KR100791210B1 - Nitriding treatment method about the gray cast iron - Google Patents

Nitriding treatment method about the gray cast iron Download PDF

Info

Publication number
KR100791210B1
KR100791210B1 KR1020070013811A KR20070013811A KR100791210B1 KR 100791210 B1 KR100791210 B1 KR 100791210B1 KR 1020070013811 A KR1020070013811 A KR 1020070013811A KR 20070013811 A KR20070013811 A KR 20070013811A KR 100791210 B1 KR100791210 B1 KR 100791210B1
Authority
KR
South Korea
Prior art keywords
cast iron
gray cast
furnace
nitriding
hydrogen
Prior art date
Application number
KR1020070013811A
Other languages
Korean (ko)
Inventor
윤재홍
Original Assignee
창원대학교 산학협력단
(주)동림열처리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단, (주)동림열처리 filed Critical 창원대학교 산학협력단
Priority to KR1020070013811A priority Critical patent/KR100791210B1/en
Application granted granted Critical
Publication of KR100791210B1 publication Critical patent/KR100791210B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • H01L21/203

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Optimal ion nitriding conditions are provided to be able to minimize influence of graphite exposed onto a surface of gray cast iron. An ion nitriding method of gray cast iron comprises the steps of: grinding a surface of gray cast iron and removing organic matters from the gray cast iron; vacuuming a pressure of a reaction furnace to 3.0 torr; supplying a gas mixture in which argon is mixed with hydrogen at a volume ratio of 1:2 into the reaction furnace; maintaining temperature in the furnace to 550 deg.C and generating DC plasma in the furnace to perform a pre-sputtering process on the grinded surface of the gray cast iron for 1 hour; vacuuming pressure inside the furnace to 3.0 torr after finishing the pre-sputtering process; supplying a gas mixture in which nitrogen is mixed with hydrogen at a volume ratio of 3:1 into the furnace; increasing an internal temperature of the furnace to 595 deg.C and performing a nitriding process on the gray cast iron for 14 hours; and furnace-cooling the gray cast iron in a nitrogen atmosphere for 1 hour after finishing the nitriding process.

Description

회주철에 대한 이온질화 처리방법{Nitriding treatment method about the gray cast iron}Nitriding treatment method about gray cast iron

도 1은 본 발명에 적용되는 이온질화장치의 개략도1 is a schematic diagram of an ion nitriding device applied to the present invention

도 2는 본 발명의 혼합가스 비율별 프리-스퍼터링 경도곡선Figure 2 is the pre-sputtering hardness curve of the mixed gas ratio of the present invention

도 3은 본 발명의 진공부압별 프리-스퍼터링 경도곡선Figure 3 is the pre-sputter hardness curve for each vacuum negative pressure of the present invention

도 4는 본 발명 온도별 프리-스퍼터링 경도곡선4 is a pre-sputtering hardness curve according to the present invention temperature

도 5는 본 발명 가스혼합비율별 이온질화처리 경도곡선5 is an ion nitride treatment hardness curve according to the gas mixture ratio of the present invention

도 6은 본 발명 온도별 이온질화처리 경도곡선6 is an ion nitride treatment hardness curve according to the present invention temperature

도 7은 본 발명 진공부압별 이온질화처리 경도곡선7 is an ion nitride treatment hardness curve according to the vacuum negative pressure of the present invention

도 8은 본 발명 처리시간별 이온질화처리 경도곡선8 is an ion nitride treatment hardness curve according to the treatment time of the present invention

도 9는 본 발명 온도별 이온질화처리 경도곡선9 is an ion nitride treatment hardness curve according to the present invention temperature

도 10은 본 발명 시간별 이온질화처리 XRD패턴10 is a time-dependent ion nitride treatment XRD pattern of the present invention

도 11은 본 발명 온도 및 시간별 흑연두께 곡선11 is a graph of the graphite thickness curve according to the present invention temperature and time

도 12는 본 발명 2% 황산처리시 편광곡선12 is a polarization curve of the present invention 2% sulfuric acid treatment

도 13은 본 발명 고온산화시험의 XRD패턴13 is an XRD pattern of the high temperature oxidation test of the present invention

도 14는 본 발명 고온산화시험의 EDS라인 곡선14 is EDS line curve of the high temperature oxidation test of the present invention

본 발명은 금형으로 사용되는 회주철의 표면을 이온질화처리(ion nitriding)하는 방법에 관한 것이다.The present invention relates to a method of ion nitriding the surface of gray cast iron used as a mold.

주철은 2~5%의 탄소를 함유하는 주조합금으로 가격에 비하여 주조성, 흡진성, 기계적 특성이 우수하며, 특히 2.5~5%의 탄소와 0.8~3%의 규소를 함유하는 회주철은 α페라이트나 펄라이트 조직에 검고 연한 흑연이 박판형태로 존재하는 조직으로 파단면이 회색으로 다양한 용도에 사용되고 있다.Cast iron is a main alloy containing 2 to 5% of carbon and has excellent castability, dust absorption and mechanical properties compared to the price. Especially, gray cast iron containing 2.5 to 5% of carbon and 0.8 to 3% of silicon is α ferrite. B. A structure in which black and light graphite is present in the form of a thin plate in a pearlite structure, and the fracture surface is gray, and is used for various applications.

이러한 회주철을 금형으로 사용하였을 때 나타나는 단점으로는 응력 및 열적 환경에 대한 낮은 전도율과 내구성 및 내마모성으로 기지조직과 흑연의 열팽창계수 차에 의한 계면분리를 주요 원인으로 생성된 미세크랙은 흑연을 따라 전파하여 금형자체의 손실뿐만 아니라 생산제품의 표면에도 영향을 미친다.Disadvantages of using gray cast iron as a mold include low conductivity, durability, and abrasion resistance to stress and thermal environments, and microcracks generated due to interfacial separation due to thermal expansion coefficient difference between matrix and graphite propagate along graphite. This affects not only the loss of the mold itself but also the surface of the product.

종래 표면개질을 위한 방법으로 이온질화처리법이 있었으며, 이는 낮은 온도에서 처리가능하며 균열이 쉽게 생기지 않고 처리 후 치수변경이 매우 적으며 복잡한 형상의 제품에 대하여도 전체에 걸쳐 균일한 표면경화가 가능하다는 장점이 있었으나 강과는 달리 주철은 이온질화처리시 표면에 노출되어 있는 흑연이 활성종 질소이온의 침투 및 확산에 대한 장애물 역할을 하여 질화처리 후 표면에 톱니모양의 불연속적인 화합물층을 형성한다는 문제점이 있었다.The conventional method for surface modification was ion nitridation, which can be processed at low temperatures, does not easily crack, has very few dimensional changes after treatment, and enables uniform surface cure over complex shaped products. Unlike steel, cast iron, unlike steel, had a problem that graphite exposed on the surface acts as an obstacle to penetration and diffusion of active species nitrogen ions, thus forming a discontinuous compound layer having a sawtooth shape on the surface after nitriding. .

본 발명은 상기와 같은 문제점을 해결하기 위하여 개발된 것으로 회주철의 표면에 노출된 흑연에 의한 영향을 최소화할 수 있는 최적의 이온질화처리 조건을 제공하는 것을 목적으로 한다.The present invention was developed to solve the above problems, and an object of the present invention is to provide an optimal ion nitriding treatment condition that can minimize the effect of graphite exposed on the surface of gray cast iron.

본 발명에서는 회주철에 대한 최적의 이온질화처리 조건을 도출하기 위하여 다양한 공정조건으로 실험을 수행하고 표면에 형성되는 질화물의 화학적 경향과 기계적 특성을 조사하였다.In the present invention, experiments were conducted under various process conditions and the chemical tendencies and mechanical properties of nitrides formed on the surface were investigated in order to derive the optimal ionization treatment conditions for gray cast iron.

실험에 사용된 시편은 FC-25계 회주철로 화학조성은 표1과 같다.The test specimens used were FC-25 gray cast iron, and the chemical composition is shown in Table 1.

Figure 112007012303011-pat00001
Figure 112007012303011-pat00001

시편은 20 x 10 x 5mm 크기로 가공한 후 표면을 금강사 페이퍼 #400, #600, #800, #1200을 사용하여 연마하고, 다이아몬드 분말로 #3㎛, #1㎛까지 폴리싱(Polishing)하였다.After the specimen was processed to a size of 20 x 10 x 5mm, the surface was polished using diamond steel paper # 400, # 600, # 800, # 1200, and polished (diamond) to # 3㎛, # 1㎛.

그리고 질화처리 전에 각 시편에 대하여 아세톤 용액 속에서 5분간 초음파 세척하여 표면의 유기물을 제거한 뒤 알코올로 세척하고 열풍으로 건조시켰다.And before nitriding, each specimen was ultrasonically cleaned in acetone solution for 5 minutes to remove organic matter from the surface, washed with alcohol and dried by hot air.

준비된 시편을 반응로에 장입한 후 배기구를 열고 3.0torr까지 배기하였다.After the prepared specimen was charged in the reactor, the exhaust port was opened and exhausted to 3.0 torr.

다음에 선택된 혼합가스비로 혼합가스를 공급하고, DC플라즈마를 발생시켜 선택된 공정조건으로 프리-스퍼터링(Pre-sputtering)을 수행하였다.Next, the mixed gas was supplied at the selected mixed gas ratio, and a DC plasma was generated to perform pre-sputtering under the selected process conditions.

프리-스퍼터링이 끝나면 반응기체인 H₂,N₂가스를 선택된 혼합비율로 공급하여 일정한 압력을 유지시키면서, 각각의 질화온도까지 승온시키고, 각각의 시간동안 질화처리 하였다.After the pre-sputtering, H 2 and N 2 gas, which is a reactor body, were supplied at a selected mixing ratio, and the temperature was raised to each nitriding temperature while maintaining a constant pressure.

질화처리 후, DC전원공급을 중단하고 질소가스분위기에서 1시간 노냉하였다.After nitriding, the DC power supply was turned off and the furnace was cooled in a nitrogen gas atmosphere for 1 hour.

이온질화장치의 개략도를 도 1에, 질화처리 조건은 표 2, 3에 나타내었다.A schematic diagram of the ion nitriding device is shown in FIG. 1, and the nitriding treatment conditions are shown in Tables 2 and 3.

Figure 112007012303011-pat00002
Figure 112007012303011-pat00002

Figure 112007012303011-pat00003
Figure 112007012303011-pat00003

처리된 시편은 절단하여 미세조직 및 성분분석을 광학현미경(Nikon-EPI photo)과 SEM 및 EDS(JOEL : JXA-860)를 통하여 관찰하였고, 마이크로비커스 경도계를 사용하여 단면의 질화층 표면에서 10㎛간격으로 이동하면서 하중 25gf, 부하시간 10초로 측정하였다.The treated specimens were cut and microstructure and component analysis were observed through an optical microscope (Nikon-EPI photo), SEM and EDS (JOEL: JXA-860). While moving at intervals, the load was measured at 25gf and a load time of 10 seconds.

CuKα(λ=1.504)타겟을 사용하여 0.02°/sec의 주사속도로 20°~80°의 범위까지 XRD분석하여 질화처리 후 생성된 상을 분석하였다.Using CuKα (λ = 1.504) target XRD analysis to a range of 20 ° ~ 80 ° at a scanning rate of 0.02 ° / sec to analyze the resulting phase after the nitriding treatment.

고온에서의 내산화성을 평가하기 위해 질화처리한 시편과 처리하지 않은 FC-25계 회주철을 800℃에서 24시간, 60시간동안 처리하여 무게변화를 측정하였고, 이때의 형성된 상을 XRD분석하였으며, 단면 EDS분석을 통하여 그 두께 및 구조를 확인하였다.In order to evaluate the oxidation resistance at high temperature, the weight change was measured by treating nitrided specimens and untreated FC-25-based gray cast iron at 800 ° C for 24 hours and 60 hours, and the formed phases were analyzed by XRD analysis. The thickness and structure were confirmed by EDS analysis.

또한 Ag/AgCl 기준전극에 고밀도 탄소전극을 대극으로 부식실험을 수행하였다.In addition, a corrosion test was performed with a high density carbon electrode as a counter electrode on the Ag / AgCl reference electrode.

실험에 사용된 전해액은 고순도 아르곤가스를 사용하여 30분간 버블링하여 용존산소를 제거하고 노출면적을 1cm²으로 고정시켰다.The electrolyte used in the experiment was bubbled with high-purity argon gas for 30 minutes to remove dissolved oxygen and fix the exposed area to 1 cm².

이때 전위 주사속도(Potential Scanning Rate)는 1x

Figure 112007012303011-pat00004
V/sec이었다.Potential Scanning Rate is 1x
Figure 112007012303011-pat00004
V / sec.

아르곤이온(

Figure 112007012303011-pat00005
)의 질량은 수소이온(
Figure 112007012303011-pat00006
)의 질량보다 아주 크기 때문에 소재표면의 산화피막을 큰 가속에너지로 두드려 효과적으로 제거시키는 기계적 작용을 한다.Argon ion (
Figure 112007012303011-pat00005
) Mass is hydrogen ion (
Figure 112007012303011-pat00006
Because it is much larger than the mass of), it has a mechanical action to effectively remove the oxide film on the surface of the material with a large acceleration energy.

Figure 112007012303011-pat00007
이온은 소재의 산화를 방지하고, 스퍼터되어 분해된 산소 포텐셜을 낮추는 화학적 작용을 한다.
Figure 112007012303011-pat00007
The ions act as a chemical to prevent oxidation of the material and to lower the sputtered and decomposed oxygen potential.

이러한 상호작용을 활용하여 이온질화처리 이전에 프리-스퍼터링 중 아르곤/수소의 비율이 이온질화처리에 미치는 영향을 조사하였다.(도 2)This interaction was utilized to investigate the effect of the argon / hydrogen ratio on the ion nitridation during pre-sputtering prior to ion nitridation (FIG. 2).

이때 가스혼합비를 제외한 프리-스퍼터링조건을 (T=550℃, P=3Torr) 일정하게 하였다.At this time, the pre-sputtering conditions except for the gas mixture ratio were made constant (T = 550 ° C., P = 3 Torr).

도 2는 아르곤/수소의 가스비율을 변화시켜가면서 처리할 때의 단면경도를 표시한 것이다.Fig. 2 shows the cross-sectional hardness at the time of processing while varying the gas ratio of argon / hydrogen.

여기서 아르곤/수소=1/2일 때 두께나 경도면에서 가장 효과적인 질화층을 보이고 있다.Here, argon / hydrogen = 1/2 shows the most effective nitride layer in terms of thickness and hardness.

동일한 조건으로 질화처리 했을 때 시편의 표면에 산화물이나 다른 유기물의 정도에 따라 결과가 다를 수 있음을 나타내는 것으로, 프리-스퍼터링시에 다른 기능을 가진 아르곤과 수소의 비율이 한 방향으로의 경향을 나타내지 않고 최적치로 예상되는 아르곤/수소=1/2에서 가장 질화물이 잘 형성됨을 알 수 있다.The results show that the results may vary depending on the degree of oxides or other organics on the surface of the specimen when subjected to nitriding under the same conditions. The ratio of argon and hydrogen with different functions during pre-sputtering does not show a tendency in one direction. It can be seen that the nitride is best formed at argon / hydrogen = 1/2, which is expected to be optimal.

스퍼터링 압력이 감소하면 입자들의 평균자유행로(mean free path)가 길어져 전자가 가속 받을 수 있는 거리가 길어지므로 전자들의 평균에너지는 증가하게 된다.As the sputtering pressure decreases, the mean free path of the particles increases, and thus the distance of electron acceleration increases, so that the average energy of the electrons increases.

전자들의 평균에너지가 증가하면 높은 에너지를 갖고 있는 전자에 의해 여기되는 이온의 양이 증가되어 일정압력까지는 스퍼터링 속도가 증가한다.Increasing the average energy of the electrons increases the amount of ions excited by the electrons with high energy, which increases the sputtering rate up to a certain pressure.

스퍼터링에서 로내 압력의 감소는 DC전력밀도 증가와 같은 영향을 미칠 수 있고, 이는 상대적으로 높은 압력에서 보다 고에너지로서 스퍼터링하기 때문에 탈탄작용을 배가시켜 시편표면을 더욱 활성화할 것이다.In sputtering, the reduction in furnace pressure can have the same effect as an increase in DC power density, which will double the decarburization and thus activate the specimen surface further, as it sputters with higher energy at relatively high pressures.

도 3은 프리-스퍼터링 인자 중 스퍼터링시의 로내 압력이 후의 이온질화거동에 미치는 영향을 조사한 결과이다.3 is a result of examining the effect of the pressure in the furnace during the sputtering of the pre-sputtering factor on the subsequent ion nitriding behavior.

이때 진공도를 제외한 프리-스퍼터링 조건은 아르곤/질소=1/2, 온도=550℃, 진공=3.0torr이었다.At this time, pre-sputtering conditions except vacuum were argon / nitrogen = 1/2, temperature = 550 ° C., and vacuum = 3.0torr.

도 3으로부터 20㎛까지는 2torr의 경우가 높은 경도값을 보이고 있지만 30㎛으로 되면 급격하게 낮아지는 경향을 보인다.From 3 to 20㎛ has a high hardness value in the case of 2torr but when it is 30㎛ shows a tendency to decrease rapidly.

3torr에서는 확산층 깊이가 40㎛까지 다른 진공도에서 처리한 때보다 높은 값으로 일정하게 유지하고 있는 것을 나타내고 있다.3torr shows that the diffusion layer depth is kept constant at a higher value up to 40 µm than at other vacuum levels.

프리-스퍼터링시, 온도를 변화시켜 처리한 결과를 도 4에 보인다.In pre-sputtering, the result of processing by varying the temperature is shown in FIG. 4.

이때 온도를 제외한 프리-스퍼터링 조건은 아르곤/수소=1/2, 진공=3torr이다.At this time, pre-sputtering conditions except for temperature were argon / hydrogen = 1/2 and vacuum = 3torr.

여기서 525℃와 550℃조건에서 높은 경도값을 보이고 있지만 550℃의 경우 30㎛까지 깊이가 일정하게 유지되고 있고 미세구조를 고려한 결과 프리-스퍼터링처리시, 제시된 세 조건에서의 온도에 있어서는 550℃가 최적이라고 생각된다.Although the hardness is high at 525 ℃ and 550 ℃, the depth is kept constant up to 30㎛ in case of 550 ℃ and the microstructure is considered. I think it is the best.

이온질화처리에 있어서 질소가스에 대한 수소가스 비를 변화시키면서 처리했을 때 결과를 도 5에 나타내었다.The results are shown in FIG. 5 when the ion nitriding treatment is performed while varying the ratio of hydrogen gas to nitrogen gas.

이때 가스혼합비를 제외한 이온질화조건은 온도=550℃, 진공=3.0torr, 시간 6hr로 일정하게 하였다.At this time, the ion nitriding conditions except gas mixing ratio were constant at temperature = 550 ° C., vacuum = 3.0torr, and 6hr.

도 5는 단면경도와 질화층 두께를 나타내고 있다.5 shows the cross-sectional hardness and the nitride layer thickness.

질소/수소=3/1일 때 고경도와 두꺼운 질화층이 형성된 것을 확인할 수 있다.When nitrogen / hydrogen = 3/1, it can be seen that a high hardness and a thick nitride layer were formed.

질화반응을 위한 질소량이 증가함에 따라 질화층이 깊어지지만 질소가스만 반응시켰을 때는 질소/수소=3/1보다 질화층이 얇고 경도도 낮은 값을 보인다.As the amount of nitrogen for the nitriding reaction increases, the nitride layer becomes deeper, but when the nitrogen gas is reacted, the nitride layer is thinner and the hardness is lower than that of nitrogen / hydrogen = 3/1.

일반적으로 이온질화에서는 분위기 중에 수소를 혼합하면 플라즈마 발생이 쉽고 그에 따라 질소의 플라즈마발생도 쉽게 되므로 질화층 형성속도를 높이는 역할을 한다.In general, in the ion nitriding, when hydrogen is mixed in the atmosphere, plasma generation is easy, and thus plasma generation of nitrogen is also easy, thus increasing the formation rate of the nitride layer.

질소량이 증가함에 따라서 Fe와의 화합율이 높아지고 경도, 두께가 깊은 결과를 보인다고 생각되지만 질소의 플라즈마 발생과 질화층 형성의 안정성도 함께 고려되어야 한다.As the amount of nitrogen increases, the compounding ratio with Fe increases, and the hardness and thickness are deep, but the plasma generation of nitrogen and the stability of the nitride layer formation should be considered together.

이온질화 처리시 처리온도 변화에 따른 결과를 도 6에 나타내었다.The results of the treatment temperature change in ion nitriding are shown in FIG. 6.

이때 온도를 제외한 이온질화 조건은 질소/수소=3/1, 온도=550℃, 시간=6hr로 동일하게 행하였다.At this time, ion nitridation conditions except for temperature were carried out in the same manner as nitrogen / hydrogen = 3/1, temperature = 550 ° C., and time = 6hr.

도 6으로부터 표면경도는 온도상승에 따라서 높아지고 표면으로부터 질화층의 두께가 증가하는 것을 확인할 수 있다.It can be seen from FIG. 6 that the surface hardness increases with temperature and the thickness of the nitride layer increases from the surface.

XRD 결과를 나타낸 도 9를 보면 질화층에서는 Fe, FeN, Fe₃N을 생성하고 온도가 높아짐에 따라 Fe₄N이 생성되고 있다.Referring to FIG. 9, which shows the XRD results, Fe₄N is generated in the nitride layer as Fe, FeN, and Fe 3 N are produced and the temperature is increased.

또 595℃에서는 Fe의 피크는 확인되지 않았다.Moreover, the peak of Fe was not confirmed at 595 degreeC.

질화처리에 있어서 온도가 상승함에 따라 질소의 확산이 가속되고 따라서 매우 강한 Fe₄N상이 형성되어 전체적인 경도치를 향상시키는 것으로 생각된다.In the nitriding treatment, it is thought that as the temperature rises, the diffusion of nitrogen is accelerated and thus a very strong Fe₄N phase is formed to improve the overall hardness value.

진공도를 변화시켰을 때의 결과를 도 7에 나타내었다.The result when the vacuum degree was changed is shown in FIG.

이때 진공도를 제외한 질화조건은 질소/수소=3/1, 온도=575℃, 시간=6hr으로 하였다.At this time, the nitriding conditions except vacuum were set to nitrogen / hydrogen = 3/1, temperature = 575 ° C., and time = 6hr.

3torr에서 처리한 결과 50㎛까지 다른 진공도에서 처리한 것보다 높은 경도값을 보이고 있다.As a result of the treatment in 3torr, the hardness value is higher than that in other vacuum degree up to 50㎛.

4torr에서는 작업시 플라즈마가 잘 형성되지 않아 작업에 어려움이 있었다.In 4torr, the plasma was not well formed during the operation, which made the operation difficult.

진공도가 반응을 일으키는데 있어서 너무 높거나 낮으면 질소이온이나 입자가 표면에서 반응하기 위한 에너지를 가지고 도달하기 어렵기 때문에 가장 반응성이 좋은 진공도를 조사한 결과 3torr인 것으로 판명되었다.If the degree of vacuum is too high or too low to cause a reaction, it is difficult to reach nitrogen ions or particles with energy for reacting on the surface.

이온질화처리에 있어서 시간을 변화시키면서 처리할 때의 결과를 도 8, 10에 나타내었다.8 and 10 show the results of the treatment with varying time in the ion nitriding treatment.

이때 다른 이온질화조건은 질소/수소=3/1, 온도=575℃, 진공=3torr로 일정하게 하였다.At this time, other ion nitriding conditions were made constant by nitrogen / hydrogen = 3/1, temperature = 575 ° C., and vacuum = 3torr.

도 8은 시간변화에 따른 단면경도, 질화층 두께를 나타내고 도 10은 질화물의 상을 나타낸다.8 shows the cross-sectional hardness and nitride layer thickness with time, and FIG. 10 shows the phase of nitride.

시간이 길어질수록 질소와의 반응이 많아지므로 질화층의 두께는 증가되고, XRD 결과 (도 10)에서 보여주듯 점차 Fe가 줄어들고 Fe₄N이 형성되는 것을 알 수 있다.As the time increases, the thickness of the nitride layer increases because the reaction with nitrogen increases, and as shown in the XRD results (FIG. 10), Fe gradually decreases and Fe FeN is formed.

이에 따라 단시간에서는 최표면의 화합물층에 의해 강화된 것에 비해 시간이 경과함에 확산층이 깊게 층을 형성한 것으로 보인다.As a result, in a short time, the diffusion layer appears to form a deep layer over time, compared to that strengthened by the compound layer on the outermost surface.

본 실험에서는 그 경향을 확인하였고, 14시간 이상에서는 경도치가 비슷한 경향을 나타내었다.In this experiment, the trend was confirmed, and the hardness value showed similar tendency over 14 hours.

질화처리가 흑연의 형상에 미치는 영향을 조사하기 위하여 질화처리 후 흑연의 두께를 측정한 결과를 도 11에 나타내고 있다.11 shows the results of measuring the thickness of the graphite after nitriding in order to investigate the effect of the nitriding treatment on the shape of the graphite.

온도, 시간이 증가함에 따라서 흑연이 팽창하고 있는 것을 확인하였다.It was confirmed that graphite expanded as temperature and time increased.

이것은 FC-25계 회주철의 조직이 흑연, 시멘타이트로부터 만들어지고 변태점이하에서 질화반응이 일어나더라도 시멘타이트는 분해하여 FeN계 질화물을 형성시킴에 따라 남은 탄소가 흑연의 성장을 촉진하기 때문이다.This is because even though the structure of the FC-25 gray cast iron is made from graphite and cementite and nitriding occurs under the transformation point, cementite decomposes to form FeN-based nitrides, thereby promoting the growth of graphite.

이러한 반응은 온도가 상승함에 따라서 흑연의 성장을 초래하고 흑연의 성장은 취성을 유발함으로 성장정도를 확인하고 이후 성장에 따른 소재의 특성을 파악할 수 있다.This reaction causes the growth of graphite as the temperature rises, and the growth of graphite causes the brittleness to check the growth degree and then to determine the characteristics of the material according to the growth.

질화처리한 시편의 양극 분극 특성을 동전위법으로 관찰하였을 때의 부식시험 결과를 도 12에 나타내었다.The corrosion test results when the anode polarization characteristics of the nitrided specimens were observed by the coin-top method are shown in FIG. 12.

여기서 부식 전위(Ecorr)는 이온질화 시편과 이온질화하지 않은 시편이 거의 일정한 전위(-0.5V)를 나타내었다.Here, the corrosion potential (Ecorr) showed a nearly constant potential (-0.5V) for the ionized and non-ionized specimens.

부식 전위 이상으로 전위가 상승하면 질화처리한 것은 전류밀도가 증가하다가 이후 -0.25V까지 전류가 저하하고 있는 것을 알 수 있다.When the potential rises above the corrosion potential, the nitriding treatment shows that the current density increases and then the current decreases to -0.25V.

그와 비교해서 무처리한 시편은 그다지 전류밀도가 저하되지 않았다.In comparison, the untreated specimens did not degrade much in current density.

이것은 전위를 높이게 되면 질화물이 전자의 이동을 둔화시켜 전류가 저하한 것이라고 생각된다.This is thought to be that when the potential is increased, the nitride slows the movement of electrons and the current decreases.

반면에 무처리한 시편은 전위가 상승함에 따라 부식속도가 더 크게 나타났다.On the other hand, untreated specimens exhibited higher corrosion rates as their potentials increased.

철을 주성분으로 하는 FC-25계 주철은 산화하기 쉽다.FC-25 cast iron containing iron as its main component is easy to oxidize.

본 실험에서 이온질화하는 것으로 시편의 표면에 질화물층을 생성시켜 그 질화물이 내산화성을 가지는지에 대해 조사하는 고온산화시험을 행하였다.In this experiment, a high temperature oxidation test was carried out to investigate whether the nitride had an oxidation resistance by forming a nitride layer on the surface of the specimen by ion nitriding.

그 결과를 도 13, 14에 보인다.The results are shown in FIGS. 13 and 14.

도 13은 고온산화처리한 시편과 무처리한 시편의 XRD결과로, 800℃에서 고온산화하였을 때의 시편표면에서 각각 Fe, FeO, Fe₂O₃의 피크(Peak)를 확인할 수 있었다.FIG. 13 shows the XRD results of the specimens subjected to the high temperature oxidation and the untreated specimens, whereby peaks of Fe, FeO, and Fe₂O₃ were observed on the surface of the specimen when subjected to high temperature oxidation at 800 ° C.

시편의 표면에 질화층이 존재하면 금속으로부터

Figure 112007012303011-pat00008
의 결합이 불충분하게 되므로 전체의 산화피막은 얇게 되고 산화를 방지한다.If a nitride layer is present on the surface of the specimen,
Figure 112007012303011-pat00008
Because of insufficient bonding, the entire oxide film becomes thin and prevents oxidation.

도 14는 800℃에서 60시간 동안 고온산화실험 후 단면을 EDS 라인프로필하여 산화의 정도를 나타낸 결과로 질화물에 의해 산소의 확산이 방해되는 것을 확인할 수 있다.FIG. 14 shows that the diffusion of oxygen by the nitride is hindered as a result of the oxidation of the EDS line profile after the high temperature oxidation experiment at 800 ° C. for 60 hours.

또한 산화물이 두꺼워짐에 따라 취성이 발생하여 산화물층이 떨어져 나가는 현상을 보였다.In addition, as the oxide thickened, brittleness occurred, and the oxide layer was separated.

FC-25계 회주철에 이온질화 처리하여 질화물생성과 관련해 그 특성을 조사한 결과 다음의 결론을 얻었다.The following results were obtained by investigating the characteristics of nitride formation by ion-nitriding the FC-25-based gray cast iron.

1. 이온질화처리에 앞서 아르곤/수소 가스혼합비, 작업온도, 진공도를 변수로 프리-스퍼터링 처리하여 동일한 조건으로 이온질화처리한 결과, 각각의 시편에서 질화물의 형성정도가 다르게 나타났다.1. Prior to ion nitriding, argon / hydrogen gas mixture ratio, working temperature, and vacuum degree were pre-sputtered with variables, and ion nitride treatment under the same conditions showed that the formation degree of nitride was different in each specimen.

이는 동일한 조건으로 질화처리 하더라도 시편의 표면에 산화물이나 다른 유기물의 정도에 따라 결과가 다를 수 있음을 나타내는 것으로, 동시에 프리-스퍼터링시에 다른 기능을 가진 아르곤(기계적 작용)과 수소(화학적 작용)의 비율, 온도, 진공도가 한쪽 방향의 경향성을 나타내지 않고 적절한 조건을 이룰 때 가장 효과적으로 영향을 미칠 수 있음을 실험적으로 알 수 있었다.This suggests that the results may vary depending on the degree of oxides or other organics on the surface of the specimen even under the same conditions, and at the same time, the effects of argon (mechanical) and hydrogen (chemical) with different functions during pre-sputtering Experimental results show that ratio, temperature, and vacuum degree can be most effectively influenced under proper conditions without showing tendency in one direction.

본 실험에서는 가스 혼합비 아르곤/수소=1/2, 온도 550℃, 압력 3torr에서 질화물생성이 가장 잘 이루어졌다.In this experiment, nitride was best formed at the gas mixing ratio argon / hydrogen = 1/2, temperature 550 ℃ and pressure 3torr.

2. 프리-스퍼터링 처리 후 각 공정변수의 조건에 따라 이온질화 처리한 결과, 경도의 상승을 통해 그 경향을 관찰할 수 있었다.2. After the pre-sputtering treatment, the ion nitriding treatment was performed according to the conditions of each process variable. As a result, the tendency was observed through the increase of hardness.

모재에 비교해서 그 경도치의 효과는 약 200Hv 정도이었으며, 시편 표면에 형성된 질화물은 FeN, Fe₃N, Fe₄N이었다.Compared to the base metal, the hardness value was about 200 Hv, and the nitrides formed on the specimen surface were FeN, Fe₃N, and Fe₄N.

본 실험에서 가장 효과적인 질화물 생성조건은 질화/수소=3/1, 온도=595℃, 시간=14hr, 진공=3torr로 나타났다.Nitride / hydrogen = 3/1, temperature = 595 ℃, time = 14hr, and vacuum = 3torr showed the most effective nitride production conditions in this experiment.

3. FC-25계 회주철을 이온질화 처리했을 때, 흑연의 성장을 관찰한 결과 온도에 거의 직선적으로 비례해서 성장했고 시간에 포물선 형태로 비례해서 성장하는 것으로 나타났다.3. When ionization of FC-25 gray cast iron was observed, the growth of graphite was almost linearly proportional to temperature and parabolic in time.

이러한 질화처리된 시편과 무처리 시편을 2% 황산용액에서 부식시험한 결과, 내식성 향상을 보였다.Corrosion test results of the nitrided and untreated specimens in 2% sulfuric acid solution showed improved corrosion resistance.

또한, 800℃에서 24, 60시간동안 고온산화 실험한 결과 주로 Fe₂O₃산화물을 형성하였고 질화물에 의해 산화속도의 감소를 알 수 있었다.In addition, as a result of the high temperature oxidation experiment at 800 ℃ for 24, 60 hours, mainly Fe₂O₃ oxide was formed and the oxidation rate was decreased by nitride.

이상에서 설명한 바와 같이 본 발명은 회주철내에 다량 함유된 흑연의 영향을 최소화하면서 최적의 이온질화방법을 제공하므로서 회주철의 표면을 개질하여 금형 등의 용도로 폭넓게 사용할 수 있게 하는 효과가 있다.As described above, the present invention has an effect of making the surface of gray cast iron modified for use in molds and the like by providing an optimal ion nitriding method while minimizing the influence of graphite contained in a large amount of gray cast iron.

Claims (1)

반응로 내에서 회주철을 이온질화 처리하는 방법에 있어서,In the method for ionizing the gray cast iron in the reactor, 회주철 표면을 연마하고 유기물을 제거하는 단계;Polishing the gray cast iron surface and removing organic matter; 반응로의 압력을 3.0torr로 진공처리하는 단계;Vacuuming the pressure of the reactor to 3.0 torr; 아르곤과 수소를 체적비 1:2로 혼합하여 공급하는 단계;Mixing and supplying argon and hydrogen in a volume ratio of 1: 2; 노내의 온도를 550℃로 유지하면서 DC플라즈마를 발생시켜 1시간 동안 프리-스퍼터링 하는 단계;Generating a DC plasma while maintaining the temperature in the furnace at 550 ° C. and pre-sputtering for 1 hour; 프리-스퍼터링이 끝난 후 노내의 압력을 3.0torr로 진공처리하는 단계;Vacuuming the pressure in the furnace to 3.0 torr after the pre-sputtering is finished; 질소와 수소를 체적비 3:1로 혼합하여 공급하는 단계;Supplying nitrogen and hydrogen in a volume ratio of 3: 1; 노내의 온도를 595℃로 승온하여 14시간 동안 질화처리하는 단계;Raising the temperature in the furnace to 595 ° C. and nitriding for 14 hours; 질화처리 후 질소분위기에서 1시간 노냉하는 단계를 포함하는 것을 특징으로 하는 회주철에 대한 이온질화 처리방법.Ion nitriding treatment method for gray cast iron, comprising the step of furnace cooling for 1 hour in a nitrogen atmosphere after nitriding.
KR1020070013811A 2007-02-09 2007-02-09 Nitriding treatment method about the gray cast iron KR100791210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070013811A KR100791210B1 (en) 2007-02-09 2007-02-09 Nitriding treatment method about the gray cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070013811A KR100791210B1 (en) 2007-02-09 2007-02-09 Nitriding treatment method about the gray cast iron

Publications (1)

Publication Number Publication Date
KR100791210B1 true KR100791210B1 (en) 2008-01-03

Family

ID=39216547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070013811A KR100791210B1 (en) 2007-02-09 2007-02-09 Nitriding treatment method about the gray cast iron

Country Status (1)

Country Link
KR (1) KR100791210B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846285B1 (en) * 2006-02-01 2008-07-16 전해동 Roller and manufacture method for noodle rolling
KR101119498B1 (en) * 2009-02-09 2012-03-13 김영희 Method for Manufacturing High Corrosion Resistant Steel Materials and Components
US11137041B2 (en) 2018-12-11 2021-10-05 Hyundai Motor Company Brake disk including decarburized layer and nitride compound layer, and method of manufacturing the same
US11215251B2 (en) 2018-12-14 2022-01-04 Hyundai Motor Company Brake disc and manufacturing method thereof
CN114892123A (en) * 2022-05-23 2022-08-12 太原理工大学 Ionic nitriding method for eliminating small hole arcing risk

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920021731A (en) * 1991-05-24 1992-12-18 김훈철 DC and Pulsed DC Ion Nitriding Method and Apparatus
KR20000047016A (en) * 1998-12-31 2000-07-25 김덕중 Method and device for controlling oxidizing film in nitrifying process using plasma
KR20060072523A (en) * 2004-12-23 2006-06-28 한국생산기술연구원 Method and apparatus for nitriding by post-plasma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920021731A (en) * 1991-05-24 1992-12-18 김훈철 DC and Pulsed DC Ion Nitriding Method and Apparatus
KR20000047016A (en) * 1998-12-31 2000-07-25 김덕중 Method and device for controlling oxidizing film in nitrifying process using plasma
KR20060072523A (en) * 2004-12-23 2006-06-28 한국생산기술연구원 Method and apparatus for nitriding by post-plasma

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846285B1 (en) * 2006-02-01 2008-07-16 전해동 Roller and manufacture method for noodle rolling
KR101119498B1 (en) * 2009-02-09 2012-03-13 김영희 Method for Manufacturing High Corrosion Resistant Steel Materials and Components
US11137041B2 (en) 2018-12-11 2021-10-05 Hyundai Motor Company Brake disk including decarburized layer and nitride compound layer, and method of manufacturing the same
US11215251B2 (en) 2018-12-14 2022-01-04 Hyundai Motor Company Brake disc and manufacturing method thereof
CN114892123A (en) * 2022-05-23 2022-08-12 太原理工大学 Ionic nitriding method for eliminating small hole arcing risk
CN114892123B (en) * 2022-05-23 2024-04-16 太原理工大学 Ion nitriding method for eliminating risk of small hole arcing

Similar Documents

Publication Publication Date Title
Li et al. Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding
US5334264A (en) Titanium plasma nitriding intensified by thermionic emission source
EP1598441B1 (en) Amorphous carbon film and process for producing the same
Alsaran et al. Effect of post-oxidizing on tribological and corrosion behaviour of plasma nitrided AISI 5140 steel
KR100791210B1 (en) Nitriding treatment method about the gray cast iron
Suh et al. Surface hardening of AISI 316L stainless steel using plasma carburizing
Zhao et al. Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel
KR20110104631A (en) Colored austenitic stainless steel article and manufacturing method of the same with excellent corrosion resistance and high surface hardness
CN111441025B (en) Corrosion-resistant high-entropy alloy film, preparation method and application thereof in seawater environment
Li et al. Plasma nitriding of AISI 304 stainless steel in cathodic and floating electric potential: influence on morphology, chemical characteristics and tribological behavior
Li et al. Enhancement of pitting corrosion resistance of austenitic stainless steel through deposition of amorphous/nanocrystalline oxy-nitrided phases by active screen plasma treatment
Baranowska Importance of surface activation for nitrided layer formation on austenitic stainless steel
Wu et al. Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel
Rahman et al. Low temperature plasma nitriding of 316 stainless steel by a saddle field fast atom beam source
Peng et al. Effect of rare earth elements on plasma nitriding of 38CrMoAI steel
Banfield et al. An investigation into the effect of Triode Plasma Oxidation (TPO) on the tribological properties of Ti6Al4V
Wang et al. Influence of discharge time on properties of plasma electrolytic borocarburized layers on Q235 low-carbon steel
KR100991770B1 (en) Method for depositing cbn thin film
Zhao et al. Active screen plasma nitriding of AISI 316L austenitic stainless steel at different potentials
KR101614259B1 (en) Method for formation of hardened layer on martensitic precipitation-hardening stainless steel by the application of in-situ combination of aging treatment and plasma nitrocaburizing treatment
Chang et al. Deposition of DLC/oxynitriding Films onto JIS SKD11 Steel by Bipolar-pulsed PECVD
Kim et al. The role of activated nitrogen species on double-folded screen nitriding process
KR20090111586A (en) Boronizing method of a gray cast iron
KR101466221B1 (en) Method for enhancement of wear resistance of a cutting tool, and the a cutting tool having enhanced wear resistance
Rahman et al. Effect of treatment time on low temperature plasma nitriding of stainless steel by saddle field neutral fast atom beam source

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140625

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 13