KR100791019B1 - The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding - Google Patents

The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding Download PDF

Info

Publication number
KR100791019B1
KR100791019B1 KR1020070015165A KR20070015165A KR100791019B1 KR 100791019 B1 KR100791019 B1 KR 100791019B1 KR 1020070015165 A KR1020070015165 A KR 1020070015165A KR 20070015165 A KR20070015165 A KR 20070015165A KR 100791019 B1 KR100791019 B1 KR 100791019B1
Authority
KR
South Korea
Prior art keywords
nugget
welding
welding current
current
control method
Prior art date
Application number
KR1020070015165A
Other languages
Korean (ko)
Inventor
박금기
최우정
김호경
정문섭
조상명
Original Assignee
Stx조선주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stx조선주식회사 filed Critical Stx조선주식회사
Priority to KR1020070015165A priority Critical patent/KR100791019B1/en
Priority to PCT/KR2007/002859 priority patent/WO2008099991A2/en
Application granted granted Critical
Publication of KR100791019B1 publication Critical patent/KR100791019B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/061Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • B23K11/245Electric supplies using a stepping counter in synchronism with the welding pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/257Monitoring devices using digital means the measured parameter being an electrical current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3036Roller electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/013Method or apparatus with electric heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Welding (AREA)

Abstract

A welding current control method is provided to be able to improve operation efficiency and productivity by preventing the initial splash from being generated in an automatic resistance seam welding of membrane strips. In an automatic resistance inverter DC seam welding, a welding current control method for preventing the initial splash comprises adjusting welding current of each of the steps by introducing a welding current step up function such that a welding current of the second nugget is A1+(An-Al)/(n-1), a welding current of the third nugget is Al+[2(An-A1)/(n-1)], ... , a welding current of the n-2 nugget is Al+[n-3(An-A1)/(n-1)], and a welding current of the n-1 nugget is Al+[n-2(An-A1)/(n-1)] when welding nuggets of respective steps are a first nugget, a second nugget, a third nugget, a fourth nugget, ... , an n-3 nugget, an n-2 nugget, an n-1 nugget, and an n nugget(normal nugget), a welding current of the first nugget is A1, and a welding current of the n nugget is An.

Description

인버터직류 자동저항심용접에서 초기날림을 방지하기 위한 용접전류 제어 방법{The control method of welding current to prevent the initial splash of Automatic DC Invert Resistance SEAM Welding}The control method of welding current to prevent the initial splash of Automatic DC Invert Resistance SEAM Welding}

도 1은 저항용접부 각부의 명칭을 도시한 도면이다.1 is a view showing the name of each portion of the resistance welding portion.

도 2 및 도 3은 자동저항심용접을 도시한 도면이다.2 and 3 are diagrams illustrating automatic resistance core welding.

도 4는 저항점용접에 있어서 전류(15, 16)의 흐름도를 나타낸 도면이다.4 is a diagram showing a flow chart of currents 15 and 16 in resistance spot welding.

도 5는 자동저항심용접에 있어서 전류(22, 23)의 흐름도를 나타낸 도면이다.5 is a diagram showing a flow chart of currents 22 and 23 in automatic resistance core welding.

도 6은 인버터 직류 자동저항심용접에 있어서 너깃을 생성시킬 때 너깃1의 전류(25)를 너깃2의 전류(27)와 동등하게 100%로 제어했을 때의 용접전류(25, 27), 용접전압파형(26, 28)을 나타낸 도면이다.
도 7은 너깃1 전류(30)를 너깃2 전류(32)의 50%로 제어했을 때의 용접전류(30, 32), 용접전압파형(31, 33)을 나타낸 도면이다.
도 8은 본 발명에 따른 초기날림 제어 파형의 변형 및 응용예를 나타낸 도면이다.
6 shows welding currents 25 and 27 and welding voltage when the current 25 of nugget 1 is controlled to be 100% equivalent to the current 27 of nugget 2 when generating nugget in inverter DC automatic resistance core welding. The waveforms 26 and 28 are shown.
FIG. 7 shows the welding currents 30 and 32 and the welding voltage waveforms 31 and 33 when the nugget 1 current 30 is controlled to 50% of the nugget 2 current 32.
8 is a view showing a modification and application examples of the initial fly control waveform according to the present invention.

삭제delete

삭제delete

삭제delete

자동저항심용접은 너깃(Nugget)을 연속적으로 만들면서 용접하는 방법으로 수밀, 기밀을 요하는 용접에 사용된다. 특히 LNG운반선의 화물창 멤브레인은 36% 니켈(Ni), 나머지 철(Fe)을 주성분으로 하는 인바강(Invar)으로 형성되며 3겹으로 인바강을 겹쳐 자동저항심용접을 한다. 이처럼 자동저항심용접으로 이루어지는 용접부는 LNG 누설 방지를 위해 최소 너깃 길이를 원천기술사 및 선급에서 규정하고 있다.Automatic resistance welding is a method of welding while making a nugget continuously. It is used for watertight and airtight welding. In particular, cargo membranes of LNG carriers are formed of Invar steel, which is composed mainly of 36% nickel (Ni) and the remaining iron (Fe). As such, welded parts made of automatic resistance core welding have the minimum nugget length specified by the source engineer and the Society to prevent LNG leakage.

도 1은 저항용접부 각부의 명칭을 도시하였다. 상, 하부 전극(1, 2)에 의해 피용접재(4)를 용접할 때 피용접재(4)와 피용접재(4) 중간 접촉면에서 생성되는 저항 용접부는 너깃(3), 열영향부(5), 코로나본드(6), 용입(7), 오목자국(8), 중간날림(9), 표면날림(10) 등으로 나타낼 수 있다.Figure 1 shows the name of each part of the resistance welding. When welding the welded member 4 by the upper and lower electrodes 1 and 2, the resistance welded portion formed at the intermediate contact surface between the welded member 4 and the welded member 4 is the nugget 3 and the heat affected zone. (5), corona bond 6, penetration 7, recess 8, intermediate blade 9, surface blade 10 and the like.

여기서 날림(9, 10)이란 저항 용접에서 피용접재(4)와 피용접재(4), 전극(1, 2)과 피용접재(4)의 접촉면에서 피용접재(4) 용융금속이나 전극(1, 2)이 용융해서 튀어나가는 것을 말하는데, 날림(9, 10)에는 중간날림(9)과 표면날림(10)이 있다. 중간날림(9)은 피용접재(4)와 피용접재(4) 사이에서 용융금속이 코로나 본드(6)를 파괴하고 외부로 튀어나가면서 날리는 것을 말하고, 표면날림(10)은 전극(1, 2)과 피용접재(4)의 접촉면에서 피용접재(4)나 전극(1, 2)이 용융해서 튀어나가는 것을 말한다.Here, the blades 9 and 10 refer to the molten metal of the welded material 4 on the contact surface of the welded material 4 and the welded material 4 and the electrodes 1 and 2 and the welded material 4 in resistance welding. The electrodes 1 and 2 are melted and protruded, and the blades 9 and 10 include an intermediate blade 9 and a surface blade 10. The intermediate blade 9 refers to the molten metal flying between the welded material 4 and the welded material 4 while breaking the corona bond 6 and popping outward, and the surface fly 10 is the electrode 1. And 2) and the to-be-welded material 4 and the electrodes 1 and 2 melt and protrude from the contact surface of the to-be-welded material 4.

도 2 및 도 3은 자동저항심용접을 도시하였다. 피용접재(11, 12)를 2겹 이상으로 겹쳐 원판 전극(14)을 사용하여 용접전류를 공급하면서 가압 회전시켜 스 폿(spot)용접을 연속적으로 행하면 연속적인 너깃(13)이 생성되며 선용접인 자동저항심용접이 된다.2 and 3 illustrate the automatic resistance core welding. When spot welding is continuously performed by overlapping the material to be welded (11, 12) in two or more layers while supplying a welding current using the disc electrode (14), a continuous nugget 13 is generated. Welding is automatic resistance core welding.

도 4는 저항점용접에 있어서 전류(15, 16)의 흐름도를 나타낸 것이다. 동일한 용접 조건으로 용접을 하더라도 기존 너깃(17)과 현 용접 너깃(3)이 가까울 경우 전류의 일부(16)가 기존의 너깃(17)으로 흐르게 되어 현 용접 너깃(3)의 전류 밀도를 감소시키는 것을 무효분류라 한다. 이처럼 무효분류가 발생하는 경우에는 전류 밀도가 감소되어 너깃이 작아지게 된다. 이때, 전류밀도라 함은 도체의 단위면적에 흐르는 전류의 크기(A/㎡)를 말한다.4 shows a flow chart of currents 15 and 16 in resistance spot welding. Even if welding is performed under the same welding conditions, when the existing nugget 17 and the current welding nugget 3 are close to each other, part of the current 16 flows to the existing nugget 17 to reduce the current density of the current welding nugget 3. This is called invalid classification. In the case of such invalid classification, the current density is reduced and the nugget becomes smaller. In this case, the current density refers to the magnitude (A / m 2) of the current flowing in the unit area of the conductor.

도 5는 자동저항심용접에 있어서 전류(22, 23)의 흐름도를 나타낸 것이다. 자동저항심용접은 너깃(20, 21)을 겹치면서 용접함으로 인하여 저항점용접보다 무효분류가 크다. 따라서 LNG 화물창 원천기술사 및 선급에서 규정하는 너깃경에 만족하는 너깃(21, 22)을 생성시키기 위해 용접전류(22, 23)는 같은 조건에서의 저항점용접보다 높아야 한다. 5 shows a flow chart of currents 22 and 23 in automatic resistance core welding. Automatic resistance seam welding has a larger invalidation category than resistance spot welding due to overlapping welding of nuggets 20 and 21. Therefore, in order to produce the nuggets 21 and 22 satisfying the nugget diameter prescribed by the LNG cargo hold source engineer and the Society, the welding currents 22 and 23 should be higher than the resistance spot welding under the same conditions.

도 6은 인버터 직류 자동저항심용접에 있어서 너깃을 생성시킬 때 너깃1의 전류(25)를 너깃2의 전류(27)와 동등하게 100%로 제어했을 때의 용접전류(25, 27), 용접전압파형(26, 28)을 나타내고 있는데, 자동저항심용접에서 무효분류가 없는 너깃1 용접 시 전류밀도가 높아 초기날림이 발생하였다.
초기날림의 발생은 전극의 국부 손상을 유발하고, 전극의 국부 손상은 저항심용접부에 주기적인 외관 불량 및 너깃경의 변동을 일으키게 되므로 LNG 화물창 원천기술사 및 선급 너깃 규정에 만족하지 못할 우려가 있고 TIG 용접으로 보수작업을 함으로 인하여 생산성은 극도로 저하된다. 또한 전극의 국부 손상이 계속되면 자주 원판전극(18, 19)을 손질해야 하며 그 결과 원판전극(18, 19)의 수명 감소 및 교체 주기도 빨라져 생산성에 영향을 미친다. 또한, 초기날림을 방지하기 위해 용접 전류 조건을 낮추게 되면 너깃경의 감소로 불량을 야기하게 된다.
6 shows welding currents 25 and 27 and welding voltage when the current 25 of nugget 1 is controlled to be 100% equivalent to the current 27 of nugget 2 when generating nugget in inverter DC automatic resistance core welding. Waveforms 26 and 28 are shown, but the initial flying occurred due to the high current density during Nugget 1 welding without invalid classification in automatic resistance core welding.
The occurrence of initial flight causes local damage of the electrode, and the local damage of the electrode causes periodic appearance defects and fluctuations in the nugget diameter of the resistance seam weld, so it may not be satisfied with the LNG cargo hold engineer and class nuggets. The maintenance is extremely poor in productivity. In addition, if the local damage of the electrode continues, frequent repair of the original electrodes (18, 19), as a result of the reduction in the life and replacement cycle of the original electrodes (18, 19), thereby affecting productivity. In addition, if the welding current condition is lowered to prevent the initial flight, the nugget diameter may be reduced, causing a defect.

삭제delete

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 그 목적은 멤브레인 박판의 자동저항심용접에 있어서 초기날림의 발생을 방지함으로써 작업능률 및 생산성을 향상시킬 수 있는 용접전류 제어 방법을 제공하는 것이다.
본 발명의 기타 목적 및 장점들은 하기에 설명될 것이며, 이는 본 발명의 청구범위에 기재된 사항 및 그 실시예의 개시 내용뿐만 아니라, 이들로부터 용이하게 추고할 수 있는 범위 내의 수단 및 조합에 의해 보다 넓은 범위로 포섭될 것임을 첨언한다.
The present invention has been made in view of the above problems, and an object thereof is to provide a welding current control method which can improve the work efficiency and productivity by preventing the occurrence of initial flight in the automatic resistance core welding of the membrane sheet.
Other objects and advantages of the present invention will be described below, which are not limited to the matters set forth in the claims and the disclosure of the embodiments thereof, but also to the broader ranges by means and combinations within the range readily recited therefrom. Add that it will be included.

삭제delete

이하에서는 첨부도면을 참조하여 본 발명에 대하여 상세히 설명한다.
도 7은 너깃1 전류(30)를 너깃2 전류(32)의 50%로 제어했을 때의 용접전류(30, 32), 용접전압파형(31, 33)을 나타낸 것으로, 본 발명에 따른 용접전류 제어 방법을 사용하여 자동저항심용접에서의 무효분류가 없는 너깃1의 용접 전류(30)를 조정함으로써 용접 시 전류밀도를 낮추어 초기날림이 발생하지 않게 하였다.
자동저항심용접에서 초기날림이 발생하게 하는 인자로서는 용접전류, 가압력, 통전시간, 피용접재의 표면상태 등이 있는데, 여기서 만약 나머지 조건은 같고 용접전류 값만 변경되는 경우에도 초기날림은 발생할 수 있다.
따라서 자동저항심용접에 있어서 각 너깃의 용접시에는, 다른 용접조건이 일정하게 유지되는 경우, LNG선 원천기술사 및 선급에서 규정하는 너깃 직경에 만족하는 너깃을 생성시키기 위한 용접전류보다 낮은, 즉 LNG선 원천기술사 및 선급에서 규정하는 너깃 직경에 만족하는 너깃을 생성시키기 위한 용접전류의 30% 내지 90%의 낮은 전류를 흐르게 하여 용접함으로써 초기날림을 방지할 수 있다.
이에 본 발명에서는 이러한 원리에 용접전류 스텝 업(STEP UP) 기능을 적용함으로써 인버터직류 자동저항심용접에서 초기날림을 방지할 수 있는 용접전류 제어 방법을 고안하게 되었다. 즉, 본 발명에서는 도 8의 (ㄱ)과 같이 용접전류 스텝 업(STEP UP) 기능을 적용하여 너깃1 전류(35)를 너깃2 전류(36)의 30% 내지 90% 수준이 되도록 용접전류를 제어함으로써 초기날림을 방지하는 방법을 개발하였다. 여기서, '용접전류 스텝 업(STEP UP) 기능'을 설명하면 다음과 같다.
용접사는 용접하기 전에 용접조건을 너깃1과 너깃n(정상너깃) 사이에 몇 개의 스텝(STEP)으로 할 것인지 프로그램(설정) 할 수 있다. 여기서 각 스텝(STEP)의 용접너깃은 너깃1, 너깃2, 너깃3, 너깃4, … , 너깃n-3, 너깃n-2, 너깃n-1, 너깃n(정상너깃)이 되고, 각 스텝의 용접전류는 만약 너깃1의 용접전류가 2000A이고 너깃n의 용접전류가 4000A라고 한다면,
너깃2의 용접전류는 2000A+(4000A-2000A)/(n-1),
너깃3의 용접전류는 2000A+[2(4000A-2000A)/(n-1)], … ,
너깃n-2의 용접전류는 2000A+[n-3(4000A-2000A)/(n-1)],
너깃n-1의 용접전류는 2000A+[n-2(4000A-2000A)/(n-1)],
너깃n의 용접전류는 2000A+[n-1(4000A-2000A)/(n-1)]이 된다.
따라서 '용접전류 스텝 업(STEP UP) 기능'이란 용접조건이 정상너깃 용접조건에 이르기까지 일정한 크기만큼 단계적으로 상승(STEP UP)하는 것을 의미한다.
이때, 자동저항심용접에서 초기날림이 발생하지 않는 최소 용접전류는 너깃n(정상너깃)이 생성되는 용접전류의 약 30% 정도이고 최대 용접전류는 약 90% 정도이다. 이 조건은 피용접재(11,12)의 두께에 따라 차이가 있을 수 있다.
이처럼 자동저항심용접에서 초기날림이 발생하지 않는 용접전류를 너깃n(정상너깃)이 생성되는 용접전류의 30% 내지 90% 정도로 설정하는 이유는 다음과 같이 설명할 수 있다.
만약 용접전류 스텝 업(STEP UP) 기능에서 스텝(STEP)을 2로 설정한다면 너깃n 이전의 너깃은 너깃1이 된다. 이때, 너깃1의 용접전류를 너깃n(정상너깃) 용접전류의 30% 이하로 하면 아예 너깃1이 생성되지 않으므로 너깃2(너깃n, 정상너깃)의 용접시 전류밀도가 낮아지는 뮤효분류가 존재하지 않게 되고 그 결과 전류밀도가 높아지게 되어 초기날림이 발생하고 만다. 만약 너깃1을 생성시키기 위한 용접전류를 너깃n(정상너깃) 용접전류의 90% 이상으로 설정하여 용접한다면 너깃1의 용접시부터 전류밀도가 높아 초기날림이 발생하고 마는 것이다.
한편, 도 8의 (ㄴ)은 (ㄱ)을 확장한 개념으로서, 본 발명에 따라 너깃1로부터 여러 수량만큼 뒤에 있는 정상너깃에 이르기까지 용접을 하는 과정에 있어서, 정상너깃의 생성 전류(42)에 이르기까지 각 단계별로 해당 너깃의 용접전류(37 내지 41)를 바로 앞 너깃의 용접전류보다 일정 수준만큼 높도록 제어하여 초기날림을 방지하는 예를 나타내고 있다. 예를 들면, 용접전류 스텝 업(STEP UP) 기능을 사용하면 너깃1부터 너깃n(정상너깃)까지의 총 너깃수를 100개로 설정할 수 있고 각각의 너깃의 전류 값은 정상너깃에서의 전류 값의 0.01배부터 1배까지 단계별로 증가시켜 나가면서 용접을 할 수 있으며, 이 경우 각 너깃의 용접시 초기날림은 발생하지 않는다.
Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention.
7 shows the welding currents 30 and 32 and the welding voltage waveforms 31 and 33 when the nugget 1 current 30 is controlled to 50% of the nugget 2 current 32. The welding current according to the present invention is shown. By using the control method, the welding current 30 of the nugget 1 without invalid classification in the automatic resistance core welding was adjusted to reduce the current density during welding so that initial flight does not occur.
Factors causing initial flying in automatic resistance core welding include welding current, pressing force, energization time, surface state of the welded material, etc. Here, initial flying may occur even if the remaining conditions are the same and only the welding current value is changed.
Therefore, when welding each nugget in automatic resistance seam welding, if other welding conditions are kept constant, the LNG vessel is lower than the welding current to produce a nugget satisfying the nugget diameter prescribed by the source engineer and the Society. Initial flying can be prevented by welding by flowing a low current of 30% to 90% of the welding current to produce a nugget satisfying the nugget diameter prescribed by the original engineer and the Society.
Therefore, in the present invention, by applying the welding current step up (STEP UP) function to this principle has been devised a welding current control method that can prevent the initial flying in the inverter DC resistance resistance welding. That is, in the present invention, the welding current is applied such that the nugget 1 current 35 is 30% to 90% of the nugget 2 current 36 by applying the welding current step up function as shown in FIG. We have developed a method to prevent early flight by controlling. Herein, the 'welding current step up function' will be described.
The welder can program (set) how many steps (STEP) the welding condition should be between the nugget 1 and the nugget n (normal nugget) before welding. Here, the weld nugget of each step is nugget 1, nugget 2, nugget 3, nugget 4,... , Nugget n-3, nugget n-2, nugget n-1, nugget n (normal nugget), and if the welding current of each nugget is 2000 A and nugget n has a welding current of 4000 A,
Welding current of nugget 2 is 2000A + (4000A-2000A) / (n-1),
The welding current of nugget 3 is 2000A + [2 (4000A-2000A) / (n-1)],... ,
Welding current of nugget n-2 is 2000A + [n-3 (4000A-2000A) / (n-1)],
Welding current of nugget n-1 is 2000A + [n-2 (4000A-2000A) / (n-1)],
The welding current of the nugget n becomes 2000A + [n-1 (4000A-2000A) / (n-1)].
Therefore, the 'welding current step up function' means that the welding condition is gradually increased by a certain size until the normal nugget welding condition.
At this time, the minimum welding current in which the initial flying does not occur in the automatic resistance core welding is about 30% of the welding current in which nugget n (normal nugget) is generated, and the maximum welding current is about 90%. This condition may vary depending on the thickness of the welded material 11 and 12.
As such, the reason why the welding current in which the initial flying does not occur in the automatic resistance core welding is set to about 30% to 90% of the welding current in which nugget n (normal nugget) is generated can be explained as follows.
If you set step to 2 in the welding current step up function, the nugget before nugget n becomes nugget 1. At this time, if the welding current of nugget 1 is less than 30% of the nugget n (normal nugget) welding current, no nugget 1 is generated at all. As a result, the current density increases and an initial flight occurs. If the welding current to generate the nugget 1 is set to 90% or more of the nugget n (normal nugget) welding current, the initial flying occurs due to the high current density from the nugget 1 welding.
On the other hand, Figure 8 (b) is an extended concept (a), according to the present invention in the process of welding from the nugget 1 to the normal nugget behind by a number of quantities, the generated current 42 of the normal nugget Each step up to the control the welding current (37 to 41) of the nugget is shown an example of preventing the initial flying by controlling a higher level than the welding current of the previous nugget. For example, if the welding current step up function is used, the total number of nugs from nugget 1 to nugget n (normal nugget) can be set to 100, and the current value of each nugget is the value of the current value at the normal nugget. Welding can be done by increasing step by step from 0.01 times to 1 times, in which case no initial flying occurs when welding each nugget.

삭제delete

삭제delete

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications, changes, and substitutions may be made by those skilled in the art without departing from the essential characteristics of the present invention. will be. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. . The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

본 발명에 의하면 초기날림 방지를 위한 여러 가지 용접전류 제어 설정이 가능하므로 자동저항심용접의 초기날림에 대해 유연하게 대처할 수 있어 초기날림을 방지함으로써 작업능률 및 생산성 향상에 기여할 수 있다.According to the present invention, since various welding current control settings are possible for the initial flight prevention, the initial flight of the automatic resistance core welding can be flexibly handled, thereby preventing the initial flight and contributing to the improvement of work efficiency and productivity.

본 발명의 다른 효과는, 이상에서 설명한 실시예 및 본 발명의 청구범위에 기재된 사항뿐만 아니라, 이들로부터 용이하게 추고할 수 있는 범위 내에서 발생할 수 있는 효과 및 산업 발전에 기여하는 잠정적 장점의 가능성들에 의해 보다 넓은 범위로 포섭될 것임을 첨언한다.Other effects of the present invention, as well as those described in the above-described embodiments and claims of the present invention, as well as potential effects that may occur within the range that can be easily estimated therefrom and potential advantages that contribute to industrial development It will be added that it will be covered by a wider scope.

Claims (2)

인버터직류 자동저항심용접에 있어서 첫 번째 너깃을 생성시키기 위한 용접전류를 두 번째 너깃 또는 정상너깃을 생성시키기 위한 용접전류의 30% 내지 90% 수준으로 조절함으로써 초기날림을 방지하는 용접전류 제어 방법.A welding current control method for preventing initial flying by adjusting the welding current for generating the first nugget to 30% to 90% of the welding current for generating the second nugget or the normal nugget in inverter DC automatic resistance core welding. 인버터직류 자동저항심용접에 있어서,In inverter DC resistance resistance welding, 각 스텝(STEP)의 용접너깃을 너깃1, 너깃2, 너깃3, 너깃4, … , 너깃n-3, 너깃n-2, 너깃n-1, 너깃n(정상너깃)으로 하고, 너깃1의 용접전류를 A1, 너깃n의 용접전류를 An으로 할 때, 각 스텝의 용접전류는 용접전류 스텝 업(STEP UP) 기능을 도입하여,The nugget 1 of each step is nugget 1, nugget 2, nugget 3, nugget 4,... When the nugget n-3, the nugget n-2, the nugget n-1, and the nugget n (normal nugget), and the welding current of the nugget 1 is A1 and the welding current of the nugget n is An, the welding current of each step is By introducing the welding current step up function, 너깃2의 용접전류는 A1+(An-A1)/(n-1),The welding current of nugget 2 is A1 + (An-A1) / (n-1), 너깃3의 용접전류는 A1+[2(An-A1)/(n-1)], … ,The welding current of nugget 3 is A1 + [2 (An-A1) / (n-1)],... , 너깃n-2의 용접전류는 A1+[n-3(An-A1)/(n-1)],Welding current of nugget n-2 is A1 + [n-3 (An-A1) / (n-1)], 너깃n-1의 용접전류는 A1+[n-2(An-A1)/(n-1)]이 되도록 조절함으로써 초기날림을 방지하는 용접전류 제어 방법.A welding current control method in which the initial current is prevented by adjusting the welding current of the nugget n-1 to be A1 + [n-2 (An-A1) / (n-1)].
KR1020070015165A 2007-02-14 2007-02-14 The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding KR100791019B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070015165A KR100791019B1 (en) 2007-02-14 2007-02-14 The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding
PCT/KR2007/002859 WO2008099991A2 (en) 2007-02-14 2007-06-13 The control algorism of welding current to prevent the initial splash of automatic dc invert resistance seam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070015165A KR100791019B1 (en) 2007-02-14 2007-02-14 The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding

Publications (1)

Publication Number Publication Date
KR100791019B1 true KR100791019B1 (en) 2008-01-03

Family

ID=39216470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070015165A KR100791019B1 (en) 2007-02-14 2007-02-14 The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding

Country Status (2)

Country Link
KR (1) KR100791019B1 (en)
WO (1) WO2008099991A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208629A1 (en) * 2013-06-25 2014-12-31 本田技研工業株式会社 Seam welding method and vehicular body

Also Published As

Publication number Publication date
WO2008099991A2 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
KR100349968B1 (en) Short circuit welder
EP1070564B1 (en) A method of pipe welding
JP2009233707A (en) High speed gas shielded arc welding method of steel sheet
EP2480367B1 (en) Welding contact tips for pulse applications
Vendan et al. Interdisciplinary treatment to arc welding power sources
JP2007229775A (en) Consumable electrode arc welding method
JP2008018436A (en) Welding method and welded product
KR100791019B1 (en) The control method of welding current to prevent the initial splash of automatic dc invert resistance seam welding
Zeng et al. Modeling for GMAW process with a current waveform control method
Schupp et al. Welding arc control with power electronics
US20130086911A1 (en) Process and apparatus for overlay welding
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
WO2009130552A1 (en) System and methods of using variable waveform ac arc welding to achieve specific weld metal chemistries
JP6123904B2 (en) Resistance spot welding method and manufacturing method of welded structure
Harris Transfer of heat and mass to the base metal in gas metal arc welding
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
Jud Joining galvanized and galvannealed steels
KR102345657B1 (en) Electro gas arc welding device and method for the same
CN108037665B (en) Arc self-adaptive control method for short-circuit transition state
JP2024000009A (en) Resistance welding system, and method for manufacturing resistance welded joint
Paul Practical study of inclusiveness properties of PI and SMC ideas for control of GMAW
JP2022131125A (en) Method for joining dissimilar metal materials
JP2007175710A (en) High-speed tig welding method of sheet steel
JP2003025069A (en) Multielectrode arc welding method
KR200188502Y1 (en) Ceramic end tab having conductivity for high current welding

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121206

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee