generating chamber, wherein the fine particles are collected by centrifugal force; And 상기 입자 포집 챔버와 연통되며, 상기 시료의 유입에 따라 각각의 챔버 내에 존재하는 공기를 배출하기 위한 적어도 1개 이상의 입자 포집 챔버 공기 배출구;At least one particle collection chamber air outlet in communication with the particle collection chamber and configured to discharge air present in each chamber according to the inflow of the sample; 를 포함하여 구성되는 바이오센서.Biosensor comprising a. 분석물질을 함유한 시료가 주입되는 적어도 1개 이상의 시료 주입구; At least one sample injection port into which a sample containing the analyte is injected; 상기 시료 주입구와 연통되며, 상기 시료 내 분석물질의 특정부위를 선택적으로 인식하여 상호 결합하는 미세 입자에 고정된 결합물질과, 상기 분석물질 또는 상기 결합물질이 선택적으로 인식하여 상호 결합하는 상기 분석물질의 특정부위를 갖는 유사분석물질에 신호발생물질이 고정되어 도입된 적어도 1개 이상의 반응 챔버;A binding material that is in communication with the sample inlet and is fixed to fine particles that selectively recognize a specific portion of the analyte in the sample and binds to each other, and the analyte or the analyte selectively recognizes and binds to each other. At least one reaction chamber into which a signaling material is immobilized and introduced into the analogous analyte having a specific site; 상기 반응 챔버와 연통되며, 상기 신호발생물질과 반응하여 분광학적 신호 또는 전기화학적 신호를 발생시키는 신호유발물질이 도입되어 있는 적어도 1개 이상의 신호 발생 챔버;At least one signal generating chamber in communication with the reaction chamber, the signal inducing material reacting with the signal generating material to generate a spectroscopic signal or an electrochemical signal; 상기 신호 발생 챔버와 연통되며, 상기 미세 입자가 원심력에 의해 포집되는 적어도 1개 이상의 입자 포집 챔버; 및At least one particle collecting chamber in communication with the signal generating chamber, wherein the fine particles are collected by centrifugal force; And 상기 입자 포집 챔버와 연통되며, 상기 시료의 유입에 따라 각각의 챔버 내에 존재하는 공기를 배출하기 위한 적어도 1개 이상의 입자 포집 챔버 공기 배출구;At least one particle collection chamber air outlet in communication with the particle collection chamber and configured to discharge air present in each chamber according to the inflow of the sample; 를 포함하여 구성되는 바이오센서.Biosensor comprising a. 분석물질을 함유한 시료가 주입되는 적어도 1개 이상의 시료 주입구; At least one sample injection port into which a sample containing the analyte is injected; 상기 시료 주입구와 연통되며, 상기 시료 내 분석물질의 특정부위를 선택적으로 인식하여 상호 결합하는 신호발생물질이 고정된 결합물질과, 상기 분석물질 또는 상기 결합물질이 선택적으로 인식하여 상호 결합하는 상기 분석물질의 특정부위를 갖는 유사분석물질이 미세입자에 고정되어 도입된 적어도 1개 이상의 반응 챔버;A binding material in communication with the sample inlet, the binding material having a signal generating material that selectively recognizes and binds to a specific portion of the analyte in the sample, and the analyte or the binding material selectively recognize and bind to each other; At least one reaction chamber into which a pseudoanalyte having a specific portion of the substance is fixedly introduced into the microparticles; 상기 반응 챔버와 연통되며, 상기 신호발생물질과 반응하여 분광학적 신호 또는 전기화학적 신호를 발생시키는 신호유발물질이 도입되어 있는 적어도 1개 이상의 신호 발생 챔버;At least one signal generating chamber in communication with the reaction chamber, the signal inducing material reacting with the signal generating material to generate a spectroscopic signal or an electrochemical signal; 상기 신호 발생 챔버와 연통되며, 상기 미세 입자가 원심력에 의해 포집되는 적어도 1개 이상의 입자 포집 챔버; 및At least one particle collecting chamber in communication with the signal generating chamber, wherein the fine particles are collected by centrifugal force; And 상기 입자 포집 챔버와 연통되며, 상기 시료의 유입에 따라 각각의 챔버 내에 존재하는 공기를 배출하기 위한 적어도 1개 이상의 입자 포집 챔버 공기 배출구;At least one particle collection chamber air outlet in communication with the particle collection chamber and configured to discharge air present in each chamber according to the inflow of the sample; 를 포함하여 구성되는 바이오센서.Biosensor comprising a. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 입자 포집 챔버 공기 배출구는 상기 시료 주입구로부터 상기 신호 발생 챔버보다 가까운 곳에 위치하는 것인 바이오센서. The biosensor according to any one of claims 1 to 3, wherein the particle collecting chamber air outlet is located closer to the signal generation chamber than the sample inlet. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 미세 입자는 라텍스 비드, 폴리스타이렌 비드, 실리카 비드, 아가로즈 비드 또는 덱스트레인 비드를 포함하는 유기 또는 무기 고분자 입자; 자석 입자, 금 입자 또는 은 입자를 포함하는 금속 입자; 또는 상기 유기 또는 무기 고분자 입자에 자석 입자, 금 입자 또는 은 입자 가 일부 또는 전부 코팅된 입자, 또는 자석 입자, 금 입자 또는 은 입자 표면에 상기 유기 또는 무기 고분자 입자가 코팅된 입자인 것인 바이오센서.The method of claim 1, wherein the fine particles comprise organic or inorganic polymer particles including latex beads, polystyrene beads, silica beads, agarose beads, or dextrain beads; Metal particles including magnetic particles, gold particles or silver particles; Or bio-sensors in which the organic or inorganic polymer particles are coated with some or all of the magnetic particles, gold particles or silver particles, or the organic or inorganic polymer particles are coated on the magnetic particles, gold particles or silver particles. . 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 결합 물질은 단백질, 단백질 A, 단백질 G, DNA, RNA, 펩타이드, 항원, 항체, 아비딘, 바이오틴 또는 이들의 조합으로부터 1종 이상이 선택되는 것인 바이오센서.The method of claim 1, wherein the binding agent is at least one selected from protein, protein A, protein G, DNA, RNA, peptide, antigen, antibody, avidin, biotin, or a combination thereof. Biosensor. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 신호발생물질은 효소, 유기 또는 무기 형광 물질, 또는 상기 형광 물질과 결합하는 킬레이트 화합물인 것인 바이오센서. The biosensor of claim 1, wherein the signaling material is an enzyme, an organic or inorganic fluorescent material, or a chelate compound that binds to the fluorescent material. 제7항에 있어서, 상기 효소는 글루코오스 산화 효소, 글루코오스 탈수소 효소, 알칼리 포스파타제, 및 과산화효소 중에서 1종 이상이 선택되는 것인 바이오센서.The biosensor of claim 7, wherein the enzyme is one or more selected from glucose oxidase, glucose dehydrogenase, alkaline phosphatase, and peroxidase. 제7항에 있어서, 상기 형광 물질은 란탄족 계열의 형광 물질 또는 란탄족 계 열의 형광물질과 결합하여 형광 신호를 증폭하는 것인 바이오센서.The biosensor of claim 7, wherein the fluorescent material amplifies a fluorescent signal by combining with a lanthanide-based fluorescent material or a lanthanide-based fluorescent material. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 신호 발생 챔버에서 상기 신호유발물질이 구비된 면 또는 마주보는 면 중 적어도 하나의 면 또는 양면에 상기 신호발생물질과 상기 신호유발물질의 반응에 의해 생성된 물질의 산화 또는 환원 반응을 유발하거나, 상기 분석 물질과 상기 신호유발물질의 반응에 의해 소모되고 남아 있는 신호유발물질의 산화 또는 환원 반응을 유발하는 작동전극과 기준전극이 구비되는 바이오센서.The method according to any one of claims 1 to 3, wherein the signal generating material reacts with the signal generating material on at least one surface or both surfaces of the signal generating material or at an opposite surface in the signal generating chamber. Bio-induced oxidizing or reducing reaction of a material produced by the oxidizing agent or oxidizing or reducing reaction of a signal-causing substance that is consumed by the reaction between the analyte and the signal-causing substance and a reference electrode. sensor. 제10항에 있어서, 상기 전극은 탄소, 흑연, 은, 염화은, 박막 코팅된 금, 염화은, 팔라듐, 티탄산화물을 포함하는 전도성 물질, 또는 상기 전도성 물질을 함유하는 고분자로 구성되는 물질인 것인 바이오센서.The bio-material according to claim 10, wherein the electrode is a material composed of a conductive material including carbon, graphite, silver, silver chloride, thin film coated gold, silver chloride, palladium, titanium oxide, or a polymer containing the conductive material. sensor. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 신호유발물질은 효소와 반응하여 산화/환원이 가능한 효소 기질, 또는 형광 물질과 반응하여 형광 신호를 증폭하는 물질인 것인 바이오센서.The biosensor according to any one of claims 1 to 3, wherein the signal inducing substance is an enzyme substrate capable of reacting with an enzyme and capable of oxidation / reduction, or a material that amplifies a fluorescent signal by reacting with a fluorescent substance. 제12항에 있어서, 상기 효소 기질은 글루코오스, 과산화수소, 페리시아나이드 이온, 페로시아나이드 이온, 헥사아민루세늄, 페로센 및 페로센 유도체, 퀴논 및 퀴논 유도체, 3,3′,5,5′-테트라메틸벤지딘, o-페닐렌디아민 디하이드로클로라이드, 2,2′-아지노-디-[3-에틸-벤조티아졸린-6-술폰산]디암모늄염, 3-메틸-2-벤조티아졸리논 하이드라존, p-니트로페닐-포스페이트, 4-메틸-엄벨리페릴 포스페이트, 8-아닐리노-1-나프탈렌술폰산, 벤지딘, 프루시안 블루, 4-아미노페나존, 2,4-디클로로페놀, 4-아미노안티피린, 하이드로 퀴논을 포함하는 매개체, 루미놀, 페놀, p-요오도페놀, 아크리단, 아실 하이드라지드, 이미다졸(imidazole), 아크리디늄 에스테르, 퍼옥시옥살레이트, 트리스(2,2'-바이피리딘)루데늄을 포함하는 화학발광물질 또는 발색 시약인 것인 바이오센서.The method of claim 12, wherein the enzyme substrate is glucose, hydrogen peroxide, ferricyanide ion, ferrocyanide ion, hexaaminerucenium, ferrocene and ferrocene derivatives, quinones and quinone derivatives, 3,3 ', 5,5'-tetra Methylbenzidine, o-phenylenediamine dihydrochloride, 2,2′-azino-di- [3-ethyl-benzothiazoline-6-sulfonic acid] diammonium salt, 3-methyl-2-benzothiazolinone hydrazone , p-nitrophenyl-phosphate, 4-methyl-umelliferyl phosphate, 8-anilino-1-naphthalenesulfonic acid, benzidine, prussian blue, 4-aminophenazone, 2,4-dichlorophenol, 4-aminoantipyrine Mediators including hydroquinone, luminol, phenol, p-iodophenol, acridan, acyl hydrazide, imidazole, acridinium ester, peroxyoxalate, tris (2,2'- A biosensor that is a chemiluminescent material or a coloring reagent comprising bipyridine) rudenium . 제12항에 있어서, 상기 형광 신호를 증폭하는 물질은 란탄족 계열의 형광 물질 또는 란탄족 계열의 형광물질과 결합하여 형광 신호를 증폭하는 것인 바이오센서.The biosensor of claim 12, wherein the material for amplifying the fluorescent signal is to amplify the fluorescent signal by combining with a lanthanide-based fluorescent material or a lanthanide-based fluorescent material. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 챔버들은 원형, 반원형, 타원형; 삼각, 사각을 포함하는 다각 형상; 상기 다각 형상에 곡선 또는 굴곡이 첨가 된 형상인 것인 바이오센서.The chamber of claim 1, wherein the chambers are circular, semicircular, elliptical; Polygon shapes including triangles and squares; Biosensor that is a shape in which the curved or curved is added to the polygonal shape. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 챔버들은 미세 유로에 의해 연통되거나, 미세 유로 없이 서로 연통 형성되는 것인 바이오센서.The biosensor according to any one of claims 1 to 3, wherein the chambers are in communication with each other by a microchannel, or in communication with each other without a microchannel. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 바이오센서는 원형; 삼각, 사각을 포함하는 다각 형상; 또는 상기 다각 형상에 곡선 또는 굴곡이 첨가된 형상인 것인 바이오센서.The biosensor according to claim 1, wherein the biosensor is circular; Polygon shapes including triangles and squares; Or a shape in which a curve or a bend is added to the polygonal shape.
KR1020060134756A 2006-12-27 2006-12-27 Bio sensor KR100800436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060134756A KR100800436B1 (en) 2006-12-27 2006-12-27 Bio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060134756A KR100800436B1 (en) 2006-12-27 2006-12-27 Bio sensor

Publications (1)

Publication Number Publication Date
KR100800436B1 true KR100800436B1 (en) 2008-02-01

Family

ID=39342155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060134756A KR100800436B1 (en) 2006-12-27 2006-12-27 Bio sensor

Country Status (1)

Country Link
KR (1) KR100800436B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913148B1 (en) 2007-04-10 2009-08-19 이금필 Magnetic force-based bio sensor comprising magnetic particles
CN101907629A (en) * 2010-07-19 2010-12-08 中国科学院长春光学精密机械与物理研究所 Multifunctional integrated centrifugal type microfludic chip and manufacture method thereof
KR101519379B1 (en) * 2010-04-29 2015-05-12 삼성전자 주식회사 Centrifugal Micro-fluidic Device and Method for immunoassay
US9213040B2 (en) 2008-09-02 2015-12-15 Samsung Electronics Co., Ltd. Microfluidic cartridge for separating target molecules, and separator and method of separating target molecules using same
WO2021075944A1 (en) * 2019-10-15 2021-04-22 동우 화인켐 주식회사 Biosensor
CN113777011A (en) * 2017-09-14 2021-12-10 卢西拉健康公司 Multiplexed biometric device with electronic readout
WO2024025365A1 (en) * 2022-06-08 2024-02-01 (주)엘립스진단 Biosensor cartridge and biosensor device comprising same
US12023671B2 (en) 2022-02-22 2024-07-02 Pfizer Inc. Selectively vented biological assay devices and associated methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034390A (en) * 2004-10-19 2006-04-24 한국과학기술연구원 Method for designing micro-channel and system for detecting bio-element using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034390A (en) * 2004-10-19 2006-04-24 한국과학기술연구원 Method for designing micro-channel and system for detecting bio-element using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913148B1 (en) 2007-04-10 2009-08-19 이금필 Magnetic force-based bio sensor comprising magnetic particles
US9213040B2 (en) 2008-09-02 2015-12-15 Samsung Electronics Co., Ltd. Microfluidic cartridge for separating target molecules, and separator and method of separating target molecules using same
KR101519379B1 (en) * 2010-04-29 2015-05-12 삼성전자 주식회사 Centrifugal Micro-fluidic Device and Method for immunoassay
CN101907629A (en) * 2010-07-19 2010-12-08 中国科学院长春光学精密机械与物理研究所 Multifunctional integrated centrifugal type microfludic chip and manufacture method thereof
CN101907629B (en) * 2010-07-19 2012-07-25 中国科学院长春光学精密机械与物理研究所 Multifunctional integrated centrifugal type microfludic chip and manufacture method thereof
US12023665B2 (en) 2017-03-14 2024-07-02 Pfizer Inc. Devices and methods for modifying optical properties
CN113777011A (en) * 2017-09-14 2021-12-10 卢西拉健康公司 Multiplexed biometric device with electronic readout
WO2021075944A1 (en) * 2019-10-15 2021-04-22 동우 화인켐 주식회사 Biosensor
KR20210044569A (en) * 2019-10-15 2021-04-23 동우 화인켐 주식회사 Bio sensor
KR102247002B1 (en) 2019-10-15 2021-04-29 동우 화인켐 주식회사 Bio sensor
US12023671B2 (en) 2022-02-22 2024-07-02 Pfizer Inc. Selectively vented biological assay devices and associated methods
WO2024025365A1 (en) * 2022-06-08 2024-02-01 (주)엘립스진단 Biosensor cartridge and biosensor device comprising same

Similar Documents

Publication Publication Date Title
KR100913148B1 (en) Magnetic force-based bio sensor comprising magnetic particles
JP5922153B2 (en) Microfluidic assay device
D'Orazio Biosensors in clinical chemistry
Gaikwad et al. Advances in point-of-care diagnostic devices in cancers
Andreescu et al. Trends and challenges in biochemical sensors for clinical and environmental monitoring
KR100800436B1 (en) Bio sensor
Pearson et al. Analytical aspects of biosensors
EP0798561B1 (en) Analytical method for precise analysis with a simple sensor
KR101644144B1 (en) Enhanced immunoassay sensor
JP2930809B2 (en) Specific binding analysis method and device
KR100828450B1 (en) Immunosensor
EP1782069B1 (en) Enzymatic detection techniques
US5149629A (en) Coulometric assay system
KR101417170B1 (en) Enzyme detection techniques
US8236154B2 (en) Composite modified electrode strip
KR101990301B1 (en) Optical biosensor
WO2018068134A1 (en) Ultra-sensitive bioanalyte quantification from self-assembled quadruplex tags
Yaiwong et al. A new portable toluidine blue/aptamer complex-on-polyethyleneimine-coated gold nanoparticles-based sensor for label-free electrochemical detection of alpha-fetoprotein
EP2005180B1 (en) Enzymatic detection techniques
JP2005181350A (en) Analyzing method using projecting region
EP2633061A1 (en) Method for electrical detection of biomolecules by metal dissolution and assay kit therefore
US8652311B1 (en) Method and apparatus for the detection of pathogens, parasites, toxins and desired chemical compounds
CN113109573B (en) Sensor for detecting protein threshold value and detection method thereof
AU2669600A (en) Method of detecting analytes in a sample and support for this purpose
EP1201767B1 (en) Method of analyzing double stranded DNA

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee