KR100764838B1 - Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same - Google Patents

Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same Download PDF

Info

Publication number
KR100764838B1
KR100764838B1 KR1020060040508A KR20060040508A KR100764838B1 KR 100764838 B1 KR100764838 B1 KR 100764838B1 KR 1020060040508 A KR1020060040508 A KR 1020060040508A KR 20060040508 A KR20060040508 A KR 20060040508A KR 100764838 B1 KR100764838 B1 KR 100764838B1
Authority
KR
South Korea
Prior art keywords
wastewater
terephthalic acid
sample
absorbance
concentration
Prior art date
Application number
KR1020060040508A
Other languages
Korean (ko)
Inventor
이경훈
박종문
정재열
이해우
Original Assignee
삼성석유화학(주)
주식회사 엔비자인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성석유화학(주), 주식회사 엔비자인 filed Critical 삼성석유화학(주)
Priority to KR1020060040508A priority Critical patent/KR100764838B1/en
Application granted granted Critical
Publication of KR100764838B1 publication Critical patent/KR100764838B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An apparatus for analyzing the wastewater containing terephthalic acid of high purity, and its method are provided to measure the concentration of terephthalic acid, acetic acid, benzoic acid and p-toluene acid contained in the wastewater generated in the manufacturing process of terephthalic acid simultaneously. An apparatus for analyzing the wastewater containing terephthalic acid comprises a pretreatment device(120) which removes the float of the wastewater obtained in the manufacturing process of terephthalic acid; a spray pump(140) which transfers the pretreated wastewater; a spectrophotometer(160) which measures the absorbance of the transferred wastewater; a PC(180) which stores the transmitted data of the absorbance of the wastewater and calculates the concentration of the wastewater by using the measured data; and a control and signal transmission unit(200) which transmits the concentration of the wastewater to a dispersion control system.

Description

고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한 성상분석방법{Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same}Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same}

도 1은 본 발명에 따른 고순도 테레프탈산 폐수의 성상분석장치에 관한 공정흐름도이다.1 is a process flow chart of a property analysis device of high purity terephthalic acid wastewater according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100...고순도 테레프탈산 폐수의 성상분석장치에 관한 공정흐름도Process Flow Chart for Appearance Analysis Apparatus of High Purity Terephthalic Acid Wastewater

120...전처리장치 140...분사펌프120 Pretreatment ...

160...분광광도계 180...장치제어용PC160 ... Spectrophotometer 180 ... PC for device control

200...제어 및 시그널 전송유닛200 ... control and signal transmission unit

본 발명은 성상분석장치 및 이를 이용한 성상분석방법에 관한 것으로, 보다 상세하게는 테레프탈산 제조공정에서 발생하는 폐수의 테레프탈산, 아세트산, 벤조산, 및 파라톨루엔산 성분들을 분광광도계를 이용하여 동시에 측정가능하고, 폐수 샘플의 전처리 및 분석과정이 간단하며 분석을 자동화할 수 있어 실시간 온라인 모 니터링이 가능한 보다 개선된 고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한 성상분석방법에 관한 것이다.The present invention relates to a constellation analysis device and a constellation analysis method using the same, more specifically, terephthalic acid, acetic acid, benzoic acid, and paratoluic acid components of wastewater generated in a terephthalic acid manufacturing process can be measured simultaneously using a spectrophotometer. The present invention relates to an improved constellation analysis apparatus for high purity terephthalic acid wastewater and a constellation analysis method using the same, which enables simple pretreatment and analysis of wastewater samples and automated analysis.

일반적으로, 테레프탈산 제조공정에서 발생하는 폐수를 처리하는 혐기성 처리공정의 운전에 있어 처리효율에 영향을 미치는 인자 중 중요한 요소는 폐수 중에 포함되어 있는 여러 오염 물질의 농도이다. In general, an important factor that affects the treatment efficiency in the operation of anaerobic treatment processes for treating wastewater from terephthalic acid manufacturing is the concentration of various pollutants contained in the wastewater.

이러한 오염 물질의 주요 성분으로 테레프탈산(terephthalic acid), 아세트산(acetic acid), 벤조산(benzoic acid), 파라톨루엔산(para-toluic acid) 등으로 구성되어 있다. 상기 오염물질들은 혐기성 처리공정 내에 자라는 혐기성 미생물에 의해 분해되어 최종적으로 메탄과 이산화탄소로 전환된다.The main components of these pollutants are terephthalic acid, acetic acid, benzoic acid, and para-toluic acid. The pollutants are decomposed by anaerobic microorganisms growing in the anaerobic treatment process and finally converted to methane and carbon dioxide.

