KR100800317B1 - Signal processing method and apparatus of smart antenna system - Google Patents

Signal processing method and apparatus of smart antenna system Download PDF

Info

Publication number
KR100800317B1
KR100800317B1 KR1020000030655A KR20000030655A KR100800317B1 KR 100800317 B1 KR100800317 B1 KR 100800317B1 KR 1020000030655 A KR1020000030655 A KR 1020000030655A KR 20000030655 A KR20000030655 A KR 20000030655A KR 100800317 B1 KR100800317 B1 KR 100800317B1
Authority
KR
South Korea
Prior art keywords
weight vector
receiving terminal
base station
value
signal
Prior art date
Application number
KR1020000030655A
Other languages
Korean (ko)
Other versions
KR20010109061A (en
Inventor
최승원
오태열
홍경화
Original Assignee
주식회사 세스텍
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세스텍, 한양대학교 산학협력단 filed Critical 주식회사 세스텍
Priority to KR1020000030655A priority Critical patent/KR100800317B1/en
Publication of KR20010109061A publication Critical patent/KR20010109061A/en
Application granted granted Critical
Publication of KR100800317B1 publication Critical patent/KR100800317B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Abstract

본 발명은 라그랑제 승수 방법 이용하여 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위한 스마트 안테나 시스템의 신호처리 방법 및 장치에 관한 것으로, 기지국에서의 송신신호를 적절히 웨이트 하므로써, 각 단말기에서 수신 신호 세기가 최대화 되도록 기지국에서 사용할 웨이트 벡터

Figure 112000516228389-pat00001
의 최적 값을 구하는 방법과 장치를 제공한다. 웨이트 벡터
Figure 112000516228389-pat00002
는 송신 기지국에서 사용하는 것이지만, 이 최적의 웨이트 벡터를 계산하기 위한 정보는 수신 단말기에서 산출하여 송신 기지국으로 제공된다. 경우에 따라, 수신 단말기에서 계산한 최적의 웨이트 벡터값 자체를 기지국으로 제공할 수도 있고, 수신 단말기에서 웨이트 값 자체를 보내는 대신에 현재의 웨이트 값을 갱신하여 최적의 웨이트 값으로 근접시킬 수 있는 정보만을 기지국으로 보내는 두 가지 경우가 있다. 본 발명에서는 이 두 가지 경우 중 어느 경우이던지, 송신 기지국에서 최적의 웨이트 벡터를 적용하게 할 수 있는 기술을 제안한다.The present invention relates to a signal processing method and apparatus for a smart antenna system for calculating an optimal weight vector in which the reception power of a receiving terminal is maximized using the Lagrange multiplier method. Weight vector to be used by the base station to maximize received signal strength
Figure 112000516228389-pat00001
Provides a method and apparatus for obtaining the optimal value of. Weight vector
Figure 112000516228389-pat00002
Although is used at the transmitting base station, information for calculating this optimal weight vector is calculated at the receiving terminal and provided to the transmitting base station. In some cases, the optimal weight vector value calculated by the receiving terminal itself may be provided to the base station, and instead of sending the weight value itself, the receiving terminal may update the current weight value to approach the optimal weight value. There are two cases of sending bays to a base station. The present invention proposes a technique that enables the transmitting base station to apply an optimal weight vector in either of these two cases.

라그랑제 승수 방법, 궤환(feedback)방식, 다운링크(downlink), 스마트 안테나, 수신 파워Lagrange multiplier method, feedback method, downlink, smart antenna, receive power

Description

라그랑제 승수 방법을 이용하여 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위한 스마트 안테나 시스템의 신호처리 방법 및 장치{SIGNAL PROCESSING METHOD AND APPARATUS OF SMART ANTENNA SYSTEM}SIGNAL PROCESSING METHOD AND APPARATUS OF SMART ANTENNA SYSTEM} for calculating an optimal weight vector that maximizes the receiving power of a receiving terminal using the Lagrange multiplier method

도 1은 본 발명의 개념을 설명하기 위한 도면,1 is a view for explaining the concept of the present invention,

도 2는 본 발명에서 목표 단말기에게 신호s(t)를 송신하는 배열 시스템의 개념도,2 is a conceptual diagram of an arrangement system for transmitting a signal s ( t ) to a target terminal in the present invention;

도 3은 본 발명에 따른 채널화 분배기 설명도,3 is an explanatory diagram of a channelization distributor according to the present invention;

도 4는 본 발명에서 복수의 가입자 각각의 다중경로 채널에 적용하는 신호 환경을 보여주는 예시도,4 is a diagram illustrating a signal environment applied to a multipath channel of each of a plurality of subscribers according to the present invention;

도 5는 본 명세서에서 제공되는 기술을 실제의 이동통신에 적용하여 최적의 송신 빔을 만들기 위한 일실시 예시도,FIG. 5 illustrates an embodiment for applying the technology provided herein to actual mobile communication to make an optimal transmission beam. FIG.

도 6은 본 발명에서 제공하는 기술을 이용하여 수신 단말기에서 최적의 웨이트 벡터를 산출하기 위한 시스템의 블록 다이어그램 예시도,6 is an exemplary block diagram of a system for calculating an optimal weight vector at a receiving terminal using the technique provided by the present invention.

도 7은 본 발명의 일실시예에 따른 흐름도,7 is a flow chart according to an embodiment of the present invention;

본 발명은 라그랑제 승수 방법을 이용하여 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위한 스마트 안테나 시스템의 신호처리 방법, 장치 및 그 기록매체에 관한 것이다.The present invention relates to a signal processing method, apparatus, and a recording medium of a smart antenna system for calculating an optimal weight vector in which the reception power of a receiving terminal is maximized using the Lagrange multiplier method.

본 발명은 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여, 라그랑제 승수 방법을 이용하여, 각 단말기에서 수신 신호 세기가 최대화 되도록 기지국에서 사용할 웨이트 벡터

Figure 112000516228389-pat00003
의 최적값을 구하는 스마트 안테나 시스템의 신호처리 방법, 장치 및 그 기록매체를 제공함에 그 목적을 두고 있다.The present invention uses the Lagrange multiplier method to calculate the optimal weight vector that maximizes the reception power of the receiving terminal.
Figure 112000516228389-pat00003
An object of the present invention is to provide a signal processing method, apparatus, and a recording medium of a smart antenna system for obtaining an optimal value.

도 1은 본 발명의 개념을 설명하기 위한 도면이고, 도 2는 목표 단말기에게 신호s(t)를 송신하는 배열 시스템의 개념도이고, 도 3은 본 발명에 따른 채널화 분배기 설명도이다.1 is a diagram illustrating the concept of the present invention, FIG. 2 is a conceptual diagram of an arrangement system for transmitting a signal s ( t ) to a target terminal, and FIG. 3 is an explanatory diagram of a channelization distributor according to the present invention.

신호s(t)가 기지국에서 어떤 이동 단말기로 송신될 신호라 가정하자.Suppose signal s ( t ) is a signal to be transmitted from a base station to a mobile terminal.

우선, 목표 단말기와 각 안테나 사이에 단일 전파 경로가 있는 경우를 먼저 고려해 보자. 가입자 수가 다수이고 또 각 가입자에 대하여 다중 경로가 존재하는 채널에 대한 제안기술의 응용은 단일 가입자의 단일 전파경로를 먼저 고려한 후에 설명하기로 한다.First, consider the case where there is a single propagation path between the target terminal and each antenna. Application of the proposed technique to a channel with a large number of subscribers and multiple paths for each subscriber will be described after considering a single propagation path of a single subscriber first.

도 3에서 보는 바와 같이 분배기(distributor)를 통과한 신호s(t)는 각 안테나 채널의 전송 신호로 분배된다. 각 안테나에서 송신된 신호를 수신단말기에서 따로따로 구분하여 추출할 수 있도록 하기 위한 방안의 하나로서, 각 안테나에서 전 송되는 신호가 서로 직교되도록 분배기에서 신호s(t)를 처리하는 경우가 있다. 직교화 방식에 관한 구체적인 내용을 언급하지 않더라도, 본 발명 분야의 종사자에 있어서는, 전송된 신호s(t)를 직교화는 공지의 방법을 임의로 선택하여 수행할 수 있음이 자명하다.As shown in FIG. 3, the signal s ( t ) passing through the distributor is distributed to the transmission signal of each antenna channel. As a way to separate and extract the signal transmitted from each antenna in the receiving terminal, there is a case in which the signal s ( t ) is processed in the distributor so that the signals transmitted from each antenna are orthogonal to each other. Although not mentioned in detail about the orthogonalization scheme, it is apparent to those skilled in the art that the orthogonalization of the transmitted signal s ( t ) can be performed by arbitrarily selecting a known method.

본 발명에서는 전송하는 신호가 각 안테나 채널끼리 분배기에서 전송신호를 처리하고 있으나, 다른 개념으로도 각 안테나 신호를 직교화 할 수도 있다. 어쨌든, 직교화 과정 결과로서, 각 안테나에서 송출되는 신호는 상호 직교하게 되는데, 직교하는 구간 P 는 미리 정의해 두도록 한다.In the present invention, although the signal to be transmitted is processing the transmission signal in each antenna channel between the splitter, it is also possible to orthogonalize each antenna signal in another concept. In any case, as a result of the orthogonalization process, signals transmitted from each antenna are orthogonal to each other, and the orthogonal interval P is defined in advance.

즉, 이를 수식으로 표현하면 아래와 같다.In other words, this is expressed as a formula below.

Figure 112000516228389-pat00004
Figure 112000516228389-pat00004

도 2에서, s(t)는 목표단말에 보내는 신호,

Figure 112000516228389-pat00005
Figure 112000516228389-pat00006
안테나소자와 목표 단말간의 채널(감쇄와 위상지연(phase delay)포함),
Figure 112000516228389-pat00007
Figure 112000516228389-pat00008
안테나소자에 가해질 웨이트(복소공액)를 각각 나타낸 것이다.In Figure 2, s ( t ) is a signal sent to the target terminal,
Figure 112000516228389-pat00005
Is
Figure 112000516228389-pat00006
Channel between antenna element and target terminal (including attenuation and phase delay),
Figure 112000516228389-pat00007
Is
Figure 112000516228389-pat00008
The weights (complex conjugates) to be applied to the antenna elements are respectively shown.

도 3은 본 발명에 따른 채널화 분배기 설명도로서, 도면에서, 안테나 각각에 송신되는 신호{s 1(t),…,s N (t)}는 구간 동안 상호 직교이다. 이때 기간 P 동안 배열 시스템은 동일 웨이트 벡터를 사용하므로 P 는 채널 특성{h 1 (t),…, h N (t)}의 변화를 무시할 수 있을 만큼 짧아야 한다.3 is an explanatory diagram of a channelization divider according to the present invention, in which the signals transmitted to each antenna { s 1 ( t ),... , s N ( t )} is orthogonal to the interval. In this case, since the array system uses the same weight vector for the period P , P is the channel characteristic { h 1 ( t ),. , h N ( t )} should be short enough to ignore the change.

그런데 직교구간인 P 기간 동안에 동일한 웨이트 벡터가 적용되어야 하기 때문에, 전파 채널 특성이 너무 현저히 변해버릴 정도로 P 가 너무 길어서는 안된다. 이하 설명상의 편의를 위해 각 안테나에서 전송되는 신호의 세기가 모두 같다고 (즉,

Figure 112000516228389-pat00009
) 가정하자.However, because they must be the same weight vector applied during the orthogonal section of period P, P should not be too long, so the propagation channel characteristic discard too significantly changed. For convenience of explanation, the strengths of the signals transmitted from each antenna are the same (that is,
Figure 112000516228389-pat00009
Let's assume.

각 안테나로부터 전송된 신호는 수신 단말에서 각 안테나로부터 전송된 패턴 s 1 (t),s 2 (t),…,s N (t)를 수신 신호와 각각 상관(correlation)시킴으로써, 각 안테나 채널별 신호를 따로따로 분리할 수 있다. 이로써, 최적의 웨이트 벡터를 계산하는 절차는 파일롯 신호에 적용된다는 것을 알 수 있다. 물론, 계산된 웨이트 벡터는 각 해당 시간 슬롯동안의 데이터 시퀀스에 사용된다. 위에서 언급한 바와 같이 각각 한 개의 경로만 갖는 안테나의 채널을 가정하면, 단말기에서 수신된 신호 y는 다음과 같다.The signal transmitted from each antenna is a pattern s 1 ( t ), s 2 ( t ),... By correlating s N ( t ) with the received signal, the signal for each antenna channel can be separated separately. As such, it can be seen that the procedure for calculating the optimal weight vector is applied to the pilot signal. Of course, the computed weight vector is used for the data sequence during each corresponding time slot. As mentioned above, assuming a channel of each antenna having only one path, the signal y received from the terminal is as follows.

Figure 112000516228389-pat00010
Figure 112000516228389-pat00010

여기서

Figure 112000516228389-pat00011
Figure 112000516228389-pat00012
번째 안테나 채널에 적용되는 웨이트(복소공액)이고,
Figure 112000516228389-pat00013
Figure 112000516228389-pat00014
번째 안테나와 수신 단말 사이의 전파 경로 특성(감쇄와 위상지연)를 나타낸다. 본 제안기술에서는 s(t)와
Figure 112000516228389-pat00015
Figure 112000516228389-pat00016
는 모두 복소수 형태의 페이저 표기법(phasor notation)을 사용한다. 수신 신호 y의 각 안테나 채널별 분리는 수신 단말에서 다음과 같은 상관(correlation)절차를 통하여 수행된다.here
Figure 112000516228389-pat00011
Is
Figure 112000516228389-pat00012
Weight applied to the first antenna channel (complex conjugate),
Figure 112000516228389-pat00013
Is
Figure 112000516228389-pat00014
Propagation path characteristics (attenuation and phase delay) between the first antenna and the receiving terminal. In the proposed technique, s ( t ) and
Figure 112000516228389-pat00015
Wow
Figure 112000516228389-pat00016
All use complex numbered phasor notation. Separation of each antenna channel of the received signal y is performed through the following correlation procedure at the receiving terminal.

수식 (1)과 (2)에 의하여, 수신신호 y와 j번째 안테나로부터 송신된 신호 s j (t)를 상관시킨 상관기의 출력 z j 는 다음과 같이 쓸 수 있다. (단, 설명상의 편의를 위하여, 아래 식에서는 수신신호에서 간섭과 잡음을 생략하였다.) According to Equations (1) and (2), the output z j of the correlator correlating the received signal y with the signal s j ( t ) transmitted from the j- th antenna can be written as follows. (However, for convenience of explanation, the following equations omit interference and noise from the received signal.)

Figure 112000516228389-pat00017
Figure 112000516228389-pat00017

즉, 수신신호 y 로부터 각 안테나와 수신 단말기 사이의 채널특성 h j 이 포함된

Figure 112000516228389-pat00018
j = 1, 2, ..., N에 대하여 수신단말기에서 각각 구할 수 있게 된다. 새로운 변수
Figure 112000516228389-pat00019
Figure 112000516228389-pat00020
와 같이 정의하면, 수신신호의 파워
Figure 112000516228389-pat00021
를 최대화하는 것은
Figure 112000516228389-pat00022
를 최대화하는 것과 동일하므로
Figure 112000516228389-pat00023
를 최대화하는 웨이트 벡터를 공지의 기술인 최대고유벡터 방법으로 구할 수 있다.That is, the channel characteristic h j between each antenna and the receiving terminal is included from the received signal y.
Figure 112000516228389-pat00018
Can be obtained from the receiving terminal for j = 1, 2, ..., N , respectively. New variable
Figure 112000516228389-pat00019
To
Figure 112000516228389-pat00020
When defined as follows, the power of the received signal
Figure 112000516228389-pat00021
To maximize
Figure 112000516228389-pat00022
Is the same as maximizing
Figure 112000516228389-pat00023
The weight vector for maximizing can be obtained by the maximal inherent vector method known in the art.

즉, 신호 전송신호가 수신단말기에서 수식 (3)과 같이 각 안테나나 신호별로 구분될 수 있다면, 공지의 고유벡터 방법, 예컨대, [1]"Signal Processing Apparatus and Method for Reducing the Effects of Interference and Noise in Wireless Communications Utilizing Antenna Array", 미국 특허등록(5,808,913), 1998. 9. 15, [2]"Design Technique of an Array Antenna and Telecommunication System and Method Utilizing the Array Antenna", 미국 특허등록(5,999,800), 1999. 12. 7, [3]"무선 통신 시스템에서 간섭을 최소화하고 잡음의 영향을 줄여주기 위한 신호처리장치", 국내 특허등록(0197794), 1999. 2. 25, [4]"수신신호에 대한 자기상관행렬의 최대 고유치에 대응하는 고유벡터를 이용한 배열안테나의 신호 처리 방법", 국내 특허등록(0229094), 1999. 8. 31, [5]"코드분할다중접속방식 이동통신망을 위한 적응배열안테나시스템의 신호처리 방법 및 그 기록매체", 국내 특허출원(99-3115), 1999. 1. 30) 등을 이용하여, 수신파워를 최대화하는 웨이트 벡 터를 계산할 수 있게 된다.That is, if the signal transmission signal can be distinguished by each antenna or signal as shown in Equation (3) in the receiving terminal, a known eigenvector method, for example, [1] "Signal Processing Apparatus and Method for Reducing the Effects of Interference and Noise in Wireless Communications Utilizing Antenna Array ", US patent (5,808,913), September 15, 1998, [2]" Design Technique of an Array Antenna and Telecommunication System and Method Utilizing the Array Antenna ", US patent (5,999,800), 1999 12. 7, [3] "Signal Processing Unit for Minimizing Interference and Reducing the Effects of Noise in Wireless Communication Systems", Korean Patent Registration (0197794), Feb. 25, 1999, [4] Signal Processing Method of Array Antenna Using Eigenvectors Corresponding to Maximum Eigenvalue of Autocorrelation Matrix ", Korean Patent Registration (0229094), Aug. 31, 1999, [5]" Adaptive Array Antenna for Code Division Multiple Access Mobile Network Signal processing method of system and its device Media ", Korean Patent Application (99-3115), 1999. 1. 30) and the like, it is possible to calculate the weight vectors maximizing the reception power.

즉, 각 스냅샷에서의 수신 파워

Figure 112000516228389-pat00024
를 최대화하는 웨이트 벡터
Figure 112000516228389-pat00025
를 구하는 문제를
Figure 112000516228389-pat00026
를 최대화하는 문제로 치환하여 위에서 언급한 공지의 기술[1]-[5]를 이용하여 구하는 것이다. 본 명세서에서는 공지의 기술중 하나인 라그랑제 승수 방법을 사용하여 수신 단말에서 수신 파워가 최대로 되는 최적의 웨이트 벡터를 산출하는 기술을 소개한다.That is, the received power at each snapshot
Figure 112000516228389-pat00024
Weight vector to maximize
Figure 112000516228389-pat00025
To solve the problem
Figure 112000516228389-pat00026
It is obtained by using the above-mentioned well-known technique [1]-[5] by substituting the problem of maximizing. In this specification, a technique for calculating an optimal weight vector at which a reception power is maximized at a reception terminal is introduced by using a Lagrange multiplier method, which is one of known technologies.

수신단말에서의 수신파워

Figure 112000516228389-pat00027
는 다음과 같이 쓸 수 있다.Receive Power at Receiving Terminal
Figure 112000516228389-pat00027
Can be written as

Figure 112000516228389-pat00028
Figure 112000516228389-pat00028

단,

Figure 112000516228389-pat00029
이고,
Figure 112000516228389-pat00030
이며,
Figure 112000516228389-pat00031
Figure 112000516228389-pat00032
은 각각
Figure 112000516228389-pat00033
Figure 112000516228389-pat00034
으로 정의되는 열벡터(column vector)이다. (본 명세서에서는 벡터는 밑줄친 소문자로 행렬은 대문자 굵은체로 표시한다.)only,
Figure 112000516228389-pat00029
ego,
Figure 112000516228389-pat00030
Is,
Figure 112000516228389-pat00031
Wow
Figure 112000516228389-pat00032
Are each
Figure 112000516228389-pat00033
and
Figure 112000516228389-pat00034
A column vector defined by. (In this specification, vectors are represented by underlined lowercase letters and matrices are shown in bold capital letters.)

그런데, 간섭과 잡음을 배제한 상황에서

Figure 112000516228389-pat00035
의 랭크는 매 스냅샷마다 1이기 때문에 구하는 웨이트 벡터
Figure 112000516228389-pat00036
는 바로 전파 경로(propagation path) 벡터
Figure 112000516228389-pat00037
자체가 된다. 그러나, 간섭과 잡음을 고려하면(다중경로 간섭과 타신호간섭 포함)
Figure 112000516228389-pat00038
는 매 스냅샷마다 랭크가 N이 된다.However, in a situation where interference and noise are excluded
Figure 112000516228389-pat00035
The weight vector to obtain because the rank of is 1 for each snapshot.
Figure 112000516228389-pat00036
Is the propagation path vector
Figure 112000516228389-pat00037
It becomes itself. However, considering interference and noise (including multipath interference and other signal interference)
Figure 112000516228389-pat00038
Has a rank of N for each snapshot.

각 안테나 채널은 식(3)에서 보는바와 같이 분리될 수 있기 때문에 행렬

Figure 112000516228389-pat00039
의 각 엔트리 값은 수신하는 단말기에서 구할 수 있다. 또한 앞서 언급한 바와 같이, 수신 신호의 전력을 최대화하는 최적의 웨이트 벡터가 결과적으로 원하는 신호의 최대비합성(maximum ratio combining-MRC)를 제공한다는 것을 알 수 있다. Since each antenna channel can be separated as shown in equation (3),
Figure 112000516228389-pat00039
Each entry value of can be obtained from the receiving terminal. As also mentioned above, it can be seen that the optimal weight vector maximizing the power of the received signal results in a maximum ratio combining (MRC) of the desired signal.

즉,

Figure 112000516228389-pat00040
(단,
Figure 112000516228389-pat00041
는 실상수(real constant)).In other words,
Figure 112000516228389-pat00040
(only,
Figure 112000516228389-pat00041
Is a real constant).

위 (4)식의, 수신파워를 최대화하는 최적의 웨이트 벡터는 [1] - [5]에 나타낸 바와 같이 최대 고유치 문제의 해로부터 제공된다. 즉, 최적의 웨이트 벡터를 구하는 문제는 다음(5)식의 고유문제에서 최대 고유치에 대응하는 고유벡터를 구하는 문제가 된다.The optimal weight vector that maximizes the received power of equation (4) above is provided from the solution of the maximal eigenvalue problem as shown in [1]-[5]. That is, the problem of finding the optimal weight vector is a problem of finding the eigenvector corresponding to the maximum eigenvalue in the eigen problem of Equation (5)

Figure 112000516228389-pat00042
Figure 112000516228389-pat00042

여기서

Figure 112000516228389-pat00043
는 행렬
Figure 112000516228389-pat00044
의 최대 고유치이다.here
Figure 112000516228389-pat00043
Is a matrix
Figure 112000516228389-pat00044
Is the maximum eigenvalue of.

이제까지는 단일 경로를 고려하였으나 각 경로에 대한 각각의 웨이트 벡터를 고려하는 다중경로의 경우에도 적용할 수 있다.So far, a single path has been considered, but it can be applied to the case of multipath considering each weight vector for each path.

도 4는 본 발명에서 복수의 가입자 각각의 다중경로 채널에 적용하는 신호 환경을 보여주는 예시도이다.4 is an exemplary view illustrating a signal environment applied to a multipath channel of each of a plurality of subscribers in the present invention.

도면에서, s(t)는 목표단말에 보내는 신호,

Figure 112000516228389-pat00045
Figure 112000516228389-pat00046
단말기와
Figure 112000516228389-pat00047
안테나 소자간의
Figure 112000516228389-pat00048
경로 채널,
Figure 112000516228389-pat00049
Figure 112000516228389-pat00050
단말기와
Figure 112000516228389-pat00051
경로 채널에 대한
Figure 112000516228389-pat00100
안테나 소자의 웨이트 벡터(복소공액)이다.In the figure, s ( t ) is a signal to the target terminal,
Figure 112000516228389-pat00045
Is
Figure 112000516228389-pat00046
Terminal and
Figure 112000516228389-pat00047
Between antenna elements
Figure 112000516228389-pat00048
Route channel,
Figure 112000516228389-pat00049
Is
Figure 112000516228389-pat00050
Terminal and
Figure 112000516228389-pat00051
For route channel
Figure 112000516228389-pat00100
Weight vector (complex conjugate) of the antenna element.

도 4에서 제시된 바와 같이 본 발명에서 제시하는 기술은 각 단말기마다 다중경로가 존재하는 복수 단말기가 있는 신호환경에도 적용될 수 있다. 이 때, 도 4에 도시된 바와 같이, 각 단말에 대하여 각각의 전파경로에 대해 최적의 웨이트 벡터를 따로 따로 산출한다.As shown in FIG. 4, the technique proposed in the present invention may be applied to a signal environment having a plurality of terminals in which multiple paths exist for each terminal. In this case, as shown in FIG. 4, an optimal weight vector is separately calculated for each propagation path for each terminal.

도 5는 본 명세서에서 제공되는 기술을 실제의 이동통신에 적용하여 최적의 송신 빔을 만들기 위한 하나의 예로써, 파이롯트 채널과 트래픽 채널을 이용하여 본 발명 기술을 이용하는 시스템의 블록다이어 그램을 나타내고 있다. 파이롯트 채널의 신호를 각 안테나별로 직교화(orthogonalization)하여 웨이팅하지 않은 채로 송신하면 본 발명의 기술을 이용하여 수신단에서 최대의 수신파워를 갖게하는 웨이트 벡터를 해당 단말에서 계산할 수 있다. 이 계산된 웨이트 벡터를 트래픽 채널에 이용하여 신호를 송신하면 최적의 빔으로 송신할 수 있게 된다. 이때, 파이롯트 신호도 최적의 빔으로 송신하려면 파이롯트 신호에 대해서도 계산된 웨이트 벡터를 적용하여 송신할 수도 있다.FIG. 5 is a block diagram of a system using the present technology using a pilot channel and a traffic channel as an example for applying the technology provided herein to actual mobile communication to create an optimal transmission beam. . When the pilot channel signal is transmitted without being orthogonalized for each antenna and weighted, a weight vector having a maximum reception power at the receiver can be calculated by the corresponding terminal using the technique of the present invention. When the signal is transmitted using the calculated weight vector in the traffic channel, the optimal beam can be transmitted. In this case, the pilot signal may also be transmitted by applying the calculated weight vector to the pilot signal in order to transmit the optimal beam.

도 6은 본 발명에서 제공하는 기술을 이용하여 수신 단말기에서 최적의 웨이트 벡터를 산출하기 위한 시스템의 한 예를 블록 다이어그램이다.6 is a block diagram of an example of a system for calculating an optimal weight vector at a receiving terminal using the techniques provided by the present invention.

송신 기지국에서 사용할 웨이트의 값을 수신단말기에서 계산하여 송신 기지국으로 보내는 폐 루프(Closed Loop) 방식에서 웨이트 벡터를 계산하는 것 못지 않게 중요한 것은 계산된 웨이트 벡터 값을 기지국으로 전송하는 방법이다. 즉, 수신단말기에서 계산된 웨이트값 자체를 기지국으로 보낼 수도 있으나, 웨이트 벡터를 보내려면 별도의 채널을 사용하여야 한다. 이와 같이 별도의 채널을 차지하지 않고 웨이트 벡터를 최적 값으로 갱신하기 위하여, 웨이트 벡터의 위상 값의 변화량 혹은 변화하는 방향만을 기지국으로 보낼 수도 있다.In a closed loop scheme in which a weight value to be used by a transmitting base station is calculated by a receiving terminal and sent to a transmitting base station, it is important to calculate a weight vector value to a base station. That is, although the weight value itself calculated by the receiving terminal may be sent to the base station, a separate channel must be used to send the weight vector. In order to update the weight vector to an optimal value without occupying a separate channel in this way, only the amount of change or the direction of change in the phase value of the weight vector may be sent to the base station.

즉, 송신기지국에서의 빔을 +△ 혹은 -△만큼 변위 시키기 위해서는 현재의 웨이트 벡터

Figure 112000516228389-pat00053
Figure 112000516228389-pat00054
Figure 112000516228389-pat00055
로 갱신하여야 하는데, 이 경우
Figure 112000516228389-pat00056
Figure 112000516228389-pat00057
로 결정되는 웨이트 벡터의 값 자체를 수신단말기에서 송신기지국으로 송신하지 않고 갱신하여야 하는 방향만을 송신 기지국에 알려주는 것이다.That is, in order to displace the beam at the transmitter station by + △ or-△, the current weight vector
Figure 112000516228389-pat00053
To
Figure 112000516228389-pat00054
Figure 112000516228389-pat00055
Should be updated to
Figure 112000516228389-pat00056
Figure 112000516228389-pat00057
This is to inform the transmitting base station only of the direction of updating the weight vector itself, which is determined to be not transmitted from the receiving terminal to the transmitter station.

이와 같은 방법을 사용하면 1개의 디지트만을 가지고도 웨이트 벡터를 미리 정한 △만큼 +혹은 -방향으로 갱신 할 수 있다.Using this method, the weight vector can be updated in the + or-direction by a predetermined Δ even with only one digit.

이제부터, 최대 고유치에 대응하는 고유벡터를 구하는 기술에 따라서, 본 발명의 실시예를 구성하여 각 실시예별로 자세히 설명한다.From now on, according to the technique of obtaining the eigenvectors corresponding to the maximum eigenvalues, embodiments of the present invention will be constructed and described in detail for each embodiment.

즉, 공지의 리그랑제 승수 방법을 수정하여 식(5)에서 보여지는 최대 고유치 문제를 풀기 위해서 사용할 수 있으며 각 방법별로 실시예를 구성하여 최적의 웨이트 벡터를 계산하는 방법 및 계산된 웨이트 벡터를 효율적으로 기지국으로 전송하는 방법을 자세히 설명한다.In other words, it can be used to solve the maximum eigenvalue problem shown in Eq. (5) by modifying the known Lignan multiplier method, and by configuring the embodiments for each method to calculate the optimal weight vector and efficiently calculate the weight vector It will be described in detail how to transmit to the base station.

실시예 : 라그랑제(Lagrange)방법을 사용하여 최적의

Figure 112000516228389-pat00058
를 구하는 방식Example: Optimal Using Lagrange Method
Figure 112000516228389-pat00058
How to get

본 실시예에서는 전송 기지국에서, 앞서 설명한 바대로, 각 안테나별로 직교되도록 신호를 처리한 후 송신하는 신호환경을 고려하며, 최대 고유치에 대응하는 고유벡터를 구하기 위해 공지의 라그랑제(Lagrange) 방법을 사용한다. 라그랑제(Lagrange) 방법은 [1]에 자세히 설명되어 있으므로 본 발명에서는 라그랑제(Lagrange) 방법을 응용하여 송신기지국에서의 최적 웨이트 벡터를 수신단말기에서 계산하여 송신 기지국으로 귀환시키는 절차를 소개한다. In the present embodiment, as described above, a known Lagrange method is employed to obtain a eigenvector corresponding to a maximum eigen value while considering a signal environment in which a signal is processed after transmission to be orthogonal to each antenna as described above. use. Since the Lagrange method is described in detail in [1], the present invention introduces a procedure of applying the Lagrange method to calculate an optimal weight vector at a transmitter station at a receiving terminal and returning it to a transmitting base station.                     

첫째, 웨이트 벡터와 라그랑제 승수(Multiplier) λ를 초기화한다.First, the weight vector and Lagrange multiplier λ are initialized.

둘째, 기지국에서 현재의 웨이트 벡터

Figure 112000516228389-pat00059
로 웨이팅(Weighting)하여 신호를 송신한다. 즉,
Figure 112000516228389-pat00060
번째 안테나에서의 송신신호는
Figure 112000516228389-pat00061
이므로, 현재의 웨이트
Figure 112000516228389-pat00062
를 이용하면
Figure 112000516228389-pat00063
가 송출되게 된다. 따라서 N개의 안테나 소자로 구성된 배열 안테나 시스템에서 송신된 신호는 단말기에서 다음과 같이 수신된다.Second, the current weight vector at the base station
Figure 112000516228389-pat00059
The signal is transmitted by weighting. In other words,
Figure 112000516228389-pat00060
The transmission signal from the first antenna
Figure 112000516228389-pat00061
As it is the current weight
Figure 112000516228389-pat00062
If you use
Figure 112000516228389-pat00063
Will be sent out. Therefore, the signal transmitted in the array antenna system consisting of N antenna elements is received at the terminal as follows.

Figure 112000516228389-pat00064
Figure 112000516228389-pat00064

셋째, 각 안테나에서 송신된 신호를 따로따로 분류하기 위하여 각 안테나에서 송신된 패턴으로 상기 수신신호

Figure 112000516228389-pat00065
를 상관시키므로써 각 안테나 채널별로 분류된 신호
Figure 112000516228389-pat00066
를 산출한다.Third, the received signal in a pattern transmitted from each antenna to separately classify the signals transmitted from each antenna.
Figure 112000516228389-pat00065
Signal classified by each antenna channel by correlating
Figure 112000516228389-pat00066
Calculate

넷째, 수신 단말기에서 라그랑제 승수 λ를 다음과 같이 계산한다.Fourth, the Lagrange multiplier λ is calculated by the receiving terminal as follows.

Figure 112000516228389-pat00067
Figure 112000516228389-pat00067

여기서

Figure 112000516228389-pat00068
이며, μ값은 미리 정한 적응이득이다. 단,
Figure 112000516228389-pat00069
이고,
Figure 112000516228389-pat00070
임.here
Figure 112000516228389-pat00068
The value of μ is a predetermined adaptive gain. only,
Figure 112000516228389-pat00069
ego,
Figure 112000516228389-pat00070
being.

이때,

Figure 112000516228389-pat00071
를 일정한 상수값으로 고정시키면 (예를 들어,
Figure 112000516228389-pat00072
=1), 라그랑제 승수 λ를 다음과 같이 간략히 계산하는 것도 가능하다는 것을 본 발명에서 제시한다.At this time,
Figure 112000516228389-pat00071
Fixed to a constant value (for example,
Figure 112000516228389-pat00072
= 1), it is also suggested in the present invention that the Lagrange multiplier λ can be simply calculated as follows.

Figure 112000516228389-pat00073
Figure 112000516228389-pat00073

다섯째, 상기 네 번째 단계에서 구한 라그랑제 승수 λ를 이용하여 수신 단 말기에서 웨이트 벡터를 다음과 같이 갱신한다.Fifth, using the Lagrange multiplier λ obtained in the fourth step, the weight vector is updated in the receiving terminal as follows.

Figure 112000516228389-pat00074
Figure 112000516228389-pat00074

본 발명에서는 상기 수식에 있어서 다음과 같이 응용된 4가지 다른 계산방법을 사용할 수 있다.In the present invention, it is possible to use four different calculation methods applied as follows in the above formula.

계산방법 1 : 상기 수식에서

Figure 112006509416308-pat00075
을 일정한 값으로(예,
Figure 112006509416308-pat00076
=1) 규격화하면
Figure 112006509416308-pat00077
Figure 112006509416308-pat00078
만으로도 계산할 수 있다.Calculation method 1: in the above formula
Figure 112006509416308-pat00075
To a constant value (e.g.
Figure 112006509416308-pat00076
= 1) normalized
Figure 112006509416308-pat00077
To
Figure 112006509416308-pat00078
You can calculate it alone.

계산방법 2 :

Figure 112006509416308-pat00079
의 값 자체를 사용하는 대신에 그 값의 부호만을 사용하는, (즉,
Figure 112006509416308-pat00080
), 방법을 도입하여
Figure 112006509416308-pat00081
로도 계산이 가능하다. 여기서
Figure 112006509416308-pat00082
]는 ·값의 부호를 나타낸다.Calculation Method 2:
Figure 112006509416308-pat00079
Instead of using the value of itself, use only the sign of that value, i.e.
Figure 112006509416308-pat00080
), By introducing the method
Figure 112006509416308-pat00081
You can also calculate here
Figure 112006509416308-pat00082
] Shows the sign of a value.

계산방법 3 :

Figure 112006509416308-pat00083
Figure 112006509416308-pat00084
의 각 요소의 부호만을 적용하는, 즉
Figure 112006509416308-pat00085
값으로 바꾸어 계산할 수 있다. 단,
Figure 112006509416308-pat00086
는 각 요소의 값이
Figure 112006509416308-pat00087
의 해당 요소의 부호에 의하여 +1 혹은 -1로 결정되는 벡터를 나타냄.Calculation Method 3:
Figure 112006509416308-pat00083
Is
Figure 112006509416308-pat00084
Applies only the sign of each element of ie
Figure 112006509416308-pat00085
Can be calculated by replacing it with a value. only,
Figure 112006509416308-pat00086
Is the value of each element
Figure 112006509416308-pat00087
Represents a vector determined by +1 or -1 by the sign of the corresponding element in.

계산방법 4 : 마찬가지 원리로

Figure 112006509416308-pat00088
값은
Figure 112006509416308-pat00089
로 변경해 웨이트 벡터를 계산할 수 있다. 따라서 본 단계에서의 웨이트 벡터 갱신방법은 5가지로 구분되어 계산될 수 있다.Calculation method 4: In the same principle
Figure 112006509416308-pat00088
The value is
Figure 112006509416308-pat00089
To calculate the weight vector. Therefore, the weight vector updating method in this step can be calculated by dividing into five types.

여섯째, 수신 단말기에서 갱신된 웨이트 벡터는 기지국으로 송신하며, 웨이트 벡터는 상기 두 번째 단계로 전달되어 두 번째부터 반복 수행한다. 이때, 수신단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 현재의 웨이트 값과의 차이만을 보낼 수도 있으며, 하나의 비트만을 사용하여 기지국에 웨이트 벡 터의 변위 부호만을 송신하므로써 현재 웨이트 값을 +△ 혹은 -△만큼 변위시킬 수도 있다. 즉, 수신 단말기에서 0혹은 1의 디지털 값을 송신 기지국에 송출해 주므로써, 송신 기지국에서는 빔이 +△ 혹은 -△만큼 변위되도록 현재의 웨이트 벡터값을 갱신해 준다.Sixth, the weight vector updated at the receiving terminal is transmitted to the base station, and the weight vector is transmitted to the second step and repeated from the second. In this case, instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station, only the difference with the current weight value may be sent. The current weight value is transmitted by transmitting only the displacement vector of the weight vector to the base station using only one bit. It can also be shifted by + △ or-△. That is, since the receiving terminal sends a digital value of 0 or 1 to the transmitting base station, the transmitting base station updates the current weight vector value so that the beam is displaced by + Δ or -Δ.

상기 적응 절차는

Figure 112006509416308-pat00090
를 최대화하기 위한 과정으로서 결국
Figure 112006509416308-pat00091
을 최대화하기 위한 웨이트 벡터를 계산하는 과정이다. 상기 절차에 대한 흐름도는 그림 7과 같다.
또한, 본 발명은 상술한 바와 같이 N개의 안테나 소자간에 소정 배열과 간격을 갖는 스마트안테나 시스템에서, 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여 라그랑제 승수 방법을 이용하여 각 단말기에서 수신 신호 세기가 최대화되도록 기지국에서 사용할 웨이트 벡터
Figure 112006509416308-pat00101
의 최적값을 구하는 신호 처리 장치에 있어서, (1) 웨이트 벡터
Figure 112006509416308-pat00102
와 라그랑제 승수 λ를 초기화하고, (2) 기지국에서 송신된 현재의 웨이트 벡터
Figure 112006509416308-pat00103
로 웨이팅(Weighting)한 신호
Figure 112006509416308-pat00104
를 단말기에서 수신하며(여기서,
Figure 112006509416308-pat00105
Figure 112006509416308-pat00106
번째 안테나에서의 송신신호,
Figure 112006509416308-pat00107
는 현재의 웨이트,
Figure 112006509416308-pat00108
는 웨이팅된 신호), (3) 각 안테나에서 송신된 신호를 분류하기 위해 상기 (2)의 수신신호
Figure 112006509416308-pat00109
를 각 안테나에서 송신된 패턴으로 상관시켜 각 안테나 채널별로 분류된 신호
Figure 112006509416308-pat00110
를 산출하여 (4) 수신 단말기에서 라그랑제 승수 λ를
Figure 112006509416308-pat00111
와 같이 계산한 후(여기서,
Figure 112006509416308-pat00112
, μ는 미리 정한 적응이득,
Figure 112006509416308-pat00113
,
Figure 112006509416308-pat00114
임), (5) 상기 (4)에서 구한 라그랑제 승수 λ를 이용하여 수신 단말기에서 웨이트 벡터를
Figure 112006509416308-pat00115
와 같이 갱신하는 기능을 실현시키기 위한 신호처리 장치를 제공한다.
이와 같은 스마트안테나 시스템에서 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여 라그랑제 승수 방법을 이용하여 각 단말기에서 수신 신호 세기가 최대화되도록 기지국에서 사용할 웨이트 벡터
Figure 112006509416308-pat00116
의 최적값을 구하는 신호처리 장치는, 상술한 신호처리 방법을 적용하여 구현되는 하드웨어로서 그 동작은 신호처리 방법에서 서술한 바와 같으므로 이에 대한 상세한 설명을 생략한다.The adaptation procedure is
Figure 112006509416308-pat00090
As a process to maximize
Figure 112006509416308-pat00091
The process of calculating the weight vector for maximizing The flowchart for the above procedure is shown in Figure 7.
In addition, the present invention, in the smart antenna system having a predetermined arrangement and spacing between the N antenna elements as described above, each terminal using the Lagrange multiplier method to calculate the optimal weight vector maximizing the receiving power of the receiving terminal Weight vector to be used by the base station to maximize received signal strength
Figure 112006509416308-pat00101
A signal processing apparatus for obtaining an optimal value of (1) a weight vector
Figure 112006509416308-pat00102
And Lagrange multiplier [lambda], and (2) the current weight vector transmitted from the base station.
Figure 112006509416308-pat00103
Low weighted signal
Figure 112006509416308-pat00104
Is received by the terminal (where
Figure 112006509416308-pat00105
Is
Figure 112006509416308-pat00106
Signal from the first antenna,
Figure 112006509416308-pat00107
Is the current weight,
Figure 112006509416308-pat00108
Is a weighted signal), (3) the received signal of (2) to classify the signal transmitted from each antenna
Figure 112006509416308-pat00109
Is classified by each antenna channel by correlating
Figure 112006509416308-pat00110
(4) Lagrange multiplier λ at the receiving terminal
Figure 112006509416308-pat00111
Is calculated as (where
Figure 112006509416308-pat00112
, μ is a predetermined adaptive gain,
Figure 112006509416308-pat00113
,
Figure 112006509416308-pat00114
(5) using the Lagrange multiplier λ obtained in (4) above,
Figure 112006509416308-pat00115
A signal processing apparatus for realizing a function of updating as described above is provided.
In such a smart antenna system, a weight vector to be used by a base station to maximize the received signal strength at each terminal by using the Lagrange multiplier method in order to calculate an optimal weight vector with the maximum reception power of the receiving terminal.
Figure 112006509416308-pat00116
The signal processing apparatus for obtaining the optimal value of is hardware implemented by applying the above-described signal processing method, and the operation thereof is the same as described in the signal processing method, and thus a detailed description thereof will be omitted.

상기한 바와 같은 라그랑제 승수 방법을 이용하는 본 발명에 따르면, 적은 계산량으로 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출할 수 있도록 함으로써, 성능면에서 우수할 뿐만 아니라 스냅샷당 빔형성 과정의 계산량이 현저하게 감소되기 때문에 빠른 응답을 요하는 이동통신시스템 등에 실제로 적용이 가능하다는 효과가 있다.According to the present invention using the Lagrangian multiplier method as described above, it is possible to calculate the optimal weight vector that maximizes the reception power of the receiving terminal with a small amount of calculation, which is excellent in terms of performance and the beamforming process per snapshot. Since the calculation amount is significantly reduced, it is possible to actually apply to a mobile communication system requiring a quick response.

또한, 간섭신호의 영향이 최소화되는 최적의 빔패턴을 각 가입자에게 제공하므로써 주어진 대역폭내에서 셀당 통신용량을 획기적으로 증가시키면서 통신품질도 향상시키는 매우 우수한 효과가 있다.In addition, by providing the optimum beam pattern to each subscriber to minimize the influence of the interference signal has a very excellent effect of improving the communication quality while significantly increasing the communication capacity per cell within a given bandwidth.

Claims (20)

N개의 안테나 소자간에 소정 배열과 간격을 갖는 스마트안테나 시스템에서, 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여 라그랑제 승수 방법을 이용하여 각 단말기에서 수신 신호 세기가 최대화되도록 기지국에서 사용할 웨이트 벡터
Figure 112007506538110-pat00205
의 최적값을 구하는 신호 처리 방법에 있어서,
In a smart antenna system having a predetermined arrangement and spacing between N antenna elements, the base station is configured to maximize reception signal strength at each terminal by using the Lagrange multiplier method to calculate an optimal weight vector that maximizes the reception power of the reception terminal. Weight vector to use
Figure 112007506538110-pat00205
In a signal processing method for obtaining an optimal value of,
(1)단계 : 웨이트 벡터
Figure 112007506538110-pat00206
와 라그랑제 승수 λ를 초기화하고,
Step 1: weight vector
Figure 112007506538110-pat00206
And Lagrange multiplier λ,
(2)단계 : 기지국에서 송신된 현재의 웨이트 벡터
Figure 112007506538110-pat00207
로 웨이팅(Weighting)한 신호
Figure 112007506538110-pat00208
를 단말기에서 수신하며,
Step (2): current weight vector transmitted from the base station
Figure 112007506538110-pat00207
Low weighted signal
Figure 112007506538110-pat00208
From your device,
(여기서,
Figure 112007506538110-pat00209
Figure 112007506538110-pat00210
번째 안테나에서의 송신신호,
Figure 112007506538110-pat00211
는 현재의 웨이트,
Figure 112007506538110-pat00212
는 웨이팅된 신호)
(here,
Figure 112007506538110-pat00209
Is
Figure 112007506538110-pat00210
Signal from the first antenna,
Figure 112007506538110-pat00211
Is the current weight,
Figure 112007506538110-pat00212
Is the weighted signal)
(3)단계 : 각 안테나에서 송신된 신호를 분류하기 위해 상기 (2)단계의 수신신호
Figure 112007506538110-pat00213
를 각 안테나에서 송신된 패턴으로 상관시켜 각 안테나 채널별로 분류된 신호
Figure 112007506538110-pat00214
를 산출하여,
Step (3): the received signal of step (2) to classify the signal transmitted from each antenna
Figure 112007506538110-pat00213
Is classified by each antenna channel by correlating
Figure 112007506538110-pat00214
By calculating
(4)단계 : 수신 단말기에서 라그랑제 승수 λ를
Figure 112007506538110-pat00215
와 같이 계산한 후,
(4) step: Lagrange multiplier λ at the receiving terminal
Figure 112007506538110-pat00215
Calculate as
(여기서,
Figure 112007506538110-pat00216
,
Figure 112007506538110-pat00217
,
Figure 112007506538110-pat00218
, μ는 미리 정한 적응이득,
Figure 112007506538110-pat00219
,
Figure 112007506538110-pat00220
임)
(here,
Figure 112007506538110-pat00216
,
Figure 112007506538110-pat00217
,
Figure 112007506538110-pat00218
, μ is a predetermined adaptive gain,
Figure 112007506538110-pat00219
,
Figure 112007506538110-pat00220
being)
(5)단계 : 상기 (4)단계에서 구한 라그랑제 승수 λ를 이용하여 수신 단말기에서 웨이트 벡터를
Figure 112007506538110-pat00221
와 같이 갱신하는 신호처리 방법.
Step (5): The weight vector is obtained from the receiving terminal by using the Lagrange multiplier λ obtained in step (4).
Figure 112007506538110-pat00221
The signal processing method of updating as shown.
제1항의 (4)단계에서 수신 단말기에서 라그랑제 승수 λ를 계산함에 있어서, In calculating the Lagrange multiplier λ at the receiving terminal in step (4) of claim 1,
Figure 112007506538110-pat00222
를 일정한 상수값으로 고정시켜 라그랑제 승수 λ를
Figure 112007506538110-pat00223
와 같이 계산하는 것을 특징으로 하는 신호처리 방법.
Figure 112007506538110-pat00222
Is fixed to a constant value so that the Lagrange multiplier λ
Figure 112007506538110-pat00223
Signal processing method characterized in that the calculation as.
제1항의 (5)단계에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in step (5) of claim 1,
Figure 112007506538110-pat00224
을 1로 규격화하여
Figure 112007506538110-pat00225
만으로
Figure 112007506538110-pat00226
를 계산하는 것을 특징으로 하는 신호처리 방법.
Figure 112007506538110-pat00224
Is normalized to 1
Figure 112007506538110-pat00225
By bay
Figure 112007506538110-pat00226
Signal processing method, characterized in that for calculating.
제1항의 (5)단계에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in step (5) of claim 1,
Figure 112007506538110-pat00227
의 값을 사용하는 대신 그 값의 부호만을 사용하는
Figure 112007506538110-pat00228
와 같은 방법에 의해
Figure 112007506538110-pat00229
와 같이 계산하는 것을 특징으로 하는 신호처리 방법.
Figure 112007506538110-pat00227
Instead of using the value of, use only the sign of that value
Figure 112007506538110-pat00228
By the same way
Figure 112007506538110-pat00229
Signal processing method characterized in that the calculation as.
(여기서,
Figure 112007506538110-pat00230
는 ·값의 부호를 나타냄)
(here,
Figure 112007506538110-pat00230
Represents the sign of the value)
제1항의 (5)단계에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in step (5) of claim 1,
Figure 112007506538110-pat00231
의 각 요소의 부호만을 적용하는
Figure 112007506538110-pat00232
와 같이 계산하는 것을 특징으로 하는 신호처리 방법.
Figure 112007506538110-pat00231
Apply only the sign of each element of
Figure 112007506538110-pat00232
Signal processing method characterized in that the calculation as.
(여기서,
Figure 112007506538110-pat00233
는 각 요소의 값이
Figure 112007506538110-pat00234
의 해당 요소의 부호에 의하여 +1 혹은 -1로 결정되는 벡터를 나타냄)
(here,
Figure 112007506538110-pat00233
Is the value of each element
Figure 112007506538110-pat00234
Represents a vector, determined by the sign of the corresponding element of +1 or -1)
제1항의 (5)단계에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in step (5) of claim 1,
Figure 112007506538110-pat00235
값을
Figure 112007506538110-pat00236
로 변경하여 웨이트 벡터를 계산하는 것을 특징으로 하는 신호처리 방법.
Figure 112007506538110-pat00235
Value
Figure 112007506538110-pat00236
The signal processing method of claim 1, wherein the weight vector is calculated.
N개의 안테나 소자간에 소정 배열과 간격을 갖는 스마트안테나 시스템에서, 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여 라그랑제 승수 방법을 이용하여 각 단말기에서 수신 신호 세기가 최대화되도록 기지국에서 사용할 웨이트 벡터
Figure 112007506538110-pat00237
의 최적값을 구하는 신호 처리 방법에 있어서,
In a smart antenna system having a predetermined arrangement and spacing between N antenna elements, the base station is configured to maximize reception signal strength at each terminal by using the Lagrange multiplier method to calculate an optimal weight vector that maximizes the reception power of the reception terminal. Weight vector to use
Figure 112007506538110-pat00237
In a signal processing method for obtaining an optimal value of,
(1)단계 : 웨이트 벡터와 라그랑제 승수 λ를 초기화하고,(1) step: initializing the weight vector and Lagrange multiplier λ, (2)단계 : 기지국에서 송신된 현재의 웨이트 벡터
Figure 112007506538110-pat00238
로 웨이팅(Weighting)한 신호
Figure 112007506538110-pat00239
를 단말기에서 수신하며,
Step (2): current weight vector transmitted from the base station
Figure 112007506538110-pat00238
Low weighted signal
Figure 112007506538110-pat00239
From your device,
(여기서,
Figure 112007506538110-pat00240
Figure 112007506538110-pat00241
번째 안테나에서의 송신신호,
Figure 112007506538110-pat00242
는 현재의 웨이트,
Figure 112007506538110-pat00243
는 웨이팅된 신호)
(here,
Figure 112007506538110-pat00240
Is
Figure 112007506538110-pat00241
Signal from the first antenna,
Figure 112007506538110-pat00242
Is the current weight,
Figure 112007506538110-pat00243
Is the weighted signal)
(3)단계 : 각 안테나에서 송신된 신호를 분류하기 위해 상기 (2)단계의 수신신호
Figure 112007506538110-pat00244
를 각 안테나에서 송신된 패턴으로 상관시켜 각 안테나 채널별로 분류된 신호
Figure 112007506538110-pat00245
를 산출하여,
Step (3): the received signal of step (2) to classify the signal transmitted from each antenna
Figure 112007506538110-pat00244
Is classified by each antenna channel by correlating
Figure 112007506538110-pat00245
By calculating
(4)단계 : 수신 단말기에서 라그랑제 승수 λ를
Figure 112007506538110-pat00246
와 같이 계산한 후,
(4) step: Lagrange multiplier λ at the receiving terminal
Figure 112007506538110-pat00246
Calculate as
(여기서,
Figure 112007506538110-pat00247
,
Figure 112007506538110-pat00248
,
Figure 112007506538110-pat00249
, μ는 미리 정한 적응이득,
Figure 112007506538110-pat00250
,
Figure 112007506538110-pat00251
임)
(here,
Figure 112007506538110-pat00247
,
Figure 112007506538110-pat00248
,
Figure 112007506538110-pat00249
, μ is a predetermined adaptive gain,
Figure 112007506538110-pat00250
,
Figure 112007506538110-pat00251
being)
(5)단계 : 상기 (4)단계에서 구한 라그랑제 승수 λ를 이용하여 수신 단말기에서 웨이트 벡터를
Figure 112007506538110-pat00252
와 같이 갱신하여,
Step (5): The weight vector is obtained from the receiving terminal by using the Lagrange multiplier λ obtained in step (4).
Figure 112007506538110-pat00252
Update as
(6)단계 : 상기 수신 단말기에서 갱신된 웨이트 벡터는 기지국으로 송신하되, 상기 웨이트 벡터는 (2)단계로 전달되어 반복 수행하는 신호처리 방법.Step (6): the weight vector updated at the receiving terminal is transmitted to the base station, and the weight vector is transmitted to step (2) and repeatedly performed.
제7항의 (6)단계에 있어서,In step (6) of claim 7, 상기 수신 단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 현재의 웨이트 값과의 차이만을 보내는 것을 특징으로 하는 신호처리 방법.And transmits only the difference from the current weight value instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station. 제7항의 (6)단계에 있어서,In step (6) of claim 7, 상기 수신 단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 하나의 비트만을 사용하여 기지국에 웨이트 벡터의 변위 부호만을 송신함으로써,By transmitting only the displacement code of the weight vector to the base station by using only one bit, instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station, 현재 웨이트 값을 +△ 혹은 -△만큼 변위시키는 것을 특징으로 하는 신호처리 방법.And a current weight value is shifted by + △ or-△. 제7항의 (3)단계 또는 제9항에 있어서,The method according to (7) or 9 of claim 7, 상기 수신 단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 하나의 비트만을 사용하여 기지국에 웨이트 벡터의 변위 부호만을 송신하기 위하여,In order to transmit only the displacement code of the weight vector to the base station by using only one bit instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station, 수신 단말기에서 0 혹은 1의 디지털 값을 송신 기지국에 송출하고 송신 기지국에서는 빔이 +△ 혹은 -△만큼 변위되도록 현재의 웨이트 벡터값을 갱신하는 것을 특징으로 하는 신호처리 방법.The receiving terminal transmits a digital value of 0 or 1 to the transmitting base station, and the transmitting base station updates the current weight vector value so that the beam is shifted by + Δ or -Δ. N개의 안테나 소자간에 소정 배열과 간격을 갖는 스마트안테나 시스템에서, 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여 라그랑제 승수 방법을 이용하여 각 단말기에서 수신 신호 세기가 최대화되도록 기지국에서 사용할 웨이트 벡터
Figure 112007506538110-pat00253
의 최적값을 구하는 신호 처리 장치에 있어서,
In a smart antenna system having a predetermined arrangement and spacing between N antenna elements, the base station is configured to maximize reception signal strength at each terminal by using the Lagrange multiplier method to calculate an optimal weight vector that maximizes the reception power of the reception terminal. Weight vector to use
Figure 112007506538110-pat00253
In the signal processing apparatus for obtaining the optimal value of
웨이트 벡터
Figure 112007506538110-pat00254
와 라그랑제 승수 λ를 초기화하는 (1)단계에 의한 수단과,
Weight vector
Figure 112007506538110-pat00254
Means for initializing the Lagrange multiplier λ,
기지국에서 송신된 현재의 웨이트 벡터
Figure 112007506538110-pat00255
로 웨이팅(Weighting)한 신호
Figure 112007506538110-pat00256
를 단말기에서 수신하는 (2)단계에 의한 수단과,
The current weight vector sent from the base station
Figure 112007506538110-pat00255
Low weighted signal
Figure 112007506538110-pat00256
Means by step (2) of receiving a message from the terminal,
(여기서,
Figure 112007506538110-pat00257
Figure 112007506538110-pat00258
번째 안테나에서의 송신신호,
Figure 112007506538110-pat00259
는 현재의 웨이트,
Figure 112007506538110-pat00260
는 웨이팅된 신호)
(here,
Figure 112007506538110-pat00257
Is
Figure 112007506538110-pat00258
Signal from the first antenna,
Figure 112007506538110-pat00259
Is the current weight,
Figure 112007506538110-pat00260
Is the weighted signal)
각 안테나에서 송신된 신호를 분류하기 위해 상기 (2)단계에 의한 수단의 수신신호
Figure 112007506538110-pat00261
를 각 안테나에서 송신된 패턴으로 상관시켜 각 안테나 채널별로 분류된 신호
Figure 112007506538110-pat00262
를 산출하는 (3)단계에 의한 수단과,
Received signal of the means according to step (2) to classify the signal transmitted from each antenna
Figure 112007506538110-pat00261
Is classified by each antenna channel by correlating
Figure 112007506538110-pat00262
Means by step (3) of calculating
수신 단말기에서 라그랑제 승수 λ를
Figure 112007506538110-pat00263
와 같이 계산하는 (4)단계에 의한 수단과,
Lagrange multiplier λ at the receiving terminal
Figure 112007506538110-pat00263
Means according to step (4),
(여기서,
Figure 112007506538110-pat00264
,
Figure 112007506538110-pat00265
,
Figure 112007506538110-pat00266
, μ는 미리 정한 적응이득,
Figure 112007506538110-pat00267
,
Figure 112007506538110-pat00268
임)
(here,
Figure 112007506538110-pat00264
,
Figure 112007506538110-pat00265
,
Figure 112007506538110-pat00266
, μ is a predetermined adaptive gain,
Figure 112007506538110-pat00267
,
Figure 112007506538110-pat00268
being)
상기 (4)단계에 의한 수단에서 구한 라그랑제 승수 λ를 이용하여 수신 단말기에서 웨이트 벡터를
Figure 112007506538110-pat00269
와 같이 갱신하는 (5)단계에 의한 수단을 포함하는
The weight vector is obtained from the receiving terminal using the Lagrange multiplier λ obtained by the means in step (4).
Figure 112007506538110-pat00269
Means for updating according to step (5)
신호처리 장치.Signal processing device.
제11항의 (4)단계에 의한 수단에서 수신 단말기에서 라그랑제 승수 λ를 계산함에 있어서,In calculating the Lagrangian multiplier [lambda] at the receiving terminal in the means according to (4) of claim 11,
Figure 112007506538110-pat00270
를 일정한 상수값으로 고정시켜 라그랑제 승수 λ를
Figure 112007506538110-pat00271
와 같이 계산하는 것을 특징으로 하는 신호처리 장치.
Figure 112007506538110-pat00270
Is fixed to a constant value so that the Lagrange multiplier λ
Figure 112007506538110-pat00271
Signal processing device characterized in that the calculation as.
제11항의 (5)단계에 의한 수단에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in the means according to step (5) of claim 11,
Figure 112007506538110-pat00272
을 1로 규격화하여
Figure 112007506538110-pat00273
만으로
Figure 112007506538110-pat00274
를 계산하는 것을 특징으로 하는 신호처리 장치.
Figure 112007506538110-pat00272
Is normalized to 1
Figure 112007506538110-pat00273
By bay
Figure 112007506538110-pat00274
Signal processing device, characterized in that for calculating.
제11항의 (5)단계에 의한 수단에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in the means according to step (5) of claim 11,
Figure 112007506538110-pat00275
의 값을 사용하는 대신 그 값의 부호만을 사용하는
Figure 112007506538110-pat00276
와 같은 방법에 의해
Figure 112007506538110-pat00277
와 같이 계산하는 것을 특징으로 하는 신호처리 장치.
Figure 112007506538110-pat00275
Instead of using the value of, use only the sign of that value
Figure 112007506538110-pat00276
By the same way
Figure 112007506538110-pat00277
Signal processing device characterized in that the calculation as.
(여기서,
Figure 112007506538110-pat00278
는 ·값의 부호를 나타냄)
(here,
Figure 112007506538110-pat00278
Represents the sign of the value)
제11항의 (5)단계에 의한 수단에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서, In updating the weight vector at the receiving terminal in the means according to step (5) of claim 11,
Figure 112007506538110-pat00279
의 각 요소의 부호만을 적용하는
Figure 112007506538110-pat00280
와 같이 계산하는 것을 특징으로 하는 신호처리 장치.
Figure 112007506538110-pat00279
Apply only the sign of each element of
Figure 112007506538110-pat00280
Signal processing device characterized in that the calculation as.
(여기서,
Figure 112007506538110-pat00281
는 각 요소의 값이
Figure 112007506538110-pat00282
의 해당 요소의 부호에 의하여 +1 혹은 -1로 결정되는 벡터를 나타냄)
(here,
Figure 112007506538110-pat00281
Is the value of each element
Figure 112007506538110-pat00282
Represents a vector, determined by the sign of the corresponding element of +1 or -1)
제11항의 (5)단계에 의한 수단에서 수신 단말기에서 웨이트 벡터를 갱신함에 있어서,In updating the weight vector at the receiving terminal in the means according to step (5) of claim 11,
Figure 112007506538110-pat00283
값을
Figure 112007506538110-pat00284
로 변경하여 웨이트 벡터를 계산하는 것을 특징으로 하는 신호처리 장치.
Figure 112007506538110-pat00283
Value
Figure 112007506538110-pat00284
And a weight vector to calculate the weight vector.
N개의 안테나 소자간에 소정 배열과 간격을 갖는 스마트안테나 시스템에서, 수신단말의 수신파워가 최대로 되는 최적 웨이트 벡터를 산출하기 위하여 라그랑제 승수 방법을 이용하여 각 단말기에서 수신 신호 세기가 최대화되도록 기지국에서 사용할 웨이트 벡터
Figure 112007506538110-pat00285
의 최적값을 구하는 신호 처리 방법에 있어서,
In a smart antenna system having a predetermined arrangement and spacing between N antenna elements, the base station is configured to maximize reception signal strength at each terminal by using the Lagrange multiplier method to calculate an optimal weight vector that maximizes the reception power of the reception terminal. Weight vector to use
Figure 112007506538110-pat00285
In a signal processing method for obtaining an optimal value of,
웨이트 벡터와 라그랑제 승수 λ를 초기화하는 (1)단계에 의한 수단과,Means according to (1) for initializing the weight vector and the Lagrange multiplier λ, 기지국에서 송신된 현재의 웨이트 벡터
Figure 112007506538110-pat00286
로 웨이팅(Weighting)한 신호
Figure 112007506538110-pat00287
를 단말기에서 수신하는 (2)단계에 의한 수단과,
The current weight vector sent from the base station
Figure 112007506538110-pat00286
Low weighted signal
Figure 112007506538110-pat00287
Means by step (2) of receiving a message from the terminal,
(여기서,
Figure 112007506538110-pat00288
Figure 112007506538110-pat00289
번째 안테나에서의 송신신호,
Figure 112007506538110-pat00290
는 현재의 웨이트,
Figure 112007506538110-pat00291
는 웨이팅된 신호)
(here,
Figure 112007506538110-pat00288
Is
Figure 112007506538110-pat00289
Signal from the first antenna,
Figure 112007506538110-pat00290
Is the current weight,
Figure 112007506538110-pat00291
Is the weighted signal)
각 안테나에서 송신된 신호를 분류하기 위해 상기 (2)단계에 의한 수단의 수신신호
Figure 112007506538110-pat00292
를 각 안테나에서 송신된 패턴으로 상관시켜 각 안테나 채널별로 분류된 신호
Figure 112007506538110-pat00293
를 산출하는 (3)단계에 의한 수단과,
Received signal of the means according to step (2) to classify the signal transmitted from each antenna
Figure 112007506538110-pat00292
Is classified by each antenna channel by correlating
Figure 112007506538110-pat00293
Means by step (3) of calculating
수신 단말기에서 라그랑제 승수 λ를
Figure 112007506538110-pat00294
와 같이 계산하는 (4)단계에 의한 수단과,
Lagrange multiplier λ at the receiving terminal
Figure 112007506538110-pat00294
Means according to step (4),
(여기서,
Figure 112007506538110-pat00295
,
Figure 112007506538110-pat00296
,
Figure 112007506538110-pat00297
, μ는 미리 정한 적응이득,
Figure 112007506538110-pat00298
,
Figure 112007506538110-pat00299
임)
(here,
Figure 112007506538110-pat00295
,
Figure 112007506538110-pat00296
,
Figure 112007506538110-pat00297
, μ is a predetermined adaptive gain,
Figure 112007506538110-pat00298
,
Figure 112007506538110-pat00299
being)
상기 (4)단계에 의한 수단에서 구한 라그랑제 승수 λ를 이용하여 수신 단말기에서 웨이트 벡터를
Figure 112007506538110-pat00300
와 같이 갱신하는 (5)단계에 의한 수단과,
The weight vector is obtained from the receiving terminal using the Lagrange multiplier λ obtained by the means in step (4).
Figure 112007506538110-pat00300
Means by step (5) of updating as follows,
상기 수신 단말기에서 갱신된 웨이트 벡터는 기지국으로 송신하되, 상기 웨이트 벡터는 (2)단계에 의한 수단으로 전달되어 반복 수행하는 (6)단계에 의한 수단을 포함하는 The weight vector updated at the receiving terminal is transmitted to the base station, and the weight vector is transmitted to the means according to the step (2) and includes the means according to the step (6) to repeat. 신호처리 장치.Signal processing device.
제17항의 (6)단계에 의한 수단에 있어서,In the means according to paragraph (6) of claim 17, 상기 수신 단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 현재의 웨이트 값과의 차이만을 보내는 것을 특징으로 하는 신호처리 장치.And transmits only a difference from the current weight value instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station. 제17항의 (6)단계에 의한 수단에 있어서,In the means according to paragraph (6) of claim 17, 상기 수신 단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 하나의 비트만을 사용하여 기지국에 웨이트 벡터의 변위 부호만을 송신함으로써,By transmitting only the displacement code of the weight vector to the base station by using only one bit, instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station, 현재 웨이트 값을 +△ 혹은 -△만큼 변위시키는 것을 특징으로 하는 신호처리 장치.And a current weight value shifted by + △ or-△. 제17항의 (3)단계에 의한 수단에 또는 제9항에 있어서,The means according to (17) or (9) of claim 17, 상기 수신 단말기에서 계산된 웨이트 벡터 값을 송신 기지국에 보내는 대신에 하나의 비트만을 사용하여 기지국에 웨이트 벡터의 변위 부호만을 송신하기 위하여,In order to transmit only the displacement code of the weight vector to the base station by using only one bit instead of sending the weight vector value calculated at the receiving terminal to the transmitting base station, 수신 단말기에서 0 혹은 1의 디지털 값을 송신 기지국에 송출하고 송신 기지국에서는 빔이 +△ 혹은 -△만큼 변위되도록 현재의 웨이트 벡터값을 갱신하는 것을 특징으로 하는 신호처리 장치.And a receiving terminal transmits a digital value of 0 or 1 to the transmitting base station, and the transmitting base station updates the current weight vector value such that the beam is shifted by + Δ or -Δ.
KR1020000030655A 2000-05-31 2000-05-31 Signal processing method and apparatus of smart antenna system KR100800317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000030655A KR100800317B1 (en) 2000-05-31 2000-05-31 Signal processing method and apparatus of smart antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000030655A KR100800317B1 (en) 2000-05-31 2000-05-31 Signal processing method and apparatus of smart antenna system

Publications (2)

Publication Number Publication Date
KR20010109061A KR20010109061A (en) 2001-12-08
KR100800317B1 true KR100800317B1 (en) 2008-02-01

Family

ID=41339273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000030655A KR100800317B1 (en) 2000-05-31 2000-05-31 Signal processing method and apparatus of smart antenna system

Country Status (1)

Country Link
KR (1) KR100800317B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533018B1 (en) * 2002-08-06 2005-12-02 엘지전자 주식회사 Method for optimum transmit diversity and system thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041527A (en) * 1998-12-22 2000-07-15 최승원 Apparatus and method for calculating a most suitable weight vector of an antenna system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041527A (en) * 1998-12-22 2000-07-15 최승원 Apparatus and method for calculating a most suitable weight vector of an antenna system
KR20010099929A (en) * 1998-12-22 2001-11-09 최승원 Signal processing method and apparatus for computing an optimal weight vector of an adptive antenna array system

Also Published As

Publication number Publication date
KR20010109061A (en) 2001-12-08

Similar Documents

Publication Publication Date Title
US7020490B2 (en) Radio communication system
US7096041B2 (en) Beam forming method
US6101399A (en) Adaptive beam forming for transmitter operation in a wireless communication system
US7286855B2 (en) Method and apparatus for adaptive transmission beam forming in a wireless communication system
US6553012B1 (en) Method and apparatus for directional radio communication
KR100946924B1 (en) User terminal selection method in zero forcing beamforming algorithm
EP1992083B1 (en) Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
KR100493068B1 (en) Method and apparatus for semi-blind transmit antenna array using feedback information in mobile communication system
EP1386421B1 (en) Radio communication system
CN102904707B (en) Training sequence for a radio communications system
US8102830B2 (en) MIMO radio communication apparatus and method
EP1603253A1 (en) Transmitting diversity communications apparatus
US20080037691A1 (en) Method and apparatus for diversity combining and co-channel interference suppression
EP1087545A1 (en) Downlink beamforming method
JP2008092433A (en) Wireless communication method, transmitter and receiver
WO1998027669A1 (en) Smart antenna cdma wireless communication system
KR20020073524A (en) Radio communication system
CN101120519A (en) Method for transmitting training frames in mimo system and mimo system
KR100890793B1 (en) Apparatus, and associated method, for facilitating antenna weight selection utilizing deterministic perturbation gradient approximation
US20210143871A1 (en) Controlling polarization division multiplex in mimo wireless communication
KR101483666B1 (en) Efficient cqi signaling in mimo systems with variable numbers of beams
KR101239964B1 (en) Radio communication apparatus and radio communication method
KR102365601B1 (en) Method and apparatus for estimating channel in wireless communication system
KR100800317B1 (en) Signal processing method and apparatus of smart antenna system
KR100840175B1 (en) Signal processing method and apparatus of smart antenna system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130114

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140113

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee