KR100786943B1 - Phase detect and correction in the dvor - Google Patents

Phase detect and correction in the dvor Download PDF

Info

Publication number
KR100786943B1
KR100786943B1 KR1020060062851A KR20060062851A KR100786943B1 KR 100786943 B1 KR100786943 B1 KR 100786943B1 KR 1020060062851 A KR1020060062851 A KR 1020060062851A KR 20060062851 A KR20060062851 A KR 20060062851A KR 100786943 B1 KR100786943 B1 KR 100786943B1
Authority
KR
South Korea
Prior art keywords
phase
signal
dvor
sideband
antenna
Prior art date
Application number
KR1020060062851A
Other languages
Korean (ko)
Inventor
강승배
윤성욱
이광원
홍동식
박동기
최용규
Original Assignee
한국공항공사
주식회사 모피언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국공항공사, 주식회사 모피언스 filed Critical 한국공항공사
Priority to KR1020060062851A priority Critical patent/KR100786943B1/en
Application granted granted Critical
Publication of KR100786943B1 publication Critical patent/KR100786943B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A method of detecting and correcting a phase for a DVOR(Doppler VHF Omnidirectional Range) is provided to provide accurate phase and control values to a user to manage DVOR equipment easily. A method of detecting and correcting a phase for a DVOR includes the steps of: detecting a signal radiated from a carrier antenna through a vestigial side band antenna; generating four 10kHz by coupling the detected carrier signal and the vestigial side band signal; comparing the phase difference of the four 10kHz with a phase value set by a user; and correcting the phase according to the phase value set by the user by using a pre-set phase table.

Description

도플러전방향표지시설 위상검출 및 교정 방법{Phase detect and correction in the DVOR}Phase detection and correction in the Doppler direction indicator facility

도 1 은 종래의 도플러전방향표지시설에서 위상검출, 교정에 관한 일실시예 구성도,1 is a configuration diagram of an embodiment related to phase detection and calibration in a conventional Doppler orientation marking facility;

도 2 는 본 발명이 적용되는 도플러전방향표지시설의 위상검출 방법에 관한 일실시예 구성도,2 is a configuration diagram of an embodiment of a phase detection method of a Doppler electric direction marking facility to which the present invention is applied;

도 3 은 본 발명의 위상교정 방법에 관한 일실시예 흐름도,3 is a flowchart illustrating an embodiment of a phase calibration method according to the present invention;

도 4 는 본 발명의 위상교정을 위한 위상테이블 생성 방법에 관한 일실시예 흐름도이다4 is a flowchart illustrating a method of generating a phase table for phase correction according to the present invention.

〈 도면의 주요 부분에 대한 부호의 설명 〉<Description of the code | symbol about the principal part of drawing>

11: 주파수발생부11: frequency generator

12: 진폭변조 및 전력 증폭부12: amplitude modulation and power amplifier

13: 상, 하 측파대 발생부13: upper and lower sideband generator

14: 상, 하 측파대 샘플부14: Upper and lower sideband sample section

15: 측파대 안테나 스위칭부15: sideband antenna switching unit

16: Carrier 안테나16: Carrier Antenna

17: 측파대 안테나17: sideband antenna

21: 변조신호 발생부21: modulation signal generator

22: Carrier 신호 발생 및 증폭부22: Carrier signal generation and amplification unit

23: 상,하 측파대신호 발생 및 증폭부23: upper and lower sideband signal generation and amplification unit

24: 절체 및 Power 검출부24: transfer and power detector

25: 측파대 안테나 스위칭부25: sideband antenna switching unit

26: Carrier 안테나26: Carrier Antenna

27: 측파대 안테나27: sideband antenna

본 발명은 도플러전방향표지시설(이하 DVOR"이라 함) 위상검출 및 교정방법에 관한 것으로, 더욱 상세하게는 DVOR에서는 3개의 RF 신호가 49개의 안테나를 통하여 방사되는데 상기 3개의 다른 주파수를 가지는 RF신호는 위상이 동일하여야 항공기에 정확한 방위각 정보를 제공할 수 있기에 DVOR에서 위상일치는 DVOR의 성능을 좌우한다. 상기 위상차이를 송신기내부에서 검출하는 것이 아니라 Carrier안테나를 통하여 방사되는 신호를 측파대 송신안테나에서 수신하여 위상차이를 검출하고 상기 위상차이를 위상테이블을 통하여 사용자가 설정하고자 하는 위상 값과 정확히 일치시키도록 하는 방법에 관한 것이다.The present invention relates to a method for detecting and calibrating a Doppler direction marking facility (hereinafter referred to as DVOR). More specifically, in a DVOR, three RF signals are radiated through 49 antennas. Since the signal must be in phase to provide accurate azimuth information to the aircraft, phase matching in DVOR dictates the performance of DVOR, rather than detecting the phase difference inside the transmitter, the sideband transmission of the signal emitted through the carrier antenna. The present invention relates to a method for detecting a phase difference received by an antenna and accurately matching the phase difference with a phase value to be set by a user through a phase table.

여기서 DVOR은 Doppler VHF Omnidirectional Range의 약자이며 도플러전방향표지시설이라 부르며, 이 무선송신시스템은 주로 공항이나 산 정상에 설치되어 이 착륙 또는 항행하는 항공기에게 전 방향으로 방위각정보를 0˚에서 360˚까지 제공해주는 장비로서 안전한 항공기 이착륙 및 운항에 필수적인 장비를 말한다.DVOR stands for Doppler VHF Omnidirectional Range and is called Doppler Directional Signage Facility. This radio transmission system is mainly installed at the top of an airport or mountain, and azimuth information is transmitted from 0˚ to 360˚ in all directions to this landing or flying aircraft. Equipment that provides essential equipment for safe takeoff and landing.

이 DVOR장비는 VHF대역중 108㎒에서 117.975㎒대역에서 사용하며, 또한 3개의 RF신호, 즉 Carrier 신호, 상측파대 신호, 하측파대신호를 방사하는데, 각각의 주파수 차이는 Carrier 신호보다 상측파대 신호 주파수는 10㎑높으며, 하측파대 신호는 Carrier 신호 주파수보다 10㎑낮다.This DVOR equipment is used in 108MHz to 117.975MHz band of the VHF band and emits three RF signals, Carrier signal, upper band signal and lower band signal, and the difference of each frequency is higher than the carrier signal. Is 10㎑ higher and the lower band signal is 10㎑ lower than Carrier signal frequency.

상측파대 신호와 하측파대 신호는 다시 코사인(Cosine) 신호와 사인(Sine) 신호로 나누어진다. 즉 상측파대 신호는 코사인 상측파대 신호와 사인 상측파대 신호, 하측파대 신호는 코사인 하측파대 신호와 사인 하측파대 신호로 나누어지는데 코사인 신호와 사인 신호는 주파수는 동일하나 위상이 90˚차이가 발생한다.The upper band signal and the lower band signal are divided into a cosine signal and a sine signal. That is, the upper sideband signal is divided into the cosine upper sideband signal and the sine upper sideband signal, and the lower sideband signal is divided into the cosine lower sideband signal and the sinusoidal lower sideband signal. The cosine signal and the sine signal have the same frequency but have a phase difference of 90 °.

Carrier 신호는 하나의 Carrier안테나를 통하여 계속적으로 방사되고, 상측파대 신호, 하측파대 신호는 48개의 측파대 안테나(Carrier안테나를 중심으로 반경 약 7m의 원형에 설치됨)를 통하여 단속적으로 스위칭이 되면서 방사된다.Carrier signal is continuously radiated through one Carrier antenna, and upper and lower band signals are radiated by intermittently switching through 48 sideband antennas (installed in a circle of about 7m radius around the carrier antenna). .

도 1 은 종래의 도플러전방향표지시설에서 위상검출, 교정에 관한 일실시예 구성도이다.1 is a diagram illustrating a configuration of phase detection and calibration in a conventional Doppler electric direction indication facility.

도 1 에 도시된바와 같이 종래의 DVOR 위상검출은 상, 하 측파대 샘플부(14)에서 상, 하 측파대 신호를 검출한다. 샘플신호는 측파대 안테나 스위칭부(15)와 측파대 안테나(17)로 방사되기 이전에 검출하는 방법을 이용한다. 상기 검출된 2개의 측파대 샘플신호는 3개의 RF신호를 생성하는 주파수발생부(11)에 전송하며 샘플된 두 측파대신호는 Carrier 신호와 결합하여 주파수 차이인 2개의 10㎑를 생성하 며 기준 10㎑와 비교하여 아날로그신호인 두 개의 위상오차전압을 생성하여 상, 하 측파대 RF 주파수를 제어하는 방법으로 위상교정을 수행한다.As shown in FIG. 1, the conventional DVOR phase detection detects the upper and lower sideband signals in the upper and lower sideband sample unit 14. The sample signal uses a method of detecting before being emitted to the sideband antenna switching unit 15 and the sideband antenna 17. The detected two sideband sample signals are transmitted to the frequency generator 11 generating three RF signals, and the sampled two sideband signals are combined with a carrier signal to generate two 10 kHz frequencies. Phase correction is performed by generating two phase error voltages, analog signals, and controlling the upper and lower sideband RF frequencies.

즉 종래의 DVOR에서의 위상검출 및 교정방법은 장비내부에서 두 개의 샘플신로를 검출하여 아날로그의 두 개의 위상오차전압을 하기에 실제 방사되는 신호의 위상오차라 할 수 없으며, 이를 통하여 위상을 제어방법이 아날로그방법에 의한 가변저항을 통하여 이루어지기에 사용자가 원하는 정확한 위상차이를 구현하거나, 제어하기에 어려운 문제점이 있다.In other words, the phase detection and calibration method in the conventional DVOR detects two sample paths inside the equipment and performs two phase error voltages of analog so that it is not a phase error of a signal that is actually radiated. Since the method is made through the variable resistor by the analog method, it is difficult to implement or control the exact phase difference desired by the user.

본 발명은 상기 문제점을 해결하기 위하여 제안된 것으로, DVOR의 Carrier 안테나에서 방사된 신호를 48개의 측파대 안테나에서 수신하여 위상차를 검출하는 방법으로 실제 항공기에서 수신하는 신호의 위상오차와 동일하며, 검출된 위상오차를 디지털적으로 오차를 계산함으로 사용자가 위상오차 값을 정확히 인지하며, 사용자에 의해 설정된 위상 값으로 이미 작성한 위상테이블을 이용하여 즉시 위상을 제어할 수 있기에 위상검출과 교정을 정확히 수행하는 방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems, and is a method of detecting a phase difference by receiving signals emitted from a carrier antenna of a DVOR from 48 sideband antennas and is identical to a phase error of a signal received from an actual aircraft. By calculating the error of the phase error digitally, the user can accurately recognize the phase error value and perform phase detection and calibration accurately because the phase can be controlled immediately using the phase table already prepared by the phase value set by the user. The purpose is to provide a method.

본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. It will also be readily apparent that the objects and advantages of the invention may be realized by the means and combinations thereof indicated in the claims.

상기 목적을 달성하기 위한 본 발명의 방법은, DVOR에서 위상 검출 및 교정방법으로, Carrier 안테나에서 방사한 신호를 48개의 측파대안테나에서 검출하는 1단계; 검출된 Carrier신호와 측파대신호를 비교하여 4개의 10㎑를 발생시키는 2단계; 이 4개의 10㎑의 위상차이를 사용자가 설정한 위상값과 비교하는 3단계; 이미 만들어진 위상테이블을 이용하여 사용자 설정 위상값과 일치시켜 위상을 교정하는 4단계를 포함하는 것을 특징으로 한다.The method of the present invention for achieving the above object is a phase detection and calibration method in the DVOR, the first step of detecting the signal emitted from the Carrier antenna in 48 sideband antennas; Comparing the detected carrier signal with the sideband signal to generate four 10 kHz; 3 steps of comparing the phase difference of these four 10 microseconds with the phase value set by the user; And a four step of correcting the phase by matching the user-set phase value using the already created phase table.

상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 첨부된 도면을 참조하여 본 발명에 따른 바람직한 일실시예를 상세히 설명하기로 한다.The above objects, features and advantages will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, whereby those skilled in the art may easily implement the technical idea of the present invention. There will be. In addition, in describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2 는 본 발명이 적용되는 도플러전방향표지시설의 위상검출 방법에 관한 일실시예 구성도이다.2 is a configuration diagram of an embodiment of a phase detection method of a Doppler electric direction marking facility to which the present invention is applied.

도 2 에 도시된 바와 같이, 본 발명이 적용되는 DVOR 위상검출 방법은 변조신호 발생부(21), Carrier 신호 발생 및 증폭부(22), 상, 하 측파대신호 발생 및 증폭부(23), 절체 및 Power 검출부(24), 측파대 안테나 스위칭부(25), Carrier 안테나(26), 측파대 안테나(27)을 포함한다.As shown in FIG. 2, the DVOR phase detection method to which the present invention is applied includes a modulation signal generator 21, a carrier signal generator and amplifier 22, an upper and lower sideband signal generator and amplifier 23, The transfer and power detector 24, sideband antenna switching unit 25, Carrier antenna 26, sideband antenna 27 is included.

먼저, DVOR Carrier 안테나(26)에서 방사되는 Carrier신호를 48개의 측파대 안테나(27)를 통하여 수신하며, 이 수신된 Carrier 신호는 측파대 안테나 스위칭부(25)를 거쳐 송신기 절체 및 Power 검출부(24)에서 상측파대 신호 혹은 하측파대 신호와 결합하여 각각의 주파수 차이에 해당하는 10㎑를 발생시킨다.First, the carrier signal radiated from the DVOR carrier antenna 26 is received through 48 sideband antennas 27, and the received carrier signal is transmitted through the sideband antenna switching unit 25 and the transmitter switching and power detection unit 24 is performed. ) Is combined with the upper band signal or the lower band signal to generate 10 kHz for each frequency difference.

이후 위상차이에 해당되는 4개의 10㎑는 변조신호발생부(21)로 입력된다.Thereafter, four 10 ms corresponding to the phase difference are input to the modulation signal generator 21.

도 3 은 본 발명의 위상교정 방법에 관한 일실시예 흐름도이다.3 is a flowchart illustrating an embodiment of a phase calibration method according to the present invention.

상기 위상검출 방법에 관한 일실시예에서 4개의 10㎑는 변조신호 발생부에 일정시간마다 입력되고 먼저, Carrier 신호와 상측파대신호의 위상차이에 해당하는 2개의 10㎑와 Carrier 신호와 하측파대신호의 위상차이에 해당하는 2개의 10㎑의 상호간의 위상차이를 계산한다.(301)In one embodiment of the phase detection method, four 10 Hz are input to the modulation signal generator every predetermined time, and first, two 10 Hz, the Carrier signal and the lower band signal corresponding to the phase difference between the Carrier signal and the upper band signal are first. Compute the phase difference between two 10 ㎑ phases corresponding to the phase difference of (301).

이 위상차이 값은 사용자가 설정한 위상차이값과 비교된다.(302)This phase difference value is compared with the phase difference value set by the user (302).

이 비교값이 일정범위 이상인 경우에 설정값에 해당하는 위상제어값을 이전에 생성한 위상테이블을 통하여 읽는다.(303)When the comparison value is over a certain range, the phase control value corresponding to the set value is read through the previously generated phase table.

읽어온 값을 위상제어용 DAC(Digital to Analog Converter)에 입력한다.(304)Input the read value to the DAC (Digital to Analog Converter) for phase control (304).

이후, Carrier 신호와 상측파대신호의 위상차이에 해당하는 2개의 10㎑와 Carrier 신호와 하측파대신호의 위상차이에 해당하는 2개의 10㎑의 상호간의 위상차이를 다시 계산한다.(305)Thereafter, the phase difference between the two 10 kHz corresponding to the phase difference between the Carrier signal and the upper band signal and the two 10 에 corresponding to the phase difference between the Carrier signal and the lower band signal is recalculated.

다시 계산된 값이 사용자가 설정한 위상차이 값의 일정범위 이내인 경우에는 이 과정을 종료하나, 일정범위를 벗어난 경우에는 위상제어값을 조금씩 변경하며 위상을 일정범위이내에서 유지되도록 한다.(306)If the recalculated value is within a certain range of the phase difference value set by the user, the process is terminated, but if it is out of the predetermined range, the phase control value is changed little by little and the phase is kept within a certain range. )

도 4 는 본 발명의 위상교정을 위한 위상테이블 생성 방법에 관한 일실시예 흐름도이다.4 is a flowchart illustrating an embodiment of a method of generating a phase table for phase correction according to the present invention.

상기 위상교정을 빠르고 정확하게 수행하기 위하여 최초 Power On시, Reset시에 위상테이블을 미리 생성한다.In order to perform the phase calibration quickly and accurately, a phase table is generated in advance upon initial power-on and reset.

먼저 위상제어값을 0으로 설정한 후(401) Carrier 신호와 상측파대신호의 위상차이에 해당하는 2개의 10㎑와 Carrier 신호와 하측파대신호의 위상차이에 해당하는 2개의 10㎑의 위상차이를 계산하여(402) 위상테이블에 기록한다.(403)First, the phase control value is set to 0 (401), and then the phase differences between two 10 Hz corresponding to the phase difference between the Carrier signal and the upper band signal and two 10 Hz corresponding to the phase difference between the Carrier signal and the lower band signal are determined. It is calculated (402) and recorded in the phase table (403).

위상제어값을 위상차이가 0˚에서 360˚까지 위상테이블에 채워질 때 까지 증가시킨다.(404) 위상제어값과 0˚에서 360˚까지의 위상차이가 위상테이블에 완성되면 위상테이블 생성과정을 종료한다.The phase control value is increased until the phase difference is filled in the phase table from 0 ° to 360 °. (404) When the phase control value and the phase difference from 0 ° to 360 ° are completed in the phase table, the phase table generation process is terminated. do.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상기와 같은 본 발명은 DVOR에서 3개의 RF신호의 위상을 일치시킴으로 항공기에게 정확한 방위각정보를 제공해 줄 수 있을 뿐만 아니라, 사용자에게 정확한 위상값 과 제어값을 제공하여 DVOR장비를 용이하게 관리할 수 있는 효과가 있다.The present invention as described above can not only provide accurate azimuth information to the aircraft by matching the phase of the three RF signals in the DVOR, but also can accurately manage the DVOR equipment by providing the correct phase value and control value to the user It works.

Claims (1)

DVOR 위상 검출 및 교정방법에 있어서,In the DVOR phase detection and correction method, Carrier 안테나에서 방사한 신호를 측파대 안테나를 통하여 검출하는 1단계;Detecting a signal emitted from a carrier antenna through a sideband antenna; 검출된 Carrier신호와 측파대신호를 결합하여 4개의 10㎑를 발생시키는 2단계;Combining two detected carrier signals with sideband signals to generate four 10 kHz; 이 4개 10㎑ 위상차이를 사용자가 설정한 위상 값과 비교하는 3단계; 및A step 3 for comparing the four 10 kHz phase differences with a phase value set by a user; And 이미 만들어진 위상테이블을 이용하여 사용자 설정 위상 값과 일치시켜 위상을 교정하는 4단계를 포함하는 DVOR의 위상검출 및 교정방법.A phase detection and calibration method of a DVOR comprising four steps of correcting a phase by matching a user set phase value using a phase table which has already been made.
KR1020060062851A 2006-07-05 2006-07-05 Phase detect and correction in the dvor KR100786943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060062851A KR100786943B1 (en) 2006-07-05 2006-07-05 Phase detect and correction in the dvor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060062851A KR100786943B1 (en) 2006-07-05 2006-07-05 Phase detect and correction in the dvor

Publications (1)

Publication Number Publication Date
KR100786943B1 true KR100786943B1 (en) 2007-12-17

Family

ID=39147401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060062851A KR100786943B1 (en) 2006-07-05 2006-07-05 Phase detect and correction in the dvor

Country Status (1)

Country Link
KR (1) KR100786943B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363676B1 (en) 2013-03-26 2014-02-17 주식회사 모피언스 Phase correction method of coaxial cable delay in the dvor monitoring receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567486A (en) 1983-02-07 1986-01-28 Rockwell International Corporation Phase difference measurement technique for VOR
JPH03199987A (en) * 1989-12-27 1991-08-30 Toshiba Corp Vor receiver
JPH06167559A (en) * 1992-11-27 1994-06-14 Toshiba Tesco Kk Proximity phase error compensation device in double sideband doppler vor
JP2003101339A (en) 2001-09-21 2003-04-04 Toshiba Corp Array antenna and receiver utilizing it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567486A (en) 1983-02-07 1986-01-28 Rockwell International Corporation Phase difference measurement technique for VOR
JPH03199987A (en) * 1989-12-27 1991-08-30 Toshiba Corp Vor receiver
JPH06167559A (en) * 1992-11-27 1994-06-14 Toshiba Tesco Kk Proximity phase error compensation device in double sideband doppler vor
JP2003101339A (en) 2001-09-21 2003-04-04 Toshiba Corp Array antenna and receiver utilizing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363676B1 (en) 2013-03-26 2014-02-17 주식회사 모피언스 Phase correction method of coaxial cable delay in the dvor monitoring receiver

Similar Documents

Publication Publication Date Title
US10237698B2 (en) System and method of locating a radio frequency (RF) tracking device using a calibration routine
US5010343A (en) Method and device in the antenna and receiving system of a radio theodolite
CN107942285B (en) Time difference of arrival measuring method, device, control device and terminal
CN102138080A (en) Device and method for determining the distance and/or orientation of a moveable object
US8154303B2 (en) Method for locating cable impairments
CN105317626A (en) Determining a yaw direction of a wind turbine
CN109660305A (en) A kind of pair of multichannel receiver amplitude, phasing and compensation method
US20170230129A1 (en) Apparatus, portable apparatus and method for detecting passive intermodulation
JP2012026913A (en) Ils device
US3234554A (en) Radio navigation system
CN109831261A (en) Doppler VHF omnirange transmission channel closed loop calibration system and method
US2947985A (en) Navigation systems
CN110208737B (en) Ultrashort wave double-channel broadband direction finding system and threshold judgment direction finding method
US4197542A (en) Radio navigation system
KR100786943B1 (en) Phase detect and correction in the dvor
JPS6367868B2 (en)
JPS5817434B2 (en) Shutoshite (Omega Sadow System)
US3916411A (en) Electronic direction finding apparatus
KR101925570B1 (en) Method and apparatus for providing target tracing in antenna system
US2511030A (en) Omnidirectional beacon
CN104793227A (en) GPS indoor positioning system and indoor positioning method based on GPS indoor positioning system
US3173140A (en) Doppler omnirange navigational system
US2585605A (en) Navigational system
US2515344A (en) Radio beacon system
CN105703844B (en) A kind of production method and transmitter of VOR standard signals

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121025

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 13