한편, 테레프탈산 제조공정에서 발생하는 폐수의 분석은 시료채취, 시료이동, 시료분취, 무게평량, 용기에 주입, 용액조제, 용액주입, 용해, 필터링, 시료용액분취, 분석기삽입, 분석, 결과산출 및 결과통보와 같은 단계를 거쳐 분석되고 있다.On the other hand, analysis of wastewater generated in the terephthalic acid manufacturing process includes sampling, sample transfer, sample fractionation, weight basis, injection into a container, solution preparation, solution injection, dissolution, filtering, sample solution fractionation, insertion of analyser, analysis, result calculation, and It is analyzed through the same steps as the result notification.

기기분석을 위한 전처리단계는 시료채취 ~ 시료용액분취까지 이고, 기기분석단계는 분석기삽입~ 분석까지이며, 기기분석이후 후처리단계는 결과산출 ~ 결과통보까지로 나뉠 수 있다. The pretreatment stage for instrument analysis may be from sample collection to sample solution fractionation, and the instrument analysis stage may be from insertion to analysis of the analyzer, and the post-treatment stage after instrument analysis may be divided into calculation of results and notification of results.

한편, 기존 기기분석단계에서 사용중인 기술은 액체 이동상과 기체 이동상을 이용한 크로마토 그램을 사용하였으며 테레프탈산, 벤조산, 및 파라톨루엔산의 분석은 고성능 액체크로마토그래피{High Performance Liquid Chromatograph;HPLC}를 사용하였고, 아세트산의 분석은 가스크로마토그래피{Gas Chromatograph;GC}를 이용 한 기기분석방법을 사용하였다. On the other hand, the technique used in the existing instrumental analysis step was using a chromatogram using a liquid mobile phase and a gas mobile phase, and analysis of terephthalic acid, benzoic acid, and paratoluic acid was performed using High Performance Liquid Chromatograph (HPLC). For the analysis of acetic acid, instrumental analysis using gas chromatography (GC) was used.

하지만 전처리단계에 많은 인력과 시간이 필요하고 기기분석단계에도 이동상이 충진 컬럼을 통과하며 분리되는데 많은 시간이 필요하기 때문에 실시간으로 변화하는 폐수의 각 오염물질의 농도를 측정하는 것이 불가능하였다. However, it was not possible to measure the concentration of each pollutant in the wastewater that changes in real time because it requires a lot of manpower and time in the pretreatment stage and a lot of time for the mobile phase to pass through the packed column and separate in the instrument analysis stage.

또한 장비의 구성 측면에서 분사기, 펌프, 컬럼, 및 감지기와 같은 여러 장비들이 복잡하게 구성되어 있으며, 액체와 기체 이동 상 물질의 유지관리, 감지에 필요한 가스 공급과 같은 부수적인 요소가 많이 필요하기 때문에 분석을 자동화하여 무인 운전화 시키는데 어려움이 발생하였다. In addition, in terms of equipment configuration, various equipments such as injectors, pumps, columns, and detectors are complicated and require many additional factors such as gas supply for maintenance and detection of liquid and gas mobile phase materials. Difficulties were encountered in automating the analysis and making it unattended.

따라서, 상기와 같은 크로마토그램을 이용한 분석방법의 단점을 보완하여 테레프탈산 제조공정폐수의 실시간 자동분석이 가능하고, 이를 통해 혐기성 폐수처리공정의 안정적인 운전을 가능케 하여 친환경적인 공장을 운영할 수 있는 개선된 고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한 성상분석방법이 시급한 실정이다.Therefore, real-time automatic analysis of the wastewater of terephthalic acid manufacturing process is made possible by supplementing the disadvantages of the analysis method using the chromatogram as described above, thereby enabling stable operation of the anaerobic wastewater treatment process, thereby improving the operation of an eco-friendly plant. Apparatus for analyzing the properties of high-purity terephthalic acid wastewater and its method are urgently needed.

본 발명은 상기의 문제점을 해결하기 위하여 창출된 것으로서, 고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한 성상분석방법을 구축하여 테레프탈산 제조공정폐수 농도의 실시간 자동분석을 실시하고 이를 통해 혐기성 폐수처리공정의 안정적인 운전을 가능케 하여 친환경적인 공장 운영을 도모하는 개선된 고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한 성상분석방법을 제공하는데 그 목적이 있다.The present invention was created in order to solve the above problems, by establishing a constellation analysis device of high-purity terephthalic acid wastewater and a constellation analysis method using the same to perform the real-time automatic analysis of wastewater concentration of terephthalic acid manufacturing process and through this stable stable anaerobic wastewater treatment process The purpose of the present invention is to provide an improved constellation analysis device for high purity terephthalic acid wastewater and a constellation analysis method using the same.

본 발명의 또 다른 목적은 테레프탈산 제조공정에서 발생하는 폐수의 테레프탈산, 아세트산, 벤조산, 및 파라톨루엔산 성분들을 분광광도계를 이용하여 동시에 측정함으로써, 폐수 샘플의 분석과정을 간단히 하고 자동화하여 실시간 온라인 모니터링을 할 수 있다.It is still another object of the present invention to simultaneously measure the terephthalic acid, acetic acid, benzoic acid, and paratoluic acid components of wastewater generated in a terephthalic acid manufacturing process using a spectrophotometer, thereby simplifying and automating the analysis of wastewater samples and real-time online monitoring. can do.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the embodiments of the invention. In addition, the objects and advantages of the invention may be realized by the means and combinations indicated in the claims.

상기와 같은 목적을 달성하기 위한 본 발명의 고순도 테레프탈산 폐수의 성상분석장치는, 테레프탈산 제조공정의 폐수 내 부유물을 제거하는 전처리장치; 상기 전처리장치에서 전처리 된 폐수 샘플을 이송시키는 분사펌프; 상기 분사펌프에 의해서 이송된 폐수 샘플의 흡광도를 측정하는 분광광도계; 상기 분광광도계에 의해 측정된 폐수 샘플 흡광도의 측정데이터를 전송받아 저장하고 상기 측정데이터를 이용하여 상기 폐수의 농도 값을 계산하는 장치제어용PC(personal computer); 및 상기 폐수의 농도 값을 분산제어시스템으로 전송하는 제어 및 시그널 전송유닛을 포함하는 고순도 테레프탈산 폐수의 성상분석장치가 제공된다.In order to achieve the above object, the high purity terephthalic acid wastewater property analysis apparatus of the present invention includes a pretreatment apparatus for removing suspended matter in the wastewater of the terephthalic acid manufacturing process; An injection pump for transferring the wastewater sample pretreated in the pretreatment device; A spectrophotometer for measuring the absorbance of the wastewater sample conveyed by the injection pump; A device control PC (personal computer) for receiving and storing the measurement data of the wastewater sample absorbance measured by the spectrophotometer and calculating the concentration value of the wastewater using the measured data; And a control and signal transmission unit for transmitting the concentration value of the wastewater to a distributed control system, thereby providing a property analysis device for high purity terephthalic acid wastewater.

본 발명의 고순도 테레프탈산 폐수의 성상분석방법은, 테레프탈산 제조공정의 폐수 내 부유물을 제거하는 전처리단계; 분사펌프에 의해 상기 전처리단계에서 전처리 된 폐수 샘플을 이송시키는 이송단계; 분광광도계에 의해 상기 분사펌프에 의해서 이송된 폐수 샘플의 흡광도를 측정하는 흡광도측정단계; 장치제어용PC에 의 해 측정된 폐수 샘플 흡광도의 측정데이터를 전송받아 저장하고, 상기 측정데이터를 이용하여 상기 폐수의 농도 값을 계산하는 폐수의 농도값 계산단계; 및 제어 및 시그널 전송유닛에 의해 상기 폐수의 농도 값을 분산제어시스템으로 전송하는 전송단계를 포함하는 고순도 테레프탈산 폐수의 성상분석방법을 제공한다.Property analysis method of high purity terephthalic acid wastewater of the present invention, the pretreatment step of removing the suspended matter in the wastewater of the terephthalic acid manufacturing process; A transfer step of transferring the wastewater sample pretreated in the pretreatment step by a injection pump; An absorbance measuring step of measuring absorbance of the wastewater sample transferred by the injection pump by a spectrophotometer; A wastewater concentration value calculating step of receiving and storing measurement data of the wastewater sample absorbance measured by a device control PC, and calculating the concentration value of the wastewater using the measured data; And a transmission step of transmitting the concentration value of the wastewater to a distributed control system by a control and signal transmission unit.

여기서, 상기 농도값 계산단계는, 폐수 샘플의 자외선{Ultra violet;UV}-가시광선{Visible;VIS}-근적외선{Near in frared ray;NIR} 스펙트럼을 측정하는 단계; 폐수 샘플을 고성능 액체크로마토그래피 및 가스크로마토그래피로 분석하여 농도를 측정하는 단계; 상기 측정된 스펙트럼 값과 농도 값의 상관관계를 결정하는 단계; 및 상기 결정된 상관관계를 이용하여 폐수의 농도를 측정하는 단계를 포함하는 것이 바람직하다.The concentration value calculating step may include measuring ultraviolet (Ultra violet; UV) -near-infrared (NIR) spectra of a wastewater sample; Analyzing the wastewater sample by high performance liquid chromatography and gas chromatography to determine the concentration; Determining a correlation between the measured spectral value and the concentration value; And measuring the concentration of wastewater using the determined correlation.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

이에 앞서, 본 명세서 및 청구 범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to explain their invention in the best way. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예 들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1은 본 발명에 따른 고순도 테레프탈산 폐수의 성상분석장치에 관한 공정흐름도(100)이다. 도시된 바와 같이, 전처리장치(120), 분사펌프(140), 분광광도계(160), 장치제어용PC(personal computer)(180) 및 제어 및 시그널 전송유닛(200)을 포함한다.1 is a process flow diagram 100 for a property analysis apparatus for high purity terephthalic acid wastewater according to the present invention. As shown, it includes a pretreatment device 120, injection pump 140, spectrophotometer 160, a personal computer (PC) 180 for controlling the device and a control and signal transmission unit 200.

상기 전처리장치(120)는, UV-VIS-NIR의 흡광도 스펙트럼을 통한 테레프탈산 제조공정 폐수 내 오염물질 농도의 정확한 측정을 위해, 폐수 샘플 중 빛을 산란시켜 정확한 흡광도 측정을 방해하는 부유물질을 필터를 사용하여 자동제거하고, 전처리된 폐수는 본 발명의 성상분석장치로 이송되어 폐수의 농도를 분석한다. The pretreatment device 120, in order to accurately measure the concentration of contaminants in the wastewater of the terephthalic acid manufacturing process using the absorbance spectrum of UV-VIS-NIR, scatters light in the wastewater sample to prevent suspended solids from interfering with the accurate absorbance measurement. Automatically removed and pretreated wastewater is transferred to the property analyzer of the present invention to analyze the concentration of the wastewater.

상기 분사펌프(140)는, 전처리 된 폐수 샘플을 후술할 분광광도계(160) 내부의 플로우 셀(flow cell)로 이송한다. 한편, NIR 영역에서 용매인 물의 특징적인 피크영역의 영향을 최소화하여야 하므로 샘플 내에 존재하는 물질의 농도는 높을수록 정확하다. 따라서 최선의 전처리 방법은 원폐수의 부유물를 제거하여 희석되지 않은 폐수를 분석장치에 로딩하여 분석하는 것이기 때문에, 근적외선{near infrared ray;NIR} 영역에서의 흡광도 측정에 대한 오차를 방지하고 전처리 과정을 간소화하기 위해 상기 폐수 샘플의 물에 의한 희석은 실시하지 않는다. The injection pump 140 transfers the pretreated wastewater sample to a flow cell inside the spectrophotometer 160 which will be described later. On the other hand, since the influence of the characteristic peak region of the solvent water in the NIR region should be minimized, the higher the concentration of the substance present in the sample, the more accurate. Therefore, the best pretreatment method is to remove unsustained wastewater by loading the undiluted wastewater into the analyzer, thereby preventing errors in absorbance measurement in the near infrared ray (NIR) region and simplifying the pretreatment process. To this end, the dilution with water of the wastewater sample is not performed.

한편, 상기 플로우 셀(flow cell)은, 폐수 샘플에 빛이 통과될 때 흡광도를 측정하는 분광측정법에서 샘플을 담고있는 홀더의 역할을 하며 연속적인 측정이 가능하도록 유입구와 유출구를 가지고 있고, 재질은 석영으로 형성된다.On the other hand, the flow cell (flow cell), acts as a holder for holding the sample in the spectroscopic method for measuring the absorbance when light passes through the waste water sample and has an inlet and an outlet to enable continuous measurement, the material is It is formed of quartz.

또한, 상기 폐수 샘플의 흡광도 측정은 폐수 샘플이 플로우 셀에 담겨진 상 태에서 흡광도 측정을 위해 광원에서 나온 빛이 통과한 후 디텍터에서 측정된다. 이때 상기 플로우 셀은 용매인 물에 의한 영향을 최소화하기 위해, 광원에서 나온 빛이 샘플 내를 지나간 거리가 1 mm인 것이 바람직하다. 상기 광원에서 나온 빛에 의해 샘플 내를 지나간 거리는, 샘플을 담고 있는 플로우 셀의 디자인에 의해 결정되기 때문에 이에 한정하는 것은 아니다.In addition, the absorbance measurement of the wastewater sample is measured at the detector after passing the light from the light source for absorbance measurement while the wastewater sample is contained in the flow cell. In this case, the flow cell preferably has a distance of 1 mm from the light source passing through the sample to minimize the influence of water as a solvent. The distance passed within the sample by the light from the light source is not limited to this because it is determined by the design of the flow cell containing the sample.

상기 분광광도계(160)는, 상기 분사펌프(140)에 의해서 이송된 폐수 샘플의 흡광도를 측정하는데, 후술할 장치제어용PC(personal computer)(180)에 의해 제어되어 순차적으로 자외선-가시광선-근적외선 흡광도를 측정한다.The spectrophotometer 160 measures the absorbance of the wastewater sample transported by the injection pump 140, and is controlled by a device control PC 180 to be described later to sequentially display ultraviolet-visible-near-infrared rays. Measure the absorbance.

상기 장치제어용PC(180)는, 상기 분광광도계(160)에서 측정된 흡광도의 측정데이터를 전송받아 PC(180) 내에 저장하고, 하나의 폐수 샘플에 대한 흡광도 스캔이 완료되면 해당 폐수 샘플에 대한 흡광도 스펙트럼이 구해지며, 저장된 데이터를 수학적 모델을 사용하여 PC의 프로그램에 의해 테레프탈산, 아세트산, 벤조산, 및 파라톨루엔산의 농도를 동시에 계산한다. The device control PC 180 receives the absorbance measurement data measured by the spectrophotometer 160 and stores the measured data in the PC 180. When the absorbance scan of one wastewater sample is completed, the absorbance of the wastewater sample is completed. The spectra are obtained and the stored data are simultaneously calculated by the program of the PC using the mathematical model to determine the concentrations of terephthalic acid, acetic acid, benzoic acid, and paratoluic acid.

상기 제어 및 시그널 전송유닛(200)은, 계산된 폐수의 농도값을 디지털/아날로그 변환기{D/A converter}를 이용하여 4-20 mA 의 신호로 분산제어시스템{Distributed contol system; DCS}에 전송한다.The control and signal transmission unit 200 is a distributed control system with a signal of 4-20 mA using a digital / analog converter D / A converter; To DCS}.

본 발명에 따른 고순도 테레프탈산 폐수의 성상분석방법에 대해 기술한다. It describes a method for analyzing the properties of high purity terephthalic acid wastewater according to the present invention.

먼저, 상기 고순도 테레프탈산 폐수의 성상분석방법은 전처리단계, 이송단계, 흡광도측정단계, 폐수의 농도값 계산단계 및 전송단계를 포함한다.First, the property analysis method of the high purity terephthalic acid wastewater includes a pretreatment step, a transfer step, an absorbance measurement step, a concentration value calculation step and a transfer step of the wastewater.

먼저, 전처리단계에서 테레프탈산 제조공정의 폐수 내 부유물을 제거하고, 이송단계에서, 상기 분사펌프(140)에 의해 상기 전처리단계에서 전처리 된 폐수 샘플을 이송시킨다.First, in the pretreatment step, the suspended matter in the wastewater of the terephthalic acid manufacturing process is removed, and in the transfer step, the wastewater sample pretreated in the pretreatment step is transferred by the injection pump 140.

다음으로, 흡광도측정단계에서는, 상기 분사펌프(140)에 의해서 이송된 폐수 샘플을 플로우 셀 내에 공급한 후, 분광광도계(160)를 이용하여 자외선{Ultra violet;UV}-가시광선{Visible;VIS}-근적외선{Near in frared ray;NIR}의 흡광도를 측정한다. Next, in the absorbance measurement step, the wastewater sample transferred by the injection pump 140 is supplied into the flow cell, and then ultraviolet (Ultra violet; UV) -visible light (Visible; VIS) using the spectrophotometer 160. }-Absorbance of Near Infrared Ray (NIR) is measured.

한편, 기존의 고성능 액체크로마토그래피{High performance liquid chromato graphy;HPLC}를 이용한 측정법의 경우 컬럼을 통과하며 분리된 각각의 성분 농도를 검출하기 위해서 UV영역의 단일파장 빛에 대한 흡광도를 이용하여 계산하였다. 하지만 본 발명에서는 플로우 셀 내에 샘플이 로딩된 후 UV-VIS-NIR 영역에 걸친 흡광도 스펙트럼을 측정한다.Meanwhile, in the case of the conventional method using high performance liquid chromatography (HPLC), the absorbance of single wavelength light in the UV region was calculated to detect the concentration of each component separated through the column. . However, the present invention measures the absorbance spectrum over the UV-VIS-NIR region after the sample is loaded into the flow cell.

상기 폐수의 농도값 계산단계에서, 장치제어용PC(180)에 의해 측정된 폐수 샘플 흡광도의 측정데이터를 전송받아 저장하고, 상기 측정데이터를 이용하여 상기 폐수의 농도 값을 계산한다. 보다 상세하게는, 전체 스펙트럼 데이터를 입력변수로 하고 테레프탈산, 아세트산, 벤조산 및 파라톨루엔산의 농도를 출력변수로 하는 PLS(partial least square) 모델을 이용하여 측정된 스펙트럼 데이터로부터 테레프탈산, 아세트산, 벤조산 및 파라톨루엔산의 농도를 계산한다.In the step of calculating the concentration value of the wastewater, the measurement data of the wastewater sample absorbance measured by the device control PC 180 is received and stored, and the concentration value of the wastewater is calculated using the measured data. More specifically, terephthalic acid, acetic acid, benzoic acid and terephthalic acid, acetic acid, benzoic acid and terephthalic acid, acetic acid, benzoic acid and paratoluic acid were measured using the PLS (partial least square) model. Calculate the concentration of paratoluic acid.

여기서, UV-VIS-NIR 스펙트럼으로부터 폐수 내 테레프탈산, 아세트산, 벤조산 및 파라톨루엔산의 농도를 계산하는 PLS 모델은 다음과 같은 절차를 통하여 일반화된다. Here, the PLS model for calculating the concentration of terephthalic acid, acetic acid, benzoic acid and paratoluic acid in wastewater from the UV-VIS-NIR spectrum is generalized through the following procedure.

먼저, 동일 폐수 샘플의 자외선-가시광선-근적외선 스펙트럼을 측정하고, 상기 폐수 샘플을 고성능 액체크로마토그래피{High performance liquid chromato graphy;HPLC} 및 가스크로마토그래피{Gas chromato graphy;GC}로 분석하여 폐수내 테레프탈산, 아세트산, 벤조산 및 파라톨루엔산의 농도를 측정한다. First, the ultraviolet-visible-near-infrared spectrum of the same wastewater sample is measured, and the wastewater sample is analyzed by high performance liquid chromatography (HPLC) and gas chromatography (Gas chromatography; GC). The concentrations of terephthalic acid, acetic acid, benzoic acid and paratoluic acid are measured.

그 다음으로 상기 측정된 스펙트럼 값과 농도 값의 상관관계를 결정하는데, 보다 상세하게는, 다양한 농도 범위의 샘플에 대해 측정된 스펙트럼 데이터 베이스를 X데이터로 하고 HPLC 및 GC 기기분석을 통해 측정된 각 물질별 농도 데이터 베이스를 Y데이터로 하여 X와 Y 데이터 베이스 간의 상관 관계를 다변량 통계기법의 하나인 PCA(Principal Component Analysis)에 기반한 PLS 모델을 이용하여 결정한다. Next, the correlation between the measured spectral value and the concentration value is determined. More specifically, the spectral database measured for samples of various concentration ranges is X data, and the measured angles are determined by HPLC and GC instrumental analysis. The correlation between X and Y databases is determined using the PLS model based on Principal Component Analysis (PCA), which is one of the multivariate statistical techniques, using Y data as the concentration database for each substance.

마지막으로, 전송단계에서, 제어 및 시그널 전송유닛(200)에 의해 상기 폐수의 농도 값을 분산제어시스템으로 전송한다.Finally, in the transmission step, the control and signal transmission unit 200 transmits the concentration value of the wastewater to the distributed control system.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited to this and it is described by the person of ordinary skill in the art to this invention, and below. Various modifications and variations are possible without departing from the scope of the appended claims.

상술한 바와 같이, 본 발명의 고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한 성상분석방법은 다음과 같은 효과가 있다.As described above, the apparatus for analyzing properties of high purity terephthalic acid wastewater of the present invention and the method for analyzing properties using the same have the following effects.

첫째, 폐수 샘플의 전처리 및 분석과정이 간단하고 상기 분석과정을 자동화 하여 실시간 온라인 모니터링이 가능한 효과가 있다.First, the pretreatment and analysis process of the wastewater sample is simple and real-time online monitoring is possible by automating the analysis process.

둘째, 직접적으로 폐수의 농도를 측정하지 않고 보다 편리하게 폐수의 농도측정 및 감시를 수행할 수 있다. Second, the wastewater concentration measurement and monitoring can be performed more conveniently without directly measuring the concentration of the wastewater.

셋째, 테레프탈산 제조공정에서 발생하는 폐수의 테레프탈산, 아세트산, 벤조산, 및 파라톨루엔산 성분들을 분광광도계를 이용하여 동시에 측정가능하다. Third, the terephthalic acid, acetic acid, benzoic acid, and paratoluic acid components of the wastewater generated in the terephthalic acid manufacturing process can be measured simultaneously using a spectrophotometer.

넷째, 테레프탈산 제조공정폐수 농도의 실시간 자동분석을 통해 혐기성 폐수처리공정의 안정적인 운전을 가능케 하여 친환경적인 공장 운영을 도모할 수 있다.Fourth, the real-time automatic analysis of wastewater concentration of terephthalic acid manufacturing process enables stable operation of anaerobic wastewater treatment process to promote eco-friendly plant operation.

Claims (3)

테레프탈산 제조공정의 폐수 내 부유물을 제거하는 전처리장치;A pretreatment apparatus for removing suspended matter in wastewater of a terephthalic acid manufacturing process; 상기 전처리장치에서 전처리 된 폐수 샘플을 이송시키는 분사펌프;An injection pump for transferring the wastewater sample pretreated in the pretreatment device; 상기 분사펌프에 의해서 이송된 폐수 샘플의 흡광도를 측정하는 분광광도계;A spectrophotometer for measuring the absorbance of the wastewater sample conveyed by the injection pump; 상기 분광광도계에 의해 측정된 폐수 샘플 흡광도의 측정데이터를 전송받아 저장하고 상기 측정데이터를 이용하여 상기 폐수의 농도 값을 계산하는 장치제어용PC(personal computer); 및A device control PC (personal computer) for receiving and storing the measurement data of the wastewater sample absorbance measured by the spectrophotometer and calculating the concentration value of the wastewater using the measured data; And 상기 폐수의 농도 값을 분산제어시스템으로 전송하는 제어 및 시그널 전송유닛을 포함하는 고순도 테레프탈산 폐수의 성상분석장치.Apparatus for analyzing properties of high purity terephthalic acid wastewater comprising a control and signal transmission unit for transmitting the concentration value of the wastewater to a distributed control system. 테레프탈산 제조공정의 폐수 내 부유물을 제거하는 전처리단계;A pretreatment step of removing the suspended matter in the wastewater of the terephthalic acid manufacturing process; 분사펌프에 의해 상기 전처리단계에서 전처리 된 폐수 샘플을 이송시키는 이송단계;A transfer step of transferring the wastewater sample pretreated in the pretreatment step by a injection pump; 분광광도계에 의해 상기 분사펌프에 의해서 이송된 폐수 샘플의 흡광도를 측정하는 흡광도측정단계;An absorbance measuring step of measuring absorbance of the wastewater sample transferred by the injection pump by a spectrophotometer; 장치제어용PC에 의해 측정된 폐수 샘플 흡광도의 측정데이터를 전송받아 저장하고, 상기 측정데이터를 이용하여 상기 폐수의 농도 값을 계산하는 폐수의 농도값 계산단계; 및A wastewater concentration value calculating step of receiving and storing measurement data of wastewater sample absorbance measured by a device control PC, and calculating the concentration value of the wastewater using the measured data; And 제어 및 시그널 전송유닛에 의해 상기 폐수의 농도 값을 분산제어시스템으로 전송하는 전송단계를 포함하는 고순도 테레프탈산 폐수의 성상분석방법.And a transmission step of transmitting the concentration value of the wastewater to a distributed control system by a control and signal transmission unit. 제 2항에 있어서,The method of claim 2, 상기 농도값 계산단계는,The concentration value calculation step, 폐수 샘플의 자외선-가시광선-근적외선 스펙트럼을 측정하는 단계;Measuring an ultraviolet-visible-near infrared spectrum of the wastewater sample; 폐수 샘플을 고성능 액체크로마토그래피 및 가스크로마토그래피로 분석하여 농도를 측정하는 단계;Analyzing the wastewater sample by high performance liquid chromatography and gas chromatography to determine the concentration; 상기 측정된 스펙트럼 값과 농도 값의 상관관계를 결정하는 단계; 및Determining a correlation between the measured spectral value and the concentration value; And 상기 결정된 상관관계를 이용하여 폐수의 농도를 측정하는 단계를 포함하는 것을 특징으로 하는 고순도 테레프탈산 폐수의 성상분석방법.Characterization method of the high purity terephthalic acid wastewater comprising the step of measuring the concentration of wastewater using the determined correlation.
KR1020060040508A 2006-05-04 2006-05-04 Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same KR100764838B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060040508A KR100764838B1 (en) 2006-05-04 2006-05-04 Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060040508A KR100764838B1 (en) 2006-05-04 2006-05-04 Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same

Publications (1)

Publication Number Publication Date
KR100764838B1 true KR100764838B1 (en) 2007-10-09

Family

ID=39419577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060040508A KR100764838B1 (en) 2006-05-04 2006-05-04 Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same

Country Status (1)

Country Link
KR (1) KR100764838B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240002057A (en) 2022-06-28 2024-01-04 에스케이이노베이션 주식회사 Method for monitoring odor-causing substances in flue gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242602A (en) 1992-03-04 1993-09-07 W. R. Grace & Co.-Conn. Spectrophotometric monitoring of multiple water treatment performance indicators using chemometrics
KR950019727A (en) * 1993-12-31 1995-07-24 김준웅 Method for Measuring Catalyst Concentration Using Spectrophotometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242602A (en) 1992-03-04 1993-09-07 W. R. Grace & Co.-Conn. Spectrophotometric monitoring of multiple water treatment performance indicators using chemometrics
KR950019727A (en) * 1993-12-31 1995-07-24 김준웅 Method for Measuring Catalyst Concentration Using Spectrophotometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240002057A (en) 2022-06-28 2024-01-04 에스케이이노베이션 주식회사 Method for monitoring odor-causing substances in flue gas

Similar Documents

Publication Publication Date Title
Hassell et al. Process analytical chemistry for spectroscopists
Langergraber et al. Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy
KR100875629B1 (en) Automatic analysis quantitative monitoring method and automatic analysis quantitative monitoring device
US8981314B2 (en) Method and apparatus for the optical determination of total organic carbon in aqueous streams
CN106932378A (en) The on-line detecting system and method for a kind of sour gas composition based on Raman spectrum
US7972863B2 (en) System and method for alkylation process analysis
CN114835241B (en) Real-time monitoring and ozone intelligent adding control method for refractory organic matters in sewage
Ojeda et al. Process analytical chemistry: applications of ultraviolet/visible spectrometry in environmental analysis: an overview
CN1749750A (en) High efficiency liquid phase chromatograph
US9636629B2 (en) Real-time online determination of caustic in process scrubbers using near infrared spectroscopy and chemometrics
KR100764838B1 (en) Apparatus for ingredient analysis of wastewater containing purity terephtalic acid and method of ingredient analysis using the same
CN111273045B (en) Method for operating an automatic analysis device
Van den Broeke On-line and in-situ UV/vis spectroscopy
CN110658139A (en) Permanganate index analysis system
AU2006218103A1 (en) Method and device for determining the concentration of organically bound halogens
Wang et al. Research Article Quantitative Analysis of Multiple Components in Wine Fermentation using Raman Spectroscopy
US6235242B1 (en) Sample size characterization technique and apparatus for liquid analysis
JP6446457B2 (en) Method and apparatus for determining the siloxane content of a gas
CN209372694U (en) A kind of sewage monitoring system
Wiberg et al. Rapid determination of lidocaine solutions with non-column chromatographic diode array UV spectroscopy and multivariate calibration
Hofstaedter et al. On-line nitrate monitoring in sewers using UV/VIS spectroscopy
CN109238996A (en) A kind of real-time online continuously monitors the device and its application method of nitrate concentration
CN2762132Y (en) High-efficient liquid phase chromatograph
Rodrigues et al. Applying near‐infrared spectroscopy in downstream processing: one calibration for multiple clarification processes of fermentation media
CN111272524B (en) Method for diluting a sample liquid and dilution unit for subsequent analysis

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140827

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160810

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee