KR100787489B1 - Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy - Google Patents

Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy Download PDF

Info

Publication number
KR100787489B1
KR100787489B1 KR1020040066675A KR20040066675A KR100787489B1 KR 100787489 B1 KR100787489 B1 KR 100787489B1 KR 1020040066675 A KR1020040066675 A KR 1020040066675A KR 20040066675 A KR20040066675 A KR 20040066675A KR 100787489 B1 KR100787489 B1 KR 100787489B1
Authority
KR
South Korea
Prior art keywords
chiral material
silver nanoparticles
chiral
signal
circular dichroism
Prior art date
Application number
KR1020040066675A
Other languages
Korean (ko)
Other versions
KR20060018344A (en
Inventor
박현규
이태화
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020040066675A priority Critical patent/KR100787489B1/en
Publication of KR20060018344A publication Critical patent/KR20060018344A/en
Application granted granted Critical
Publication of KR100787489B1 publication Critical patent/KR100787489B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/02Colour photography, other than mere exposure or projection of a colour film by two-colour separation records, e.g. red-aspect and white complete records; using Land effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2496/00Reference solutions for assays of biological material
    • G01N2496/25Reference solutions for assays of biological material containing added polymers to stabilise biological material against degradation or mantain viscosity or density, e.g. gelatin, polyacrylamides, polyvinyl alcohol
    • G01N2496/35Polyvinylpyrrolidone, e.g. PVP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/40Details of apparatuses used for either manufacturing connectors or connecting the semiconductor or solid-state body
    • H01L2924/401LASER
    • H01L2924/405Wavelength
    • H01L2924/40501UV spectrum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/88Manufacture, treatment, or detection of nanostructure with arrangement, process, or apparatus for testing
    • Y10S977/881Microscopy or spectroscopy, e.g. sem, tem

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 은 나노입자에 결합된 키랄성 화합물을 원평광 이색성 분광법을 이용하여 분석하는 방법에 관한 것으로, 더욱 상세하게는, 은 나노입자와 키랄성 물질이 티올기를 통해서 결합함으로써 근자외선 영역에서 새로운 원평광 이색성 분광 신호가 나타나고, 이러한 현상을 키랄성 화합물의 분석에 이용하는 방법에 관한 것이다.The present invention relates to a method for analyzing chiral compounds bound to silver nanoparticles using circular dichroism spectroscopy, and more particularly, new nanoparticles in the near ultraviolet region by binding silver nanoparticles and chiral materials through thiol groups. A flat dichroic spectroscopic signal appears and relates to a method of using this phenomenon in the analysis of chiral compounds.

본 발명에서 특징적으로 얻어지는 원평광 이색성 분광 시그널은 키랄성 물질의 유·무, 키랄성 물질 내에 함유되어 있는 티올기의 유·무 및 은 나노입자와 결합된 키랄성 물질의 작용기들 사이의 수소결합의 여부를 측정하는데 유용하다.The circularly dichroic spectroscopic signal obtained characteristically in the present invention is the presence or absence of a chiral material, the presence or absence of a thiol group contained in the chiral material, and the hydrogen bond between the functional groups of the chiral material bound to the silver nanoparticles. Useful for measuring

은 나노입자, 키랄성 물질, 원평광 이색성 분광법Silver nanoparticles, chiral material, circular dichroism spectroscopy

Description

은 나노입자를 이용하여 키랄성 화합물을 원평광 이색성 분광법으로 분석하는 방법 {Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy} Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy             

도 1은 수용액 하에서 은 나노입자에 결합된 시스테인의 작용기들 사이의 수소결합을 나타낸 것이다.1 shows hydrogen bonds between functional groups of cysteine bound to silver nanoparticles under aqueous solution.

도 2는 은 나노입자의 투과전자현미경(TEM) 이미지 및 UV 스펙트럼을 나타낸 것이다.2 shows a transmission electron microscope (TEM) image and UV spectrum of silver nanoparticles.

도 3은 원평광 이색성 분광법(circular dichroism spectroscopy)을 이용하여 측정한 아미노산의 원평광 이색성(CD) 분광 시그널을 나타낸 것이다.Figure 3 shows the circular dichroism (CD) spectral signal of the amino acid measured by circular dichroism spectroscopy.

도 4는 은 나노입자에 결합된 다양한 아미노산들을 CD 분광법으로 측정한 것을 나타낸 것이다.4 shows the measurement of various amino acids bound to silver nanoparticles by CD spectroscopy.

도 5는 페니실아민의 CD 시그널을 나타낸 것이다.Figure 5 shows the CD signal of penicylamine.

도 6은 은 나노입자에 결합된 페니실아민의 CD 시그널을 나타낸 것이다.Figure 6 shows the CD signal of the penicylamine bound to the silver nanoparticles.

도 7은 글루타치온(GSH)과 은 나노입자에 결합된 글루타치온의 CD 시그널을 나타낸 것이다.Figure 7 shows the CD signal of glutathione bound to glutathione (GSH) and silver nanoparticles.

도 8은 시스테인의 다양한 농도 조건하에서, 은 나노입자에 결합된 시스테인 의 CD 시그널을 나타낸 것이다.8 shows the CD signal of cysteine bound to silver nanoparticles under various concentration conditions of cysteine.

도 9는 은 나노입자에 결합된 시스테인의 시간에 따른 CD 시그널의 변화를 나타낸 것이다. Figure 9 shows the change in the CD signal over time of cysteine bound to the silver nanoparticles.

본 발명은 은 나노입자에 결합된 키랄성 화합물을 원평광 이색성 분광법을 이용하여 측정하는 방법에 관한 것으로, 더욱 상세하게는, 은 나노입자와 키랄성 물질이 티올기를 통해서 결합함으로써 근자외선 영역에서 원평광 이색성 분광 신호가 새롭게 생성되고, 이러한 현상을 이용하여 키랄성 화합물을 쉽게 분석할 수 있는 방법에 관한 것이다.The present invention relates to a method for measuring a chiral compound bound to silver nanoparticles using circular dichroism spectroscopy, and more particularly, in the near-ultraviolet region by binding silver nanoparticles and chiral substances through thiol groups. A dichroic spectral signal is newly generated and relates to a method for easily analyzing chiral compounds using this phenomenon.

나노구조는 훌륭한 물리적, 화학적 성질을 갖고 있기 때문에 현재 매우 기대되는 물질로 대두되고 있으며, 바이오센서와 양자점(quantum dot), 그리고 레이저와 같은 다양한 공업적 응용 분야에서 상당한 잠재력을 가지고 있다. 최근 나노기술의 신속한 발전은 이를 응용하고 화학이나 바이오기술로부터 개념을 확립하도록 하였으며, 그러한 기술의 일환으로 금속 나노입자에 키랄성 물질들을 접합시키는 것 및 그 상호작용을 밝히기 위한 연구가 활발히 진행 중에 있다. 특히, 은과 금은 생물분자와의 결합에 있어서 가장 많은 주목을 받고 있는데, 이는 이 금속들의 나노입자와 관련된 화학적 성질에 대한 연구가 광범위하게 진행되어 왔기 때문이다 (Mandal S, et al., Langmuir, 17:62, 2001; Choi S H, Lee S H, et al., Radiation Physics and Chemistry, 67:517, 2003; Naka K., et al., Langmuir, 19:55, 2003; Selvakannan P R, et al., Langmuir, 19:35, 2003).Nanostructures are emerging as highly anticipated materials because of their excellent physical and chemical properties, and they have great potential in a variety of industrial applications such as biosensors, quantum dots, and lasers. The recent rapid development of nanotechnology has led to the application of this and the establishment of concepts from chemistry and biotechnology, and as part of such technology, studies are being actively conducted to bond chiral materials to metal nanoparticles and to reveal their interactions. In particular, silver and gold have received the most attention in terms of their binding to biomolecules, because extensive research has been conducted on the chemical properties associated with nanoparticles of these metals (Mandal S, et al. , Langmuir , 17:62, 2001; Choi SH, Lee SH, et al. Radiation Physics and Chemistry, 67: 517, 2003; Naka K., et al. Langmuir, 19:55, 2003; Selvakannan PR, et al. Langmuir , 19:35, 2003).

용액에서 나노입자 배열의 제어는 분자간의 비공유 결합에 의해 이루어진다. 예를 들면, DNA 염기쌍간의 혼성화, 바이오틴-아비딘(biotin-avidin) 분자들 간의 인지, 말단 작용기 간의 수소결합 등이 이용된다. Sastry 등은 아미노산을, 물에 분산되는 나노입자 개발에 효과적으로 이용하였다. 즉 나노입자의 표면을 개량하기 위해 아미노산의 일종인 시스테인(cysteine)을 은 나노입자(Mandal S, et al., Langmuir, 17:62, 2001)에, 라이신(lysine)을 금 나노입자에(Selvakannan P R, et al., Langmuir, 19:35, 2003) 결합시켰다. Control of the nanoparticle array in solution is achieved by noncovalent bonding between molecules. For example, hybridization between DNA base pairs, recognition between biotin-avidin molecules, hydrogen bonding between terminal functional groups, and the like are used. Sastry et al. Effectively used amino acids to develop nanoparticles dispersed in water. In order to improve the surface of nanoparticles, cysteine, a type of amino acid, may be substituted with silver nanoparticles (Mandal S, et al. , Langmuir, 17:62, 2001), lysine was added to gold nanoparticles (Selvakannan PR, et al. , Langmuir, 19:35, 2003).

나노입자 표면에 흡착 결합된 아미노산의 아민기와 카르복실산 작용기 사이의 수소결합에 의해서 나노입자들이 집합(aggregation)한다는 모델이 제안되었으며, 다양한 분석방법(UV-vis, TEM, TGA, 그리고 NMR 등)들이 아미노산이 흡착된 나노입자들의 특성분석을 규명하는데 이용되고 있다.Models have been proposed in which nanoparticles are aggregated by hydrogen bonding between amine groups and carboxylic acid functional groups of amino acids adsorbed on the surface of nanoparticles, and various analytical methods (UV-vis, TEM, TGA, and NMR) These are used to characterize nanoparticles adsorbed by amino acids.

한편, 원평광 이색성(circular dichroism: CD) 분광기는 작은 분자에서 천연적인 거대분자(예를 들면, DNA, RNA 및 단백질 등)나 비천연적인 거대분자에 이르기까지 광범위한 광학활성 분자들의 구조적인 특성을 연구하는데 널리 쓰이고 있다. 또한 원평광 이색성 분광법은 키랄성 분자들의 구조적인 변화에 민감하기 때문에 pH나 금속 이온 같은 외부의 자극에 대한 효과를 밝히는데 종종 사용되고 있으며, DNA나 단백질이 은 이온과 결합하여 구조적인 변화를 유도한다는 것이 원평광 이색성 분광법에 의해 관찰되었다는 연구들이 보고된 바 있다 (Shen X.C., et al., J. Inorganic Biochem., 95:124, 2003 ). Circular dichroism (CD) spectroscopy, on the other hand, is characterized by the structural properties of a wide range of optically active molecules, ranging from small molecules to natural macromolecules (eg, DNA, RNA and proteins) or non-natural macromolecules. It is widely used for research. In addition, since circular dichroism spectroscopy is sensitive to structural changes in chiral molecules, it is often used to reveal effects on external stimuli such as pH or metal ions. It is known that DNA or protein binds with silver ions to induce structural changes. Research has been reported to be observed by circular dichroism spectroscopy (Shen XC, et al. , J. Inorganic Biochem., 95: 124, 2003).

그러나, 원평광 이색성 분광법을 이용하여 나노입자에 결합된 물질들에 대한 연구는 보고된 바 없으며, 더욱이 기존 물질이 나노입자와의 결합을 통해서 근자외선 영역에서 새로운 시그널을 생성한다는 보고는 전무하다.However, no studies on materials bound to nanoparticles using circular dichroism spectroscopy have been reported, and there is no report that existing materials generate new signals in the near-ultraviolet region by binding to nanoparticles. .

이에 본 발명자들은 아미노산 등의 티올기를 갖고 있는 키랄성 물질이 은 나노입자와 결합할 때, 원평광 이색성 분광법 측정의 근자외선 영역에서 새롭게 나타나는 특징적인 시그널을 통해서 키랄성 물질의 유무를 손쉽게 분석하거나 모니터링할 수 있음을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors can easily analyze or monitor the presence or absence of chiral substances through a characteristic signal newly appearing in the near-ultraviolet region of circular dichroism spectroscopy when a chiral substance having a thiol group such as an amino acid is combined with silver nanoparticles. It was confirmed that the present invention was completed.

결국 본 발명의 주된 목적은 은 나노입자에 결합된 키랄성 물질의 존재 여부, 키랄성 물질 내 티올기의 존재 여부 및 은 나노입자에 결합된 키랄성 물질의 작용기 사이의 수소결합의 유·무를 원평광 이색성 분광법으로 측정하는 방법을 제공하는데 있다.
본 발명의 다른 목적은 상기의 방법에 의해 특징적으로 얻어지는 원평광 이색성 분광 시그널을 이용하여 키랄성 물질내 티올기의 결합력을 측정하는 방법을 제공하는데 있다.
After all, the main object of the present invention is to determine whether or not there is a chiral material bound to the silver nanoparticles, the presence of a thiol group in the chiral material, and the presence or absence of hydrogen bonds between functional groups of the chiral material bound to the silver nanoparticles. It provides a method for measuring by spectroscopy.
Another object of the present invention is to provide a method for measuring the binding force of a thiol group in a chiral material using a circularly dichroic spectroscopic signal obtained by the above method.

삭제delete

상기 목적을 달성하기 위하여, 본 발명은 (a) 은염의 환원반응을 통하여 은 나노입자를 제조하는 단계; (b) 상기 은 나노입자에 티올기, 카르복실기 또는 아민기를 가지는 키랄성 물질을 결합시키는 단계; 및 (c) 상기 은 나노입자와 결합된 키랄성 물질, 키랄성 물질 내 티올기 및 수소결합이 존재할 경우, 원평광 이색성 분광법을 이용하여 240-400 ㎚의 근자외선 영역에서 나타나는 원평광 이색성 분광(CD) 시그널로 측정하는 단계를 포함하는 은 나노입자에 결합된 키랄성 물질의 존재 여부, 키랄성 물질 내 티올기의 존재 여부 및 은 나노입자에 결합된 키랄성 물질의 작용기 사이의 수소결합의 유·무를 원평광 이색성 분광법으로 측정하는 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) preparing the silver nanoparticles through a reduction reaction of the silver salt; (b) binding a chiral material having a thiol group, a carboxyl group or an amine group to the silver nanoparticles; And (c) a circular dichroism spectrophotometer which appears in the near-ultraviolet region of 240-400 nm by using circular dichroism spectroscopy when the chiral material, the thiol group and the hydrogen bond in the chiral material are combined with the silver nanoparticles. The presence or absence of a hydrogen bond between the chiral material bound to the silver nanoparticles, the presence of a thiol group in the chiral material, and the functional group of the chiral material bound to the silver nanoparticles may be measured. It provides a method of measuring by flat dichroism spectroscopy.

본 발명에 있어서, 상기 키랄성 물질은 티올기, 카르복실기 또는 아민기를 가지는 것을 특징으로 할 수 있으며, 바람직하게는 시스테인(cysteine), 페니실아민(penicillamine) 또는 글루타치온(GSH)을 포함할 수 있다.In the present invention, the chiral material may be characterized by having a thiol group, a carboxyl group or an amine group, preferably cysteine, penicillamine or glutathione (GSH).

본 발명에 있어서, 은 나노입자와 키랄성 물질이 결합하는 상기 (b) 단계는 은 나노입자의 표면에 키랄성 물질내에 함유되어 있는 티올기가 화학적 흡착을 통해 결합함으로써 이루어지는 것을 특징으로 할 수 있고, 상기 (c) 단계에서는 은 나노입자에 결합된 키랄성 물질의 아민기와 카르복실산 작용기 사이의 수소결합에 의해 원평광 이색성 분광의 새로운 시그널이 야기되는 것을 특징으로 할 수 있다.In the present invention, the step (b) of bonding the silver nanoparticles and the chiral material may be characterized in that the thiol group contained in the chiral material on the surface of the silver nanoparticles is bonded by chemical adsorption, In step c), a new signal of circular dichroism spectroscopy may be caused by hydrogen bonding between the amine group and the carboxylic acid functional group of the chiral material bound to the silver nanoparticles.

본 발명에 있어서, CD 시그널은 은 나노입자와 키랄성 물질내 티올기의 강한 화학적 흡착결합 및 키랄성 물질의 작용기들 사이의 수소결합에 의한 구조적 변화로 인해 측정되는 것임을 특징으로 할 수 있고, 상기 특징적인 CD 시그널을 얻기 위한 키랄성 물질의 최적 농도는 10-3M인 것을 특징으로 할 수 있다.In the present invention, the CD signal can be characterized by the strong chemical adsorption bonds of thiol groups in the silver nanoparticles and chiral material and the structural change caused by hydrogen bonding between the functional groups of the chiral material. The optimal concentration of chiral material to obtain a CD signal may be characterized in that 10 -3 M.

본 발명은 또한, 상기의 방법에 의해 생성되는 특징적인 CD 시그널을 이용하는 것을 특징으로 하는 키랄성 물질 내 티올기의 결합력을 측정하는 방법을 제공한다.The present invention also provides a method for measuring the binding force of a thiol group in a chiral material, characterized by using the characteristic CD signal produced by the above method.

본 발명에 있어서, 키랄성 물질 내의 티올기의 결합력은 두 가지 이상의 물질을 은 나노입자에 결합시켰을 때 생성되는 CD 시그널의 패턴을 분석함으로써 티올기의 상대적인 결합력을 결정하는 것을 특징으로 할 수 있다.In the present invention, the binding force of the thiol group in the chiral material may be characterized by determining the relative binding force of the thiol group by analyzing a pattern of the CD signal generated when two or more materials are bonded to the silver nanoparticles.

삭제delete

삭제delete

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 은 나노입자의 제조 Example 1 Preparation of Silver Nanoparticles

화학적 환원반응을 이용하여 은 나노입자를 제조하였다. 구체적으로 1.0 × 10-3M의 AgNO3 용액에 콜로이드 안정제로서 표면활성제인 PVP(polyvinylpyrolidine, Mw.=10,000)를 1% 가하고 환원제인 구연산 소다(sodium citrate) 용액을 혼합시켜 거의 끓는 온도에서 반응시켜 은 나노입자를 제조하였다 (Turkevich J. et al., Discussions of the Faraday Society, 11:55, 1951). 여분의 구연산(citric acid)이 콜로이드 용액에 존재하는 것을 방지하기 위하여 매우 적은 양의 1% 구연산 소다 용액이 환원제로 사용되었다. Silver nanoparticles were prepared by chemical reduction. Specifically, 1% of PVP (polyvinylpyrolidine, Mw. = 10,000), a surface active agent, was added to a 1.0 × 10 -3 M AgNO 3 solution as a colloidal stabilizer, and a solution of sodium citrate, a reducing agent, was mixed and reacted at almost boiling temperature. Silver nanoparticles were prepared (Turkevich J. et al. , Discussions of the Faraday Society, 11:55, 1951). A very small amount of 1% citric acid soda solution was used as reducing agent to prevent excess citric acid from being present in the colloidal solution.

상기 화학적 환원반응을 통해 제조한 은 나노입자의 광학적 성질과 형태를 알아보기 위하여 자외선 및 가시광선 분광법(UV-visble spectroscopy)과 투과전자현미경(Transmission electron microscope TEM)을 이용하여 측정하였다. In order to determine the optical properties and morphology of the silver nanoparticles prepared by the chemical reduction reaction was measured by UV and visible spectroscopy (UV-visble spectroscopy) and transmission electron microscope (TEM).

도 2에 나타낸 바와 같이, TEM 사진에서 23.5 ± 3.5 nm 정도의 은 나노입자가 비교적 균일하게 제조된 것을 확인할 수 있었고, UV 스펙트럼을 통해 λmax가 430 nm에서 나타나는 것을 알 수 있었다. As shown in FIG. 2, it was confirmed that silver nanoparticles of about 23.5 ± 3.5 nm were prepared relatively uniformly in the TEM image, and λ max was shown at 430 nm through the UV spectrum.

실시예 2: 은 나노입자와 결합한 키랄성 물질의 새로운 CD 시그널의 확인 Example 2: Identification of New CD Signals of Chiral Material with Silver Nanoparticles

세 가지 서로 다른 종류의 간단한 아미노산인 시스테인(cysteine), 라이신(lysine), 글루타민(glutamine)을 선택하여 은 나노입자와의 상호작용을 측정하였다. 모든 샘플들의 CD 시그널은 모두 은 나노입자 용액과 각 아미노산 용액들을 혼합하자마자 측정하여 얻은 것이며, 대조군 실험으로 은 나노입자를 혼합하지 않은 아미노산 용액을 특정된 농도(10-3M)에서 원평광 이색성 분광법으로 측정하였다. Three different kinds of simple amino acids, cysteine, lysine and glutamine, were selected to measure the interaction with silver nanoparticles. The CD signals of all samples were obtained by mixing the silver nanoparticle solution and each amino acid solution as soon as they were mixed. In the control experiment, the amino acid solution containing no silver nanoparticles was measured at the specified concentration (10 -3 M). Measured by spectroscopy.

측정결과, 상기의 각 L-아미노산들은 모두 원자외선(far-UV) 영역(190-240 nm)에서 비교적 폭이 넓은 단일 시그널을 나타내었으며, 근자외선(near-UV) 영역(240-400 nm)에서는 시그널을 나타내지 않았다. 광학이성질체인 D-아미노산들은 같은 파장 영역에서 y축의 반대편에 같은 양상의 시그널을 나타내었다 (도 3). 이는 기존에 알려져 있는 키랄성 물질의 특성임을 확인할 수 있었다. 은 나노입자 자체는 어떠한 영역에서도 아무런 시그널을 나타내지 못하는 것을 알 수 있었다 (도 4의 c).As a result, each of the L-amino acids showed a relatively broad single signal in the far-UV region (190-240 nm) and near-UV region (240-400 nm). Showed no signal. The optical isomers of D-amino acids showed the same pattern of signal on the opposite side of the y-axis in the same wavelength region (FIG. 3). This was confirmed that the characteristics of the chiral material known in the art. The silver nanoparticles themselves did not show any signal in any region (Fig. 4c).

라이신과 글루타민 용액에 은 나노입자 용액을 가하여 원평광 이색성 분광법으로 측정하였을 때 근자외선 영역에서 아무런 시그널도 나타내지 않았지만 (도 4의 d,e,f,g), 시스테인의 경우에는 은 나노입자와 혼합하였을 때, 근자외선 영역에서 완전히 새로운 특징적인 시그널을 나타내었다 (도 4의 a, b). When the silver nanoparticle solution was added to the lysine and glutamine solution and measured by circular dichroism spectroscopy, no signal was shown in the near ultraviolet region (d, e, f, g in FIG. 4), but in the case of cysteine, the silver nanoparticle and When mixed, it showed a completely new characteristic signal in the near ultraviolet region (a, b of FIG. 4).

이는 라이신과 글루타민은 은 나노입자와 비교적 강한 상호작용을 하지 않는 반면, 시스테인은 은 나노입자와 티올(thiol)기를 통해서 강한 화학적 흡착(chemisorption)을 함으로써 야기된다고 판단되었다. 티올기를 갖고 있는 물질이 은과 같은 나노입자의 표면에 화학적인 흡착을 한다는 것은 이미 널리 알려진 현상이며, 이는 본 발명의 새로운 CD 시그널을 형성하는데 매우 필요한 요소라는 것을 보여주고 있다. It was determined that lysine and glutamine do not have relatively strong interactions with silver nanoparticles, whereas cysteine is caused by strong chemisorption through silver nanoparticles and thiol groups. The chemical adsorption of a thiol-based material on the surface of nanoparticles such as silver is a well known phenomenon, which shows that it is a very necessary element for forming a new CD signal of the present invention.

상기와 같은 결과를 입증하기 위해서, 티올기와 키랄성을 동시에 갖는 페니 실아민(penicillamine)과 글루타치온(glutathione: GSH)을 대상으로 동일 농도 조건(10-3M)에서 상기의 시스테인과 동일한 실험을 수행하였다. In order to prove the above results, the same experiment as the cysteine was performed on penicillamine and glutathione (GSH) having both thiol and chirality at the same concentration condition (10 -3 M). .

그 결과, 도 5 내지 도 7에 나타낸 바와 같이, 두 물질 모두 은 나노입자와의 반응을 통해서 모두 새로운 특유의 CD 시그널이 근자외선 영역에서 나타나는 것을 확인할 수 있었다.As a result, as shown in Figures 5 to 7, it was confirmed that both the new unique CD signal appears in the near ultraviolet region through the reaction with both nanoparticles.

실시예 3: 수소결합의 영향 Example 3: Influence of Hydrogen Bond

은 나노입자에 티올기를 통해서 결합된 키랄성 물질들간의 수소결합에 의해서 3차원적인 구조적 변화가 야기된다는 것을 추측하고, 결과적으로 새로운 CD 시그널을 생성하다는 가정을 규명하기 위해서 다음과 같이 실험하였다. To investigate the hypothesis that three-dimensional structural change is caused by hydrogen bonding between chiral materials bonded to thiol groups on silver nanoparticles, the following experiments were performed to elucidate the assumption that a new CD signal is generated.

즉, 시스테인 분자의 카르복실기가 인접한 시스테인 분자의 아민기와 수소결합하는 것을 방지하기 위하여 시스테인의 카르복실기가 에스터화되어 수소결합을 할 수 없는 시스테인 메틸 에스테르(cysteine methyl ester, 10-3M)를 선택하여 은 나노입자 용액을 혼합한 다음, CD로 측정하였다. That is, in order to prevent the carboxyl group of the cysteine group from hydrogen bonding to the amine group of the adjacent cysteine molecule, the cysteine methyl ester (10 -3 M) is selected by which the carboxyl group of the cysteine is esterified to prevent hydrogen bonding. The nanoparticle solution was mixed and then measured by CD.

그 결과, 근자외선 영역에서 아무런 시그널이 형성되지 않는 것을 확인할 수 있었으며, 이러한 결과는 은 나노입자의 표면에 흡착된 시스테인 분자들 사이의 수소결합이 CD 시그널의 형성에 매우 중요한 작용을 한다는 것을 입증하는 것이다.As a result, it was confirmed that no signal is formed in the near ultraviolet region, and these results demonstrate that hydrogen bonding between cysteine molecules adsorbed on the surface of silver nanoparticles plays an important role in the formation of CD signal. will be.

실시예 4: 시스테인 농도에 따른 CD 시그널의 영향 Example 4 Effect of CD Signal on Cysteine Concentration

특유의 CD 시그널을 형성하는 데는 특정된 농도가 작용하는 것을 확인하기 위하여 다음과 같이 실험하였다. In order to confirm the specific concentration of the specific CD signal to form the experiment was performed as follows.

은 나노입자 용액과 같은 부피로 10-4 M의 시스테인 용액을 혼합시켜 CD로 측정해본 결과, 240-400 nm 영역에서 시그널을 얻을 수 없었다 (도 8의 e, f). 같은 측정영역에서 최고 몰 타원율(molar ellipticity)은 시스테인(cysteine)의 농도가 10-3 M일 때 나타났고 (도 8의 c, d), 10-2 M일 때는 오히려 몰 타원율이 감소하는 것을 확인할 수 있었다 (도 8의 a, b). 키랄성 물질인 시스테인의 농도가 10-3 M보다 높아질수록, 결과적으로 야기되는 몰 타원율은 감소하는 경향을 나타내었다.As a result of measuring by CD by mixing 10 -4 M cysteine solution in the same volume as the silver nanoparticle solution, no signal was obtained in the 240-400 nm region (FIG. 8E, f). In the same measurement area, the maximum molar ellipticity appeared when the concentration of cysteine was 10 -3 M (FIG. 8, c, d), and the mole ellipticity was decreased when 10 -2 M. Could be (a, b in Figure 8). As the concentration of cysteine, a chiral substance, was higher than 10 −3 M, the resulting mole ellipticity tended to decrease.

실시예 5: 시간에 따른 CD 시그널의 영향 Example 5: Influence of CD Signal Over Time

은 나노입자가 시스테인과 결합하여 새로운 시그널을 생성하는 시간을 파악하기 위해서, 시그널이 나타나는 특정 파장인 367 nm에서 시간에 따른 CD 시그널에 대응되는 몰 타원율를 측정하였다. To determine the time when silver nanoparticles combine with cysteine to generate a new signal, the mole ellipticity corresponding to the CD signal over time was measured at 367 nm, the specific wavelength at which the signal appeared.

그 결과, 도 9에 나타낸 바와 같이 최고 몰 타원율은 10분 안에 이미 도달한다는 것을 확인할 수 있었으며, 새로운 시그널의 생성이 매우 짧은 시간인 10분 안에 매우 신속하게 생성된다는 것을 알 수 있었다.As a result, as shown in FIG. 9, it was confirmed that the maximum mole ellipticity had already reached in 10 minutes, and that the generation of a new signal was generated very quickly in 10 minutes, which is a very short time.

실시예 6: 금 나노입자와의 실험 Example 6: Experiment with Gold Nanoparticles

동일한 키랄성 물질들이 같은 조건에서 금 나노입자와 결합하였을 경우에는, 근자외선 영역에서 아무런 CD 시그널도 생성되지 않았다. 즉 상기의 결과는 은 나노입자에만 특이적으로 나타나는 것을 알 수 있었다.When the same chiral materials combined with gold nanoparticles under the same conditions, no CD signal was produced in the near ultraviolet region. In other words, the results were found to be specific to the silver nanoparticles.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다. 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, those skilled in the art, these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

이상에서 상세히 설명한 바와 같이, 본 발명에 따른 분석방법에 의하면 키랄성 물질을 은 나노입자와 결합시킴으로써 근자외선 영역에서 특징적인 원평광 이색성 분광 시그널을 얻을 수 있고, 이 원평광 이색성 분광 시그널을 이용하여 키랄성 물질의 유·무, 키랄성 물질 내에 함유되어 있는 티올기의 유·무 및 은 나노입자와 결합된 키랄성 물질의 작용기 사이의 수소결합의 여부를 측정하는데 유용하다.As described in detail above, according to the analytical method according to the present invention, by combining the chiral material with the silver nanoparticles, a characteristic circular flat dichroic spectral signal can be obtained in the near ultraviolet region, and the circular flat dichroic spectral signal is used. Therefore, it is useful to measure the presence or absence of a chiral material, the presence or absence of a thiol group contained in a chiral material, and the hydrogen bond between the functional groups of a chiral material bonded with silver nanoparticles.

Claims (16)

다음 단계를 포함하는 은 나노입자에 결합된 키랄성 물질의 존재 여부, 키랄성 물질 내 티올기의 존재 여부 및 은 나노입자에 결합된 키랄성 물질의 작용기 사이의 수소결합의 유·무를 원평광 이색성 분광법으로 측정하는 방법:The presence or absence of a chiral material bound to the silver nanoparticles, the presence of a thiol group in the chiral material, and the presence or absence of a hydrogen bond between the functional groups of the chiral material bound to the silver nanoparticles are determined by circular dichroism spectroscopy. How to measure: (a) 은 나노입자에 티올기, 카르복실기 또는 아민기를 가지는 키랄성 물질을 결합시키는 단계; 및(a) binding a chiral material having a thiol group, a carboxyl group or an amine group to the silver nanoparticles; And (b) 상기 은 나노입자와 결합된 키랄성 물질, 키랄성 물질 내 티올기 및 수소결합이 존재할 경우, 원평광 이색성 분광법을 이용하여 240-400 ㎚의 근자외선 영역에서 나타나는 원평광 이색성 분광(CD) 시그널로 측정하는 단계.(b) When the chiral material, the thiol group in the chiral material, and the hydrogen bond in the chiral material are combined with the silver nanoparticles, circular dichroism spectroscopy (CD) appears in the near-ultraviolet region of 240-400 nm by using circular dichroism spectroscopy. ) Measurement by signal. 삭제delete 제1항에 있어서, 키랄성 물질은 시스테인(cysteine), 페니실아민(penicillamine) 또는 글루타치온(GSH)을 포함하는 것을 특징으로 하는 방법.The method of claim 1, wherein the chiral material comprises cysteine, penicillamine or glutathione (GSH). 제1항에 있어서, 상기 (a) 단계는 은 나노입자의 표면에 키랄성 물질 내에 함유되어 있는 티올기가 화학적 흡착을 통해 결합함으로써 이루어지는 것을 특징으로 하는 방법. The method of claim 1, wherein the step (a) is performed by chemically adsorbing a thiol group contained in a chiral material on the surface of the silver nanoparticles. 제1항에 있어서, 은 나노입자에 결합된 키랄성 물질의 아민기와 카르복실산 작용기 사이의 수소결합에 의해 은 나노입자들이 재배열되는 것을 특징으로 하는 방법.The method of claim 1, wherein the silver nanoparticles are rearranged by hydrogen bonding between an amine group and a carboxylic acid functional group of the chiral material bound to the silver nanoparticles. 제1항에 있어서, CD 시그널은 은 나노입자와 키랄성 물질 내 티올기와의 강한 화학적 흡착결합 및 키랄성 물질의 작용기들 사이의 수소결합에 인해 측정되는 것임을 특징으로 하는 방법.The method of claim 1, wherein the CD signal is measured due to strong chemical adsorption bonds of silver nanoparticles with thiol groups in the chiral material and hydrogen bonding between functional groups of the chiral material. 삭제delete 제1항에 있어서, 키랄성 물질의 최적 농도는 10-3 M인 것을 특징으로 하는 방 법.The method of claim 1, wherein the optimal concentration of chiral material is 10 -3 M. 삭제delete 삭제delete 다음 단계를 포함하는 키랄성 물질 내 티올기의 결합력 측정방법: Method for measuring the binding force of the thiol group in the chiral material comprising the following steps: (a) 은 나노입자에 티올기, 카르복실기 또는 아민기를 가지는 키랄성 물질을 결합시키는 단계;(a) binding a chiral material having a thiol group, a carboxyl group or an amine group to the silver nanoparticles; (b) 상기 은 나노입자와 결합된 키랄성 물질, 키랄성 물질 내 티올기 및 수소결합이 존재할 경우, 원평광 이색성 분광법을 이용하여 240-400 ㎚의 근자외선 영역에서 나타나는 원평광 이색성 분광(CD) 시그널을 확인하는 단계; 및(b) When the chiral material, the thiol group in the chiral material, and the hydrogen bond in the chiral material are combined with the silver nanoparticles, circular dichroism spectroscopy (CD) appears in the near-ultraviolet region of 240-400 nm by using circular dichroism spectroscopy. Confirming the signal; And (c) 상기 확인된 원평광 이색성 분광(CD) 시그널에 대하여 시그널 몰 타원율을 측정하는 단계.(c) measuring signal mole ellipticity with respect to the identified circular light dichroism spectroscopy (CD) signal. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020040066675A 2004-08-24 2004-08-24 Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy KR100787489B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040066675A KR100787489B1 (en) 2004-08-24 2004-08-24 Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040066675A KR100787489B1 (en) 2004-08-24 2004-08-24 Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy

Publications (2)

Publication Number Publication Date
KR20060018344A KR20060018344A (en) 2006-03-02
KR100787489B1 true KR100787489B1 (en) 2007-12-24

Family

ID=37125983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040066675A KR100787489B1 (en) 2004-08-24 2004-08-24 Method for Detecting of Chiral Compounds Using Ag Nanoparitcles by Circular Dichroism Spectroscopy

Country Status (1)

Country Link
KR (1) KR100787489B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911669B (en) * 2011-08-01 2014-07-09 中南民族大学 Preparation method for water-soluble chiral CdTe quantum dots
KR101494326B1 (en) * 2014-01-07 2015-02-23 고려대학교 산학협력단 Circular dichroism method and apparatus using negative index metamaterials
CN103983587B (en) * 2014-05-14 2016-09-28 广西师范大学 Blue nano silver colloidal sol spectrophotometry benzoyl peroxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040065350A (en) * 2003-01-14 2004-07-22 주식회사 대우일렉트로닉스 Anti-biotic refrigerator with nano silver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040065350A (en) * 2003-01-14 2004-07-22 주식회사 대우일렉트로닉스 Anti-biotic refrigerator with nano silver

Also Published As

Publication number Publication date
KR20060018344A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
Graf et al. Peptide‐coated silver nanoparticles: synthesis, surface chemistry, and pH‐triggered, reversible assembly into particle assemblies
US9410950B2 (en) Luminescent gold nanomaterial functionalized by N-(4-aminobutyl)-N-ethylisoluminol, preparation and application thereof
Liu et al. Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions
Panthi et al. Synthesis of metal nanoclusters and their application in Hg2+ ions detection: a review
Nishida et al. Synthesis and chiroptical study of D/L-penicillamine-capped silver nanoclusters
Yao et al. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines
Tan et al. Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system
Liu et al. Application of cysteine monolayers for electrochemical determination of sub-ppb copper (II)
CA2537199C (en) Precious metal colloid, precious metal microparticle, composition, and process for producing the precious metal microparticle
JP5466226B2 (en) Surface-enhanced Raman scattering activity measurement substrate
Pezzato et al. Monolayer protected gold nanoparticles with metal-ion binding sites: functional systems for chemosensing applications
Miao et al. BSA capped bi-functional fluorescent Cu nanoclusters as pH sensor and selective detection of dopamine
Pan et al. Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@ Pt core-shell nanohybrids
Shu et al. Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free ratiometric fluorescent detection of tris (2-carboxyethyl) phosphine
Liu et al. Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding
Řezanka et al. Supramolecular chirality of cysteine modified silver nanoparticles
Li et al. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag+-enhancing glutathione-capped gold nanoclusters
Cai et al. Histidine-triggered turning-on of gold/copper nanocluster fluorescence for the sensitive and selective detection of histidine
Liu et al. Mineralizing gold-silver bimetals into hemin-melamine matrix: A nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose
Liu et al. β-Cyclodextrin-modified silver nanoparticles as colorimetric probes for the direct visual enantioselective recognition of aromatic α-amino acids
Bigdeli et al. Optical nanoprobes for chiral discrimination
Mishra et al. Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine
Khezri et al. A dual-mode nanosensor based on the inner filter effect of gold nanoparticles on the fluorescence of CdS quantum dots for sensitive detection of arginine
Tmejova et al. Structural effects and nanoparticle size are essential for quantum dots–metallothionein complex formation
Sun et al. Controlled assembly of gold nanostructures on a solid substrate via imidazole directed hydrogen bonding for high performance surface enhance Raman scattering sensing of hypochlorous acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060620

Effective date: 20070731

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee