KR100777685B1 - Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same - Google Patents

Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same Download PDF

Info

Publication number
KR100777685B1
KR100777685B1 KR1020060059423A KR20060059423A KR100777685B1 KR 100777685 B1 KR100777685 B1 KR 100777685B1 KR 1020060059423 A KR1020060059423 A KR 1020060059423A KR 20060059423 A KR20060059423 A KR 20060059423A KR 100777685 B1 KR100777685 B1 KR 100777685B1
Authority
KR
South Korea
Prior art keywords
mol
solid oxide
conductivity
fuel cells
electrolyte
Prior art date
Application number
KR1020060059423A
Other languages
Korean (ko)
Inventor
이시우
우상국
유지행
서두원
홍기석
한인섭
유진성
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020060059423A priority Critical patent/KR100777685B1/en
Application granted granted Critical
Publication of KR100777685B1 publication Critical patent/KR100777685B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A perovskite structured solid oxide electrolyte and a solid oxide fuel cell containing the electrolyte are provided to obtain pure ion conductivity free from electron conductivity under specific condition. A perovskite structured solid oxide electrolyte is an oxygen ion conductor represented by La_(1-x) Sr_x Ga_(1-y-z) Mg_y Fe_z O-(3-delta) and has an ion conductivity of 0.05 S/cm or more at a temperature of 800 deg.C, wherein 0.2<x<=0.3, 0.2<y<=0.4, 0<z<=0.08, and 0<=delta<=1.

Description

고체산화물연료전지용 페로프스카이트 구조 고체 전해질 및 이를 포함하는 연료전지{Perovskite type Solid Electrolytes for Solid Oxide Fuel Cells and Fuel Cells containing the same}Perovskite structure solid electrolyte for solid oxide fuel cell and fuel cell comprising same {Perovskite type Solid Electrolytes for Solid Oxide Fuel Cells and Fuel Cells containing the same}

도 1은 Sr과 Mg의 치환량이 각각 30 mol%와 40 mol%인 LaGaO3에 있어서, Mg에 대해 Fe를 일부 치환하여 제조된 고체 전해질의 X-선 회절 결과이다. (●: 페로프스카이트, La1 - xSrxGa1 - yMgyO3, ▼: LaSrGaO4, ■: MgO) 각 시편의 표기 원칙은 구성 양이온을 알파벳 첫글자로 나타내며, 치환되는 양이온 (Sr, Mg 및 Fe)의 mol%를 두자리씩 병기하여 나타낸다. FIG. 1 shows X-ray diffraction results of a solid electrolyte prepared by partially substituting Fe for Mg in LaGaO 3 having Sr and Mg substitution amounts of 30 mol% and 40 mol%, respectively. (●: Perovskite, La 1 - x Sr x Ga 1 - y Mg y O 3 , ▼: LaSrGaO 4 , ■: MgO) The marking principle of each specimen is indicated by the first letter of the alphabet, Mol% of (Sr, Mg and Fe) is shown in two digits.

도 2는 Sr과 Mg의 치환량이 각각 30 mol%와 20 mol%인 LaGaO3에 있어서, Mg에 대해 Fe를 일부 치환하여 제조된 고체 전해질의 X-선 회절 결과이다. (●: 페로프스카이트, La1 - xSrxGa1 - yMgyO3, ▼: LaSrGa3O7)FIG. 2 shows X-ray diffraction results of a solid electrolyte prepared by partially substituting Fe for Mg in LaGaO 3 having Sr and Mg substitution amounts of 30 mol% and 20 mol%, respectively. (●: perovskite, La 1 - x Sr x Ga 1 - y Mg y O 3 , ▼: LaSrGa 3 O 7 )

도 3은 Sr과 Mg의 치환량이 각각 25 mol%와 20 mol%인 LaGaO3에 있어서, Mg에 대해 Fe를 일부 치환하여 제조된 고체 전해질의 X-선 회절 결과이다. (●: 페로프스카이트, La1 - xSrxGa1 - yMgyO3, ▼: LaSrGa3O7)FIG. 3 shows X-ray diffraction results of a solid electrolyte prepared by partially substituting Fe for Mg in LaGaO 3 having Sr and Mg substitution amounts of 25 mol% and 20 mol%, respectively. (●: perovskite, La 1 - x Sr x Ga 1 - y Mg y O 3 , ▼: LaSrGa 3 O 7 )

도 4는 일반적인 전도성 산화물에서 전하나르개와 산소분압에 따른 전기전도 도 변화이다.Figure 4 is a change in the electrical conductivity according to the total charge and oxygen partial pressure in a common conductive oxide.

도 5는 Sr과 Mg의 치환량이 각각 25 mol%와 20 mol%인 LaGaO3의 산소분압에 따른 전기전도도 변화이다. 5 is a change in electrical conductivity according to the oxygen partial pressure of LaGaO 3 of Sr and Mg substitution amounts of 25 mol% and 20 mol%, respectively.

도 6은 Sr과 Mg의 치환량이 각각 25 mol%와 20 mol%인 LaGaO3에 있어서, Mg에 대해 Fe를 2 mol% 치환한 고체 전해질의 산소분압에 따른 전기전도도 변화이다.6 is a change in electrical conductivity according to oxygen partial pressure of a solid electrolyte in which 2 mol% of Fe is substituted for Mg in LaGaO 3 having Sr and Mg substitution amounts of 25 mol% and 20 mol%, respectively.

도 7은 Sr과 Mg의 치환량이 각각 25 mol%와 20 mol%인 LaGaO3에 있어서, Mg에 대해 Fe를 4 mol% 치환한 고체 전해질의 산소분압에 따른 전기전도도 변화이다.7 is a change in electrical conductivity according to the oxygen partial pressure of a solid electrolyte in which 4 mol% Fe is substituted for Mg in LaGaO 3 having Sr and Mg substitution amounts of 25 mol% and 20 mol%, respectively.

도 8은 Sr과 Mg의 치환량이 각각 25 mol%와 20 mol%인 LaGaO3에 있어서, Mg에 대해 Fe를 8 mol% 치환한 고체 전해질의 산소분압에 따른 전기전도도 변화이다.8 is a change in electrical conductivity according to the oxygen partial pressure of a solid electrolyte in which 8 mol% Fe is substituted for Mg in LaGaO 3 having Smol and Mg substitution amounts of 25 mol% and 20 mol%, respectively.

본 발명은 고체산화물연료전지 (Solid Oxide Fuel Cell, SOFC)에 사용되는 고체전해질에 관한 것으로서, 특히 페로프스카이트 구조의 다성분계 고체산화물 전해질 및 이를 이용하여 구성되는 고체산화물연료전지에 관한 것이다.The present invention relates to a solid electrolyte used in a solid oxide fuel cell (SOFC), and more particularly, to a multi-component solid oxide electrolyte having a perovskite structure and a solid oxide fuel cell constituted using the same.

고체산화물연료전지의 고체전해질로는 형석구조의 이트리아 안정화 지르코니아(Yttria stabilized zirconia, YSZ)가 오래전부터 널리 사용되고 있다. 이트리아 안정화 지르코니아는 높은 이온전도성, 극히 낮은 전자전도성, 환원분위기에서의 장기적인 안정성 등 고체산화물로서 사용되기에 적합한 특성을 갖추고 있다. 다만, 이를 이용한 고체산화물연료전지의 작동을 위해서는 고체산화물의 이온전도성을 높이기 위해 1000℃ 정도의 온도를 필요로 하는 단점이 있다.Yttria stabilized zirconia (YSZ) of fluorite structure has been widely used as a solid electrolyte for solid oxide fuel cells. Yttria stabilized zirconia has properties suitable for use as solid oxides such as high ionic conductivity, extremely low electron conductivity, and long term stability in a reducing atmosphere. However, in order to operate the solid oxide fuel cell using the same, there is a disadvantage in that a temperature of about 1000 ° C. is required to increase the ion conductivity of the solid oxide.

고체산화물연료전지의 작동 온도를 800℃ 이하로 낮추게 되면, 연료전지의 제조 단가를 크게 낮출 수 있다. 작동 온도를 낮추는 방법으로는, 전해질의 두께를 감소시켜 저항을 낮추고 전극을 지지체로 구성하는 방법과 중저온에서도 이온전도도가 높은 고체전해질로 대체하는 방법이 있다. When the operating temperature of the solid oxide fuel cell is lowered to 800 ° C. or lower, the manufacturing cost of the fuel cell can be significantly lowered. As a method of lowering the operating temperature, there is a method of reducing the thickness of the electrolyte to lower the resistance, configuring the electrode as a support, and replacing the solid electrolyte with high ion conductivity even at low and low temperatures.

중저온에서 높은 이온전도성을 갖는 소재로서는, 스칸디아 치환형 지르코니아, 가돌리늄 치환형 세리아, 사마륨 치환형 세리아 등의 형석구조 산화물과 페로프스카이트 구조의 양이온 치환형 란타늄 갈레이트 등이 제안된다.As materials having high ionic conductivity at low and low temperatures, fluorite oxides such as Scandia substituted zirconia, gadolinium substituted ceria, and samarium substituted ceria, and cation substituted lanthanum gallate having a perovskite structure are proposed.

문헌 [T. Ishihara 등, J. Am. Chem. Soc., Vol.116, pp.3801-3803 (1994)]에서 LaGaO3를 기본으로 하고 Sr과 Mg 등의 양이온이 부분 치환된 페로프스카이트 구조의 다성분계 산화물에서 높은 이온전도도를 나타낸다고 보고된 바 있다. 다만, Sr과 Mg이 고용될 수 있는 조성범위가 넓지 않으며, 특히 각각 20 mol% 이상에 해당하는 경우에는 고용한계(solubility limit)를 넘어서게 되어 전도성 페로스카이트 단일상 구조가 변형되고 고저항 성분인 불순물 상이 형성된다고 알려져 있다 [K. Huang 등, J. Am. Ceram. Soc., Vol.81, pp.2565 (1998)].T. Ishihara et al., J. Am. Chem. Soc., Vol. 116, pp. 3801-3803 (1994)] reported high ionic conductivity in multi-component oxides of perovskite structure based on LaGaO 3 and partially substituted with cations such as Sr and Mg. There is a bar. However, the composition range in which Sr and Mg can be solvated is not wide. Especially, in case of 20 mol% or more, the solution exceeds the solubility limit, so that the conductive perovskite single phase structure is deformed. Impurity phases are known to form [K. Huang et al., J. Am. Ceram. Soc., Vol. 81, pp. 2565 (1998).

한편, Sr과 Mg이 치환된 LaGaO3에 있어서, Fe, Co, 또는 Ni 등의 전이금속을 소량 치환함으로써 이온전도도가 증가된다는 보고가 있으나, 역시 Sr과 Mg이 20 mol% 이내인 범위에서 적용되는 결과이다 [T. Ishihara 등, Solid State Ionics, Vol.135, pp.631 (2000)]. 고용한계를 넘어서는 경우에는 LaSrGaO4와 LaSrGa3O7 등의 불순물 상이 생성되는데 이들은 전기적 저항이 매우 커서, 전체 전해질의 이온전도도를 낮추는 역할을 하게 된다.On the other hand, in LaGaO 3 substituted with Sr and Mg, it has been reported that the ionic conductivity is increased by a small amount of transition metal such as Fe, Co, or Ni, but also applied in the range of Sr and Mg within 20 mol% Result [T. Ishihara et al., Solid State Ionics, Vol. 135, pp. 631 (2000). In the case of exceeding the high solubility limit, impurity phases such as LaSrGaO 4 and LaSrGa 3 O 7 are generated. These have very high electrical resistance, which lowers the ionic conductivity of the entire electrolyte.

본 발명의 목적은 기존에 공지된 조성범위와 달리, Sr과 Mg이 20 mol% 이상 치환된 LaGaO3 조성에 있어서, Fe를 미량 치환함으로써 페로프스카이트 단일상을 가지며 이온전도도가 향상된, 고체 전해질로서 이상적인 특성을 갖는 고체산화물 전해질을 제공하는데 있다.An object of the present invention is a solid electrolyte, which has a perovskite single phase and improved ion conductivity in a LaGaO 3 composition in which Sr and Mg are substituted at least 20 mol%, in contrast to a composition range known in the art. To provide a solid oxide electrolyte having an ideal property as.

본 발명은 하기 화학식1의 연료전지용 고체산화물 전해질에 관한 것이다. The present invention relates to a solid oxide electrolyte for a fuel cell of Formula 1 below.

Figure 112006046743521-pat00001
Figure 112006046743521-pat00001

(단, 0.2≤ x ≤0.3(Where 0.2≤ x ≤0.3

0.2≤ y ≤0.40.2≤ y ≤0.4

0< z ≤0.08
0≤ δ ≤1이다.)
여기에서 상기 화학식1에서의 δ는 산소격자결함, 즉 산소빈자리(oxygen vacancy)의 mole수를 나타내는 수치로서, 치환양이온의 농도, 온도 또는 산소분압에 따라 달라지는 값이다.
0 <z ≤0.08
0 ≦ δ ≦ 1.)
In the formula (1), δ is an oxygen lattice defect, that is, a numerical value representing the number of moles of oxygen vacancy, which is dependent on the concentration of the substituted cation, temperature, or oxygen partial pressure.

상기 전해질은 산소이온전도체로서, 800℃에서 0.05 S/cm 이상의 이온전도도를 나타내며, 페로프스카이트 구조이다.The electrolyte is an oxygen ion conductor, and exhibits an ion conductivity of 0.05 S / cm or more at 800 ° C., and has a perovskite structure.

페로프스카이트 구조는 ABO3으로 표시될 수 있다. 상기 A 자리 원자에는 La과 Sr이, B 자리 원자에는 Ga, Mg 및 Fe가 해당된다.The perovskite structure can be represented by ABO 3 . La and Sr correspond to A-position atom, and Ga, Mg, and Fe correspond to B-position atom.

또한, 본 발명은 상기 고체산화물 전해질을 포함하고, 전자전도성과 이온전도성을 동시에 갖는 공기극과 연료극으로 구성되는 것을 특징으로 하는 고체산화물 연료전지를 제공한다.The present invention also provides a solid oxide fuel cell comprising the solid oxide electrolyte and comprising an air electrode and a fuel electrode having both electron conductivity and ion conductivity.

본 발명의 산화물 전해질이 산소이온 전도성을 갖는 원리는 다음과 같다. 3가의 원자가를 갖는 La의 자리에 2가의 원자가를 갖는 Sr을 일부분 치환시키면 하기 수학식1의 결함방정식에 나타낸 것과 같이, 산소빈자리가 생성된다.The principle that the oxide electrolyte of the present invention has oxygen ion conductivity is as follows. Partial substitution of Sr having a divalent valence at the position of La having a trivalent valence produces an oxygen vacancy, as shown in the defect equation of Equation 1 below.

Figure 112006046743521-pat00002
Figure 112006046743521-pat00002

산소이온은 산소빈자리를 통해 이동하게 되므로, 산소빈자리의 농도가 증가하게 되면 산소이온 전도도가 증가하므로 고체 전해질로서 사용이 가능하다. Since oxygen ions move through the oxygen vacancies, when the concentration of the oxygen vacancies increases, the oxygen ion conductivity increases, so that it can be used as a solid electrolyte.

페로프스카이트 구조 ABO3에서 A 자리에 치환되는 양이온에는 Ca, Sr, 또는 Ba 등이 있으며 La과 이온반경이 근사한 Sr이 전도도 향상에 있어서 가장 효과적이다. B 자리 원자에는 Mg이 사용된다. The cation substituted at the A site in the perovskite structure ABO 3 includes Ca, Sr, or Ba, and Sr, which is close to La and the ion radius, is most effective in improving conductivity. Mg is used for the B-site atom.

본 발명의 전해질 조성에 해당하는, Sr과 Mg이 치환된 LaGaO3는 800℃ 이하에서도 고체 전해질로서 사용되기에 충분히 높은 이온전도도를 나타내며, 모든 산소분압하에서 전자전도성은 극히 낮으므로 중저온용 고체산화물연료전지의 고체전해질로서 이용될 수 있다.LaGaO 3 substituted with Sr and Mg, which corresponds to the electrolyte composition of the present invention, exhibits sufficiently high ionic conductivity to be used as a solid electrolyte even at temperatures of 800 ° C. or lower, and has a low electron conductivity at all oxygen partial pressures. It can be used as a solid electrolyte of a battery.

한편, Sr과 Mg이 LaGaO3에 고용될 수 있는 조성범위(고용한계)는 각각 20 mol%인 것으로 알려져 있다. 고용한계를 넘어 치환량이 증가하게 되면 전도성 페로 프스카이트 단일상 구조가 변형되게 되어 고저항 성분의 불순물 상이 형성되고 고체 전해질의 이온전도도를 낮추게 되어 고체산화물연료전지에 적용될 수 없다[K. Huang 등, J. Am. Ceram. Soc., Vol.81, pp.2565 (1998)].On the other hand, it is known that the composition range (employment limit) in which Sr and Mg can be dissolved in LaGaO 3 is 20 mol%. If the substitution amount is increased beyond the solid solution limit, the conductive perovskite single-phase structure is deformed to form an impurity phase of a high resistance component and lower the ionic conductivity of the solid electrolyte and thus cannot be applied to a solid oxide fuel cell [K. Huang et al., J. Am. Ceram. Soc., Vol. 81, pp. 2565 (1998).

본 발명은 종래 LaGaO3에 대한 Sr과 Mg의 고용한계와 달리, Sr 또는 Mg이 20 mol% 이상인 LaGaO3에 관한 것으로, 페로프스카이트 단일상을 가지고, 향상된 전기전도도와 넓은 산소분압하에서 전자전도성이 극히 제한되는, 고체 전해질로서 이상적인 특성을 갖는 고체산화물 전해질을 제조하기 위해 전이금속인 Fe를 미량 치환하는 것을 특징으로 한다.The present invention relates to LaGaO 3 having Sr or Mg of 20 mol% or more, unlike the conventional high solubility limit of Sr and Mg with respect to LaGaO 3 , having a perovskite single phase, and having improved electrical conductivity and electron conductivity under a wide oxygen partial pressure. This extremely limited, characterized in that a slight substitution of the transition metal Fe to produce a solid oxide electrolyte having ideal characteristics as a solid electrolyte.

본 발명의 고체산화물 전해질을 제조하는 대표적인 제조공정은 다음과 같다. 산화물 또는 염 형태의 원료물질을 최종 조성에 해당하는 양으로 칭량한 후 볼밀을 이용하여 습식혼합한다. 혼합분말은 1400~1500℃의 온도에서 2시간 이상 유지하여 페로프스카이트 단일상을 형성시킨다. 열처리 된 분말은 가압성형한 후 1400~1500℃의 온도에서 2시간 이상 공기중에서 소결한다. Representative manufacturing process for producing a solid oxide electrolyte of the present invention is as follows. The raw material in the form of an oxide or salt is weighed in an amount corresponding to the final composition and then wet mixed using a ball mill. The mixed powder is maintained at a temperature of 1400-1500 ° C. for at least 2 hours to form a perovskite single phase. The heat-treated powder is sintered in the air for at least 2 hours at a temperature of 1400 ~ 1500 ℃ after pressing.

이하 실시예를 통하여 발명을 상세히 설명한다.The invention will be described in detail through the following examples.

실시예1Example 1

Sr과 Mg의 치환량이 각각 30 mol%, 40 mol%인 LaGaO3에 있어서, Mg 대신 Fe를 2, 4, 6 및 8 mol% 치환하여 고체 전해질을 제조하였다. In LaGaO 3 having Smol and Mg substitution amounts of 30 mol% and 40 mol%, respectively, 2, 4, 6 and 8 mol% of Fe was substituted for Mg to prepare a solid electrolyte.

도 1은 X-선 회절을 이용한 상분석 결과이다. Fe의 함량이 증가함에 따라 불순물(고저항 성분)인 LaSrGaO4(▼로 표시)가 지속적으로 감소하며 페로프스카이트 단일상 구조에 가까워진다. 1 is a phase analysis result using X-ray diffraction. As the Fe content increases, the impurities (high resistance component) LaSrGaO 4 (marked with ▼) continue to decrease and approach the perovskite single phase structure.

표 1은 Fe의 함량이 각각 4 mol%와 8 mol%인 조성에 대한 전기전도도로서, Fe의 함량이 높은 경우에 전도도가 상대적으로 높은 값을 나타내고 있다. 한편, 고저항 성분의 하나인 MgO(■로 표시)는 모든 조성에서 미량 검출되고 있다.Table 1 is an electrical conductivity for the composition of the Fe content of 4 mol% and 8 mol%, respectively, showing a relatively high value when the Fe content is high. On the other hand, a trace amount of MgO (denoted by ■) which is one of the high resistance components is detected in all compositions.

Figure 112007054116020-pat00017
Figure 112007054116020-pat00017

실시예2Example 2

Sr과 Mg의 치환량이 각각 30 mol%, 20 mol%인 LaGaO3에 있어서, Mg 대신 Fe를 2, 4, 6 및 8 mol% 치환하여 고체 전해질을 제조하였다. In LaGaO 3 having Smol and Mg substitution amounts of 30 mol% and 20 mol%, respectively, 2, 4, 6 and 8 mol% of Fe was substituted for Mg to prepare a solid electrolyte.

도 2는 X-선 회절을 이용한 상분석 결과이다. Fe가 첨가되지 않은 조성인 La0.7Sr0.3Ga0.8Mg0.2O3-δ은 고저항 성분이 없는 페로프스카이트 단일상으로 구성되어 있는 반면에 Fe의 함량이 증가함에 따라 LaSrGa3O7 (▼로 표시) 조성의 고저항 성분이 미량 검출되고 있다. 2 is a phase analysis result using X-ray diffraction. La 0.7 Sr 0.3 Ga 0.8 Mg 0.2 O 3-δ without Fe is composed of perovskite single phase without high resistivity, while LaSrGa 3 O 7 (▼) A trace amount of the high resistance component of the composition is detected.

표 2는 Fe의 함량이 각각 0, 2 mol% 및 8 mol%인 조성에 대한 전기전도도로서, Fe의 함량이 높은 경우에 전도도가 상대적으로 높은 값을 나타내고 있다. Table 2 is an electrical conductivity for the composition of the Fe content of 0, 2 mol% and 8 mol%, respectively, showing a relatively high value when the Fe content is high.

Figure 112007054116020-pat00018
Figure 112007054116020-pat00018

실시예3Example 3

Sr과 Mg의 치환량이 각각 25 mol%, 20 mol%인 LaGaO3에 있어서, Mg 대신 Fe를 2, 4, 6 및 8 mol% 치환하여 고체 전해질을 제조하였다. In LaGaO 3 having Smol and Mg substitution amounts of 25 mol% and 20 mol%, respectively, 2, 4, 6 and 8 mol% of Fe was substituted for Mg to prepare a solid electrolyte.

도 3은 X-선 회절을 이용한 상분석 결과이다. 모든 조성범위에 걸쳐 페로프스카이트 구조의 단일상이 형성되었다. 3 shows the results of phase analysis using X-ray diffraction. A single phase of the perovskite structure was formed over all composition ranges.

표 3은 Fe의 함량이 각각 0, 2 mol%, 4 mol% 및 8 mol%인 조성에 대한 전기전도도로서, Fe의 함량이 높은 경우에 전도도가 상대적으로 높은 값을 나타내고 있다.Table 3 is an electrical conductivity for the composition of the Fe content of 0, 2 mol%, 4 mol% and 8 mol%, respectively, showing a relatively high value when the Fe content is high.

Figure 112007054116020-pat00019
Figure 112007054116020-pat00019

Sr과 Mg의 치환량이 각각 25 mol%, 20 mol%인 LaGaO3에 있어서, Mg 대신 Fe를 4 mol% 치환하여 제조된 시편의 경우에는 800℃에서 0.161 S/cm, 1000℃에서 0.395 S/cm을 나타내었다. 또한 Fe의 함량이 8 mol% 첨가되는 경우에는 800℃에서 0.17 S/cm, 1000℃에서 0.465 S/cm 로서 높은 전기전도도를 나타낸다. In LaGaO 3 having 25 mol% and 20 mol% substitutions of Sr and Mg, in the case of specimens prepared by substituting 4 mol% of Fe instead of Mg, 0.161 S / cm at 800 ° C. and 0.395 S / cm at 1000 ° C. Indicated. In addition, when the content of Fe is added 8 mol%, it exhibits high electrical conductivity as 0.17 S / cm at 800 ° C and 0.465 S / cm at 1000 ° C.

제조된 조성이 고체 전해질로서의 적용 가능성을 살펴보기 위해서는 전기전도도의 산소분압 의존성을 평가하여야 한다. 란타늄 갈레이트가 산소분압이 낮은 환원분위기에 놓이게 되면 하기 수학식2에서와 같이, 산소가 결정격자로부터 빠져나오는 반응이 일어나며, Ga이 환원됨으로써 전하중성(charge neutrality) 조건을 맞추게 된다[Stevenson 등, Solid State Ionics, Vol.113, pp.571-583 (1998)]. 이때의 평형상수는 하기 수학식 3과 같다.In order to examine the applicability of the prepared composition as a solid electrolyte, the oxygen partial pressure dependence of electrical conductivity must be evaluated. When lanthanum gallate is placed in a reducing atmosphere having a low oxygen partial pressure, as shown in Equation 2 below, oxygen is released from the crystal lattice, and Ga is reduced to meet charge neutrality conditions (Stevenson et al. Solid State Ionics, Vol. 113, pp. 571-583 (1998). The equilibrium constant at this time is as shown in Equation 3 below.

Figure 112006046743521-pat00006
Figure 112006046743521-pat00006

Figure 112006046743521-pat00007
Figure 112006046743521-pat00007

즉, Ga3 +가 Ga2 +로 환원되면서 전자를 제공하게 되는데, Sr과 Mg이 치환된 LaGaO3에서는 산소빈자리가 많이 생성되어 산소빈자리 농도인 가 거의 일정하다고 할 수 있으므로 하기 식과 같이 전자의 나름수 t e 는 산소분압의 -1/4 제곱에 비례하게 된다.That is, Ga 3 + is reduced to Ga 2 + to provide electrons. In LaGaO 3 substituted with Sr and Mg, many oxygen vacancies are generated, and thus the concentration of oxygen vacancies is almost constant. The number t e is proportional to -1/4 squared of the partial pressure of oxygen.

Figure 112006046743521-pat00008
Figure 112006046743521-pat00008

이상과 같은 전기전도도와 산소분압의 상관관계는 도 4와 같이 표현될 수 있다. 온도가 높아질수록 일반적으로 전기전도도는 증가하게 된다. 먼저, 높은 산소분압 영역에서 전기전도도의 로그함수값이 산소분압의 로그함수값에 기울기 1/4로 비례한다면 정공 (electron-hole)에 의해 전도특성이 지배되는 것이고, 낮은 산소분압 영역에서 전기전도도의 로그함수값이 산소분압의 로그함수값에 기울기 -1/4로 비례한다면 전자(electron)에 의해 전기전도도가 결정되는 것이다. 또한, 전기전도도가 산소분압에 대해 변화가 없다면 산소이온전도의 나름수 (transference number)가 1에 가까우며 고체전해질로서 사용할 수 있는 것이다. The correlation between the electrical conductivity and the oxygen partial pressure as described above may be expressed as shown in FIG. 4. As the temperature increases, the conductivity generally increases. First, if the logarithmic value of conductivity in the high oxygen partial pressure region is proportional to the slope of the logarithmic function of oxygen partial pressure, the conductivity is governed by the electron-hole, and the conductivity in the low oxygen partial pressure region. If the logarithmic value of is proportional to the slope -1/4 of the logarithmic value of the partial pressure of oxygen, the electrical conductivity is determined by the electron. In addition, if the electrical conductivity does not change with respect to the oxygen partial pressure, the number of oxygen ion conductance (transference number) is close to 1 and can be used as a solid electrolyte.

이와 같은 세가지 전하 나르개(charge carrier)는 각 온도에 따라 상대적으로 농도가 달라질 수 있는데, 산소분압에 따라 전도도가 변하지 않는, 소위 전해질 영역(electrolyte domain)이 충분히 넓어야 전해질로서 사용될 수 있다.The three charge carriers may vary in concentration according to each temperature, so that the so-called electrolyte domain, whose conductivity does not change with oxygen partial pressure, may be used as an electrolyte.

실시예4Example 4

도 5, 도 6, 도 7 및 도 8은 Sr과 Mg의 치환량이 각각 25 mol%, 20 mol%인 LaGaO3에 있어서, Mg 대신 Fe를 각각 0, 2 mol%, 4 mol% 및 8 mol% 치환하여 제조된 고체 전해질의 산소분압에 따른 전기전도도의 변화이다. 5, 6, 7 and 8 are LaGaO 3 in which the substitution amounts of Sr and Mg are 25 mol% and 20 mol%, respectively, in which 0, 2 mol%, 4 mol% and 8 mol% of Fe are substituted for Mg, respectively. It is the change of electrical conductivity according to the oxygen partial pressure of the solid electrolyte prepared by substitution.

Fe의 함량이 각각 0, 2 mol% 및 4 mol%인 조성에서는 700℃ 이상의 측정온도에서, 10-24atm<PO2<100 atm의 산소분압 범위에서 전기전도도의 변화가 거의 없다. 따라서 측정된 전기전도도는 산소이온의 전도에 의한 것이며, 고체산화물연료전지의 고체 전해질로서 적합한 특성을 갖는다.In the compositions having 0, 2 mol% and 4 mol% of Fe, respectively, there is little change in electrical conductivity in the oxygen partial pressure range of 10 -24 atm <P O2 <10 0 atm at the measurement temperature of 700 ° C or higher. Therefore, the measured electrical conductivity is due to the conduction of oxygen ions, and has suitable characteristics as a solid electrolyte of a solid oxide fuel cell.

한편, Fe가 8 mol% 치환된 조성에서는 낮은 산소분압 영역(10-24 atm<PO2<10-12 atm)에서 산소분압 감소에 따라 전기전도도가 증가하는 경향을 나타내며, ΔlogσlogPO2 는 -1/4의 기울기를 갖는 직선에 일치한다. 따라서 측정된 전기전도도는 주로 전자(electron)에 의한 것임을 알 수 있으며, 고체산화물연료전지에 사용될 경우에는 단전지의 특성을 크게 저하시키게 되므로 고체 전해질로서 적합하지 않다.On the other hand, in the composition in which 8 mol% Fe is substituted, the electrical conductivity increases in the low oxygen partial pressure region (10 -24 atm <P O2 <10 -12 atm) as the oxygen partial pressure decreases, and Δ logσ / Δ logP O2 Matches a straight line with a slope of -1/4. Therefore, it can be seen that the measured electrical conductivity is mainly due to electrons, and when used in a solid oxide fuel cell, the characteristics of a unit cell are greatly reduced, and thus, the electrolyte is not suitable as a solid electrolyte.

본 발명에 의한 고체 전해질은 800℃에서 0.16 S/cm 이상의 전기전도도를 나 타내었으며, 10-24atm<PO2<100 atm의 산소분압 범위에서 전자전도성이 거의 없는 순수한 이온전도성을 나타내어 고체산화물연료전지의 고체 전해질에 적합한 특성을 갖는 것이다. The solid electrolyte according to the present invention exhibited an electrical conductivity of 0.16 S / cm or more at 800 ° C., and exhibited pure ion conductivity with little electron conductivity in the oxygen partial pressure range of 10 −24 atm <P O 2 <10 0 atm. It has properties suitable for solid electrolytes in fuel cells.

특히 측정된 전기전도도는 현재까지 고체산화물연료전지의 고체 전해질로서 적용 가능한 산화물중에서 가장 높은 전도도를 나타내고 있는, Sr, Mg 및 Co가 각각 20 mol%, 11.5 mol%, 및 8.5 mol% 치환된 LaGaO3 [T. Ishihara 등, Journal of the European Ceramic Society, Vol.24, pp.1329-1335 (2004)]의 전기전도도( ~ 0.16 S/cm, 800℃)에 근사하다. In particular, the measured electrical conductivity is LaGaO 3 substituted with 20 mol%, 11.5 mol%, and 8.5 mol%, respectively, of Sr, Mg, and Co, which exhibit the highest conductivity among the oxides applicable to the solid electrolyte of solid oxide fuel cells. [T. Ishihara et al., Journal of the European Ceramic Society, Vol. 24, pp. 1329-1335 (2004)] are approximated to the electrical conductivity (~ 0.16 S / cm, 800 ℃).

따라서, 본 발명에 의거하여 제조되는 산화물은 800℃ 이하의 중저온 영역에서 고체산화물연료전지의 고체 전해질로서 사용될 수 있다.Therefore, the oxide prepared according to the present invention can be used as the solid electrolyte of the solid oxide fuel cell in the mid-low temperature region below 800 ° C.

Claims (3)

하기 화학식1의 조성을 가지는 산소이온전도체로서, 800℃에서 0.05 S/cm 이상의 이온전도도를 갖는 페로프스카이트(Perovskite) 구조의 고체산화물 전해질.An oxygen ion conductor having a composition of Formula 1 below, a solid oxide electrolyte having a perovskite structure having an ion conductivity of at least 0.05 S / cm at 800 ° C. [화학식1][Formula 1] La.1-xSrxGa1-y-zMgyFezO3-δ La .1-x Sr x Ga 1-yz Mg y Fe z O 3-δ 0.2< x ≤0.30.2 <x ≤0.3 0.2< y ≤0.40.2 <y ≤0.4 0< z ≤0.080 <z ≤0.08 0≤ δ ≤10≤ δ ≤1 하기 화학식2의 조성을 가지는 산소이온전도체로서, 800℃에서 0.1 S/cm 이상의 이온전도도를 갖는 페로프스카이트(Perovskite) 구조의 고체산화물 전해질.An oxygen ion conductor having a composition of Formula 2 below, a solid oxide electrolyte having a perovskite structure having an ion conductivity of 0.1 S / cm or more at 800 ° C. [화학식2][Formula 2] La.1-xSrxGa1-y-zMgyFezO3-δ La .1-x Sr x Ga 1-yz Mg y Fe z O 3-δ 0.25≤ x ≤0.30.25≤ x ≤0.3 0.2< y ≤0.40.2 <y ≤0.4 0< z ≤0.080 <z ≤0.08 0≤ δ ≤10≤ δ ≤1 제1항 또는 제2항의 고체산화물 전해질을 포함하고, 전자전도성과 이온전도성을 동시에 갖는 공기극과 연료극으로 구성되는 것을 특징으로 하는 고체산화물 연료전지.A solid oxide fuel cell comprising the air electrode and the fuel electrode, comprising the solid oxide electrolyte of claim 1 or 2, and having both electron conductivity and ion conductivity.
KR1020060059423A 2006-06-29 2006-06-29 Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same KR100777685B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060059423A KR100777685B1 (en) 2006-06-29 2006-06-29 Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060059423A KR100777685B1 (en) 2006-06-29 2006-06-29 Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same

Publications (1)

Publication Number Publication Date
KR100777685B1 true KR100777685B1 (en) 2007-11-29

Family

ID=39080196

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060059423A KR100777685B1 (en) 2006-06-29 2006-06-29 Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same

Country Status (1)

Country Link
KR (1) KR100777685B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825038A (en) * 2014-01-22 2014-05-28 清华大学 Electrolyte material with perovskite structure
KR20140138542A (en) * 2013-05-23 2014-12-04 주식회사케이세라셀 High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
KR20160025753A (en) 2014-08-28 2016-03-09 한국생산기술연구원 Single-Phase Perovskite type Solid Electrolytes, Solid Oxide Fuel Cells containing the same and Method of Fabricating the Solid Oxide Fuel Cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335164A (en) 1997-08-29 1999-12-07 Yusaku Takita Oxide ionic conductor and use thereof
US6090500A (en) 1997-08-29 2000-07-18 Mitsubishi Materials Corporation Oxide ion mixed conductive substance and uses thereof
KR20000057182A (en) * 1996-11-22 2000-09-15 트롤리에 모리스, 다니엘 델로스 Lamo3 type composition, m being aluminium, gallium or indium, in powder or sintered form, method of preparation and use as conductor of oxygen
US6586127B1 (en) 1997-08-29 2003-07-01 Mitsubishi Materials Corporation Oxide-ion conductor and use thereof
US6592782B2 (en) 1993-12-08 2003-07-15 Eltron Research, Inc. Materials and methods for the separation of oxygen from air
KR20040066118A (en) * 2001-11-15 2004-07-23 세이미 케미칼 가부시끼가이샤 Composite oxide for solid oxide fuel cell and method for preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592782B2 (en) 1993-12-08 2003-07-15 Eltron Research, Inc. Materials and methods for the separation of oxygen from air
KR20000057182A (en) * 1996-11-22 2000-09-15 트롤리에 모리스, 다니엘 델로스 Lamo3 type composition, m being aluminium, gallium or indium, in powder or sintered form, method of preparation and use as conductor of oxygen
JPH11335164A (en) 1997-08-29 1999-12-07 Yusaku Takita Oxide ionic conductor and use thereof
US6090500A (en) 1997-08-29 2000-07-18 Mitsubishi Materials Corporation Oxide ion mixed conductive substance and uses thereof
US6586127B1 (en) 1997-08-29 2003-07-01 Mitsubishi Materials Corporation Oxide-ion conductor and use thereof
KR20040066118A (en) * 2001-11-15 2004-07-23 세이미 케미칼 가부시끼가이샤 Composite oxide for solid oxide fuel cell and method for preparation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140138542A (en) * 2013-05-23 2014-12-04 주식회사케이세라셀 High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
KR101666713B1 (en) 2013-05-23 2016-10-18 주식회사케이세라셀 High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
CN103825038A (en) * 2014-01-22 2014-05-28 清华大学 Electrolyte material with perovskite structure
KR20160025753A (en) 2014-08-28 2016-03-09 한국생산기술연구원 Single-Phase Perovskite type Solid Electrolytes, Solid Oxide Fuel Cells containing the same and Method of Fabricating the Solid Oxide Fuel Cells

Similar Documents

Publication Publication Date Title
Kochetova et al. Recent activity in the development of proton-conducting oxides for high-temperature applications
Gauckler et al. Nonstoichiometry and defect chemistry of ceria solid solutions
Yamazaki et al. Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity
Politova et al. Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3) x (Sc2O3)(11− x)(ZrO2) 89
dos Santos-Gómez et al. Symmetric electrodes for solid oxide fuel cells based on Zr-doped SrFeO3− δ
Li et al. Stable and easily sintered BaCe0. 5Zr0. 3Y0. 2O3− δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells
Dudek Ceramic oxide electrolytes based on CeO2—preparation, properties and possibility of application to electrochemical devices
Hossain et al. Highly dense and novel proton conducting materials for SOFC electrolyte
Marozau et al. Ionic and electronic transport in stabilized β-La2Mo2O9 electrolytes
Marshenya et al. Advanced electrochemical properties of Pr0. 9Y0. 1BaCo1. 8Ni0. 2O6–δ–Ce0. 8Sm0. 2O1. 9 composite as cathode material for IT–SOFCs
Choi et al. Effect of sintering atmosphere on phase stability, and electrical conductivity of proton-conducting Ba (Zr0. 84Y0. 15Cu0. 01) O3− δ
Yang et al. Preparation and characterization of solid electrolytes La2− xAxMo2− yWyO9 (A= Sm, Bi)
Anderson et al. Ionic and electronic conduction in La0. 95Sr0. 05GaO3− δ, La0. 95Sr0. 05AlO3− δ and Y0. 95Sr0. 05AlO3− δ
Lee et al. Electrical conductivity and defect structure of CeO 2-ZrO 2 mixed oxide
Zamudio-Garcia et al. Doping effects on the structure and electrical properties of La2Ce2O7 proton conductors
Gil et al. Rapid densification by using Bi2O3 as an aid for sintering of gadolinia-doped ceria ceramics
Danilov et al. The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe 0.7 Zr 0.1 Y 0.2 O 3–δ
Ismail et al. La2Ce2O7 doped with alkaline earth elements: phase behavior, hydration and electrical properties
Shlyakhtina et al. Gas-tight proton-conducting Nd 2− x Ca x Zr 2 O 7− δ (x= 0, 0.05) ceramics
Wang et al. Nonstoichiometric (La0. 95Sr0. 05) xGa0. 9Mg0. 1O3− δ electrolytes and Ce0. 8Nd0. 2O1. 9–(La0. 95Sr0. 05) xGa0. 9Mg0. 1O3− δ composite electrolytes for solid oxide fuel cells
KR100777685B1 (en) Perovskite type solid electrolytes for solid oxide fuel cells and fuel cells containing the same
Zvonareva et al. Ionic and electronic transport of dense Y-doped barium stannate ceramics for high-temperature applications
Hashimoto et al. Conduction properties of CaTi1− xMxO3− α (M= Ga, Sc) at elevated temperatures
Makovec et al. Solid solubility of neodymium in BaCeO3
Raj et al. Oxygen diffusion studies on (Y2O3) 2 (Sc2O3) 9 (ZrO2) 89

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141112

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151112

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171026

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191017

Year of fee payment: 13