KR100771158B1 - Method AND System For Enhancement Color Image Quality - Google Patents

Method AND System For Enhancement Color Image Quality Download PDF

Info

Publication number
KR100771158B1
KR100771158B1 KR1020050094576A KR20050094576A KR100771158B1 KR 100771158 B1 KR100771158 B1 KR 100771158B1 KR 1020050094576 A KR1020050094576 A KR 1020050094576A KR 20050094576 A KR20050094576 A KR 20050094576A KR 100771158 B1 KR100771158 B1 KR 100771158B1
Authority
KR
South Korea
Prior art keywords
brightness
image
illumination
saturation
component
Prior art date
Application number
KR1020050094576A
Other languages
Korean (ko)
Other versions
KR20070039347A (en
Inventor
임채환
김남철
장익훈
최두현
Original Assignee
삼성전자주식회사
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 경북대학교 산학협력단 filed Critical 삼성전자주식회사
Priority to KR1020050094576A priority Critical patent/KR100771158B1/en
Publication of KR20070039347A publication Critical patent/KR20070039347A/en
Application granted granted Critical
Publication of KR100771158B1 publication Critical patent/KR100771158B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration by the use of histogram techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/73Colour balance circuits, e.g. white balance circuits or colour temperature control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details

Abstract

본 발명은 칼라 영상의 화질 향상을 위한 방법 및 시스템에 관한 것으로, 특히 JND (Just Noticeable Difference)기반의 SSR (Single Scale Retinex)을 이용하여 조명 (illumination)이 불균일한 상태에서 획득한 칼라 영상에 대해 화질을 향상시키고자 하는 방법 및 시스템이다. The present invention relates to a method and system for improving the image quality of a color image. Particularly, the present invention relates to a color image obtained in a state in which illumination is uneven using a single scale retinex (SSR) based on JND (Just Noticeable Difference). A method and system for improving the image quality.

본 발명에서는 H, S ,V 컬러 영상에 대하여 색상(H; hue)은 원래대로 유지하면서 밝기(V; Value)와 채도(S; Saturation)를 향상시키되, 밝기(V)의 향상에는 먼저, 조명 성분과 반사(reflectance) 성분의 곱으로 주어지는 밝기(V)의 형성모델에 근거하여 JND 기반 저역 통과 필터의 사용으로 조명 성분을 추정한 다음 원래의 밝기(V)와 추정된 조명성분에 반사와 조명의 분리를 위해 각각 로그(logarithm)연산을 취한 후 원래의 밝기와 추정된 반사 성분의 일부 성분의 차에 의해 불균일한 조명을 보상한다. 상기 보상된 조명의 영상은 히스토그램 수정법(histogram modification)을 사용하여 출력 장치의 밝기 값의 범위에 맞도록 자동으로 맞추도록 한 후 채도(S)는 밝기(V)의 향상된 비율에 비례하여 채도를 조정하면 원래의 색상(H)에서 향상된 밝기(V)와 채도(S)로 부터 향상된 칼라 영상이 얻어진다. In the present invention, while improving the brightness (V; Value) and saturation (S;) while maintaining the hue (H; hue) intact for the H, S, V color image, the brightness (V) first, illumination Based on the model of brightness (V) given by the product of the component and the reflection component, the lighting component is estimated using a JND-based low pass filter and then reflected and illuminated at the original brightness (V) and the estimated lighting component. The logarithm operation is taken for each separation and then the nonuniform illumination is compensated for by the difference between the original brightness and some components of the estimated reflection components. The image of the compensated illumination is automatically adjusted to fit the range of brightness values of the output device using histogram modification and then saturation (S) is adjusted in proportion to the improved proportion of brightness (V). Then, an improved color image is obtained from the improved brightness (V) and saturation (S) in the original color (H).

JND, 레티넥스, SSR JND, Retinex, SSR

Description

칼라 영상의 화질 향상을 위한 방법 및 시스템{Method AND System For Enhancement Color Image Quality }  Method and system for improving color image quality {Method AND System For Enhancement Color Image Quality}

도 1은 종래의 입력 영상에서 조명성분을 제거하여 반사성분을 추정하는 방법을 예시한 도면1 is a diagram illustrating a method of estimating a reflection component by removing an illumination component from a conventional input image.

도 2는 종래의 색상(H),채도(S),V(밝기)의 칼라 좌표계를 이용하여 밝기(V)에만 적용예를 나타낸 도면2 is a view showing an example of application only to the brightness (V) using the color coordinate system of the conventional color (H), saturation (S), V (brightness)

도 3은 본 발명의 실시 예를 위한 JND 기반 SSR을 이용한 칼라 영상의 화질향상을 위한 도면3 is a diagram for improving image quality of a color image using JND-based SSR for an embodiment of the present invention;

도 4는 본 발명의 실시 예에 따른 JND 기반 SSR을 이용한 칼라 영상의 화질향상을 위한 흐름도 4 is a flowchart for improving image quality of a color image using JND-based SSR according to an embodiment of the present invention.

도 5는 본 발명의 향상된 칼라 영상(5d)과 관측 영상(5a)과의 비교예시도 5 is a comparative example of the improved color image 5d and the observed image 5a of the present invention.

도 6은 본 발명의 실시 예 따른 JND 기반 저역 통과 필터의 필터 링 특성도6 is a filtering characteristic diagram of a JND based low pass filter according to an exemplary embodiment of the present invention.

본 발명은 SSR에 의한 칼라 영상 개선 방법 및 시스템에 관한 것으로, 특히 JND(Just Noticeable Difference)기반의 SSR(Single Scale Retinex)을 이용하여 조명(illumination)이 불균일한 상태에서 획득한 칼라 영상에 대해 화질을 향상시키는 방법 및 시스템에 관한 것이다.The present invention relates to a color image improvement method and system by SSR, and more particularly, to a color image obtained in a state in which illumination is uneven using a single scale retinex (SSR) based on JND (Just Noticeable Difference). It relates to a method and a system to improve the.

휴대 단말이나 디지털 카메라를 이용하여 영상을 획득할 때 그 화질은 조명 상태에 따라 많은 영향을 받게 된다. 예를 들어, 조명이 어둡거나 불균일하여 열화된 영상의 화질을 향상하는 방법들에는 게인 및 옵셋(gain/offset) 수정법, 로그 함수나 감마 함수를 이용한 방법, 히스토그램 등화법(histogram equalization), 그리고 영상을 조명 성분과 반사 성분의 곱으로 주는 영상 생성 모델(image formation model)에 근거한 호모모르픽 필터링 (homomorphic filtering)이 있다. 상기 내용은 " A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989. 와 R. C. Gonzalez, R. E. Woods, Digital Image Processing, Addison-Wesley, 1992." 와" T. K. Kim, J. K. Paik, and B. S. Kang, "Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering, IEEE Trans. Consumer Electronics, vol. 44, no. 1, pp. 82-86, Jan. 1998" 들에 개시하고 있다. 이 중 호모모르픽 필터링은 관측영상에 로그 연산을 취하고, 각각 로그 연산된 조명 성분과 반사 성분의 합으로 변환하면 주로 저주파 성분을 갖는 조명 성분은 억제하고, 고주파 성분을 갖는 반사 성분은 강조되며, 최종적으로 지수함수를 가하면 로그의 영향은 제거된다. 특별히 칼라 영상의 향상을 위한 목적으로 호모 모르픽 필터링과 유사한 영상 형성 모델에 근거하여 불균일한 조명 성분을 보상하고자 하는 레티넥스(retinex) 방법들이 있는데, 이는 " Z. Rahman, D. Jobson, and G. A. Woodell, "Properties and performance of a center/surround retinex, IEEE Trans. Image Processing: Special Issue on Color Processing, vol. 6, pp. 451-462, no. 3, Mar. 1997. 와 D. J. Jobson, Z. Rahman, and G. A. Woodell, "A multi-scale retinex for bridging the gap between color images and the human observation of scenes, IEEE Trans. Image Processing. vol. 6, no.7, July 1997."에 제안된 바 있다. 상기 레티넥스 방법은 먼저 관측 영상으로부터 저역 통과 필터를 사용하여 조명 성분을 추정한다. 그 후 관측 영상과 추정된 조명 성분에 각각 로그 연산을 취한 뒤 그 차를 구함으로써 반사 성분을 추정하게 되며, 마지막으로 추정된 반사 성분의 밝기 범위를 디스플레이 장치의 밝기 범위에 맞게 조정하게 되는데, 이러한 과정을 칼라 영상의 R, G, B 성분에 각각 적용하게 되며, 조명에 영향을 받지 않고 반사 성분에만 영향을 미치는 칼라 표현을 할 수 있다. 그러나 이 방법은 R, G, B가 서로 연관성이 없이 변화하기 때문에 추정한 조명 성분이 정확하지 않을때 색상 변화가 크게 발생할 수 있고, R, G, B 각각의 관측영상의 밝기와 추정된 조명 성분의 밝기 차가 일정한 경우 칼라가 회색으로 이동하는 효과(gray world)가 발생할 수 있다. 이 형상은 " R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, A variational framework for retinex, Int. J. Comput. Vision, vol. 52, no. 1, pp. 7-23, Jan. 2003." 에서 구체적으로 살펴 볼 수 있다. When the image is acquired using a portable terminal or a digital camera, the image quality is greatly affected by the lighting conditions. For example, methods of improving the quality of deteriorated images due to poor lighting or uneven lighting include gain and offset correction methods, log or gamma functions, histogram equalization, and images. There is homomorphic filtering based on an image formation model that gives a product of a lighting component and a reflection component. This is described in "AK Jain, Fundamentals of Digital Image Processing , Prentice-Hall, 1989. and RC Gonzalez, RE Woods, Digital Image Processing , Addison-Wesley, 1992." And TK Kim, JK Paik, and BS Kang, "Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering, IEEE Trans. Consumer Electronics , vol. 44, no. 1, pp. 82-86, Jan. 1998 ". Homomorphic filtering takes a logarithmic operation on the observed image and converts it to the sum of the logarithmic calculated illumination components and the reflected components, respectively, to suppress the illumination components having mainly low frequency components, Reflective components with are emphasized, and the exponential function is finally removed to remove the effects of the logarithms, especially for the purpose of improving color images, to compensate for non-uniform lighting components based on homomorphic filtering-like image formation models. Retinex methods include "Z. Rahman, D. Jobson, and GA Woodell," Properties and performance of a center / surround retinex, I EEE Trans. Image Processing: Special Issue on Color Processing , vol. 6 , pp. 451-462, no. 3, Mar. 1997. with DJ Jobson, Z. Rahman, and GA Woodell, "A multi-scale retinex for bridging the gap between color images and the human observation of scenes, IEEE Trans. Image Processing . vol. 6, no.7, July 1997. "The Retinex method first estimates the lighting components using a low pass filter from the observation images. Then, the logarithm calculation is performed on the observation images and the estimated lighting components, respectively. After estimating the difference, the reflection component is estimated, and finally, the brightness range of the estimated reflection component is adjusted according to the brightness range of the display device. The process is applied to the R, G, and B components of the color image, respectively. It can be applied to a color representation that affects only the reflection components without being affected by the lighting, but this method changes colors when R, G, and B are irrelevant, so that when the estimated lighting components are not accurate If the difference between the brightness of each of R, G, and B and the estimated brightness is constant, the color shifts to gray. This shape may be referred to as “R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, A variational framework for retinex, Int. J. Comput. Vision , vol. 52, no. 1, pp. 7-23, Jan. 2003. "

삭제delete

또한, 관측 영상은 경계에서 급격하게 변화되지만 저대역 필터를 통해 추정된 조명 성분은 경계에서 완만하게 변화하기 때문에 도 5c의 500의 예와 같이 두 영상의 차에 의해 추정된 반사 성분이 경계 부근에서 어두운 곳은 더 어둡게 되고, 밝은 곳은 더 밝게 나타나는 후광 효과(halo effect)가 발생하게 된다. 한편, 레티넥스 방법은 저역 통과 필터로 필터 탭의 길이가 짧은 필터를 사용하는 경우 국부적인 조명 성분으로 추정하기 때문에 후광 효과가 좁은 범위 내로 국한되어 나타나고, 영상의 세부적인 표현은 강조되지만 영상의 전체적인 대비는 잘 표현되지 않게 된다. 반대로 필터 탭의 길이가 긴 필터를 사용하게 되는 경우에는 전체적인 조명 성분을 추정하기 때문에 후광 효과가 넓게 나타나면서 영상의 전체적인 대비는 잘 표현하고 있지만 세부적인 표현은 강조하지 못하고 있다. 그리고 사용되는 필터의 개수에 따라 하나의 저역 통과 필터의 출력만을 사용하는 경우 " Z. Rahman, D. Jobson, and G. A. Woodell, "Properties and performance of a center/surround retinex, IEEE Trans. Image Processing: Special Issue on Color Processing, vol. 6, pp. 451-462, no. 3, Mar. 1997. "의 개시 내용과 같은 SSR과 " D. J. Jobson, Z. Rahman, and G. A. Woodell, "A multi-scale retinex for bridging the gap between color images and the human observation of scenes, IEEE Trans. Image Processing. vol. 6, no.7, July 1997"의 개시내용과 같이 여러 개의 저대역 필터의 출력을 사용하는 MSR(Multi-Scale Retinex)로 구분할 수 있는데, 종래의 SSR의 경우 도 1의 개시와 같이 SSR에 의한 칼라영상 향상에 대해 입력 R G B칼라 영상에 대한 각 성분 Ui(x,y)으로 다음 (1)식과 같은 영상 생성 모델로 표현 할수 있다고 가정하면,In addition, since the observed image changes abruptly at the boundary, but the illumination component estimated through the low pass filter changes slowly at the boundary, the reflection component estimated by the difference between the two images is near the boundary as shown in the example of 500 of FIG. 5C. Dark areas become darker, and bright areas become halo effects. On the other hand, the Retinex method is a low pass filter, and when the filter tap is short, it is estimated as a local lighting component. Therefore, the halo effect is limited to a narrow range, and the detail of the image is emphasized, but the overall image of the image is emphasized. Contrast is not well represented. On the contrary, when a filter having a long length of a filter tap is used, the overall lighting component is estimated because the overall lighting component is estimated, and the overall contrast of the image is well expressed, but the detailed expression is not emphasized. And using only the output of one low pass filter depending on the number of filters used. "Z. Rahman, D. Jobson, and GA Woodell," Properties and performance of a center / surround retinex, I EEE Trans. Image Processing: Special Issue on Color Processing , vol. 6, pp. 451-462, no. 3, Mar. SSR, as described in 1997. "DJ Jobson, Z. Rahman, and GA Woodell," A multi-scale retinex for bridging the gap between color images and the human observation of scenes, IEEE Trans. Image Processing . Vol. 6, no.7, July 1997 "can be divided into MSR (Multi-Scale Retinex) using the output of a number of low-band filter, the conventional SSR as shown in Figure 1 Suppose that each component U i (x, y) for the input RGB color image can be expressed by the image generation model as shown in Equation (1) for the color image enhancement.

i(x,y)=Ii(x,y)ㆍRi(x,y), i∈{R,G,B} ....(1) I (x, y) = I i (x, y) -R i (x, y), i∈ {R, ∈, B} .... (1)

여기서 Ii(x,y)와 Ri(x,y)는 각각 조명성분과 반사성분을 나타낸다. 이때 조명성분 Ii(x,y)는 Gaussian 함수 형태의 저역 통과 필터를 사용하여 다음 (2)식과 같이 추정된다.Where I i (x, y) and R i (x, y) represent the illumination and reflection components, respectively. At this time, the lighting component I i (x, y) is estimated using the Gaussian function low pass filter as in the following equation (2).

Figure 112005056916523-pat00001
Figure 112005056916523-pat00001

여기서

Figure 112007003568317-pat00002
는 추정된 조명성분 *는 콘볼루션(Convolution) 연산자,here
Figure 112007003568317-pat00002
Is the estimated lighting component * is the convolution operator,

그리고 G(x,y)는 다음 (3)식과 같이 표현되는 저역 통과 필터 함수이다.G (x, y) is a low pass filter function expressed as

Figure 112005056916523-pat00003
Figure 112005056916523-pat00003

여기서 c는 Gaussian 주변 공간 크기(Surround Space Constant), K는 다음(4)식을 만족하는 정규화 상수이다.Where c is the Gaussian Surround Space Constant and K is the normalization constant that satisfies Equation (4):

∬F(x,y)dxdy=1 .......(4)∬ F (x, y) dxdy = 1 ....... (4)

그러면 반사성분은 다음과 같이 [수학식 1]과 [수학식 2]에 각각 로그연산을 취한 후 그 차를 구하여 추정된다.Then, the reflection components are estimated by taking the logarithms in [Equation 1] and [Equation 2] as follows and calculating the difference.

Figure 112005056916523-pat00004
Figure 112005056916523-pat00004

이경우 입력된 관측 영상 Ui(x,y)는 에지에서 급격하게 변화가 있지만 Gaussian 함수형태의 저역 통과 필터에 의해 추정된 조명성분

Figure 112007003568317-pat00005
는 완만하게 변화되기 때문에 두 영상의 차에 의해 추정된 반사성분은 에지 부근에서 관측 영상이 어두운 곳은 더 어둡게 되고, 밝은 곳은 더 밝게 되는 후광 효과가 발생한다. 마지막으로 다음과 (6)식과 같은 게인 및 옵 셋 조정을 통하여 반사성분의 밝기 범위를 디스플레이 장치의 밝기범위에 맞게 조정하여 출력 영상을 얻게 된다.In this case, the input observed image U i (x, y) changes abruptly at the edges but is estimated by the low pass filter of Gaussian function.
Figure 112007003568317-pat00005
Since the gradual change is caused, the reflection component estimated by the difference between the two images causes a halo effect in which the observed image becomes darker in the dark area and brighter in the bright area near the edge. Finally, through the gain and offset adjustment as shown in the following equation (6), the brightness range of the reflection component is adjusted according to the brightness range of the display device to obtain the output image.

Figure 112005056916523-pat00006
Figure 112005056916523-pat00006

여기서 Oi(x,y)는 출력 영상을 나타내고, a와 b는 게인 및 옵 셋 조정에 관련된 상수를 관련된 상수를 나타낸다. [수학식 6]에서 출력 영상은 수동으로 결정되는 상수 a 와 b의 값에 많은 영향을 받게 된다. MSR은 필터의 길이가 짧은 경우의 영상과 긴 경우의 영상을 같이 더한 효과를 얻게 되어 영상의 전체적인 대비를 잘 표현하면서 세부적인 표현 강조를 동시에 만족하는데, 이 또한 저역 통과 필터를 사용함으로써 발생하는 후광 효과는 다소 완화 시킬 수는 있으나 근본적으로 후광 효과는 완전히 억제하지는 못한다. 이러한 후광 효과를 억제하기 위한 방법으로 " M. Ogata, T. Tsuchiya, T. Kubozono and K. Ueda, Dynamic range compression based on illumination compensation, IEEE Trans. Consumer Electronics, vol. 47, no. 3, Aug. 2001. "에서 제안하고,

Figure 112007050889731-pat00007
-필터를 이용하는데, 이 경우 필터 창의 내부의 중심에 위치하는 밝기 값과 일정 크기 이상 차이가 나는 곳의 밝기 값이 중심의 밝기 값으로 대체하는 저역 통과 필터의 특성을 갖게 되는 데, 그러나 이 필터의 경우도 클리핑을 위한 이론적 근거가 부족하며, 밝기 값의 크기가 역전될 수 있는 현상이 발생되는 단점이 있다. Where O i (x, y) represents the output image, and a and b represent constants related to the gain and offset adjustment. In Equation 6, the output image is greatly influenced by the values of constants a and b that are determined manually. MSR achieves the effect of adding the image of the short length and the image of the long length, and expresses the overall contrast of the image well and simultaneously satisfies the detailed expression emphasis, and also the halo generated by using the low pass filter The effect can be somewhat mitigated, but fundamentally it does not completely suppress the halo effect. As a method for suppressing such a halo effect, "M. Ogata, T. Tsuchiya, T. Kubozono and K. Ueda, Dynamic range compression based on illumination compensation, IEEE Trans. Consumer Electronics , vol. 47, no. 3, Aug. Proposed in 2001. "
Figure 112007050889731-pat00007
In this case, the filter has the characteristics of a low pass filter in which the brightness value at the center of the inside of the filter window is different from the brightness value of a certain size by replacing it with the brightness value at the center. In case of, the theoretical basis for clipping is insufficient, and the phenomenon that the magnitude of the brightness value is reversed may occur.

