KR100765438B1 - Functional nanofibrous membrane based glucose biosensor and method for producing the same - Google Patents

Functional nanofibrous membrane based glucose biosensor and method for producing the same Download PDF

Info

Publication number
KR100765438B1
KR100765438B1 KR1020060036678A KR20060036678A KR100765438B1 KR 100765438 B1 KR100765438 B1 KR 100765438B1 KR 1020060036678 A KR1020060036678 A KR 1020060036678A KR 20060036678 A KR20060036678 A KR 20060036678A KR 100765438 B1 KR100765438 B1 KR 100765438B1
Authority
KR
South Korea
Prior art keywords
glucose
papba
pvdf
nfm
poly
Prior art date
Application number
KR1020060036678A
Other languages
Korean (ko)
Inventor
이광필
이얀가 고파란 아난타
산토시 파드만나반
마니필라이 매네쉬 카리알
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020060036678A priority Critical patent/KR100765438B1/en
Application granted granted Critical
Publication of KR100765438B1 publication Critical patent/KR100765438B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • G01N33/561Immunoelectrophoresis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2225Synthetic macromolecular compounds containing fluorine
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A functional nanofibrous membrane-based glucose biosensor and a method for producing the same biosensor are provided to eliminate use of enzyme and improve glucose-detection sensitivity and selectivity by increasing surface area produced through an electrospinning method. A functional nanofibrous membrane is produced by electrospinning a mixture containing poly(vinylidene fluoride) and poly(aminophenyl boronic acid) in a weight ratio of 95-99 : 5-1. A sensor electrode is produced by depositing the nanofibrous membrane on an ITO(indium tin oxide) plate. A glucose biosensor contains the sensor electrode using the functional nanofibrous membrane.

Description

기능성 나노섬유막 글로코스 센서 및 이의 제조방법 {Functional Nanofibrous Membrane Based Glucose Biosensor And Method for Producing the Same}Functional Nanofibrous Membrane Based Glucose Biosensor And Method for Producing the Same}

도 1은 전기 방사방식 (electrospinning)을 통하여 PVdF/PAPBA-NFM 전극의 제조 공정 및 글루코즈를 센싱 (sensing)하는 특성을 제공하는 미세구조 특징을 나타내는 그림이다.1 is a diagram showing a microstructure characteristic that provides a manufacturing process of PVdF / PAPBA-NFM electrode and a characteristic of sensing glucose by electrospinning.

도 2는 PVdF/PAPBA-NFM의 FESEM 이미지를 나타낸 사진이다.2 is a photograph showing a FESEM image of PVdF / PAPBA-NFM.

도 3은 전기방사된 PVdF/PAPBA-NFM (a) 및 PVdF (b)의 FT-IR 스펙트럼을 나타낸 그래프이다.3 is a graph showing the FT-IR spectra of electrospun PVdF / PAPBA-NFM (a) and PVdF (b).

도 4는 50 mV/s 스캔 속도에서의 1M HCl 내의 PVdF/PAPBA-NFM의 순환 전압전류 그림을 나타낸 것이다.4 shows a cyclic voltammogram plot of PVdF / PAPBA-NFM in 1M HCl at 50 mV / s scan rate.

도 5는 1 mM 글루코즈를 계속하여 첨가함에 따른 PVdF/PAPBA-NFM의 전류측정 반응을 나타낸 그래프이며 (전해질: 인산염 완충액 (pH=7.5), 전압: 0.4 V), 삽입된 그림은 전류에 따른 글루코즈 농도 (1-15 mM)의 보정 (calibration)을 나타낸 그림이다.FIG. 5 is a graph showing the amperometric response of PVdF / PAPBA-NFM with continuous addition of 1 mM glucose (electrolyte: phosphate buffer (pH = 7.5), voltage: 0.4 V), and the inserted figure shows glucose with current Figure shows the calibration of the concentration (1-15 mM).

도 6은 글로코즈 (a), 요산 (b), 아스코르브산 (c) 및 아세토아미노펜 (d)에 대한 PVdF/PAPBA-NFM의 전류측정 반응을 나타낸 그래프이다 (전압: 0.4V, 전해질:인산염 완충액 (pH=7.5)6 is a graph showing the amperometric response of PVdF / PAPBA-NFM to glocose (a), uric acid (b), ascorbic acid (c) and acetoaminophene (d) (voltage: 0.4V, electrolyte: phosphate buffer) (pH = 7.5)

도 7은 농도가 증가하는 (1-16 mM) 글루코즈 용액에 대한 PVdF/PAPBA-NFM의 흐름 주입 전류측정 반응을 나타낸 그래프이다 (작동 전압: 0.4 V, 흐름속도: 1.0 mL/min).7 is a graph showing flow injection amperometric response of PVdF / PAPBA-NFM to increasing concentrations of (1-16 mM) glucose solution (operating voltage: 0.4 V, flow rate: 1.0 mL / min).

도 8은 인산염 완충액 (pH=7.5)에 저장된 글로코즈에 대한 PVdF/PAPBA-NFM의 저장에 대한 안정성을 나타낸 그래프이다.FIG. 8 is a graph showing the stability to storage of PVdF / PAPBA-NFM relative to glocose stored in phosphate buffer (pH = 7.5).

본 발명은 나노섬유 막 및 이를 이용한 바이오센서 (biosensor)에 관한 것이다. 더 구체적으로, 본 발명은 효소-없는 (enzyme-free) 글루코즈 센서에 관한 것으로, 폴리(불화 비닐리덴) (poly(vinlylidene fluoride), PVdF) 및 폴리(아미노페닐붕소산) (poly(aminophenylboronic acid), PAPBA)을 포함하는 복합물 (composite)로부터 제조한 나노섬유 막 및 이를 센서에 적용한 것에 관한 것이다. The present invention relates to a nanofiber membrane and a biosensor using the same. More specifically, the present invention relates to enzyme-free glucose sensors, comprising poly (vinlylidene fluoride), PVdF and poly (aminophenylboronic acid) And nanofiber membranes prepared from composites comprising PAPBA) and their application to sensors.

또한, 본 발명은 PVdF 및 PAPBA 를 포함하는 복합물을 전기 방사하는 것을 포함하는 기능성 나노섬유 막을 제조하는 방법 및 이를 플레이트 상에 수집하는 것을 포함하는 바이오센서용 전극을 제조하는 방법에 관한 것이다. The present invention also relates to a method for producing a functional nanofiber membrane comprising electrospinning a composite comprising PVdF and PAPBA and a method for producing an electrode for a biosensor comprising collecting it on a plate.

전류 측정을 통한 바이오센서 개발에 대한 활발한 연구가 계속되어 왔다. 글루코즈는 대부분 유기체의 광범위한 영양 공급원이며 에너지 공급, 탄소 저장, 생합성 및 탄소 골격 및 세포 벽 형성의 기초적인 역할을 수행한다. 전류 측정을 통한 글루코즈 센서의 개발은 당뇨병 치료에서 있어서 중요성으로 광범위하게 연구되어 왔다 (Taylor, 1999).Active research on the development of biosensors through current measurement has been continued. Glucose is a broad source of nutrition for most organisms and plays a fundamental role in energy supply, carbon storage, biosynthesis and carbon skeleton and cell wall formation. The development of glucose sensors through current measurement has been extensively studied for their importance in the treatment of diabetes (Taylor, 1999).

글루코즈 센서에 대한 대부분의 최근 연구들은 글루코즈의 글루코노락톤 (gluconolactone)으로의 산화를 촉진하는 글루코즈 산화효소 (glucose oxidase) (Yu et al., 2003) 또는 글루코즈 탈수소효소 (glucose dehydrogenase) (Yamazaki et al., 2000)와 같은 효소의 고정에 기초하고 있다. 효소가 고정된 전극 표면은 전자가 빠르고 직접적으로 전달되도록 제조된다 (Cu et al., 2001). Most recent studies on glucose sensors have shown that glucose oxidase (Yu et al., 2003) or glucose dehydrogenase (Yamazaki et al.) Promotes the oxidation of glucose to gluconolactone. , 2000). The electrode surface to which the enzyme is immobilized is prepared to transfer electrons quickly and directly (Cu et al., 2001).

또한, 대부분의 경우 효소를 기초로 한 센서는 센서의 감도와 선택도를 향상시키기 위해 산화효소 매개자 (Forrow and Walters, 2004)를 필요로 한다. 하지만, 전류측정 효소 전극은 상대적으로 낮은 출력 전류농도 및 효소 활성의 점차적인 저하와 같은 몇 가지 내재적인 문제를 가지고 있다. 또한, 어떤 매개자의 안정성 및 독성은 생체 내 (in vivo) 적용을 제한하고 있다. 또한, 효소 고정에 기초한 센서는 변성되기 쉽다. 즉, 효소 반응의 부산물로 생성된 과산화수소는 효소의 변성을 유발하였다.In addition, in most cases enzyme-based sensors require oxidase mediators (Forrow and Walters, 2004) to improve sensor sensitivity and selectivity. However, amperometric enzyme electrodes have some inherent problems, such as relatively low output current concentrations and gradual degradation of enzyme activity. In addition, the stability and toxicity of certain mediators limit their application in vivo . In addition, sensors based on enzyme immobilization are susceptible to denaturation. In other words, hydrogen peroxide produced as a by-product of the enzyme reaction caused enzyme degeneration.

효소-없는 글루코즈 센서를 개발하려는 많은 시도들이 있었다. 일예로, 글루코즈가 백금 (platinum) (Bae et al., 1991), 금 (gold) (Adzic et al., 1989), 구리 (copper) (Yeo et al., 2000) 및 니켈 (nickel) (Yeo et al., 2001)과 같은 금속 표면에 전자-촉매 산화되었다. There have been many attempts to develop enzyme-free glucose sensors. In one embodiment, glucose is platinum (Bae et al., 1991), gold (Adzic et al., 1989), copper (Yeo et al., 2000) and nickel (Yeo). et al., 2001) and electron-catalytic oxidation on metal surfaces.

하지만, 금속 전극은 전극촉매 표면을 방해하는 화학 흡착된 중간 생성물의 축적에 의하여 급속하게 활성을 잃어버리게 된다. 이들 금속 전극의 다른 단점은 센서에 필수적인 요구인 글루코즈에 대한 선택성이 부족하다는 것이다. 다양한 유기 물질들이 이들 전극 표면에 글루코즈와 동시에 산화되어 전기화학 신호를 간접하게 한다.However, metal electrodes quickly lose their activity by accumulation of chemisorbed intermediates that interfere with the electrocatalyst surface. Another disadvantage of these metal electrodes is their lack of selectivity for glucose, an essential requirement for sensors. Various organic materials are oxidized simultaneously with glucose on these electrode surfaces to indirect electrochemical signals.

따라서 견고하고 효소가 없는 글루코즈 센서를 제조하는 것이 중요하다. 붕소산 (boronic acid)은 시안화물 (cyanide) (Badugu et al., 2004), 불화물 (fluoride) (Cesare 및 Lakowicz, 2002) 및 디-올 (di-ols) (Deore 및 Freund, 2003)과 상호작용하는 것으로 알려져 있으며 센서 개발에 사용되어 오고 있다. 오늘날, 붕소 산에 기반을 둔 효소가 없는 센서에 관한 많은 연구결과들이 보고 되고 있다. 형광 (fluorescence) (Wang et al., 2005, Badugu et al., 2005), UV-Vis (Shinmori et al., 1995), near-IR (Pringsheim et al., 1999), 표면 플라즈몬 공명 분광기 (surface plasmon resonance spectroscopy) (Gabai et al., 2001 및 Lee et al., 2002), 전위차법 (potentiometry) (Shoji 및 Freund, 2001, Shoji 및 Freund, 2002) 및 석영결정 미량천칭 측정법 (quartz crystal microbalance measurements) (Gabai et al., 2001)을 포함하는 다른 센싱 (sensing) 방법들이 개발되고 있다.Therefore, it is important to manufacture a robust and enzyme free glucose sensor. Boronic acid interacts with cyanide (Badugu et al., 2004), fluoride (Cesare and Lakowicz, 2002) and di-ols (Deore and Freund, 2003). It is known to work and has been used for sensor development. Today, much research is being reported on enzyme-free sensors based on boric acid. Fluorescence (Wang et al., 2005, Badugu et al., 2005), UV-Vis (Shinmori et al., 1995), near-IR (Pringsheim et al., 1999), surface plasmon resonance spectroscopy plasmon resonance spectroscopy (Gabai et al., 2001 and Lee et al., 2002), potentiometry (Shoji and Freund, 2001, Shoji and Freund, 2002) and quartz crystal microbalance measurements Other sensing methods are being developed, including (Gabai et al., 2001).

최근에, 감지 (sensing)에 적용하기 위해 중합 나노 섬유를 생산하기 위해 전기 분사방식 (electrospinning)이 사용되고 있다 (Dai et al., 2004). 전기 분사방식을 통해 제조된 나노 섬유는 높은 표면적을 가지게 되어 센서와 촉매에 적용 가능성을 찾고 있다. 전기 방사 나노 섬유 막에 기초한 광학 센서는 금속 이온 및 니트로 화합물 (nitro compounds)의 검출을 위한 필름 센서에 비하여 높은 민감도 및 선택도를 가진다고 보고 된 바 있다 (Lee et al., 2002, Wang et al., 2002, Xianyan et al., 2002).Recently, electrospinning has been used to produce polymeric nanofibers for application to sensing (Dai et al., 2004). Nanofibers made by electrospray have a high surface area and are looking for applications in sensors and catalysts. It has been reported that optical sensors based on electrospun nanofiber membranes have higher sensitivity and selectivity than film sensors for the detection of metal ions and nitro compounds (Lee et al., 2002, Wang et al. , 2002, Xianyan et al., 2002).

이에 본 발명의 발명자들은 폴리(불화 비닐리덴) 및 폴리(아미노페닐붕소산)의 복합물의 전자 방사 나노섬유 막에 기반 한 새로운 센서 전극을 ITO 유리 플레이트 상에 제조하고 나노섬유 막의 글루코즈 감지 능력이 측정하였다. 그 결과 PVdF/PAPBA-NFM 가 글루코즈의 감지에 있어서, 민감도, 간섭에 영향을 받지 않으며, 재현가능 및 저장 안정성을 보인다는 것을 확인하고 본 발명에 이르게 된 것이다.Therefore, the inventors of the present invention fabricated a new sensor electrode based on an electrospun nanofiber membrane of a composite of poly (vinylidene fluoride) and poly (aminophenylboronic acid) on an ITO glass plate and measured the glucose sensing ability of the nanofiber membrane. It was. As a result, it was confirmed that PVdF / PAPBA-NFM is not influenced by sensitivity and interference in the detection of glucose, and shows reproducible and storage stability.

따라서 본 발명의 목적은 기능성 나노 섬유 막 및 이를 이용한 바이오센서를 제공하고자 하는 것이다. 더 구체적으로, 본 발명은 효소-없는 (enzyme-free) 전류 측정 글루코즈 센서를 제공하고자 한다.Accordingly, an object of the present invention is to provide a functional nanofiber membrane and a biosensor using the same. More specifically, the present invention seeks to provide an enzyme-free amperometric glucose sensor.

또한, 본 발명의 다른 목적은 폴리(불화 비닐리덴) (poly(vinlylidene fluoride), PVdF) 및 폴리(아미노페닐붕소산) (poly(aminophenylboronic acid), PAPBA)을 포함하는 복합물 (composite)로부터 나노섬유 막을 제조하는 방법을 제공하고자 한다. 더 구체적으로 본 발명은 PVdF 및 PAPBA 를 포함하는 복합물을 전기 방사 (electrospinning)하는 것을 포함하는 기능성 나노섬유 막을 제조하는 방법을 제공하고자 한다.Another object of the present invention is also nanofibers from a composite comprising poly (vinlylidene fluoride), PVdF) and poly (aminophenylboronic acid, PAPBA). It is intended to provide a method of making a membrane. More specifically, the present invention seeks to provide a method of making functional nanofiber membranes comprising electrospinning composites comprising PVdF and PAPBA.

또한, 본 발명의 또 다른 목적은 전기 방사를 통해 PVdF/PAPBA-NFM 제조하여 민감도, 간섭에 영향을 받지 않으며, 재현가능 및 저장 안정성을 나타내는 글루코즈 센서를 제공하고자 한다. In addition, another object of the present invention is to provide a glucose sensor which is PVDF / PAPBA-NFM produced by electrospinning and is not affected by sensitivity and interference, and exhibits reproducible and storage stability.

본 발명은 기능성 나노섬유 막 (nanofibrous membrane) 및 이를 이용한 바이오센서 (biosensor)에 관한 것이다. 더 구체적으로, 본 발명은 효소-없는 (enzyme-free) 글루코즈 센서에 관한 것으로, 폴리(불화 비닐리덴) (poly(vinlylidene fluoride), PVdF) 및 폴리(아미노페닐붕소산) (poly(aminophenylboronic acid), PAPBA)을 포함하는 복합물 (composite)로부터 제조한 나노섬유 막 및 이를 센서에 적용한 것에 관한 것이다. The present invention relates to a functional nanofiber membrane (nanofibrous membrane) and a biosensor using the same. More specifically, the present invention relates to enzyme-free glucose sensors, comprising poly (vinlylidene fluoride), PVdF and poly (aminophenylboronic acid) And nanofiber membranes prepared from composites comprising PAPBA) and their application to sensors.

또한, 본 발명은 PVdF 및 PAPBA 를 포함하는 복합물을 전기 방사 (electrospinning)하는 것을 포함하는 기능성 나노섬유 막을 제조하는 방법 및 이를 플레이트 상에 수집하는 것을 포함하는 바이오센서용 전극을 제조하는 방법에 관한 것이다. The present invention further relates to a method for producing a functional nanofiber membrane comprising electrospinning a composite comprising PVdF and PAPBA and a method for producing an electrode for a biosensor comprising collecting it on a plate. .

구체적으로 본 발명은 폴리(불화 비닐리덴) 및 폴리(아미노페닐붕소산)을 포함하는 혼합물이 전자 방사되어 제조된 것을 특징으로 하는 나노섬유 막에 관한 것이며, 바람직하게는 상기 폴리(불화 비닐리덴) 및 폴리(아미노페닐붕소산)이 95~99 wt% : 5~1 wt% 의 비율로 포함된 것을 특징으로 한다. Specifically, the present invention relates to a nanofiber membrane, which is prepared by electrospinning a mixture comprising poly (vinylidene fluoride) and poly (aminophenylboronic acid), preferably the poly (vinylidene fluoride) And poly (aminophenylboronic acid) at a ratio of 95 to 99 wt%: 5 to 1 wt%.

또한, 본 발명은 상기 나노섬유 막을 플레이트 상에 증착시킨 것을 특징으로 하는 센서 전극에 관한 것이다. 바람직하게는 상기 플레이트가 주석첨가산화인디움 (indium tin oxide, ITO)인 것을 특징으로 한다.The present invention also relates to a sensor electrode characterized in that the nanofiber film is deposited on a plate. Preferably, the plate is characterized in that the indium tin oxide (ITO).

또한, 본 발명은 전류 측정을 통한 바이오센서에 있어서, 상기의 센서 전극을 포함하는 것을 특징으로 하는 센서에 관한 것으로, 바람직하게는 글루코즈를 감지하는 것을 특징으로 한다.In addition, the present invention relates to a sensor comprising a sensor electrode in the biosensor through the current measurement, preferably characterized in that for detecting glucose.

본 발명의 발명자들은 전사방사 방식을 통하여 폴리(불화 비닐리덴) 및 폴리(아미노페닐붕소산)를 포함하는 복합체의 나노섬유 막 (PVdF/PAPBA-NFM)을 제조하였다. PVdF/PAPBA-NFM는 6초 이내의 응답 시간 내에 1 내지 5 mM 농도 범위의 글루코즈의 감지에 있어서 좋은 선형 반응을 보였다. 요산, 아스코르브산, 아세토아미노펜과 같은 일반적인 간섭물질의 존재 하에 PVdF/PAPBA-NFM의 글루코즈 감지 전류측정 추가 실험을 통해 이러한 간섭 물질이 글루코즈에 대한 전류 신호에 겹쳐지지 않음을 확인하였다.The inventors of the present invention produced a nanofiber membrane (PVdF / PAPBA-NFM) of a composite including poly (vinylidene fluoride) and poly (aminophenylboronic acid) through a transfer spinning method. PVdF / PAPBA-NFM showed a good linear response in the detection of glucose in the 1-5 mM concentration range within a response time of less than 6 seconds. Glucose-sensing amperometric measurements of PVdF / PAPBA-NFM in the presence of common interferences such as uric acid, ascorbic acid and acetoaminophene Further experiments confirmed that these interferences do not overlap the current signal for glucose.

따라서 PVdF/PAPBA-NFM는 글루코즈에 대한 높은 선택도를 가짐을 알 수 있었다. 또한, PVdF/PAPBA-NFM는 높은 재현성 및 저장 안정성을 가지고 있다.Therefore, PVdF / PAPBA-NFM was found to have a high selectivity for glucose. In addition, PVdF / PAPBA-NFM has high reproducibility and storage stability.

이하 본 발명의 바람직한 실시예에 대하여 보다 상세히 설명한다. Hereinafter, a preferred embodiment of the present invention will be described in more detail.

실시예Example

<실시예 1> 시약 및 재료의 준비Example 1 Preparation of Reagents and Materials

3-아미노페닐붕소산(3-aminophenylboronic acid),폴리(불화 비닐리덴) ( poly(vinylidene fluoride)), 글루코즈 (glucose), 아세트아미노펜 (acetaminophen), 아스코르브산 (ascorbic acid) 및 요산 (uric acid)의 분석용 등급은 받은 대로 사용하였다. 모든 실험에 2차-증류수를 사용하였다. 글루코즈의 수용액은 실험에 필요한 경우 인산염 완충액 (pH=7.5)에서 새롭게 제조하여 사용하였다. 센서 전극을 제조하기 위해 주석첨가 산화인디움 (Indium tin oxide, ITO)이 코팅된 유리 플레이트 (약 10의 비표면저항)를 사용하였다. 각 실험 전에 ITO 전극은 아세톤으로 탈지하고 증류수로 헹구었다.3-aminophenylboronic acid, poly (vinylidene fluoride), glucose, acetaminophen, ascorbic acid and uric acid Analytical grades were used as received. Secondary distilled water was used for all experiments. Aqueous solutions of glucose were freshly prepared and used in phosphate buffer (pH = 7.5) when needed for the experiment. A glass plate coated with indium tin oxide (ITO) (specific surface resistance of about 10) was used to prepare the sensor electrode. Before each experiment, the ITO electrode was degreased with acetone and rinsed with distilled water.

<실시예 2> 센서 전극의 제조Example 2 Fabrication of Sensor Electrode

5 ℃에서 3-아미노페닐붕소산 (1M HCl 내 50 mM)를 과황산암모늄 (1M HCl 내 0.1 M)으로 산화 중합하여 폴리(아미노페닐붕소산) (PAPBA)를 제조하였다. 녹색의 침전물, PAPABA를 여과하고, 1M HCl로 세척하고 진공 오븐에서 건조하였다. 적당한 양의 PVdF 및 PAPBA를 DMF/아세톤 혼합물 (7:3 v/v)에 용해하였다. 혼합 용액의 전자방사를 25 kV의 전압차이로 10 mL/h 의 유속으로 수행하였다. 시린지 팁과 수집기 (collector) 사이의 거리를 15㎝로 유지하였다. 혼합 막을 ITO 유리 플레이트 상에 모았다 (도 1).Poly (aminophenylboronic acid) (PAPBA) was prepared by oxidative polymerization of 3-aminophenylboronic acid (50 mM in 1M HCl) with ammonium persulfate (0.1M in 1M HCl) at 5 ° C. The green precipitate, PAPABA, was filtered off, washed with 1M HCl and dried in a vacuum oven. Appropriate amounts of PVdF and PAPBA were dissolved in a DMF / acetone mixture (7: 3 v / v). Electrospinning of the mixed solution was performed at a flow rate of 10 mL / h with a voltage difference of 25 kV. The distance between the syringe tip and the collector was maintained at 15 cm. Mixed membranes were collected on an ITO glass plate (FIG. 1).

<실시예 3> 특성 분석Example 3 Characterization

센서 전극 (PVdF/PAPBA-NFM)의 형태를 200 kV에서 작동되는 전계방사 건을 갖춘 전계 방사 스캐닝 전자현미경 (FESEM) Hitachi S-4300으로 검사하였다. Bruker IFS 66v FTIR 분광 광도계를 사용하여 포리얼 변형 적외선 스펙트럼 (fourier transform infrared spectra)을 기록하였다.The shape of the sensor electrode (PVdF / PAPBA-NFM) was examined with a Field Radiation Scanning Electron Microscope (FESEM) Hitachi S-4300 with a field emission gun operated at 200 kV. Fourier transform infrared spectra were recorded using a Bruker IFS 66v FTIR spectrophotometer.

<실시예 4> 장치의 사용Example 4 Use of the Device

모든 전기화학 측정은 EG & G PAR 283 Electrochemical Analyzer를 사용하여 수행하였다. 센서 전극 (PVdF/PAPBA-NFM)의 전기촉매 활성은 전해질로 1 M HCl 내에서 순환 전압전류법을 사용하여 측정하였다. 센서 전극의 전류측정 반응은 작업 전극에 0.4V의 정전압을 인가하여 인산염 완충액 (pH=7.5) 내에서 정상-상태 조건 하에서 기록하였다. 전류측정 실험은 센서 전극, SCE 기준전극 및 백금 선 보조 전극을 포함하는 표준 단일-구획 전기화학 셀 내에서 수행하였다. 바탕 전류가 안정적으로 되면, 글로코즈 용액을 전해조 내로 주입하고 이의 반응을 측정하였다. 흐름 분석의 경우, 인산염 완충액 (pH=7.5)에 다양한 농도의 다양한 글루코즈 농도 주입에 따른 전류와 시간의 관계를 기록하였다.All electrochemical measurements were performed using the EG & G PAR 283 Electrochemical Analyzer. Electrocatalytic activity of the sensor electrode (PVdF / PAPBA-NFM) was measured using cyclic voltammetry in 1 M HCl with electrolyte. The amperometric response of the sensor electrode was recorded under steady-state conditions in phosphate buffer (pH = 7.5) by applying a constant voltage of 0.4 V to the working electrode. Amperometric experiments were performed in a standard single-compartment electrochemical cell comprising a sensor electrode, an SCE reference electrode and a platinum wire auxiliary electrode. When the ground current became stable, the glocose solution was injected into the electrolytic cell and its response was measured. For flow analysis, the relationship between current and time following the injection of various glucose concentrations at various concentrations in phosphate buffer (pH = 7.5) was recorded.

결과result

센서에 있어서는 민감도 (sensitivity),선택도 (selectivity) 및 기계적 안정성 (stability)이 필수적으로 요구된다. 본 발명의 발명자들은 글루코즈 바이오센서로 나노섬유 PVdF/PAPBA 막 (PVdF/PAPBA-NFM)을 제조하였다. PVdF/PAPBA-NFM는 전기 방사에 의해 PVdF 매트릭스 내로 기계적으로 강하게 고정된 PAPAB 내에서 글루코즈를 감지하는 보로네이트 기 (boronate group)를 가지고 있다 (도 1).For sensors, sensitivity, selectivity and mechanical stability are essential. The inventors of the present invention produced a nanofiber PVdF / PAPBA membrane (PVdF / PAPBA-NFM) with a glucose biosensor. PVdF / PAPBA-NFM has a boronate group that senses glucose in PAPAB which is mechanically strongly immobilized into the PVdF matrix by electrospinning (FIG. 1).

1. PVdF/PAPBA-NFM의 형태 및 미세구조1. Morphology and Microstructure of PVdF / PAPBA-NFM

도 2는 ITO가 코팅된 유리 플레이트 상에 증착된 PVdF/PAPBA 복합 막 (도 1)의 전기 방사의 부직 막의 전계 방사 스캐닝 전자현미경 (FESEM)영상을 보여주고 있다. 전기 방사 PVdF/PAPBA 복합 막의 형태에서 몇 가지 흥미로운 특징들이 나타났다. PVdF/PAPBA 복합체의 FESEM 영상은 복합체가 나노섬유 형태를 보임을 나타내고 있다. 섬유들은 평균 직경 약 150 nm을 가진 거의 균일한 형태이다. 나노섬유들은 서로 상호연결되어 망상을 형성하고 있다. 복합체의 나노섬유 표면은 매끈하다. PVdF/PAPBA-NFM의 형태학적 특징들은 유사한 조건 하에서 제조된 전기 방사된 PVdF 막과는 현저히 차이가 있다. FIG. 2 shows field emission scanning electron microscopy (FESEM) images of a nonwoven membrane of electrospinning of a PVdF / PAPBA composite membrane (FIG. 1) deposited on an ITO coated glass plate. Several interesting features have emerged in the form of electrospun PVdF / PAPBA composite membranes. FESEM images of PVdF / PAPBA complexes show that the complexes show nanofiber morphology. The fibers are almost uniform in shape with an average diameter of about 150 nm. Nanofibers are interconnected to form a network. The nanofiber surface of the composite is smooth. The morphological characteristics of PVdF / PAPBA-NFM differ significantly from electrospun PVdF membranes prepared under similar conditions.

PVdF의 섬유는 뻗뻗하고 곧으며 약 450 nm의 평균 직경을 가지고 있다 (Kim et al., 2004). PVdF 막의 평균 직경은 PVdF/PAPBA 복합체 막의 평균 직경 (약 150 nm) 보다 훨씬 크다. PVdF/PAPBA의 나노섬유의 작은 크기는 훨씬 넓은 표면적을 제공하며, PAPBA 내에 존재하는 붕소산 기 (group)가 글루코즈를 선택하고 감지하는 핵으로 작용하게 한다.The fibers of PVdF are stretched and straight and have an average diameter of about 450 nm (Kim et al., 2004). The average diameter of the PVdF membrane is much larger than the average diameter (about 150 nm) of the PVdF / PAPBA composite membrane. The small size of the nanofibers of PVdF / PAPBA provides a much larger surface area and allows the boronic acid groups present in PAPBA to act as nuclei for selecting and sensing glucose.

PVdF/PAPBA 복합체의 서로 연결된 망상 (network morphology)은 PAPBA 내의 NH2 기와 PVdF 내의 C-F 기 사이의 분자 간 상호작용을 유발한다. PVdF/PAPBA-NFM의 FT-IR 스펙트럼 (도 3, a)은 PVdF 및 PAPBA 사이의 분자 간 상호작용의 증거를 보여준다. PVdF/PAPBA-NFM의 FT-IR 스펙트럼은 PVdF 및 PAPBA에 대응하는 특징적인 밴드를 나타낸다. 복합체 막은 CF2 진동 (vibration) (1410 ㎝-1), CF2 흔듦 (wagging) (480 ㎝-1), B-O 스트레칭 (stretching) (1350 cm-1), B-C 스트레칭 (1090 cm-1) 및 방향 퀴니오드 이민 (aromatic quiniod imine)의 C-N 스트레칭 (1600 cm-1)에 대응하는 스펙트럼 밴드를 가지고 있다. PVdF 및 PAPBA 사이의 분자 상호작용은 단순한 PVdF에서의 각각의 밴드에 관하여 CF2 스트레치 및 CF2 흔듦 밴드 위치의 변이 (shift)로부터 명백히 알 수 있다 (도 3, b). PVdF/PAPBA-NFM의 FT-IR 스펙트럼 내의 퀴니오드 이민 스트레치 (약 1600 ㎝-1)에 대응하는 밴드가 존재하는 것은 PAPBA가 셀프-도프트 상태 (self-doped state)로 존재한다는 것을 나타내는 것이다 (Deore and Freund, 2003).The interconnected network morphology of the PVdF / PAPBA complex results in intermolecular interactions between NH 2 groups in PAPBA and CF groups in PVdF. The FT-IR spectrum of PVdF / PAPBA-NFM (FIG. 3, a) shows evidence of intermolecular interactions between PVdF and PAPBA. The FT-IR spectrum of PVdF / PAPBA-NFM shows characteristic bands corresponding to PVdF and PAPBA. Composite membranes are characterized by CF2 vibration (1410 cm -1 ), CF2 wagging (480 cm -1 ), BO stretching (1350 cm -1 ), BC stretching (1090 cm -1 ), and directional quinoid It has a spectral band corresponding to the CN stretch (1600 cm -1 ) of the imine (aromatic quiniod imine) Molecular interactions between PVdF and PAPBA can be clearly seen from shifts in CF2 stretch and CF2 shake band positions for each band in simple PVdF (FIG. 3, b). The presence of a band corresponding to quinoid imine stretch (about 1600 cm −1 ) in the FT-IR spectrum of PVdF / PAPBA-NFM indicates that PAPBA is in a self-doped state ( Deore and Freund, 2003).

2. PVdF/PAPBA-NFM의 전기적 활성2. Electrical Activity of PVdF / PAPBA-NFM

PVdF/PAPBA-NFM는 전기적 활성을 보인다. 이는 0.0 V 및 1.0 V 사이의 전위 대 표준 칼로멜 전극 (SCE)를 50 mV/s의 스캔 속도로 순환하여, 1M HCl 내에서의 PVdF/PAPBA-NFM의 순환 전압전류그램 (cyclic voltammogram, CV)을 기록한 기록 (도 4)을 통해 확인되었다. 반면, 전기 방사 PVdF 막이 절연되고 어떤 전기적 활성을 보이지 않는 것에 유념하여야 한다. PVdF / PAPBA-NFM shows electrical activity. This cycles the potential between 0.0 V and 1.0 V versus a standard calomel electrode (SCE) at a scan rate of 50 mV / s, yielding a cyclic voltammogram (CV) of PVdF / PAPBA-NFM in 1 M HCl. The recorded record was confirmed through (Fig. 4). On the other hand, it should be noted that the electrospun PVdF film is insulated and does not exhibit any electrical activity.

PVdF/PAPBA-NFM의 전기적 활성은 PAPBA의 존재로부터 발생하는 것이다. 양극 스캔 동안, PVdF/PAPBA-NFM의 CV는 약 550 mV 및 900 mV에서의 2개의 산화 피크를 보이는데, 이는 환원된 아미노페닐 붕소산 유니트가 PAPBA의 폴라로닉 (polaronic) (벤젠계 디아민) 및 비폴라노닉(bipolaronic) (퀴논 디이민)구조로 변형됨을 나타낸다 (Shoji 및 Freund, 2002).The electrical activity of PVdF / PAPBA-NFM arises from the presence of PAPBA. During the anodic scan, the CV of PVdF / PAPBA-NFM shows two oxidation peaks at about 550 mV and 900 mV, in which the reduced aminophenyl boronic acid unit is the polaronic (benzene-based diamine) of PAPBA and Transformation into bipolaronic (quinone diimine) structures (Shoji and Freund, 2002).

전위의 역 스캔 동안, 비폴라노닉 (bipolaronic) 의 폴라노닉 (polaronic)으로의 변형 및 폴라노닉 (polaronic)의 PAPBA의 환원 형태로 변형하는 것에 각각 대응하는, 770 mV 및 380 mV에서의 환원 피크가 관찰되었다. 따라서 PVdF/PAPBA-NFM는 글루코즈를 감지할 수 있는 특징을 가진 변형된 전극의 특징을 보여준다.During the reverse scan of the potential, the reduction peaks at 770 mV and 380 mV, corresponding to the transformation of bipolaronic to polaronic and to the reduced form of polaronic PAPBA, respectively, Was observed. PVdF / PAPBA-NFM thus shows the characteristics of a modified electrode with the ability to detect glucose.

3. PVdF/PAPBA-NFM의 센서 특성3. Sensor Characteristics of PVdF / PAPBA-NFM

PVdF/PAPBA-NFM의 글루코즈 센서로서의 민감도, 선택도 및 안정성을 연속적인 전기화학 측정을 통하여 확립하였다. Sensitivity, selectivity and stability of PVdF / PAPBA-NFM as glucose sensors were established through successive electrochemical measurements.

3.1 PVdF/PAPBA-NFM의 전류측정 반응3.1 Amperometric Response of PVdF / PAPBA-NFM

도 5는 0.4V의 작동 전위로 인산염 완충액 (pH=7.5) 내에 1 mM 글루코즈를 연속적으로 첨가하는 동안, PVdF/PAPBA-NFM 대 표준 칼로멜 전극 (SCE)으로 얻은 전류-시간 프로화일을 나타낸 것이다. 바탕전류가 안정적으로 되면, 교반하면서 전해질 (인산염 완충액) 내로 글루코즈를 첨가하였다. 전해질에 1 mM의 글루코즈를 처음으로 첨가하는 동안, 높은 피크의 전류 밀도 (35 ㎂/cm2)가 특징적이었다. 글루코즈의 연속적인 첨가에 대한 전류 응답이 기록되었다. 글루코즈의 각 첨가 시에, 섬유 막 전극에서의 전류는 갑자기 증가하고 안정한 값에 도달한다. 안정적이고 빠른 전류 측정 응답이 글루코즈의 연속적인 주입에서 관찰되었다 (도 5). 안정적인 응답에 도달하는데 필요한 시간은 6초 미만이었는데, 이는 다른 종류의 글루코즈 센서들에 비하여 훨씬 낮다 (Kalayci et al., 2005, Kamenjicki 및 Asher, 2005). 도 5의 삽입도는 글루코즈 검출 동안의 보정 값 (plot) (글루코즈의 응답 전류 대 농도)을 나타낸 것이다. FIG. 5 shows the current-time profile obtained with PVdF / PAPBA-NFM vs. standard caramel electrode (SCE) during the continuous addition of 1 mM glucose in phosphate buffer (pH = 7.5) at an operating potential of 0.4V. Once the ground current became stable, glucose was added into the electrolyte (phosphate buffer) with stirring. During the first addition of 1 mM glucose to the electrolyte, a high peak current density (35 mA / cm 2 ) was characteristic. The current response to the continuous addition of glucose was recorded. With each addition of glucose, the current at the fiber membrane electrode suddenly increases and reaches a stable value. Stable and fast amperometric response was observed with continuous infusion of glucose (FIG. 5). The time required to reach a stable response was less than 6 seconds, which is much lower than other types of glucose sensors (Kalayci et al., 2005, Kamenjicki and Asher, 2005). The inset of FIG. 5 shows the plot (response current versus concentration of glucose) during glucose detection.

0.01 mM 글루코즈의 낮은 검출 한계 (신호-노이즈의 비율 S/N=3)가 주목되었다. 따라서 섬유성 막은 다른 나노섬유 글루코즈 센서 (Yabuki et al., 2000 차abuki et al., 2001, Yabuki 및 Mizutani, 2005, Yang et al., 2005)와 비교하여 글루코즈에 대하여 높은 민감도를 보인다.A low detection limit of 0.01 mM glucose (signal-noise ratio S / N = 3) was noted. Thus, the fibrous membrane shows high sensitivity to glucose compared to other nanofiber glucose sensors (Yabuki et al., 2000 Chabuki et al., 2001, Yabuki and Mizutani, 2005, Yang et al., 2005).

3.2 PVdF/PAPBA-NFM의 선택도3.2 Selectivity of PVdF / PAPBA-NFM

아스코르브산 (AA), 아세토아미노펜 (AP) 및 뇨산 (UA)과 같은 글루코즈 간섭 물질로 알려진 물질의 존재 하에 실험함으로써 PVdF/PAPBA-NFM의 글루코즈에 대한 선택도 (selectivity)를 테스트하였다. UA 및 AA는 효소 계 센서 및 전류측정 센서의 글루코즈 검출 시 전기화학 응답을 방해하는 것으로 보고 되고 있다 (Park et al., 2003).The selectivity to glucose of PVdF / PAPBA-NFM was tested by experimenting in the presence of a substance known as a glucose interference substance such as ascorbic acid (AA), acetoaminophene (AP) and uric acid (UA). UA and AA have been reported to interfere with electrochemical responses in the detection of glucose by enzyme-based and amperometric sensors (Park et al., 2003).

글루코즈, AA, AP 및 UA의 생리학적 수준을 가진 혼합물에서 PVdF/PAPBA-NFM의 전류측정 전류 응답을 나타낸 것이다 (도 6). 상기 방해 물질들의 글루코즈 검출을 위한 전기화학 반응 상에 미치는 영향을 테스트하기 위해 글루코즈의 농도는 5 mM로 UA, AA 및 AP는 각각 0.1 M로 유지하였다.The amperometric current response of PVdF / PAPBA-NFM in a mixture with physiological levels of glucose, AA, AP and UA is shown (FIG. 6). To test the effect on the electrochemical reaction for glucose detection of the interfering substances, the concentration of glucose was kept at 5 mM and UA, AA and AP at 0.1 M each.

글루코즈 용액에 UA, AA 및 AP 용액을 첨가하는 경우 전류 신호에서 간섭은 무시할 수 있는 정도였다 (도 6). 이는 PVdF/PAPBA-NFM의 높은 선택도를 나타내는 것이다. When UA, AA and AP solutions were added to the glucose solution, the interference in the current signal was negligible (FIG. 6). This indicates a high selectivity of PVdF / PAPBA-NFM.

글루코즈에 대한 높은 선택도는 PAPBA 내의 붕소 기 (boronic groups) 및 글루코즈 사이의 가능한 복합화에 의한 것으로 여겨진다. PAPBA-계 센서에 의한 전위차 (potentionmetric) 당류 센서에 대한 선행 연구는 F- 이온의 존재 하에서 붕소 산 (boronic acid) 및 디올 사이의 복합화가 현저하였으며, 이러한 복합화가 당류에 대한 높은 선택도를 나타내게 하였다고 밝힌 바 있다 (Shoji 및 Freund, 2002). F- 이온들은 중간체로 붕소 음이온의 형성을 유도한다. F- 이온이 붕소 원자에 결합되면, Sp2 혼성 붕소는 Sp3 형태로 변경되고, 변형된 붕소 기는 디올 또는 당류와 복합화를 형성할 수 있었다.The high selectivity for glucose is believed to be due to the possible complexation between glucose and boronic groups in PAPBA. Previous studies on potentiometric sugar sensors by PAPBA-based sensors showed that the complexation between boronic acid and diols in the presence of F - ions was remarkable, which led to high selectivity for sugars. (Shoji and Freund, 2002). F ions lead to the formation of boron anions as intermediates. When the F ions were bonded to the boron atom, the Sp 2 hybrid boron was changed to the Sp 3 form, and the modified boron group could form a complex with the diol or saccharide.

본 발명에서는, 글루코즈 센서를 제작하는 동안에 F- 이온이 외부적으로 첨가되지 않았다. 오히려, 궁극적으로 글루코즈와 복합체를 형성을 유도하는, PVdF/PAPBA-NFM 내에서 PVdF 의 C-F 기 및 PAPBA 사이의 분자 수준의 상호작용이 존재한다 (도 1). FT-IR 스펙트럼 (도 3) 및 FESEM 분석(도 2) 데이터는 PVdF 및 PAPBA 내 기 (groups) 사이의 분자 간 상호작용과 일치한다. PVdF/PAPBA-NFM의 서로 연결된 형태는 분자 상호작용의 결과이다 (도 2). 도 1 (Scheme 2)는 PAPBA 기의 붕소 산 및 글루코즈의 하이드록시 기 사이의 가능한 복합화를 나타내고 있다. 전류 응답 (도 4)으로부터 자명한 바와 같이, PVdF/PAPBA-NFM의 글루코즈에 대한 높은 선택도는 주로 이러한 복합화에 기인한 것으로 여겨진다.In the present invention, no F ions were added externally during the manufacture of the glucose sensor. Rather, there is a molecular level interaction between the CF group of PVdF and PAPBA in PVdF / PAPBA-NFM that ultimately leads to complex formation with glucose (FIG. 1). FT-IR spectra (FIG. 3) and FESEM analysis (FIG. 2) data are consistent with the intermolecular interactions between PVdF and PAPBA groups. The interconnected forms of PVdF / PAPBA-NFM are the result of molecular interactions (FIG. 2). FIG. 1 (Scheme 2) shows a possible complexation between boronic acid of PAPBA group and hydroxyl group of glucose. As apparent from the current response (FIG. 4), the high selectivity for glucose of PVdF / PAPBA-NFM is believed to be due mainly to this complexation.

3.3. 흐름 주입 분석3.3. Flow injection analysis

흐름 주입 분석법 (flow injection analysis)은 낮은 샘플 소모, 결과의 재현성, 높은 처리량 및 다재성과 같은 특징으로 인해 분석 화학에 광범위하게 채택되고 있다. 도 7은 글루코즈 용액의 증가하는 농도에서 PVdF/PAPBA-NFM의 전류측정 응답을 보여준다. 전류 응답은 글루코즈의 농도에 따라 직선으로 증가 한다 (도 7). 글루코즈 감지에 대응하는 응답 전류는 글루코즈 농도의 증가에 따라 비례하여 증가함을 보여준다. PVdF/PAPBA-NFM가 글루코즈의 반복 검출 시 좋은 재현성을 제공하는 것이 또한 자명하다.Flow injection analysis has been widely adopted in analytical chemistry due to features such as low sample consumption, reproducibility of results, high throughput and versatility. 7 shows the amperometric response of PVdF / PAPBA-NFM at increasing concentrations of glucose solution. The current response increases linearly with the concentration of glucose (Figure 7). It is shown that the response current corresponding to glucose detection increases proportionally with increasing glucose concentration. It is also evident that PVdF / PAPBA-NFM provides good reproducibility in the repeated detection of glucose.

흥미롭게도, 응답에서 글루코즈 농도의 증가에 대한 기억효과는 없다. 따라서 PVdF/PAPBA-NFM는 전류 신호에 대한 충분한 전극 내 및 전극 간 재현성을 가지고 있다. Interestingly, there is no memory effect on increasing glucose concentration in the response. PVdF / PAPBA-NFM therefore has sufficient intra- and inter-electrode reproducibility for current signals.

나노섬유는 높은 표면적으로 가지고 있을 것으로 예상된다. 이는 본 발명에서 글루코즈를 감지할 수 있는 많은 수의 활성 부위에 대한 가능성을 제공한다. PVdF/PAPBA-NFM는 종전에 보고 된 PAPBA를 기반으로 한 글루코즈 센서 (Shoji 및 Freund, 2001, Shoji 및 Freund, 2002)와 비교하여 동적이며 지속적인 모니터링에 적합하다. Freund가 보고한 PAPBA를 기반으로 한 글로코즈 센서 (Shoji 및 Freund, 2002)의 경우 민감도는 혼입물로 F- 이온을 PAPBA 내로 내포 (inclusion)함으로써 일어나게 된다. 글루코즈를 감지하는 동적인 조건 하에서, PAPBA 필름으로부터 F- 이온이 제거될 가능성이 있기 때문에 장기간 사용하는 경우 센서로부터 F- 이온이 걸러져 (leaching) 글루코즈 센서의 민감도는 현저히 떨어지게 될 것이다. Nanofibers are expected to have high surface areas. This offers the possibility for a large number of active sites in the present invention that can sense glucose. PVdF / PAPBA-NFM is suitable for dynamic and continuous monitoring compared to previously reported PAPBA based glucose sensors (Shoji and Freund, 2001, Shoji and Freund, 2002). For Freund's reported PAPBA-based glocose sensors (Shoji and Freund, 2002), sensitivity is caused by inclusion of F - ions into the PAPBA as inclusions. Under the dynamic conditions of detecting glucose, there is a possibility of removing F - ions from the PAPBA film, so the F - ions are leached from the sensor over long periods of use, which will significantly reduce the sensitivity of the glucose sensor.

본 발명의 경우, PVdF 는 C-F 기를 가지고 있고, 복합체 내에서 서로 연결된 형태를 가지고 있으므로 F- 이온의 붕소 원자로의 근접이 가능하여 글루코즈와의 결합을 제공하게 된다. 따라서 F- 이온의 소실로 인해 문제가 발생할 여지가 없게 된다. 글루코즈의 지속적인 흐름에 대한 유체역학 실험을 통해 PVdF/PAPBA-NFM가 지속적인 흐름 속에서 글로코즈를 감지하는데 이상적으로 적합하다는 것을 알 수 있었다.In the case of the present invention, PVdF has a CF group and has a form connected to each other in the complex, so that the F - ion can be in close proximity to the boron atom to provide a bond with glucose. Therefore, there is no room for problems due to the loss of F - ions. Hydrodynamic experiments on the continuous flow of glucose showed that PVdF / PAPBA-NFM is ideally suited for the detection of glocose in continuous flow.

3.4. PVdF/PAPBA-NFM의 안정성3.4. PVdF / PAPBA-NFM Stability

PVdF/PAPBA-NFM를 298K의 공기 중에 10일 간 저장 한 후, 10 mM의 글로코즈를 포함하는 인산염 완충액 (pH=7.5)에서 센서의 정상 상태 전류 응답을 측정함으로써 PVdF/PAPBA-NFM의 안정성을 테스트하였다 (도 8).After storage of PVdF / PAPBA-NFM for 10 days in 298K air, the stability of PVdF / PAPBA-NFM was measured by measuring the steady-state current response of the sensor in phosphate buffer (pH = 7.5) containing 10 mM glocose. Tested (FIG. 8).

센서 전극은 10일 후에도 처음 활성의 90%를 유지하였으며 글로코즈에 대한 좋은 응답을 보였다.The sensor electrodes retained 90% of their initial activity after 10 days and showed a good response to glocose.

본 발명의 전자 방사를 통해 제조한 PVdF/PAPBA-NFM 및 이를 적용한 센서 전극은 글루코즈의 감지에 있어서, 민감도, 간섭에 영향을 받지 않으며, 재현가능 및 저장 안정성을 보인다. 이러한 나노섬유 막의 우세한 성능은 넓은 면적 및 글로코즈를 감지할 수 있는 활성 부위로 인한 것이다. PVdF / PAPBA-NFM prepared by the electromagnetic radiation of the present invention and the sensor electrode using the same are not affected by sensitivity, interference, and reproducibility and storage stability in detecting glucose. The predominant performance of these nanofibrous membranes is due to their large area and active sites that can detect glocose.

또한, 본 발명의 전자 방사 막 글루코즈 센서는 움직임이 있는 흐름 속에서 글루코즈를 감지하는데 이상적이다. 또한, 본 발명에 적용된 전자 방사 기술은 섬유 기질 내 감지 매개체를 로딩하여 다른 바이오센서의 제조에 활용할 수 있을 것이다.In addition, the electron emission membrane glucose sensor of the present invention is ideal for detecting glucose in a moving flow. In addition, the electrospinning technology applied to the present invention may be used to manufacture other biosensors by loading a sensing medium in the fiber substrate.

참고 문헌references

Adzic, R. R., Hsiao, M. W., Yeager, E. B., 1989. Electrochemical oxidation of glucose on single crystal gold surfaces, J. Electroanal. Chem. 260, 475-485. Adzic, R. R., Hsiao, M. W., Yeager, E. B., 1989. Electrochemical oxidation of glucose on single crystal gold surfaces, J. Electroanal. Chem. 260, 475-485.

Bae, I. T., Yeager, E., Xing, X., Liu, C. C., 1991. In situ infrared studies of glucose oxidation on platinum in an alkaline medium. J. Electroanal. Chem. 309, 131-145.Bae, I. T., Yeager, E., Xing, X., Liu, C. C., 1991. In situ infrared studies of glucose oxidation on platinum in an alkaline medium. J. Electroanal. Chem. 309, 131-145.

Badugu, R.; Lakowicz, J. R.; Geddes, C. D. 2004. Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 76, 610-618.Badugu, R .; Lakowicz, J. R .; Geddes, C. D. 2004. Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 76, 610-618.

Badugu, R., Lakowicz, J. R., Geddes, C. D., 2005. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring, Bioorganic. Med. Chem. 13, 113-119.Badugu, R., Lakowicz, J. R., Geddes, C. D., 2005. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring, Bioorganic. Med. Chem. 13, 113-119.

Cesare, N. D., Lakowicz, J. R., 2002. New sensitive and selective fluorescent probes for fluoride using boronic acids. Anal. Biochem. 301, 111-116.Cesare, N. D., Lakowicz, J. R., 2002. New sensitive and selective fluorescent probes for fluoride using boronic acids. Anal. Biochem. 301, 111-116.

Cui, G., Yoo, J. H.l., Woo, B. W., Kim, S. S., Cha, G. S., Nam, H., 2001. Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip, Talanta, 54, 1105-1111.Cui, G., Yoo, J. H. l., Woo, B. W., Kim, S. S., Cha, G. S., Nam, H., 2001. Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip, Talanta, 54, 1105-1111.

Dai, L. Reneker, D. H., In: Wang, Z. L., Editor, Nanowires and Nanobelts, Volume II Materials, Properties and Devices, Kluwer Academic Publishers, Dordrecht (2004).Dai, L. Reneker, D. H., In: Wang, Z. L., Editor, Nanowires and Nanobelts, Volume II Materials, Properties and Devices, Kluwer Academic Publishers, Dordrecht (2004).

Deore, B., Freund, M. S., 2003. Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride, Analyst, 128, 803806.Deore, B., Freund, M. S., 2003. Saccharide imprinting of poly (aniline boronic acid) in the presence of fluoride, Analyst, 128, 803806.

Forrow, N. J., Walters, S. J., 2004. Transition metal half-sandwich complexes as redox mediators to glucose oxidase. Biosens. Bioelectron. 19, 763-770.Forrow, N. J., Walters, S. J., 2004. Transition metal half-sandwich complexes as redox mediators to glucose oxidase. Biosens. Bioelectron. 19, 763-770.

Gabai, R., Sallacan, N., Chegel, V., Bourenko, T., Katz, E., Willner, I., 2001. Characterization of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments, J. Phys. Chem. B. 105, 8196-8202Gabai, R., Sallacan, N., Chegel, V., Bourenko, T., Katz, E., Willner, I., 2001.Characterization of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy , chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments, J. Phys. Chem. B. 105, 8196-8202

Kalayci, S., Somer, G., Ekmekci, G., 2005. Preparation and application of a new glucose sensor based on iodide ion selective electrode, Talanta 65, 87-91.Kalayci, S., Somer, G., Ekmekci, G., 2005. Preparation and application of a new glucose sensor based on iodide ion selective electrode, Talanta 65, 87-91.

Kamenjicki, M., Asher, S. A., 2005. Epoxide functionalized polymerized crystalline colloidal arrays. Sensors. Actuators B. 106, 373-377.Kamenjicki, M., Asher, S. A., 2005. Epoxide functionalized polymerized crystalline colloidal arrays. Sensors. Actuators B. 106, 373-377.

Kim, J. R., Choi, S. W., Jo, S. M., Lee, W. S., Kim, B.C., 2004. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries, Electrochim. Acta 50, 69-75.Kim, J. R., Choi, S. W., Jo, S. M., Lee, W. S., Kim, B. C., 2004. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries, Electrochim. Acta 50, 69-75.

Lee, M., Kim, T., Kim, K. H., Kim, J. H., Choi, M. S., Choi, H. J., Koh, K., 2002. Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonance-based monosaccharide sensor, Anal. Biochem. 310, 163-170.Lee, M., Kim, T., Kim, KH, Kim, JH, Choi, MS, Choi, HJ, Koh, K., 2002.Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonance-based monosaccharide sensor, Anal. Biochem. 310, 163-170.

Lee, S. H., Ku, B. C., Wang, X., Samuelson, L.A., Kumar, J., 2002. Design, synthesis and electrospinning of a novel fluorescent polymer for optical sensor applications, Mater. Res. Soc. Sympo. Proceed. 708 , 403-408.Lee, S. H., Ku, B. C., Wang, X., Samuelson, L.A., Kumar, J., 2002. Design, synthesis and electrospinning of a novel fluorescent polymer for optical sensor applications, Mater. Res. Soc. Sympo. Proceed. 708, 403-408.

Park, S., Chung, T. D., Kim, H. C., 2003. Nonenzymatic glucose detection using mesoporous polatinum, Anal. Chem. 75, 3046-3049.Park, S., Chung, T. D., Kim, H. C., 2003. Nonenzymatic glucose detection using mesoporous polatinum, Anal. Chem. 75, 3046-3049.

Pringsheim, E., Terpetschnig, E., Piletsky, S. A., Wolfbeis, O. S., 1999. A polyaniline with near-infrared optical response to saccharides. Adv. Mater. 11, 865-868.Pringsheim, E., Terpetschnig, E., Piletsky, S. A., Wolfbeis, O. S., 1999. A polyaniline with near-infrared optical response to saccharides. Adv. Mater. 11, 865-868.

Shinmori, H., Takeuchi, M., Shinkai, S., 1995. Spectroscopic sugar sensing by a stilbene derivative with push (Me2N-)-pull ((HO)2B-)-type substituents, Tetrhedron 51, 1893-1902.Shinmori, H., Takeuchi, M., Shinkai, S., 1995. Spectroscopic sugar sensing by a stilbene derivative with push (Me2N-)-pull ((HO) 2B-)-type substituents, Tetrhedron 51, 1893-1902.

Shoji, E., Freund, M. S., 2001. Potentiometric sensors based on the inductive effect on the pKa of poly(aniline): A nonenzymatic glucose sensor J. Am. Chem. Soc. 123, 3383-3384.Shoji, E., Freund, M. S., 2001. Potentiometric sensors based on the inductive effect on the pKa of poly (aniline): A nonenzymatic glucose sensor J. Am. Chem. Soc. 123, 3383-3384.

Shoji, E., Freund, M. S., 2002. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid), J. Am. Chem. Soc. 124, 12486-12493.Shoji, E., Freund, M. S., 2002. Potentiometric saccharide detection based on the pKa changes of poly (aniline boronic acid), J. Am. Chem. Soc. 124, 12486-12493.

Taylor, S. I., 1999. Deconstructing type 2 diabetes. Cell 97, 9-12. Taylor, S. I., 1999. Deconstructing type 2 diabetes. Cell 97, 9-12.

Wang, J., Jin, S., Wang,B., 2005. A new boronic acid fluorescent reporter that changes emission intensities at three wavelengths upon sugar binding. Tetrahedron Letters 46, 7003-7006.Wang, J., Jin, S., Wang, B., 2005. A new boronic acid fluorescent reporter that changes emission intensities at three wavelengths upon sugar binding. Tetrahedron Letters 46, 7003-7006.

Wang, X., Lee, S. H., Drew, C., Senecal, K. J., Kumar, J., Samuelson, L. A., 2002. A Highly sensitive optical sensors using electrospun polymeric nanofibrous membranes, Mater. Res. Soc. Sympo. Proceed. 708 , 397-402.Wang, X., Lee, S. H., Drew, C., Senecal, K. J., Kumar, J., Samuelson, L. A., 2002. A Highly sensitive optical sensors using electrospun polymeric nanofibrous membranes, Mater. Res. Soc. Sympo. Proceed. 708, 397-402.

Xianyan, W., Drew, C., Lee, S. H., Senecal, K. J., Kumar, J., Samuelson, L. A., 2002. Electrospun nanofibrous membranes for highly sensitive optical sensors Nano Lett. 2, 1273 -1275.Xianyan, W., Drew, C., Lee, S. H., Senecal, K. J., Kumar, J., Samuelson, L. A., 2002. Electrospun nanofibrous membranes for highly sensitive optical sensors Nano Lett. 2, 1273 -1275.

Yabuki. S., Mizutani, F., 2005. Preparation of amperometric glucose sensor based on electrochemically polymerized films of indole derivatives, Sensors. Actuators B. 108, 651-653.Yabuki. S., Mizutani, F., 2005. Preparation of amperometric glucose sensor based on electrochemically polymerized films of indole derivatives, Sensors. Actuators B. 108, 651-653.

Yabuki, S., Mizutani, F., Hirata, Y., 2000. Preparation of a glucose-sensing electrode based on glucose oxidase-attached polyion complex membrane containing microperoxidase and ferrocene. Electrochemistry 68, 853-855. Yabuki, S., Mizutani, F., Hirata, Y., 2000. Preparation of a glucose-sensing electrode based on glucose oxidase-attached polyion complex membrane containing microperoxidase and ferrocene. Electrochemistry 68, 853-855.

Yabuki, S., Mizutani, F., Hirata,Y., 2001. Glucose-sensing electrode based on glucose oxidase-attached polyion complex membrane containing peroxidase and ferrocene, Electroanalysis 13, 380-383. Yabuki, S., Mizutani, F., Hirata, Y., 2001. Glucose-sensing electrode based on glucose oxidase-attached polyion complex membrane containing peroxidase and ferrocene, Electroanalysis 13, 380-383.

Yamazaki, T., Kojima, K., Sode, K., 2000. Extended-range glucose sensor employing engineered glucose dehydrogenases, Anal. Chem. 72, 4689-4693.Yamazaki, T., Kojima, K., Sode, K., 2000. Extended-range glucose sensor employing engineered glucose dehydrogenases, Anal. Chem. 72, 4689-4693.

Yang, H., Zhu, Y., 2006. Size dependence of SiO2 particles enhanced glucose biosensor, Talanta 68, 569574.Yang, H., Zhu, Y., 2006. Size dependence of SiO 2 particles enhanced glucose biosensor, Talanta 68, 569574.

Yeo, I. H., Johnson, D. C., 2000. Anodic response of glucose at copper-based alloy electrodes. J. Electroanal. Chem. 484, 157-163.Yeo, I. H., Johnson, D. C., 2000. Anodic response of glucose at copper-based alloy electrodes. J. Electroanal. Chem. 484, 157-163.

Yeo, I. H., Johnson, D. C., 2001. Electrochemical response of small organic molecules at nickelcopper alloy electrodes. J. Electroanal. Chem. 495, 110-119. Yeo, I. H., Johnson, D. C., 2001. Electrochemical response of small organic molecules at nickelcopper alloy electrodes. J. Electroanal. Chem. 495, 110-119.

Yu, J., Liu, S., Ju, H. , 2003. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania solgel membrane, Biosens. Bioelectron. 19, 401-409Yu, J., Liu, S., Ju, H., 2003. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania solgel membrane, Biosens. Bioelectron. 19, 401-409

Claims (6)

폴리(불화 비닐리덴) 및 폴리(아미노페닐붕소산)을 포함하는 혼합물을 전기 방사되어 제조한 것을 특징으로 하는 나노섬유 막.A nanofiber membrane, which is prepared by electrospinning a mixture comprising poly (vinylidene fluoride) and poly (aminophenylboronic acid). 제1항에 있어서, 상기 폴리(불화 비닐리덴) 및 폴리(아미노페닐붕소산)이 95~99 wt% : 5~1 wt% 의 비율로 포함된 것을 특징으로 하는 나노섬유 막.The nanofiber membrane of claim 1, wherein the poly (vinylidene fluoride) and the poly (aminophenylboronic acid) are included in a ratio of 95 to 99 wt%: 5 to 1 wt%. 제1항 내지 제2항 중 어느 한 항에 따른 나노섬유 막을 플레이트 상에 증착시킨 것을 특징으로 하는 센서 전극.A sensor electrode, wherein the nanofiber film according to any one of claims 1 to 2 is deposited on a plate. 제3항에 있어서, 상기 플레이트가 주석첨가산화인디움 (indium tin oxide, ITO)인 것을 특징으로 하는 센서 전극.4. The sensor electrode according to claim 3, wherein the plate is indium tin oxide (ITO). 전류 측정 바이오센서에 있어서, 제 3항에 따른 센서 전극을 포함하는 것을 특징으로 하는 센서.A current measuring biosensor comprising a sensor electrode according to claim 3. 제5항에 있어서, 상기 센서가 글루코즈를 감지하는 것을 특징으로 하는 센서. 6. The sensor of claim 5, wherein said sensor senses glucose.
KR1020060036678A 2006-04-24 2006-04-24 Functional nanofibrous membrane based glucose biosensor and method for producing the same KR100765438B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060036678A KR100765438B1 (en) 2006-04-24 2006-04-24 Functional nanofibrous membrane based glucose biosensor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060036678A KR100765438B1 (en) 2006-04-24 2006-04-24 Functional nanofibrous membrane based glucose biosensor and method for producing the same

Publications (1)

Publication Number Publication Date
KR100765438B1 true KR100765438B1 (en) 2007-10-09

Family

ID=39419791

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060036678A KR100765438B1 (en) 2006-04-24 2006-04-24 Functional nanofibrous membrane based glucose biosensor and method for producing the same

Country Status (1)

Country Link
KR (1) KR100765438B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013865A1 (en) * 2008-07-29 2010-02-04 Kyungpook National University Industry Academic Cooperation Foundation Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using the same
CN101266225B (en) * 2008-04-28 2010-12-29 吉林大学 Electric spinning method for preparing high performance ceramic base nanometer fibre gas-sensitive sensor
KR20150061720A (en) 2013-11-27 2015-06-05 삼성전자주식회사 Polymer layer for non-enzymatic glucose sensor and non-enzymatic glucose sensor comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050066059A (en) * 2003-12-26 2005-06-30 한국전자통신연구원 Method for preparing biosensor
US20060068668A1 (en) 2004-09-27 2006-03-30 Cornell Research Foundation, Inc. Microfiber supported nanofiber membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050066059A (en) * 2003-12-26 2005-06-30 한국전자통신연구원 Method for preparing biosensor
US20060068668A1 (en) 2004-09-27 2006-03-30 Cornell Research Foundation, Inc. Microfiber supported nanofiber membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266225B (en) * 2008-04-28 2010-12-29 吉林大学 Electric spinning method for preparing high performance ceramic base nanometer fibre gas-sensitive sensor
WO2010013865A1 (en) * 2008-07-29 2010-02-04 Kyungpook National University Industry Academic Cooperation Foundation Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using the same
KR100971157B1 (en) 2008-07-29 2010-07-20 경북대학교 산학협력단 Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using the same
US20110129593A1 (en) * 2008-07-29 2011-06-02 Kwang Pill Lee Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using the same
US8673386B2 (en) * 2008-07-29 2014-03-18 Kyungpook National University Industry Academic Cooperation Foundation Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using the same
CN102112873B (en) * 2008-07-29 2014-07-09 庆北大学校产学协力团 Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using same
KR20150061720A (en) 2013-11-27 2015-06-05 삼성전자주식회사 Polymer layer for non-enzymatic glucose sensor and non-enzymatic glucose sensor comprising the same
US9493652B2 (en) 2013-11-27 2016-11-15 Samsung Electronics Co., Ltd. Polymeric film composition for non-enzymatic glucose sensor and non-enzymatic glucose sensor including the same

Similar Documents

Publication Publication Date Title
Manesh et al. Electrospun poly (vinylidene fluoride)/poly (aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor
Guan et al. Electrochemical sensor based on covalent organic frameworks-MWCNT-NH2/AuNPs for simultaneous detection of dopamine and uric acid
Lakshmi et al. Electrochemical detection of uric acid in mixed and clinical samples: a review
Diab et al. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine
Shao et al. A highly sensitive ascorbic acid sensor based on hierarchical polyaniline coated halloysite nanotubes prepared by electrophoretic deposition
Pauliukaite et al. Poly (neutral red): Electrosynthesis, characterization, and application as a redox mediator
Zhou et al. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose
Jeykumari et al. A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide
Losito et al. o-Phenylenediamine electropolymerization by cyclic voltammetry combined with electrospray ionization-ion trap mass spectrometry
Sheng et al. Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing
CN102112873B (en) Composition for glucose sensing comprising of nanofibrous membrane and method for manufacturing non-enzymatic glucose biosensor using same
Zhang et al. Electrochemical preparation of surface molecularly imprinted poly (3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine
Shi et al. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites
Li et al. 3D electrochemical sensor based on poly (hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection
Chauhan et al. A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite
Nie et al. Simultaneous determination of folic acid and uric acid under coexistence of l-ascorbic acid using a modified electrode based on poly (3, 4-ethylenedioxythiophene) and functionalized single-walled carbon nanotubes composite
Kamyabi et al. An electrochemical sensing method for the determination of levodopa using a poly (4-methyl-ortho-phenylenediamine)/MWNT modified GC electrode
Bai et al. A novel polycatechol/ordered mesoporous carbon composite film modified electrode and its electrocatalytic application
Naseri et al. Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H 2 O 2
Uzunçar et al. Amperometric detection of glucose and H2O2 using peroxide selective electrode based on carboxymethylcellulose/polypyrrole and Prussian Blue nanocomposite
Mounesh et al. Novel tetracinnamide cobalt (II) phthalocyanine immobilized on MWCNTs for amperometic sensing of glucose
Bicak et al. Poly (o-aminophenol) prepared by Cu (II) catalyzed air oxidation and its use as a bio-sensing architecture
Scampicchio et al. Nylon nanofibrous biosensors for glucose determination
Li et al. Impedimetric Enzyme‐Free Detection of Glucose via a Computation‐Designed Molecularly Imprinted Electrochemical Sensor Fabricated on Porous Ni Foam
Masdarolomoor et al. Novel approach to the synthesis of polyaniline possessing electroactivity at neutral pH

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120926

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170922

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190917

Year of fee payment: 13