따라서 본 발명의 목적은 기존의 하나의 필터를 사용하는 SSR을 기반으로 하되, 후광 효과 억제를 위하여 JND 기반의 저역 통과 필터를 사용하는 영상 향상 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide an image enhancement method using a JSR-based low pass filter for suppressing a halo effect based on an SSR using an existing single filter.

본 발명의 다른 목적은 JND 기반의 SSR을 이용한 칼라 영상 향상방법을 제공함에 있다.      Another object of the present invention is to provide a color image enhancement method using JSR based SSR.

본 발명의 또 다른 목적은 기존의 하나의 필터를 사용하는 SSR을 기반으로 하되 후광 효과 억제를 위하여 JND 기반의 저대역 필터를 사용하는 영상 향상 방법을 제공함에 있다.      It is still another object of the present invention to provide an image enhancement method based on an SSR using an existing filter but using a JND based low band filter to suppress a halo effect.

본 발명의 또 다른 목적은 H S V 칼라 영상에 대하여 태양 광과 같은 백색광 조명 상태라는 가정하에 색상은 원래대로 유지하며 밝기와 채도를 향상시키는 방법 및 시스템을 제공함에 있다.It is still another object of the present invention to provide a method and system for improving brightness and saturation while maintaining the color intact under the assumption that the H S V color image is a white light illumination state such as sunlight.

본 발명의 또 다른 목적은 영상의 세부적인 표현을 강조하고 어두운 부분을 밝게 보여주는 방법 및 시스템을 제공함에 있다.It is still another object of the present invention to provide a method and system for emphasizing a detailed representation of an image and displaying a dark part brightly.

상기 목적을 수행하기 위한 본 발명은 칼라영상 향상을 위한 태양광과가 같는 백색 조명상태를 설정하는 설정과정과, 입력영상을 받아 색상(H)을 그대로 유지되면서 채도(S)와 밝기(V)를 향상시키기 위해 R G B좌표계를 H S V좌표계로 변환하는 RGB/HSV변환과정과, 밝기(V)에서 변화가 적은 조명성분을 이용하여 반사성분을 추정하기 위해 조명성분을 추정하는 조명추정과정과, 불균일한 조명에 의하여 열화된 화질의 조명의 영향을 제거하고 추정된 조명성분의 일부만 제거하여 반사성분에 의해 부자연스런 세부적인 표현을 강조하는 비율을 줄이는 반사성분추정과정과, 영상의 밝기 값의 범위를 출력 장치의 밝기 값의 범위로 맞추기 위한 히스토그램 수정과정과, 상기 히스토그램 수정값으로부터 상기 출력장치의 밝기의 비율에 비례하여 채도를 향상시키기 위한 채도향상조절과정과, 출력영상을 상기 출력장치와 동일한 칼라좌표계를 사용하기 위해 HSV좌표계를 RGB좌표계로 변환하는 HSV/RGB변환과정으로 구성된다.The present invention for carrying out the above object is a setting process for setting a white lighting state equal to sunlight for color image enhancement, and receives the input image while maintaining the color (H) as it is, saturation (S) and brightness (V) RGB / HSV conversion process of converting RGB coordinate system to HSV coordinate system to improve the performance, and illumination estimation process of estimating illumination component to estimate reflection components using less change in brightness (V). The reflection component estimation process reduces the ratio of highlighting unnatural detail by the reflection component by removing the influence of the illumination of image quality degraded by the illumination and removing only a part of the estimated illumination component, and outputting a range of brightness values of the image. The histogram correction process for adjusting the brightness value of the device, and the saturation in proportion to the ratio of the brightness of the output device from the histogram correction value. Consists of a saturation enhancement control process and, HSV / RGB conversion for converting the HSV coordinate system to the RGB coordinate system to the same color coordinate system of the output image and the output device for group.

상기 조명추정과정은 JND를 기반으로 중심 화소에 대한 저역 통과 필터내 창에서 중심화소와의 밝기 값의 차이가 일정 비율 이상인 곳은 사용하지 않도록 하는 과정을 포함하며, 필터의 길이가 짧은 필터를 이용하여 한번 반복 될때 마다 필터 탭의 간격이 일정 배수씩 넓어지게 필터를 반복적 적용하여 고속 필터 링을 수행하는 과정을 포함한다. 상기 JND 기반 저역 통과 필터는 경계와 같이 밝기 값의 변화가 큰부분은 원래의 밝기 값으로 보존하고, 추정된 조명성분을 이용하여 추정된 반사 성분에서 후광 효과가 발생치 않도록 하는 과정을 포함하도록 구성된다. The illumination estimation process includes a process of not using a place where the difference in brightness value from the center pixel is greater than a predetermined ratio in the window in the low pass filter for the center pixel based on JND. By repeating the filter, the filter tap is repeatedly applied to the filter tap so that the interval of the filter tap is widened by a predetermined multiple. The JND-based low pass filter is configured to include a process of preserving a large change in the brightness value, such as a boundary, to the original brightness value and preventing a halo effect from the estimated reflection component using the estimated illumination component. do.

상기 반사성분추정과정은 입력 영상의 반사성분과 조명성분의 곱으로 하되, 입력영상의 원래 밝기와 상기 JND 기반 저역 통과 필터를 통한 밝기 중 조명과 반사성분을 분리하는 과정과, 상기 JND 기반 저역 통과 필터를 거치면서 발생 된 일부의 추정 조명성분을 제거하는 과정을 포함하도록 하되, 상기 조명과 반사성분을 분리는 로그연산에 의해 이루워지도록 구성된다. The reflection component estimating process is a product of a reflection component and an illumination component of an input image, separating the illumination and the reflection component among the original brightness of the input image and the brightness through the JND based low pass filter, and the JND based low pass. It includes a process of removing some of the estimated illumination components generated while passing through the filter, the separation of the illumination and reflection components is configured to be achieved by a log operation.

상기 목적을 수행하기 위한 또 다른 본 발명은 밝기 향상에서는 JND 기반 저역 통과 필터를 사용하여 조명성분을 추정하는 조명성분과정과, 상기 조명 성분 추정 값에 레티넥스 방법으로 반사성분을 추정하는 반사성분추정과정과, 상기 반사성분 추정 값으로 부터 부정확하게 추정된 조명 성분으로 인하여 추정된 반사 성분에 의한 재생 영상이 부자연스럽게 보이는 것을 보상하기 위해서 재생 영상에 추정된 조명성분의 일부만을 제거하여 불균일한 조명이 보상된 영상을 얻는 조명성분제거과정과, 상기 불균일한 조명이 보상된 영상으로부터 밝기 값의 범위를 출력 장치의 밝기 값의 범위로 맞추기 위하여 히스토그램 수정하는 히스토그램수정과정과, 상기 히스토그램 수정 값으로부터 상기 출력 장치의 밝기 값의 비율에 비례하여 채도를 향상시키기 위한 채도향상조절과정으로 구성된다.According to another aspect of the present invention, there is provided an illumination component process for estimating an illumination component using a JND based low pass filter, and a reflection component estimation for estimating a reflection component using a retinex method. In order to compensate for the unnatural appearance of the reproduced image by the estimated reflection component due to the incorrectly estimated illumination component from the reflection component estimation value, only a part of the estimated lighting component is removed from the reproduced image to produce uneven illumination. An illumination component removal process of obtaining a compensated image, a histogram correction process of correcting a histogram to match a range of brightness values from the image of which the non-uniform illumination is compensated to a range of brightness values of an output device, and the output from the histogram correction value Improve saturation in proportion to the ratio of the brightness value of the device Saturation consists of a control process for improving.

이하 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설 명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 이하 첨부한 도면의 동일 참조 부호는 유사 또는 동일 기능을 있음을 밝혀둔다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, specific details such as specific components are shown, which are provided to help a more general understanding of the present invention, and it is understood that these specific details may be modified or changed within the scope of the present invention. It will be obvious to those of ordinary skill in the field. Hereinafter, the same reference numerals in the accompanying drawings will be found to have similar or identical functions.

도 3는 본 발명의 실시 예를 위한 JND기반 SSR을 이용한 칼라 영상의 화질향상을 위한 도면으로써,3 is a diagram for improving image quality of a color image using JND-based SSR for an embodiment of the present invention.

영상입력단(101)으로 R G B 칼라 영상을 RGB/HSV변환기(201)로 입력하면 색상(H), 채도(S), 밝기(V)의 칼라 영상으로 변환한 다음 백색광 조명 상태라는 가정하에 색상(H)은 그대로 유지하고, 밝기(V)와 채도(S)를 향상시킨다. 밝기(V)의 향상에서는 JND 기반 저역 통과 필터(301)를 사용하여 필터 창 내의 중심 화소의 값보다 큰 값을 가질수록 약한 저역 필터링으로 조명 성분을 추정한다. 후에 반사성분을 추정할 때 반사성분에서 발생하는 후광 효과를 줄 일수 있다. 여기서 JND 기반 저역 통과 필터(301)는 1차원 필터로 가로 방향으로 필터링이 적용된 영상에다 1차원 필터를 세로 방향으로 적용한다. 필터탭의 길이는 짧은 필터를 이용하여 한번 반복 될때 마다 필터탭의 간격이 2배씩 넓어지는 필터를 반복적으로 적용하여 고속으로 저대역을 필터링 하도록 되어 있다. 상기 RGB/HSV변환기(201)의 출력의 밝기(V)가 JND 기반 저역 통과 필터(301)를 거친 추정 출력중 조명과 반사성분을 분리하기 위해 각각 로그(303,305)연산을 취하고, 상기 로그(305)연산을 취한 출력의 추정조명 및 반사성분 중 JND 기반 저역 통과 필터(301)를 거치면서 발생 된 일부의 추정조명성분을 스켈러(308)에서 조명 성분 제거 단(307)으로 입력되는 조명 성분 제거량(a)에 따라 제거하고, 가산기(309)는 결국 각각의 값(+,-)으로부터 차가 구해진다. 여기서 차로 발생 된 값이 결국 본 발명의 추정된 반사성분이다. 다음 히스토그램 수정부(311)을 사용하여 출력장치에서의 밝기 값의 범위를 조정한다. 한편, RGB/HSV변환기(201)의 출력의 채도(S)는 밝기이득조절부(313)을 지난 밝기(V)의 향상된 비율에 따라 비례하여 채도향상조절부(315)에 의해 향상되며, 마지막으로 밝기(V)와 채도(S)의 향상된 값과 색상(H)은 출력 영상을 출력장치와 동일한 칼라 좌표계를 사용하기 위해 HSV/RGB변환부(203)에서 H S V칼라 영상을 R G B칼라 영상으로 변환한다.
도 3의 예를 도 4의 흐름도를 참조하여 구체적으로 설명하면,
When the RGB color image is input to the RGB / HSV converter 201 through the image input terminal 101, the color image is converted into a color image of hue (H), saturation (S), and brightness (V), and then the color (H) is assumed to be a white light illumination state. ) And the brightness (V) and saturation (S) are improved. In the improvement of the brightness V, the JND-based low pass filter 301 is used to estimate the illumination component by weak low pass filtering as the value having a value larger than the value of the center pixel in the filter window. Later, when estimating the reflection component, the halo effect generated by the reflection component can be reduced. Here, the JND-based low pass filter 301 applies the one-dimensional filter in the vertical direction to the image to which the filtering is applied in the horizontal direction as the one-dimensional filter. The filter tap is designed to filter the low band at high speed by repeatedly applying a filter in which the interval between the filter taps is doubled every time it is repeated using a short filter. The brightness (V) of the output of the RGB / HSV converter 201 takes log (303, 305) operations to separate the illumination and reflection components of the estimated output through the JND based low pass filter (301), and the log (305). The amount of illumination component that is input to the illumination component removal stage 307 of the estimated illumination component generated while passing through the JND-based low pass filter 301 among the estimated illumination and reflection components of the calculated output is input to the illumination component removal stage 307. Removed in accordance with (a), the adder 309 eventually finds a difference from each value (+,-). The difference generated here is the estimated reflection component of the present invention. The histogram correction section 311 is then used to adjust the range of brightness values at the output device. On the other hand, the saturation (S) of the output of the RGB / HSV converter 201 is improved by the saturation enhancement control unit 315 in proportion to the ratio of the brightness (V) past the brightness gain control unit 313, the last The improved values and hue (H) of brightness (V) and saturation (S) are converted from the HSV color image to the RGB color image by the HSV / RGB converter 203 to use the same color coordinate system as the output device. do.
The example of FIG. 3 will be described in detail with reference to the flowchart of FIG. 4.

삭제delete

일단 (401)의 예와 같이 태양광과 같이 백색조명상태를 초기 설정조건으로 하고, 영상입력단(101)로 입력되는 (403)과정의 입력 영상신호는 다음과 같다. First, as shown in the example of 401, the white light state is set as an initial setting condition such as sunlight, and the input image signal of step 403 inputted to the image input terminal 101 is as follows.

i(x,y),i∈{R,G,B}
i=입력영상의 i성분
i (x, y), i∈ {R, G, B}
i = icomponent of the input image

도 3의 RGB/HSV변환기(201)에서 RGB 칼라 좌표계를 HSV 칼라 좌표계로 변환하는데, 여기서 변환을 시키는 이유는 백색 조명 상태이므로 색상(H; hue)는 그대로 유지한 상태에서 채도(S; saturation)와 밝기(V; value) 성분만을 향상하기 위한 것이며, 이 방법의 상세한 내용은 " R. W. G. Hunt. Measuring Color. Ellis Horwood Series in Applied Science and Industrial Technology, Halsted Press, New York, NY, 1989."에 개시하고 있다.In the RGB / HSV converter 201 of FIG. 3, the RGB color coordinate system is converted into the HSV color coordinate system. The reason for the conversion is white illumination, so the saturation (S; saturation) is maintained as it is. And brightness (V; value) components only, and details of this method are disclosed in "RWG Hunt. Measuring Color. Ellis Horwood Series in Applied Science and Industrial Technology, Halsted Press, New York, NY, 1989." Doing.

도 4의 400으로 도시한 부분은 조명성분추정을 위한 JND 기반 저역 통과필터링 부분으로 RGB/HSV변환기(201)의 출력중 밝기{Uv(x,y)}, 채도{Us(x,y)}, 색상{Uh(x,y)}에서 밝기(V)와 채도(S)를 향상시키고자 하는 것이다. (407)과정에서 (413)과정은 원래의 밝기에서 조명 성분은 변화가 적으므로 JND 기반 저역 통과 필터(301)를 통하여 조명성분을 추정하게 되는데, 상기 추정된 조명 성분을 이용하여 다음 단계에서 반사 성분을 추정한다. 이를 위해 저대역 필터를 고속으로 수행하며, 이때 JND를 기반으로 중심 화소에 대한 저대역 필터 창 내에서 중심 화소와의 밝기 값의 차이가 일정 비율 이상인 곳은 저대역 필터에 사용하지 않도록 한다. 상기 JND 기반 저역 통과 필터(301)의 계수는 e(m,n)=e(m).e(n)으로 수평,수직방향으로 각자 분리되어 수행되며, e(m),e(n)은 모두 (1/4,2/4,1/4)인 짧은 탭의 필터를 이용하여 한번 반복 될 때 마다 필터 탭의 간격이 2배씩 넓어지는 필터를 수횟수 반복적으로 적용하여 고속 저대역 필터링이 수행되도록 한다. 그리고 필터링에 사용되는 역치와 세부적인 표현을 강조하는 값은 시험적으로 JND최대 어느 정도 이
상의 사용하는 값과, JND최소 어느 정도 이하의 버리는 값 및 JND필터링 하면서 발생된 일부 조명성분의 제거 값은 목적하는 화질정도에 따라 결정된다. 이를 위해 (407)과정에서 필터의 반복된 횟수를 알기 위해 저장하는 변수 k를 초기화시키고, (409)과정에서일정횟수를 넘으면 다음 과정의 반사성분추정과정으로 가도록 한다. 웨버(Weber)법칙에 의하면 밝기가 균일한 영상에서 밝기 값의 변화를 감지할수 있는 국부 밝기 변화의 최소 JND 는 [수학식 7]과 같이 근사적으로 모델링 된다고 알려져 있다.
A portion 400 shown in FIG. 4 is a JND-based low pass filtering portion for estimating an illumination component. The brightness {Uv (x, y)} and the saturation {, s (x, y)} of the RGB / HSV converter 201 are shown. To improve the brightness (V) and the saturation (S) in the color {Uh (x, y)}. In step 407, step 413, since the lighting component has little change at the original brightness, the lighting component is estimated through the JND-based low pass filter 301. In the next step, the lighting component is reflected. Estimate the component. To this end, the low-band filter is performed at high speed. In this case, the low-band filter should not be used where the difference in brightness value from the center pixel is higher than a predetermined ratio within the low-band filter window for the center pixel. The coefficients of the JND based low pass filter 301 are performed separately in the horizontal and vertical directions as e (m, n) = e (m) .e (n), and e (m) and e (n) High-speed low-band filtering is performed by repeatedly applying a filter that the interval between filter taps is doubled every time, using a short tap filter that is all (1/4, 2/4, 1/4). Be sure to And the thresholds used for filtering and the values that emphasize the detail expressions are experimentally up to some extent to JND.
The value used for the image, the discarding value of the JND minimum or less, and the removal value of some lighting components generated during the JND filtering are determined according to the desired image quality. To this end, in step 407, the variable k that is stored to know the repeated number of filters is initialized. In step 409, when the predetermined number of times is exceeded, the reflection component estimation process of the next step is performed. According to Weber's law, the minimum JND of the local brightness change that can detect the change of the brightness value in the uniform image is known to be approximated as shown in [Equation 7].

Figure 112005056916523-pat00008
Figure 112005056916523-pat00008

여기서 I는 영상의 균일한 밝기를 나타내고 JND(I)는 밝기I에 대한 JND값을 나타내고 c와 d는 상수이다. 이때 I가 어느 정도 밝을 경우 c 가 무시되고, I와 JND의 비율은 [수학식 8]의 일정한 값으로 표현된다. Where I represents the uniform brightness of the image, JND (I) represents the JND value for brightness I, and c and d are constants. If I is somewhat bright, c is ignored, and the ratio of I and JND is expressed as a constant value in [Equation 8].

Figure 112005056916523-pat00009
Figure 112005056916523-pat00009

[수학식 7]의 JND 모델을 이용하면 저대역 필터가 적용되는 필터 창 내의 중심 화소

Figure 112007003568317-pat00010
에서의 밝기 UV(x,y)와
Figure 112007003568317-pat00011
에서
Figure 112007003568317-pat00012
만큼 떨어진 곳의 밝기 UV(x-m, y-n)의 차 △UV(m,n)이 중심 화소의 JND 값보다 큰 경우에는 밝기 값의 차를 감지할 수 있다. 본 발명에서는 이러한 JND 특성을 이용하여 중심 화소에 대한 저역 통과 필터 창 내에서 중심 화소와의 밝기 값의 차를 감지할 수 있는 화소는 저역 통과 필터링에 사용하지 않도록 하여 원래의 밝기 값을 보존하는 필터링을 수행한다. 이러한 조건부 필터링을 위하여 다음과 같은 중심 화소
Figure 112007003568317-pat00013
의 JND 값 JND(Uv(x,y))와 밝기의 차 △UV(m,n)의 비 J(m,n)을 정의한다. Using the JND model of Equation 7, the center pixel in the filter window to which the low band filter is applied
Figure 112007003568317-pat00010
Brightness at U V (x, y) and
Figure 112007003568317-pat00011
in
Figure 112007003568317-pat00012
When the difference ΔU V (m, n) of the brightness U V (xm, yn) at a distance is greater than the JND value of the center pixel, the difference of the brightness value may be detected. In the present invention, the pixel that can detect the difference between the brightness value and the center pixel in the low pass filter window for the center pixel by using the JND characteristic is not used for low pass filtering to preserve the original brightness value. Do this. For this conditional filtering, the following center pixel
Figure 112007003568317-pat00013
A defines the JND value JND (U v (x, y )) and the ratio J (m, n) of the difference △ U V (m, n) of the brightness.

Figure 112005056916523-pat00014
Figure 112005056916523-pat00014

J(m,n): 중심화소(x,y)의 JND값 JND(UV(x,y)와 밝기 차 △UV(m,n)의 비
이때 J(m,n)이 1보다 큰 경우에는 △UV(m,n)이 감지할 수 있는 밝기 차가 된다. 본 발명에서는 필터 성능 향상을 위해서 J(m,n)을 1이 아닌

Figure 112007003568317-pat00015
와 비교한다. 즉 중심 화소
Figure 112007003568317-pat00016
에 대한 저대역 필터 창 내에서 J(m,n)이
Figure 112007003568317-pat00017
보다 큰 화소는 중심 화소
Figure 112007003568317-pat00018
의 저대역 필터링에 사용하지 않는다. 그리고 J(m,n)이
Figure 112007003568317-pat00019
보다 작은 화소는 J(m,n)값에 따라 저역 통과 필터링의 강약을 조절하여 필터링된다. J (m, n): the ratio of the JND value JND (U V (x, y) and the brightness difference △ U V (m, n) of the center pixel (x, y)
In this case, when J (m, n) is greater than 1, it becomes a brightness difference that ΔV V (m, n) can detect. In the present invention, J (m, n) is not 1 to improve the filter performance.
Figure 112007003568317-pat00015
Compare with Center pixel
Figure 112007003568317-pat00016
J (m, n) within the low pass filter window for
Figure 112007003568317-pat00017
The larger pixel is the center pixel
Figure 112007003568317-pat00018
Do not use for low-band filtering of. And J (m, n)
Figure 112007003568317-pat00019
Smaller pixels are filtered by adjusting the strength of the low pass filtering in accordance with the value of J (m, n).

삭제delete

본 발명의 JND 기반 저대역 필터를 사용한 밝기의 조명 성분 추정은 다음과 같이 표현된다The illumination component estimation of brightness using the JND based low band filter of the present invention is expressed as follows.

Figure 112005056916523-pat00020
Figure 112005056916523-pat00020

Figure 112005056916523-pat00021
: 추정된 밝기의 조명 성분
Figure 112005056916523-pat00021
: Lighting component of estimated brightness

e(m,n): 저대역 필터 계수e (m, n): low band filter coefficients

W: 필터 창W: filter window

여기서

Figure 112007003568317-pat00022
는 추정된 밝기의 조명 성분, e(m,n)은 저대역 필터 계수, W는 필터 창을 나타내고, λ(m,n)은 J(m,n)의 값에 따라 저대역 필터링의 강약 조절을 위한 함수로 다음(11식)과 같이 표현된다. 즉, 도 6의 예와 같이 밝기의 화상중 필터창 내에서 화소
Figure 112007003568317-pat00023
에 위치한 중심 화소 보다
Figure 112007003568317-pat00024
만큼 떨어진 화소에 위치한 밝기값과 중심화소의 밝기 값과의 비[ J(m,n)]와 저역 통과 필터의 강약 조절을 위한 함수 값[λ(m,n)]의 관계로부터 상기 중심화소
Figure 112007003568317-pat00025
에서
Figure 112007003568317-pat00026
만큼 떨어진 화소의 밝기값 과 중심 화소의 밝기 값의 비 [J(m,n)]가 높으면 높을수록 저 대역 강약조절을 약하게 하여 선형(601)이 아닌 비선형(603)의 특성으로 나타나게 하는 필터링 방법에 의해 조명성분을 추정한다. 이특성은 중심화소의 값보다 큰값을 가질수록 약한 저대역를 사용하기 위한 것이며,이때 중심 화소의 값보다 큰 값을 가지는 화소의 밝기 값은 더 잘 유지할 수 있으며, 다음 반사 성분을 추정할 때 반사 성분에서 발생하는 후광 현상은 줄일 수 있다.here
Figure 112007003568317-pat00022
Is the lighting component of the estimated brightness, e (m, n) is the low-pass filter coefficient, W is the filter window, and λ (m, n) is the intensity control of low-band filtering according to the value of J (m, n). The function for is expressed as That is, the pixel in the filter window of the image of the brightness as shown in the example of FIG.
Figure 112007003568317-pat00023
Than located at the center pixel
Figure 112007003568317-pat00024
The center pixel from the relationship between the ratio of the brightness value located at the pixel spaced apart from the brightness value of the center pixel [J (m, n)] and the function value [λ (m, n)] for the strength adjustment of the low pass filter.
Figure 112007003568317-pat00025
in
Figure 112007003568317-pat00026
The higher the ratio [J (m, n)] between the brightness value of the pixel and the brightness value of the center pixel, the higher the weaker the low-band intensity control, the filtering method that appears as a nonlinear 603 rather than a linear 601. The lighting component is estimated by This characteristic is to use the weaker band when the value is larger than the value of the center pixel, and the brightness value of the pixel having a value larger than the value of the center pixel can be maintained better. The halo phenomenon that occurs can be reduced.

Figure 112005056916523-pat00027
Figure 112005056916523-pat00027

Tmax : J(m,n) 최대 역치T max : J (m, n) maximum threshold

Tmin : J(m,n) 최소 역치
J(m,n):밝기의 화상 중 필터창 내에서 화소

Figure 112007050889731-pat00083
에 위치한 중심 화소보다
Figure 112007050889731-pat00084
만큼 떨어진 화소에 위치한 밝기 값과 중심 화소의 밝기 값과의 비T min : J (m, n) minimum threshold
J (m, n): Pixels in the filter window among images of brightness
Figure 112007050889731-pat00083
Than the center pixel located in
Figure 112007050889731-pat00084
The ratio of the brightness value located at pixels apart by the brightness value of the center pixel

상기 (409)과정에서 목적하는 반복된 횟수가 넘어갈 시 JND 기반 저역 통과 필터링은 완료된 것이며, (415)과정의 반사추정과정을 거치는데, 상기 입력영상에서 추정된 조명 영상의 반사 성분을 추정하기 위한 것으로 불균일한 조명에 의하여 열화된 화질의 영상에서 조명의 영향을 제거하여 영상의 화질을 개선토록 하는 것으로 반사 성분 만으로 구성된 영상은 세부적인 표현만이 강조되어 부자연스럽게 된다. 이를 보완하기 위하여 추정된 조명 성분을 일부만 제거하여 세부적인 표현에 대해 강조하는 비율을 줄인다. 이를 위해 원래의 밝기의 조명과 반사성분은 로그(303)연상에 의해 분리되고, JND 기반 저역 통과 필터(301)를 거친 추정 조명과 반사성분은 로그(305)연산을 거쳐 분리되어 JND 필터링을 거치면서 발생된 일부 조명성분에 대해 제거값( A)에 의해 스켈러(308)에서의 곱으로 모델링 된다. 즉, 상기 입력 영상의 밝기와 JND 기반 저역 통과 필터를 거친 밝기로부터 반사와 조명 성분을 분리하기 위하여 각각 로그(303, 305)연산을 취한 다음 일부 조명성분에 대해 스켈러(308)에서 제거 환후 그 차를 가산기(309)에서 구함으로써 향상된 밝기 영상에 대해 다음 (12)식 같이 반사 성분이 추정된다.When the desired number of times of repetition in step 409 is exceeded, the JND based low pass filtering is completed, and the reflection estimation process of step 415 is performed, and the reflection component of the illumination image estimated from the input image is estimated. In order to improve the image quality of the image by removing the influence of light on the image of image quality degraded by uneven illumination, the image composed of only the reflection component becomes unnatural with only the detailed expression emphasized. To compensate for this, some of the estimated lighting components are removed to reduce the emphasis on detail. For this purpose, the illumination and reflection of the original brightness are separated by log 303 association, and the estimated illumination and reflection through the JND based low pass filter 301 are separated through log 305 operation and subjected to JND filtering. For some of the lighting components generated as a result, the removal value A is modeled as a product in the skeleton 308. In other words, logarithmic operations 303 and 305 are performed to separate reflection and illumination components from the brightness of the input image and the brightness through the JND-based low pass filter, and then removed from the skeleton 308 for some illumination components. By obtaining the difference in the adder 309, the reflection component is estimated for the enhanced brightness image as shown in Equation (12).

Figure 112005056916523-pat00028
Figure 112005056916523-pat00028

Figure 112005056916523-pat00029
: 향상된 밝기 영상
Figure 112005056916523-pat00029
: Improved brightness image

a: 조명 성분의 일 부부만을 제거하기 위한 상수
U: 원래의 영상
I:저역통과필터를 통과하여 적용된 영상
Q: 반사 영상
v: 밝기
여기서

Figure 112007050889731-pat00030
는 향상된 밝기 영상을 나타내고, a는 조명 성분의 일부만을 제거하기 위한 상수이다.a: constant to remove only a couple of lighting components
U: original video
I: Image applied through low pass filter
Q: reflection image
v: brightness
here
Figure 112007050889731-pat00030
Represents an improved brightness image, and a is a constant for removing only a part of the lighting component.

삭제delete

마지막으로 (417)과정에서 " Reference: A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989."의 개시와 같이 도 3의 히스토그램수정부(311)에서

Figure 112007003568317-pat00031
의 히스토그램의 분포를 자동으로 변화시켜 출력 장치의 밝기 값의 범위에 맞게 자동으로 조절하기 위해 히스토그램의 수정을 하게 된다. 상기 히스토그램 수정법에서 변환 함수 z(k)는 영상의 변환된 누적분포함수로서 조절 계수
Figure 112007003568317-pat00032
의 값에 따라 다음(13)식과 같이 달라지게 된다.Finally, in step 417, the histogram correction unit 311 of FIG. 3 is performed as described in "Reference: AK Jain, Fundamentals of Digital Image Processing , Prentice-Hall, 1989."
Figure 112007003568317-pat00031
The histogram is modified to automatically adjust the distribution of the histogram to match the range of brightness values of the output device. In the histogram correction method, a transform function z (k) is a control coefficient as a transformed cumulative distribution function of an image.
Figure 112007003568317-pat00032
It depends on the value of (13).

Figure 112005056916523-pat00033
Figure 112005056916523-pat00033

z(k): v

Figure 112007003568317-pat00034
영상의 변환된 누적 분포 함수.z (k): v
Figure 112007003568317-pat00034
Transformed cumulative distribution function of the image.

Figure 112007003568317-pat00035
: k번째 밝기 레벨의 밝기 값.
Figure 112007003568317-pat00035
: The brightness value of the kth brightness level.

L-1: 밝기 값의 최대 레벨.L-1: Maximum level of brightness value.

x : 조절계수로

Figure 112007003568317-pat00036
의 범위를 가짐.x: by the control coefficient
Figure 112007003568317-pat00036
Has a range of

x=1인 경우: 히스토그램 등활화를 적용한 것과 같은 효과.If x = 1: Same effect as applying histogram equalization.

x=0인 경우:

Figure 112007050889731-pat00037
의 히스토그램에 선형 히스토그램 스트레칭을 적용한 것과 같은 효과.
P: 화소가 존재할 확률
여기서
Figure 112007050889731-pat00038
는 k번째 밝기 레벨의 밝기 값을 나타내고, L-1은 밝기 값의 최대 레벨을 나타낸다. 이때 x 는
Figure 112007050889731-pat00039
의 범위에서 실험에 근거하여 x=1인 경우 히스토그램 등활화를 적용한 것과 같은 효과가 나타나고, x=0인 경우
Figure 112007050889731-pat00040
의 히스토그램에 선형 히스토그램 스트레칭을 적용한 것과 같은 효과가 나타난다. 일반적으로 채도 향상은 높은 채도를 가지는 영상은 낮은 채도를 가지는 영상에 비하여 더 선명하게 보이므로 채도를 향상하여 영상의 선명도를 향상시키게 된다. 이때 대부분의 영상에서 밝기 값이 어두운 부분의 채도 값이 작다고 가정하여 밝기의 비율에 의존하여 채도를 향상시키면 더욱 선명한 영상을 획득하는데,(419)과정에서 밝기 이득 조절부(313)에서 먼저 다음 (14)식과 같은 밝기의 향상된 비율 g(x,y)를 계산한다.If x = 0:
Figure 112007050889731-pat00037
Equivalent to applying linear histogram stretching to a histogram.
P: probability of existence of a pixel
here
Figure 112007050889731-pat00038
Denotes the brightness value of the k-th brightness level, and L-1 denotes the maximum level of the brightness value. Where x is
Figure 112007050889731-pat00039
In the range of, based on the experiment, x = 1 shows the same effect as applying histogram equalization, and x = 0
Figure 112007050889731-pat00040
The effect is the same as applying linear histogram stretching to the histogram of. In general, the saturation enhancement is more sharp than the image having a high saturation, so that the saturation is improved to improve the saturation of the image. At this time, assuming that the saturation value of the dark part of the brightness value is small in most images, if the saturation is improved depending on the ratio of brightness, a clearer image is obtained. In step 419, the brightness gain control unit 313 first performs the following ( Calculate the improved ratio g (x, y) of brightness as

삭제delete

Figure 112005056916523-pat00041
Figure 112005056916523-pat00041

g(x,y): 밝기의 향상된 비율.
O: 출력 영상
U: 입력 영상
v:밝기
g (x, y): Improved ratio of brightness.
O: output video
U: input video
v: brightness

이후 다음과 같은 밝기의 향상된 비율에 비례하여 [수학식 15]과 같이 (421)과정에서 채도 향상 조절부(315)에 의해 채도를 향상한다.Thereafter, as shown in Equation 15, the saturation enhancement controller 315 improves the saturation in proportion to the improved ratio of the brightness as follows.

Figure 112005056916523-pat00042
Figure 112005056916523-pat00042

S(x,y): 향상된 채도 영상 S (x, y): Improved saturation image

δ: 채도 향상 크기를 정하는 상수
Us: 입력 영상의 채도(s) 값
g: 밝기의 비율(Ov/Hv; Ov:출력영상의 밝기,Hv:색상의 밝기)
여기서 OS(x,y)는 향상된 채도 영상을 나타내고, δ는 채도 향상 크기를 정하는 상수이다. 상기 채도(s)와 밝기(V)가 향상된 값을 색상(H)과 같이 HSV/RGB변환부(203)에서 HSV 칼라 좌표계를 RGB 칼라 좌표계로 (421)과정에서 변환하는데 , 그이유는 출력 영상을 출력 장치와 동일한 칼라 좌표계를 사용하기 위한 것으로 " R. W. G. Hunt. Measuring Color. Ellis Horwood Series in Applied Science and Industrial Technology, Halsted Press, New York, NY, 1989."에 개시하고 있는 예와 유사하다.따라서 영상출력단(112)로 출력되는 출력 영상 형태는 RGB (Red, Green, Blue) 칼라 좌표계로 출력된다.
따라서 본 발명은 도 5a의 중앙에 강한 에지와 양쪽에 어둡고 약한 에지가 존재하는 영상과 그 결과 영상들을 보여주고 있는데, 도 5b의 히스토그램 등화법에 의한 결과 영상에서 보면 하늘은 밝고 나무는 어두워서 영상의 전체적인 대비는 잘 표현하지만, 관측 영상에서 어두운 부분이 밝게 보이지 않으며, 나무의 세부적인 표현을 강조하지 못한다는 것을 알 수 있다. 도 5c의 SSR에 의한 결과 영상에서 보면, 도 5b에 비하여 어두운 부분이 밝아지며, 나무의 세부적인 표현도 강조되었다. 그러나 하늘과 흙이 있는 부분의 색이 회색으로 변하며, 탑 주변에 넓은 후광 효과가 발생 되는 것을 볼 수 있다. 그러나 도 5d의 본 발명의 방법에 의한 결과의 영상에서 보면 영상의 전체적인 대비와 세부적인 표현이 강조되며, 도 5c의 영상과는 달리 영상의 색상이 변하지 않으며 후광 효과도 나타나지 않는다는 것을 알 수 있다.
δ: constant that determines the amount of saturation enhancement
Us: Saturation (s) value of input image
g: Ratio of brightness (Ov / Hv; Ov: brightness of output image, Hv: brightness of color)
Where S (x, y) represents the enhanced saturation image, and δ is a constant that determines the magnitude of the saturation enhancement. The saturation (s) and the brightness (V) are improved values such as hue (H) in the HSV / RGB converter 203 converts the HSV color coordinate system to the RGB color coordinate system in step 421, the reason is the output image And to use the same color coordinate system as the output device, similar to the example disclosed in RWG Hunt. Measuring Color.Ellis Horwood Series in Applied Science and Industrial Technology, Halsted Press, New York, NY, 1989. The output image form output to the image output terminal 112 is output in an RGB (Red, Green, Blue) color coordinate system.
Therefore, the present invention shows an image having a strong edge in the center of Figure 5a and a dark and weak edge on both sides and the resultant images. In the result image of the histogram equalization method of FIG. Although the overall contrast is well expressed, it can be seen that the dark parts of the observed image do not look bright and do not emphasize the detailed representation of the tree. As shown in the resultant image by the SSR of FIG. 5C, the darker part becomes brighter than that of FIG. 5B, and the detailed expression of the tree is also emphasized. However, the color of the sky and the part of the soil turns gray, and a wide halo effect occurs around the tower. However, in the image of the result of the method of the present invention of FIG. 5D, the overall contrast and the detailed expression of the image are emphasized, and unlike the image of FIG. 5C, the color of the image does not change and the halo effect does not appear.

삭제delete

삭제delete

상술한 바와 같이 본 발명의 JND 기반의 SSR을 이용한 칼라 영상 향상 방법은 HSV 칼라 영상에 적용하여 색상은 유지하며 JND 기반의 저대역 필터에 기반하여 밝기를 향상시키고 채도도 밝기의 향상된 비율에 비례하여 향상되는 이점이 있으며, 영상의 세부적인 표현을 강조하고 어두운 부분을 밝게 보여주면서 에지 부근에서 후광 효과가 거의 발생하지 않으면서 색상의 변화 없이 채도가 향상된 선명한 칼라를 보여주는 장점이 있다.As described above, the color image enhancement method using the JND-based SSR of the present invention is applied to the HSV color image to maintain the color and improve the brightness based on the JND-based low-band filter in proportion to the improved ratio of the saturation brightness. It has the advantage of enhancing the detailed expression of the image and showing the dark areas brightly, and shows the vivid color with improved saturation without changing the color with little halo effect near the edges.

전술한 실시예들은 본 발명을 구현하는 한 예일 뿐이다. 본 발명은 전술한 실시예에 의해 개시되지만, 그 실시예에 국한되지는 않는다. 오히려, 당해 기술분야에서 통상의 지식을 가진자는 본 발명을 한정하는 후술되는 청구항의 범위를 벗어남 없이 본 발명에 적응될 수 있는 통신망 아키텍처를 구성하는 특정 구성요소에 가해지는 많은 개량 및 대안들을 이해할 수 있을 것이다. The above-described embodiments are merely examples of implementing the present invention. The invention is disclosed by the embodiments described above, but is not limited to the embodiments. Rather, one of ordinary skill in the art would understand many improvements and alternatives applied to particular components that make up a network architecture that can be adapted to the present invention without departing from the scope of the following claims, which define the invention. There will be.

Claims (28)

칼라영상의 화질개선 방법에 있어서,  In the image quality improvement method of a color image, 칼라 영상 중 밝기의 조명성분과 반사성분을 이용하여 조명성분추정을 하는 과정과, The process of estimating the lighting component using the lighting and reflection components of the brightness of the color image, 상기 칼라 영상 중 밝기와 상기 추정된 조명성분의 불균일한 영상의 보상을 하는 과정과, Compensating for a non-uniform image of brightness and the estimated illumination component of the color image; 상기 보상된 영상의 밝기 값의 범위를 출력장치의 밝기 값의 범위로 맞추는 과정과,Adjusting a range of brightness values of the compensated image to a range of brightness values of an output device; 상기 출력장치의 밝기 값의 비율에 비례하여 채도를 향상시키는 과정으로 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.And improving the saturation in proportion to the ratio of the brightness values of the output device. 제1항에 있어서, 상기 조명성분추정은 필터 창의 중심 화소의 값보다 큰값을 가질수록 약한 저역 필터를 사용하는 JND 기반 저역 통과 필터링에 의해 이루어짐을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The method of claim 1, wherein the illumination component estimation is performed by JND-based low pass filtering using a weak low pass filter as the illumination component estimate is larger than a value of a center pixel of the filter window. 제2항에 있어서, 상기 JND 기반 저역 통과 필터링은 다음 (11)식에 의해 이루어짐을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The method of claim 2, wherein the JND based low pass filtering is performed by the following Equation (11).
Figure 112007050889731-pat00043
Figure 112007050889731-pat00043
Tmax : J(m,n) 최대 역치T max : J (m, n) maximum threshold Tmin : J(m,n) 최소 역치T min : J (m, n) minimum threshold J(m,n): 밝기의 화상 중 필터 창 내에서 중심 화소
Figure 112007050889731-pat00085
보다
Figure 112007050889731-pat00086
만큼 떨어진 화소의 밝기 값과 중심 화소의 밝기 값의 비
J (m, n): Center pixel within the filter window of images with brightness
Figure 112007050889731-pat00085
see
Figure 112007050889731-pat00086
Is the ratio of the brightness value of the pixel
삭제delete 제1항에 있어서, 상기 불균일한 영상의 보상은 원래의 밝기(V)와 추정된 조명 성분의 각각을 로그를 취하는 과정과,The method of claim 1, wherein the compensation of the non-uniform image comprises taking a log of each of the original brightness (V) and the estimated illumination component; 상기 로그를 취한 값의 차를 구하여 반사성분을 추정하는 과정으로 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.And estimating a reflection component by obtaining a difference between the logarithmic values. 제 5항에 있어서, 상기 불균일한 영상의 보상은 다음 (12)식에 의해 이루워짐을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법. The method of claim 5, wherein the non-uniform image is compensated by Equation (12).
Figure 112007050889731-pat00044
Figure 112007050889731-pat00044
Figure 112007050889731-pat00045
: 향상된 밝기 영상
Figure 112007050889731-pat00045
: Improved brightness image
a: 조명 성분의 일 부부만을 제거하기 위한 상수a: constant to remove only a couple of lighting components U: 원래의 영상U: original video I: 저역 통과 필터(LPF)를 거친 영상I: Low Pass Filter (LPF) v: 밝기 v: brightness
삭제delete 제 1항에 있어서, 상기 밝기에 따라 출력장치의 밝기 값의 범위는 다음 (13)식에 맞추도록 함을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The method of claim 1, wherein a range of brightness values of the output device is adjusted according to the brightness according to Equation (13).
Figure 112007050889731-pat00046
Figure 112007050889731-pat00046
z(k): v
Figure 112007050889731-pat00047
영상의 변환된 누적 분포 함수
z (k): v
Figure 112007050889731-pat00047
Transformed cumulative distribution function of the image
Figure 112007050889731-pat00048
: k번째 밝기 레벨의 밝기 값
Figure 112007050889731-pat00048
: brightness value of the kth brightness level
L-1: 밝기 값의 최대 레벨L-1: Maximum level of brightness value x : 조절계수로
Figure 112007050889731-pat00049
의 범위를 가짐
x: by the control coefficient
Figure 112007050889731-pat00049
Has a range of
x=1인 경우: 히스토그램 등활화를 적용한 것과 같은 효과If x = 1: same effect with histogram equalization x=0인 경우:
Figure 112007050889731-pat00050
의 히스토그램에 선형 스트레칭을 적용한 것과 같은 효과
If x = 0:
Figure 112007050889731-pat00050
Equivalent to applying linear stretching to the histogram of
P:화소가 존재할 확률P: Probability of Pixel
제 1항에 있어서, 상기 출력장치의 밝기 값의 비율은 다음 (14)식에 이루워 짐을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The method of claim 1, wherein the ratio of the brightness value of the output device is achieved by the following Equation (14).
Figure 112007050889731-pat00051
Figure 112007050889731-pat00051
g(x,y): 밝기의 향상 된 비율g (x, y): improved proportion of brightness O: 출력 영상O: output video U: 입력 영상U: input video v: 밝기v: brightness
제 1항에 있어서, 상기 출력장치의 밝기 값의 비율에 비례하여 채도(s)는 다음(15)식에 이루워짐을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The method of claim 1, wherein the saturation (s) is proportional to a ratio of brightness values of the output device in accordance with Equation (15).
Figure 112007050889731-pat00052
Figure 112007050889731-pat00052
S(x,y): 향상된 채도 영상 S (x, y): Improved saturation image δ: 채도 향상 크기를 정하는 상수δ: constant that determines the amount of saturation enhancement Us: 입력 영상의 채도(s)값Us: Saturation (s) value of input image g: 밝기의 비율(Ov/Hv; Ov:출력영상 밝기, Hv;색상 밝기 )g: Ratio of brightness (Ov / Hv; Ov: Output video brightness, Hv; Color brightness)
색상(h), 밝기(v),채도(s)의 칼라영상의 화질개선 방법에 있어서, In the image quality improvement method of color image of hue (h), brightness (v), saturation (s), 상기 밝기 향상을 위해 필터창의 중심화소의 값보다 큰값을 가질수록 약한 저역필터링을 사용하는 JND 기반의 저대역 필터를 사용하여 조명성분을 추정하는 조명성분과정과, An illumination component process of estimating an illumination component using a JND-based low band filter using weak low pass filtering as the value having a value larger than the center pixel of the filter window is improved to improve brightness; 상기 조명 성분 추정 값에 레티넥스 방법으로 반사성분을 추정하는 반사성분추정과정과, A reflection component estimating process of estimating a reflection component by a retinex method to the illumination component estimation value; 상기 반사성분 추정 값으로부터 부정확하게 추정된 조명 성분으로 인하여 추정된 반사 성분에 의한 재생 영상이 부자연스럽게 보이는 것을 보상하기 위해서 재생 영상에 추정된 조명성분을 제거하여 불균일한 조명이 보상된 영상을 얻는 조명성분제거과정과,In order to compensate for the unnatural appearance of the reproduced image by the estimated reflection component due to the incorrectly estimated illumination component from the reflection component estimation value, the illumination is obtained by removing the estimated illumination component from the reproduced image to obtain an image in which non-uniform illumination is compensated. Component removal process, 상기 불균일한 조명이 보상된 영상으로부터 영상의 밝기 값의 범위를 출력 장치의 밝기 값의 범위로 맞추기 위하여 히스토그램 수정하는 히스토그램수정과정과, A histogram correction process of correcting the histogram to adjust a range of brightness values of the image from the image compensated for the non-uniform illumination to a range of brightness values of the output device; 상기 히스토그램 수정값으로부터 상기 밝기의 향상된 비율에 비례하여 채도를 향상시키기 위한 채도향상조절과정으로 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.And a saturation enhancement control process for improving saturation in proportion to the improved ratio of the brightness from the histogram correction value. 칼라 영상 화질 개선방법에 있어서,In the color image quality improvement method, 칼라 영상 향상을 위한 태양 광과 같은 백색조명상태를 설정하는 설정과정과, A setting process of setting a white lighting state such as sunlight for improving a color image, 입력영상을 받아 색상(H)을 그대로 유지되면서 채도(S)와 밝기(V)를 향상시키기 위해 RGB좌표계를 HSV좌표계로 변환하는 RGB/HSV변환과정과, An RGB / HSV conversion process of converting an RGB coordinate system into an HSV coordinate system in order to improve saturation (S) and brightness (V) while maintaining the color (H) while receiving an input image; 상기 밝기(V)에서 필터창의 중심화소의 값보다 큰값을 가질수록 약한 저역필터를 사용하는 저역필터링에 의해 변화가 적은 조명성분에서 반사성분을 추정하기 위해 조명성분을 추정하는 조명추정과정과, An illumination estimation process of estimating an illumination component in order to estimate a reflection component in an illumination component having a small change by a low pass filtering using a weak low pass filter as the brightness V has a value greater than a center pixel of the filter window; 불균일한 조명에 의하여 열화된 화질의 조명의 영향을 제거하고 추정 조명성분으로부터 반사성분에 의해 부자연스런 세부적인 표현의 강조의 비율을 줄이는 반사성분추정과정과, A reflection component estimating process that removes the influence of illumination of image quality deteriorated by uneven illumination and reduces the ratio of emphasis of unnaturally detailed expressions by reflection components from estimated illumination components; 영상의 밝기 값의 범위를 출력 장치의 밝기 값의 범위로 맞추기 위한 히스토그램 수정과정과, A histogram correction process for adjusting the brightness value range of the image to the brightness value range of the output device; 상기 히스토그램 수정 값으로부터 상기 밝기의 향상된 비율에 비례하여 채도를 향상시키기 위한 채도향상조절과정과, A saturation enhancement process for improving saturation in proportion to the improved ratio of the brightness from the histogram correction value; 출력영상을 출력장치와 동일한 칼라 좌표계를 사용하기 위해 HSV좌표계를 RGB좌표계로 변환하는 HSV/RGB변환과정으로 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.A method for improving the image quality of a color image, comprising: an HSV / RGB conversion process of converting an HSV coordinate system into an RGB coordinate system in order to use the same color coordinate system as the output device. 제12항에 있어서,The method of claim 12, 상기 조명추정과정은 JND를 기반으로 중심 화소에 대한 JND 기반 저역 통과 필터내 창에서 중심 화소와의 밝기 값의 차이가 비율에 따라 높은 값은 사용하지 않도록 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The illumination estimation process improves the image quality of a color image, characterized in that the difference in brightness value with the center pixel is not used in the window in the JND-based low pass filter for the center pixel based on JND. Way. 제 13항에 있어서, The method of claim 13, 상기 JND 기반 저역 통과 필터는 길이가 짧은 필터를 이용하여 한번 반복될 때마다 필터 탭의 간격이 n배씩 넓어지는 필터를 반복적으로 적용하여 고속필터링을 수행하도록 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.The JND-based low pass filter is configured to perform fast filtering by repeatedly applying a filter in which the interval between the filter taps is increased by n times each time using a short length filter. Way. 제13항에 있어서,The method of claim 13, 상기 JND 기반 저역 통과 필터는 중심 화소의 값보다 큰 값을 가질수록 약한 저역필터를 사용하는 저역필터링에 의해 경계와 같이 밝기 값의 변화가 큰 부분은 원래의 밝기값을 보존하여 추정된 조명성분을 이용하여 추정된 반사 성분에서 후광효과가 발생치 않도록 구성됨을 특징으로 칼라 영상의 화질 향상을 위한 방법.The JND-based low pass filter has a larger value than that of the center pixel, and thus, a portion having a large change in brightness value, such as a boundary, by the low pass filtering using a weak low pass filter preserves the original brightness value to obtain an estimated illumination component. And a halo effect does not occur in the reflection component estimated by using the method. 제13항에 있어서, The method of claim 13, 상기 반사성분추정과정은 입력 영상의 반사성분과 조명성분의 곱으로 하되, 입력영상과 추정된 조명성분에 각각 로그 연산을 하는 과정과, The reflection component estimating process is performed by multiplying a reflection component and an illumination component of an input image by performing a logarithm operation on the input image and the estimated lighting component, respectively; 상기 로그연산 값의 차로부터 반사성분을 추정하여 결국 추정된 조명성분을 제거하는 과정을 포함하도록 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.And estimating a reflection component from the difference between the logarithmic values and eventually removing the estimated lighting component. R,G,B좌표계를 색상(H),채도(S),밝기(V)좌표계로 변환하는 RGB/HSV변환기와,An RGB / HSV converter that converts the R, G, B coordinate system into a hue (H), saturation (S), and brightness (V) coordinate system, 상기 RGB/HSV변환기의 색상( H),채도(S),밝기(V)의 출력중 밝기(V)에 대해 필터의 중심화소의 값보다 큰값을 가질수록 약한 저역통과필터를 사용하는 필터링에 의해 조명성분을 추정하는 JND 기반 저역 통과 필터와, Filtering by using a weak low pass filter as the RGB / HSV converter has a value greater than the value of the center pixel of the hue (H), saturation (S), and brightness (V) of the output (V). JND based low pass filter for estimating the lighting 상기 JND 기반 저역 통과 필터의 출력과 상기 RGB/HSV변환기의 출력의 조명과 반사성분을 분리하기 위해 연산하는 제1,2 로그연산부와,First and second logarithm calculation units configured to separate the illumination and reflection components of the output of the JND based low pass filter and the output of the RGB / HSV converter; 상기 제 2 로그 연산부에서 분리된 추정 반사 및 조명 성분에서 추정 조명성분을 제거하고 상기 제1로그 연산부의 원래 영상의 밝기에서 분리된 조명과 반사 성분 값의 차를 계산하여 불균일한 조명을 보상하는 조명 보상부와, Illumination that compensates for non-uniform illumination by removing the estimated illumination component from the estimated reflection and illumination component separated by the second logarithm calculation unit and calculating a difference between the separated illumination and the reflection component value from the brightness of the original image of the first logarithm calculation unit. Compensation Department, 상기 조명 보상부의 출력을 출력장치에서의 밝기 값의 범위에 맞게 조정하는 히스토그램 수정부와,A histogram correction unit for adjusting an output of the lighting compensator to a range of brightness values in an output device; 상기 RGB/HSV변환기의 출력의 채도(S)를 히스토그램 수정부의 출력의 밝기(V)의 향상된 비율에 비례하여 이득을 조절하는 밝기이득조절부와,A brightness gain control unit for adjusting a gain in proportion to the saturation S of the output of the RGB / HSV converter in proportion to an improved ratio of the brightness V of the output of the histogram correction unit; 상기 밝기이득조절부의 밝기의 향상된 비율에 따라 채도를 향상시키는 채도향상조절부와, A saturation enhancement control unit for improving saturation according to an improved ratio of brightness of the brightness gain control unit; 상기 히스토그램 수정부의 밝기 출력과 채도향상조절부의 향상된 채도 및 상기 RGB/HSV변환기의 원래 색상(H)의 출력으로부터 출력장치의 영상과 동일한 칼라 좌표계로 사용하기 위해 변환하는 HSV/RGB변환부로 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 시스템.And a HSV / RGB converting unit for converting the brightness of the histogram correcting unit and the improved saturation of the chroma enhancement control unit and the output of the original color (H) of the RGB / HSV converter to use the same color coordinate system as the image of the output device. A system for improving image quality of color images. 색상(h), 밝기(v),채도(s)의 칼라영상의 화질개선 방법에 있어서, In the image quality improvement method of color image of hue (h), brightness (v), saturation (s), 상기 색상(h), 밝기(v),채도(s)의 불균일한 칼라 영상의 밝기의 화상중 중심화소에서
Figure 112007050889731-pat00054
만큼 떨어진 화소의 밝기값과 중심화소의 밝기 값의 비[ J(m,n)]와 저역 강약 조절을 위한 함수 [λ(m,n)]의 관계로부터 상기 중심화소
Figure 112007050889731-pat00055
의 값보다 큰 값을 가질수록 약한 저역 통과 필터를 사용하는 필터링에 의해 조명성분을 추정하는 과정과,
The center pixel of the image of the brightness of the non-uniform color image of the hue (h), brightness (v), saturation (s) in
Figure 112007050889731-pat00054
The center pixel from the relationship between the ratio of the brightness value of the pixel to the brightness of the center pixel [J (m, n)] and the function [λ (m, n)] for low / low intensity control
Figure 112007050889731-pat00055
Estimating the lighting component by filtering using a weak low pass filter,
상기 원래의 밝기와 추정된 반사성분에 의해 상기 불균일한 영상을 보상하는 과정과, Compensating for the non-uniform image by the original brightness and the estimated reflection component; 상기 밝기 값의 범위를 출력장치의 밝기 값의 범위로 맞추는 과정과,Matching the range of brightness values to the range of brightness values of an output device; 상기 향상된 밝기의 비율에 비례하여 채도(s)를 향상시키는 과정으로 구성됨을 특징으로 하는 칼라 영상의 화질 향상을 위한 방법.And improving the saturation (s) in proportion to the ratio of the enhanced brightness.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020050094576A 2005-10-07 2005-10-07 Method AND System For Enhancement Color Image Quality KR100771158B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050094576A KR100771158B1 (en) 2005-10-07 2005-10-07 Method AND System For Enhancement Color Image Quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050094576A KR100771158B1 (en) 2005-10-07 2005-10-07 Method AND System For Enhancement Color Image Quality

Publications (2)

Publication Number Publication Date
KR20070039347A KR20070039347A (en) 2007-04-11
KR100771158B1 true KR100771158B1 (en) 2007-10-29

Family

ID=38160228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050094576A KR100771158B1 (en) 2005-10-07 2005-10-07 Method AND System For Enhancement Color Image Quality

Country Status (1)

Country Link
KR (1) KR100771158B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236040A (en) * 2013-04-19 2013-08-07 华为技术有限公司 Color enhancement method and color enhancement device
CN103377468A (en) * 2012-04-26 2013-10-30 上海竞天科技股份有限公司 Image processing device and image processing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879536B1 (en) 2006-10-30 2009-01-22 삼성전자주식회사 Method And System For Image Enhancement
KR101360411B1 (en) * 2008-09-03 2014-02-10 서강대학교산학협력단 Method for image processing using retinex algorithm
KR102166334B1 (en) * 2014-02-19 2020-10-15 삼성전자주식회사 Method and device for processing image data
KR101585187B1 (en) * 2014-06-27 2016-01-15 서강대학교산학협력단 Image Processing Method and Apparatus for Integrated Multi-scale Retinex Based on CIELAB Color Space for Preserving Color
KR101665409B1 (en) * 2015-10-14 2016-10-24 연세대학교 산학협력단 Apparatus and Method of Decomposing Image Signal based on Retinex Model
KR102015708B1 (en) * 2017-11-24 2019-08-28 주식회사 아이오로라 Image compensating apparatus and method for performing light source compensation
CN111696058A (en) * 2020-05-27 2020-09-22 重庆邮电大学移通学院 Image processing method, device and storage medium
CN112288652A (en) * 2020-10-30 2021-01-29 西安科技大学 PSO optimization-based guide filtering-Retinex low-illumination image enhancement method
CN113313670B (en) * 2021-05-04 2024-02-02 西北工业大学 Underwater illumination non-uniform image enhancement method based on alternate direction multiplier method
CN113781360B (en) * 2021-09-27 2023-10-20 牟宗勇 Image enhancement method and system for infusion device based on artificial intelligence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078865A (en) * 2001-05-02 2001-08-22 박태한 Infinite Lottery Management System on On-line & Off-line.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078865A (en) * 2001-05-02 2001-08-22 박태한 Infinite Lottery Management System on On-line & Off-line.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
10-2001-78865

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377468A (en) * 2012-04-26 2013-10-30 上海竞天科技股份有限公司 Image processing device and image processing method
CN103236040A (en) * 2013-04-19 2013-08-07 华为技术有限公司 Color enhancement method and color enhancement device
WO2014169579A1 (en) * 2013-04-19 2014-10-23 华为技术有限公司 Color enhancement method and device
KR101552894B1 (en) * 2013-04-19 2015-09-14 후아웨이 테크놀러지 컴퍼니 리미티드 Method and apparatus for enhancing color
US9196024B2 (en) 2013-04-19 2015-11-24 Huawei Technologies Co., Ltd. Method and apparatus for enhancing color

Also Published As

Publication number Publication date
KR20070039347A (en) 2007-04-11

Similar Documents

Publication Publication Date Title
KR100771158B1 (en) Method AND System For Enhancement Color Image Quality
KR100879536B1 (en) Method And System For Image Enhancement
US11127122B2 (en) Image enhancement method and system
Parthasarathy et al. An automated multi scale retinex with color restoration for image enhancement
KR101454609B1 (en) Image processing method and apparatus
KR100624421B1 (en) Apparatus and method for filtering digital image signal
EP2833317B1 (en) Image display device and/or method therefor
US7899267B2 (en) Dynamic range compensation by filter cascade
KR101518722B1 (en) Image enhancement processing method and apparatus for distortion correction by air particle like fog
Vishwakarma et al. Color image enhancement techniques: a critical review
KR101311817B1 (en) Image detail enhancement
EP2290946A2 (en) Device and method for image processing
US6614944B1 (en) Image enhancement filter with adaptive threshold
CN104318529A (en) Method for processing low-illumination images shot in severe environment
RU2298223C2 (en) System and method for correcting dark tones on digital photographs
RU2622095C1 (en) Method of improving digital colour images
CN109886885B (en) Image enhancement method and system based on Lab color space and Retinex
Albu et al. One scan shadow compensation and visual enhancement of color images
CN114037641A (en) Low-illumination image enhancement method, device, equipment and medium
JPH06339017A (en) Saturation emphasizing method and device for color picture
Yu et al. Color constancy-based visibility enhancement in low-light conditions
Terai et al. Color image contrast enhancement by retinex model
Chandana et al. An optimal image dehazing technique using dark channel prior
Tang et al. Sky-preserved image dehazing and enhancement for outdoor scenes
Lin et al. Level-base compounded logarithmic curve function for colour image enhancement

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120927

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160929

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee