KR100763953B1 - Colored electornic ink nanoparticles for electronic displays and preparation thereof - Google Patents

Colored electornic ink nanoparticles for electronic displays and preparation thereof Download PDF

Info

Publication number
KR100763953B1
KR100763953B1 KR1020060044392A KR20060044392A KR100763953B1 KR 100763953 B1 KR100763953 B1 KR 100763953B1 KR 1020060044392 A KR1020060044392 A KR 1020060044392A KR 20060044392 A KR20060044392 A KR 20060044392A KR 100763953 B1 KR100763953 B1 KR 100763953B1
Authority
KR
South Korea
Prior art keywords
nanoparticles
ethyl
methyl methacrylate
ammonium chloride
trimethyl ammonium
Prior art date
Application number
KR1020060044392A
Other languages
Korean (ko)
Inventor
권용구
김태희
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020060044392A priority Critical patent/KR100763953B1/en
Application granted granted Critical
Publication of KR100763953B1 publication Critical patent/KR100763953B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/009Characterizing nanostructures, i.e. measuring and identifying electrical or mechanical constants
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Colored electronic ink nanoparticles for electronic displays are provided to have clear colors and high electrophoretic mobility and embody clear colors on e-papers. Colored electronic ink nanoparticles for electronic displays are prepared by the steps of: cross-linking methyl methacrylate, ethyleneglycol dimethacrylate, and [2-(methacryloxy)ethyl]trimethyl ammonium chloride] by a non-emulsion copolymerization method using 2,2'-azobis(2-methylpropionamidine)dihydrochloride as an initiator to prepare poly(methyl methacrylate-co-ethyleneglycol dimethacrylate-co-[2-(methacryloxy)ethyl]trimethyl ammonium chloride) nanoparticles; adding hexamethylenediamine to the nanoparticles, stirring and reacting the admixture at room temperature for 11-13 hours to prepare amine group-containing nanoparticles(NH2-PMMA); and dyeing the amine group-containing nanoparticles with a disperse dye solution containing water and a disperse dye in a weight ratio of 5-40:1.

Description

전자종이 컬러 구현 다색 나노입자 및 그 제조방법{Colored electornic ink nanoparticles for electronic displays and preparation thereof} Colored electornic ink nanoparticles for electronic displays and preparation according to electronic paper color

도 1은 본 발명에 따라 제조된 가교된 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자(이하, ‘PMMA 나노입자’라 함)의 주사전자현미경(SEM) 사진을 나타낸 것이다. 1 is cross-linked poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticles prepared according to the present invention (hereinafter referred to as' PMMA Scanning electron microscope (SEM) photographs of the nanoparticles' are shown.

도 2는 본 발명에 따라 제조된 가교된 PMMA 나노입자의 DSC 데이터를 나타낸 것이다.Figure 2 shows the DSC data of the crosslinked PMMA nanoparticles prepared according to the present invention.

도 3은 본 발명에 따라 염색된 나노입자의 주사전자현미경사진을 나타낸 것이다. 각각 (a)는 빨강, (b)는 노랑, (c)는 파랑이다.Figure 3 shows a scanning electron micrograph of the nanoparticles stained according to the present invention. (A) is red, (b) is yellow, and (c) is blue, respectively.

도 4(a)는 본 발명에 따라 제조된 PMMA 나노입자, 도 4(b)는 빨간색으로 염색된 나노입자의 주사전자현미경사진을 나타낸 것이다.Figure 4 (a) is a PMMA nanoparticles prepared according to the present invention, Figure 4 (b) shows a scanning electron micrograph of the nanoparticles stained in red.

도 5는 본 발명에 따라 제조된 PMMA 나노입자, 그리고 빨강, 파랑 및 노랑 염색된 나노입자의 UV/가시광선 스펙트럼 분석결과를 나타낸 것이다.Figure 5 shows the results of UV / visible spectrum analysis of PMMA nanoparticles prepared according to the present invention, and red, blue and yellow stained nanoparticles.

도 6은 본 발명에 따라 제조된 나노입자, 그리고 빨강, 파랑 및 노랑 염색된 나노입자의 PL 스펙트럼 분석결과를 나타낸 것이다.Figure 6 shows the PL spectrum analysis results of the nanoparticles, and red, blue and yellow stained nanoparticles prepared according to the present invention.

도 7(a) 및 7(b)는 본 발명에 따라 제조한 나노입자를 사용하여 제조한 프로토타입에 대하여 100V/mm의 구동전압을 각각 반대로 걸어주었을 때의 색깔 차이를 나타낸 것으로, 각각 파란색과 빨간색을 나타내었다.7 (a) and 7 (b) show the color differences when the driving voltage of 100 V / mm is reversed with respect to the prototype manufactured using the nanoparticles prepared according to the present invention, respectively. It is red.

본 발명은 전자종이(e-paper)에 컬러를 구현할 수 있는 다색 나노입자 및 그 제조방법, 특히 염색 방법에 관한 것이다.The present invention relates to multicolor nanoparticles capable of realizing color on an e-paper, and a method of manufacturing the same, in particular a dyeing method.

일반적으로 전자종이 디스플레이 또는 전기영동 디스플레이(Electrophoretic display)로 불리는 새로운 디스플레이는 종이와 현대적인 디스플레이의 장점을 겸비한 표시장치로 알려져 있다. New displays, commonly referred to as electronic paper displays or electrophoretic displays, are known as displays that combine the advantages of paper and modern displays.

전기영동현상은 어떤 입자가 매체(분산매체)에 현탁된 경우에 입자가 전기적으로 하전되고, 또한 전계가 하전입자에 인가되는 경우에 그들이 대향 전하를 가진 전극에 분산매체를 통해서 이동하는 현상이다. 이러한 현상을 이용하는 전자 잉크 또는 전기영동 디스플레이에 사용하기 위한 전기영동입자로 백색안료로는 산화티타늄(타이타니아), 흑색안료로는 잉크에 널리 사용되는 카본블랙 등이 일반적으로 사용되고 있다. 컬러 구현을 위한 다색안료의 경우 이온성 염료와 무기화합물과의 염으로 구성된 안료 등 많은 연구 개발이 진행 중이나 아직까지 적합한 안료가 제시되지 못하고 있는 실정이다. 또 전기영동입자의 모양과 집합체의 수가 불균일하기 때문에 분산량의 조절이 어렵고 그리고 균일하게 분산시키는 것도 어렵다.Electrophoresis is a phenomenon in which when a particle is suspended in a medium (dispersion medium), the particles are electrically charged, and when an electric field is applied to the charged particles, they move through the dispersion medium to electrodes having opposite charges. Electrophoretic particles for use in electronic inks or electrophoretic displays using such a phenomenon are commonly used titanium oxide (Titania) as a white pigment, carbon black widely used in ink as a black pigment. In the case of multicolored pigments for color realization, many researches and developments such as pigments consisting of salts of ionic dyes and inorganic compounds are underway, but there are no suitable pigments yet. In addition, since the shape of the electrophoretic particles and the number of aggregates are uneven, it is difficult to control the amount of dispersion and to uniformly disperse it.

본 발명에서는 일반적으로 섬유의 염색에 사용하는 분산 염료를 다색 전기영동입자를 제조하는데 응용하여 선명한 컬러 전자종이 디스플레이를 구현하게 한다.In the present invention, a disperse dye generally used for dyeing fibers is applied to manufacture multicolor electrophoretic particles, thereby implementing a vivid color electronic paper display.

본 발명은 전기영동 디스플레이의 컬러 구현을 위하여 전하를 띠고 있는 다색 나노입자, 특히 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자(이하,‘PMMA 나노입자’라 함)를 제공하는 것을 그 목적으로 한다. The present invention relates to multicolored nanoparticles that are charged for color realization of electrophoretic displays, in particular multicolored poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl Ammonium chloride) nanoparticles (hereinafter referred to as 'PMMA nanoparticles').

또한, 입자의 모양과 집합체의 수가 균일하여 분산량의 조절 및 분산이 용이한 다색 PMMA 나노입자를 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide multicolor PMMA nanoparticles in which the shape and number of aggregates of the particles are uniform so that the amount of dispersion can be easily controlled and dispersed.

또, 본 발명은 섬유의 염색 시 가장 흔히 쓰이는 분산염료를 사용하여, 폴리에스테르 섬유의 카르보닐기와 분산염료가 수소결합이나 반 데르 발스 상호작용(van der waals interaction)으로 염착되는 성질을 이용하여 다색 PMMA 나노입자를 염색하는 방법을 제공하려고 한다. In addition, the present invention is a multi-color PMMA using the property that the carbonyl group and the dispersion dye of the polyester fiber is dyed by hydrogen bonds or van der waals interaction using the most commonly used disperse dyes when dyeing fibers It is intended to provide a method for dyeing nanoparticles.

상기 목적을 달성하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 아민기가 도입된 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자에 분산염료가 염착된 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자가 제공된다.In order to achieve the above object, according to a preferred embodiment of the present invention, poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium having an amine group introduced therein Chloride) nanoparticles are provided with multicolored poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticles.

본 발명의 다른 적절한 실시 형태에 따르면, 아민기가 도입된 PMMA 나노입자를 염색하기 위하여 아조염료인 C. I. 분산염료 빨강 152, C.I. 분산염료 노랑 241, 및 안트라퀴논 염료인 C.I. 분산염료 파랑 73을 사용한다. According to another suitable embodiment of the present invention, the azo dye C. I. disperse dye red 152, C.I. Disperse dyes Yellow 241, and C.I. Disperse dye blue 73 is used.

본 발명의 또 다른 적절한 실시 형태에 따르면, 제조된 다색 나노입자의 전기영동 이동도가 8.3×10-6이 된다. According to another suitable embodiment of the present invention, the electrophoretic mobility of the produced multicolor nanoparticles is 8.3 × 10 −6 .

본 발명의 또 다른 적절한 실시 형태에 따르면, 메틸 메타크릴레이트, 에틸렌글리콜 디메타크릴레이트 및 [2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드]를 개시제 2,2'-아조비스(2-메틸프로피온아미딘)디하이드로클로라이드를 사용하여 무유화 공중합법으로 가교시켜 공중합체 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자를 제조하는 단계; 상기 나노입자에 헥사메틸렌디아민을 가하고 실온에서 11 내지 13시간 교반 반응시켜 아민기가 도입된 나노입자(NH2-PMMA)를 제조하는 단계; 및 상기 아민기가 도입된 나노입자를 물:분산염료를 5 ~ 40:1의 무게비율로 한 분산염료액으로 염색하는 단계를 포함하는 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자의 제조방법이 제공된다.According to another suitable embodiment of the present invention, methyl methacrylate, ethylene glycol dimethacrylate and [2- (methacryloxy) ethyl] trimethyl ammonium chloride] are disclosed as initiator 2,2'-azobis (2-methyl Copolymer poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride by crosslinking by an emulsification-free copolymerization method using propionamidine) dihydrochloride ) Preparing nanoparticles; Hexamethylenediamine was added to the nanoparticles, followed by stirring at room temperature for 11 to 13 hours to prepare nanoparticles (NH 2 -PMMA) to which amine groups were introduced; And dyeing the nanoparticles having the amine group introduced therein with a disperse dye solution having a water: dispersion ratio of 5 to 40: 1 in a weight ratio of poly (methyl methacrylate-co-ethylene glycol dimethacrylate). A method for preparing -co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticles is provided.

본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 염색은 110℃의 온도에 서 1시간 동안 실시되는 것이 바람직하다. According to another suitable embodiment of the invention, the dyeing is preferably carried out for 1 hour at a temperature of 110 ℃.

이하 본 발명을 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 전자종이 컬러 구현을 위하여 무유화 에멀젼 중합법을 이용하여 PMMA 나노입자의 표면에 양전하를 띠게 하고, 가아민분해반응(aminolysis)을 이용하여 아민기를 나노입자에 도입하여 입자의 표면 전하를 더 향상시키고, 또 분산염료로 염색하여 분산염료가 가진 전하도 나노입자 표면의 전하를 향상시켜 전기영동 이동도가 향상되고 그리고 선명한 전자종이 컬러를 구현할 수 있는 다색 PMMA 나노입자를 제공할 수 있다. According to the present invention, the surface of PMMA nanoparticles is positively charged on the surface of PMMA nanoparticles using an emulsion-free emulsion polymerization method, and an amine group is introduced into the nanoparticles by using an aminolysis method. Further, it is possible to provide multi-color PMMA nanoparticles that can be dyed with a disperse dye to improve the charge on the surface of the nanoparticles, thereby improving electrophoretic mobility and realizing vivid electronic paper color.

무유화 에멀젼 중합법은 나노 규모의 직경을 가진 단분산 중합체 입자를 제조하기 위한 유용한 방법의 하나로 알려져 있다. 이 방법을 이용하면 사용하는 개시제의 전하를 띠는 그룹이 제조된 나노입자의 표면에 존재하여 입자를 안정화시킴과 동시에 전하를 부여하게 되는 효과를 얻을 수 있다. Emulsified emulsion polymerization is known as one of the useful methods for producing monodisperse polymer particles having nanoscale diameters. By using this method, the charged group of the initiator can be present on the surface of the prepared nanoparticles to stabilize the particles and at the same time give the charge.

분산염료란 물에 불용성인 소수성 염료로서 수중에 분산된 상태에서 주로 소수성 섬유의 염색에 사용되고 있는 염료이다. 즉, 물에 전혀 녹지 않거나 또는 잘 녹지 않아서 미세한 분말로 만들고, 계면 활성제 등의 분산제를 써서 물에 콜로이드에 가까운 상태로까지 분산시켜 고분자 사슬 틈새로 염료가 확산 되어 염착하는 염료로서, 강친수성기는 가지지 않으며 그 대신에 NH2 또는 OH 등의 관능기가 하나 이상 도입되어 있다. 이는 분산염료가 섬유에 염착하는 원리가 수소결합과 반 데르 발스 상호작용(van der waals interaction)에 기인하기 때문이다. Disperse dyes are dyes which are mainly used for dyeing hydrophobic fibers in the state of being dispersed in water as a hydrophobic dye insoluble in water. In other words, it is not dissolved at all or does not melt well to make a fine powder, using a dispersing agent such as a surfactant to disperse to close to colloidal state in water, dye is diffused into the polymer chain gap dyeing. Instead, one or more functional groups such as NH 2 or OH are introduced. This is due to the fact that the dyes disperse dyes on the fibers due to hydrogen bonds and van der waals interactions.

섬유의 염색은 예를 들어 가장 흔한 폴리에스테르 섬유의 카르보닐기(carbonyl group)와 분산염료가 수소결합이나 반 데르 발스 상호작용으로 염착되는 것을 들 수 있는데, 이렇게 섬유가 염색되는 원리를 이용하여 본 발명에서는 PMMA 나노입자에 분산염료로 염색하는 방법을 제공하였다. For example, dyeing of fibers may include dyeing of carbonyl groups and dispersion dyes of the most common polyester fibers by hydrogen bonds or van der Waals interactions. It was provided a method for staining with PMMA nanoparticles with a disperse dye.

본 발명의 나노입자를 제조하기 위하여 메틸 메타크릴레이트(이하 ‘MMA’라 함, 99%)와 에틸렌글리콜 디메타크릴레이트(이하 ‘EGDMA’라 함, 98%)는 알루미나 칼럼을 통과시켜 중합 저해제를 제거한 것을 사용했다. To prepare the nanoparticles of the present invention, methyl methacrylate (hereinafter referred to as 'MMA', 99%) and ethylene glycol dimethacrylate (hereinafter referred to as 'EGDMA', 98%) were passed through an alumina column to inhibit the polymerization. I used to remove it.

MMA, EGDMA 및 [2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드(이하 ‘MOTAC’이라 함)를 2,2'-아조비스(2-메틸프로피온아미딘)디하이드로클로라이드(이하 'AIBA'라 함)를 개시제로 하여 무유화 공중합법으로 가교시킨 공중합체 나노입자를 만들었다. 중합온도는 60 내지 80℃, 바람직하게는 70℃로 하고, 중합시간은 20시간으로 하는 것이 바람직하다. 제조된 나노입자는 무유화 에멀젼 중합법을 이용하였기 때문에 전하를 띠고 있다. MMA, EGDMA and [2- (methacryloxy) ethyl] trimethyl ammonium chloride (hereinafter referred to as 'MOTAC') are referred to as 2,2'-azobis (2-methylpropionamidine) dihydrochloride (hereinafter referred to as 'AIBA'). Copolymer nanoparticles crosslinked by an emulsion-free copolymerization method were prepared. It is preferable that polymerization temperature is 60-80 degreeC, Preferably it is 70 degreeC, and polymerization time is 20 hours. The prepared nanoparticles are charged because they use an emulsion-free emulsion polymerization method.

본 발명에서 사용한 MOTAC은 제조된 나노입자의 표면에 전하를 띠게 하고 그리고 나노입자의 크기 및 전하 밀도를 조절하고, 안정성을 향상시킨다.The MOTAC used in the present invention charges the surface of the prepared nanoparticles, controls the size and charge density of the nanoparticles, and improves stability.

본 발명에 따라 제조된 PMMA 나노입자의 크기 및 분산 상태의 주사전자현미경검사 결과를 도 1에 나타내었다. 도 1에 따르면, 사용한 MOTAC의 농도에 따라 단분산 중합체 나노입자의 직경이 각각 달라지는데, MOTAC의 농도가 증가할수록 입자의 크기는 감소한다. 따라서 사용하는 MOTAC의 농도를 조절하여 제조하려는 나노입 자의 크기를 조절할 수 있다.Scanning electron microscopy results of the size and dispersion of PMMA nanoparticles prepared according to the present invention are shown in FIG. 1. According to FIG. 1, the diameters of the monodisperse polymer nanoparticles vary depending on the concentration of MOTAC used, and the particle size decreases as the concentration of MOTAC increases. Therefore, the size of the nanoparticles to be prepared can be controlled by adjusting the concentration of MOTAC to be used.

이렇게 제조된 나노입자를 가아민분해반응(aminolysis)을 이용하여 하기 반응식에 나타낸 것처럼 아민기를 나노입자에 도입하여 입자의 표면 전하를 향상시킨다. 그 결과 전자영동 이동도가 향상된다. 이는 가아민분해반응으로 인해 나노입자에 도입된 아민그룹은 전자종이 디스플레이를 전기구동 시 분산매체에 첨가하는 전하조절제(charge control agent)에 의해 양의 전하를 띠도록 유도되기 때문이다. 본 발명에서는 상품명 OLOA 1200 (폴리부텐 숙신이미드, Polybutene succinimide)인 전하조절제가 바람직하게 사용된다. 본 발명의 가아민분해반응은 공중합된 나노입자를 물에 분산시켜 아민을 가하고 실온에서 11 내지 13시간 교반하면서 반응시켜 실시한다. The nanoparticles thus prepared are introduced into the nanoparticles by using an aminolysis as shown in the following scheme to improve the surface charge of the particles. As a result, electrophoretic mobility is improved. This is because the amine groups introduced into the nanoparticles due to the amine decomposition reaction are induced to have a positive charge by a charge control agent which adds the electronic paper display to the dispersion medium during electric driving. In the present invention, a charge control agent under the trade name OLOA 1200 (Polybutene Succinimide) is preferably used. The gaamine decomposition reaction of the present invention is carried out by dispersing the copolymerized nanoparticles in water, adding an amine and reacting with stirring at room temperature for 11 to 13 hours.

[반응식][Scheme]

Figure 112006034498851-pat00001
Figure 112006034498851-pat00001

무유화 중합법 및 가아민분해반응을 거친 후 전하를 띠고 있는 입자를 분산염료를 이용하여 염색을 하여 하기 화학식 1로 나타내어지는 다색 나노입자를 제조한다. After the emulsion-free polymerization method and the amine decomposition reaction, the charged particles are dyed using a disperse dye to prepare multicolor nanoparticles represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112006034498851-pat00002
Figure 112006034498851-pat00002

본 발명의 아민기 도입된 PMMA 나노입자를 염색하는 분산염료의 종류는 특별히 제한되지 않고, 섬유 등을 염색하는 분산염료이면 모두 사용할 수 있다. 본 발명에서는 분산염료 중 구체적으로 하기 화학식 2로 나타내어지는 아조염료인 C. I. 분산염료 빨강 152 및 C.I. 분산염료 노랑 241과, 안트라퀴논 염료인 C.I. 분산염료 파랑 73을 사용한다. 이들 염료는 모두 NH2, -NO2 및 -CN과 같은 극성 관능기를 가지고 있다. 염료에 존재하는 극성 관능기에 의해 PMMA 나노입자의 카르보닐 그룹과의 수소결합으로 염착이 가능하다. The type of the disperse dye for dyeing the PMMA nanoparticles introduced with the amine group of the present invention is not particularly limited, and any disperse dye for dyeing fibers or the like can be used. In the present invention, CI dispersion dye red 152 and CI dispersion dye yellow 241, which are azo dyes represented by the following Chemical Formula 2, and CI dispersion dye blue 73, which are anthraquinone dyes, are specifically used. These dyes all have polar functional groups such as NH 2 , —NO 2 and —CN. The polar functional groups present in the dye allow for dyeing by hydrogen bonding with the carbonyl group of the PMMA nanoparticles.

[화학식 2][Formula 2]

Figure 112006034498851-pat00003
Figure 112006034498851-pat00003

나노입자의 염색은 나노입자를 분산시킨 용액에 염료를 첨가하여 이루어지는데, 물:분산염료를 5 ~ 40:1의 무게비율로 한 염료액으로 염색한다. 분산염료를 이용한 염색법은 80 내지 125℃ 정도의 고온에서 행해지기 때문에 염색 공정 중 나노 입자의 안정성을 고려하여 가교도를 조절하여야 한다. 본 발명에서는 적절한 가교도를 위하여 가교제의 함량을 단량체 대비 4-6중량%로 첨가하는 것이 바람직하고, 더 바람직하게는 5중량%로 첨가하는 것이다. 입자가 가교됨에 따라 가교되지 않은 PMMA의 유리전이온도(Tg)에 비해 유리전이온도가 상승하는 것을 열분석기 DSC 데이타를 통해 확인할 수 있다. 이 데이터를 도 2에 나타내었다.The dyeing of the nanoparticles is performed by adding a dye to a solution in which the nanoparticles are dispersed, and the water: dispersant is dyed with a dye solution having a weight ratio of 5 to 40: 1. Since the dyeing method using a disperse dye is performed at a high temperature of about 80 to 125 ℃, the degree of crosslinking should be adjusted in consideration of the stability of the nanoparticles during the dyeing process. In the present invention, the content of the crosslinking agent is preferably added in an amount of 4-6% by weight based on the monomer, and more preferably 5% by weight, for proper degree of crosslinking. As the particles are crosslinked, the glass transition temperature is increased with respect to the glass transition temperature (Tg) of the uncrosslinked PMMA through thermal analyzer DSC data. This data is shown in FIG.

도 2에 따르면 가교된 나노입자의 유리전이온도(Tg)는 130℃ 정도임을 알 수 있다. 따라서 본 발명의 나노입자는 80 내지 125℃ 정도, 바람직하게는 110℃의 온 도에서 염색이 되기 때문에 입자의 안정성을 확보할 수 있게 된다.According to Figure 2 it can be seen that the glass transition temperature (Tg) of the cross-linked nanoparticles is about 130 ℃. Therefore, since the nanoparticles of the present invention are dyed at a temperature of about 80 to 125 ° C, preferably 110 ° C, it is possible to ensure the stability of the particles.

아래에서 실시 예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되어서는 안 된다. Hereinafter, the present invention will be described in more detail with reference to the following examples, but the embodiments according to the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. do.

실시 예Example

실시 예1Example 1

나노입자의 제조Preparation of Nanoparticles

물 150ml에 MMA 14.25g, EGDMA 0.765g 및 MOTAC([2-(Methacyloxy)ethyl]trimethyl ammonium chloride) 0.06g을 개시제로 AIBA(2,2'-azobis(2-methylpropionamidine) dihydrochloride) 0.075g를 사용하여 무유화 공중합법으로 가교시켜 공중합체 나노입자를 제조한다. 교반기, 환류 콘덴서 및 질소 주입 시스템이 장착된 250ml 둥근 플라스크를 이용하였고 AIBA 개시제를 300rpm 속도로 교반하면서 반응기에 첨가했다. 그리고나서 70℃온도에서 20시간 동안 중합했다. 중합 후, 입자를 증류수에서 원심분리/재분산을 세 번 이상 순환 실시하여 정제하였다. 마지막으로 동결건조하여 나노입자를 얻었다. In 150 ml of water, 14.25 g of MMA, 0.765 g of EGDMA and 0.06 g of MOTAC ([2- (Methacyloxy) ethyl] trimethyl ammonium chloride) were used as initiators and 0.075 g of AIBA (2,2'-azobis (2-methylpropionamidine) dihydrochloride). Copolymer nanoparticles are prepared by crosslinking by an emulsion-free copolymerization method. A 250 ml round flask equipped with a stirrer, reflux condenser and nitrogen injection system was used and AIBA initiator was added to the reactor with stirring at 300 rpm. Then, the polymerization was carried out at 70 ° C. for 20 hours. After the polymerization, the particles were purified by centrifugation / redispersion three times or more in distilled water. Finally lyophilized to obtain nanoparticles.

가아민분해반응에In the decomposition reaction 의한 나노입자 표면 개질 Nanoparticle surface modification

170-190nm 정도의 직경을 가진 중합체 입자 10g을 물 100ml에 분산시켰다. 헥사메틸렌 디아민(Hexamethylene diamine) 10g을 가하고 실온에서 12시간 교반하 면서 반응시켰다. 아민 변형(도입)된 입자(NH2-PMMA)를 여러 차례 세척하여 정제하였다.10 g of polymer particles having a diameter of about 170-190 nm were dispersed in 100 ml of water. 10 g of hexamethylene diamine was added and reacted with stirring at room temperature for 12 hours. The amine modified (introduced) particles (NH 2 -PMMA) were purified by washing several times.

NHNH 22 -- PMMAPMMA 입자의 염색 Dyeing of particles

NH2-PMMA 입자 9g이 분산된 수용액 90 ml에 분산염료 0.72 g을 분산시킨 후, 30 wt% 아세트산 수용액으로 pH 4.5 로 조절하였다. 250ml 둥근 플라스크에서 먼저, 염료를 입자를 분산시킨 용액에 첨가하고, 용액의 pH를 30% 아세트산 수용액으로 조절했다. pH 4.5 근처에서 온도를 1℃/min의 속도로 하여 110℃까지 상승시킨 후, 온도를 1시간 동안 유지하고 염색하고, 상온에서 염료액의 온도를 낮추었다. 염색된 입자를 물로 원심분리하여 세척하고, 동결건조하였다.0.72 g of a disperse dye was dispersed in 90 ml of an aqueous solution in which 9 g of NH 2 -PMMA particles were dispersed, and then adjusted to pH 4.5 with an aqueous 30 wt% acetic acid solution. In a 250 ml round flask, the dye was first added to the solution in which the particles were dispersed, and the pH of the solution was adjusted with an aqueous 30% acetic acid solution. After the temperature was raised to 110 ° C. at a rate of 1 ° C./min near pH 4.5, the temperature was maintained for 1 hour and dyed, and the temperature of the dye solution was lowered at room temperature. The stained particles were washed by centrifugation with water and lyophilized.

, ,

제조된 입자의 평가Evaluation of the Particles Prepared

본 발명에 따라 제조된 나노입자의 모양 및 분산 상태를 전자주사현미경(SEM)으로 검사하였다. 열전이온도는 열 분석기 DSC 2920을 사용하여 10℃/min 속도로 가온하면서 질소분위기하에서 측정했다. 흡광도 측정은 US/VIS 스펙트로미터를 사용하였다. FTIR 스펙트럼 측정을 했다. 전기영동 이동도는 ELS-8000으로 동적 빛 산란(dynamic light scattering, DSC)로 결정했다.The shape and dispersion state of the nanoparticles prepared according to the present invention were examined by electron scanning microscope (SEM). The heat transition temperature was measured under a nitrogen atmosphere by heating at a rate of 10 ° C./min using a thermal analyzer DSC 2920. Absorbance measurement was performed using US / VIS spectrometer. FTIR spectral measurements were taken. Electrophoretic mobility was determined by dynamic light scattering (DSC) with the ELS-8000.

본 발명에 따라 제조된 PMMA 나노입자의 크기 및 분산 상태는 주사전자현미경으로 검사하였고, 그 결과를 도 1에 나타내었다. The size and dispersion of PMMA nanoparticles prepared according to the present invention were examined by scanning electron microscopy, and the results are shown in FIG. 1.

염색 후 나노입자의 크기 및 형태(morphology)를 주사전자현미경으로 검사하고 그 결과를 도 3에 나타내었다. After staining, the size and morphology of the nanoparticles were examined by scanning electron microscopy, and the results are shown in FIG. 3.

도 4의 SEM 이미지는 염색하지 않은 PMMA 나노입자(a)와 빨간색으로 염색한 나노입자(b)를 나타낸 것이다. 도 4에 따르면, 고온염색/원심분리/동결건조의 과정을 거치면서 입자의 형태(morphology)는 그대로 유지되었음을 알 수 있다. The SEM image of FIG. 4 shows undyed PMMA nanoparticles (a) and nanoparticles (b) stained in red. According to Figure 4, it can be seen that the morphology of the particles (morphology) is maintained as it goes through the process of hot dyeing / centrifugation / freeze drying.

염색된 입자의 색깔에 대해 파장 별로 분석하기 위해서 UV/가시광선 스펙트럼과 PL(photoluminescence) 스펙트럼을 측정하였다. 그 결과를 각각 도 5와 도 6에 나타내었다. 먼저UV/가시광선 스펙트럼에서는 파랑, 빨강, 노랑으로 염색된 PMMA 나노입자는 흡수파장이 각각 584 & 630nm, 524nm, 434nm에서 관찰되었다. PL 스펙트럼에서는 각각 최대 세기를 갖는 피크를 관찰하는 것으로서, 파랑, 노랑, 빨강 입자의 λmax값이 순서대로 318 nm, 437 nm, 527 nm 순으로 각각 나타나는 파장대가 본래 색깔이 나타내는 파장대와 일치함을 확인하였다. UV / visible spectrum and PL (photoluminescence) spectrum were measured to analyze the color of the stained particles by wavelength. The results are shown in FIGS. 5 and 6, respectively. First, in the UV / Visible spectrum, PMMA nanoparticles stained with blue, red and yellow were observed at 584 nm and 630 nm, 524 nm and 434 nm, respectively. In the PL spectrum, the peaks with the highest intensity were observed, respectively, and the λmax values of the blue, yellow, and red particles appeared in the order of 318 nm, 437 nm, and 527 nm, respectively, and correspond to the wavelength range indicated by the original color. It was.

본 발명에 따라 제조된 나노입자의 전기영동 이동도를 검사한 결과, 가아민분해반응 및 염색을 거친 나노입자의 전기영동 이동도가 매우 향상되는 것을 알 수 있다. 검사결과는 표1에 나타내었다. As a result of examining the electrophoretic mobility of the nanoparticles prepared according to the present invention, it can be seen that the electrophoretic mobility of the nanoparticles subjected to the amine decomposition and dyeing is greatly improved. The test results are shown in Table 1.

표1. 입자의 전기영동 데이터Table 1. Electrophoretic Data of Particles

제타 전위(mV)Zeta potential (mV) 이동도(㎠/VsMobility (㎠ / Vs 전기장(V/cm)Electric field (V / cm) PMMA입자PMMA Particles -- -- 158.4158.4 분산염료Disperse Dyes 14.014.0 2.3×10-6 2.3 × 10 -6 159.1159.1 가아민분해반응Gamine decomposition reaction 28.728.7 7.1×10-6 7.1 × 10 -6 158.4158.4 가아민분해반응+분산염료Gaamine Decomposition + Dispersant 34.634.6 8.3×10-6 8.3 × 10 -6 158.6158.6

분산염료로 염색된 칼라입자는 입자를 중합할 때부터 양이온성 개시제와 모노머를 사용했기 때문에 염색하기 전부터 이미 (+)전하를 나타낸다. 입자가 나타내는 표면전하 값을 제타 분석기(zeta analyzer)를 이용하여 측정하였으며 제타 전위(zeta potential)는 16.70mV, 이동도(mobility)는 3.810x10-6 cm2/Vs의 값을 보였다. 이때 매질은 이소파라핀 G(Isopar G)/할로카본 오일(Halocarbon oil) (4:3)의 혼합 용액이며 전하조절제로는 OLOA 1200 (10wt%)를 사용하였다. Color particles stained with disperse dyes already exhibit positive charges before dyeing, since cationic initiators and monomers have been used since polymerizing the particles. The surface charge value of the particles was measured using a zeta analyzer. The zeta potential was 16.70 mV, and the mobility was 3.810x10-6 cm2 / Vs. At this time, the medium is a mixed solution of isoparag G / halocarbon oil (4: 3) and OLOA 1200 (10wt%) was used as a charge control agent.

또한 같은 매질을 사용하여 ITO 글래스로 프로토타입을 만들어 구동실험을 하였고, 입자의 구동성을 보다 쉽게 눈으로 확인하기 위해 매질에 지용성인 파란색 염료를 녹여서 구동할 때에 빨간색 입자와 색깔 차이를 나타내도록 하였다. 실험 결과, 50 V/mm 내외의 구동전압에서 응답속도는 느렸으나 구동이 되는 것을 확인하였다. 도 7(a) 및 도 7(b)는 100 V/mm의 구동전압을 각각 반대로 걸어주었을 때의 색깔 차이를 나타낸 것이다. 구동실험 시 ITO 글래스 간의 간격은 350 ㎛ 정도였다.In addition, prototypes were made of ITO glass using the same medium to perform driving experiments. In order to check the driving properties of the particles more easily, the color difference between the red particles and the red particles was observed when the blue dye was dissolved in the medium. . As a result of the experiment, the response speed was slow at the driving voltage of about 50 V / mm, but the driving was confirmed. 7 (a) and 7 (b) show color differences when the driving voltage of 100 V / mm is reversed, respectively. In the driving test, the interval between the ITO glasses was about 350 μm.

본 발명은 구체적인 예에 대해서만 상세하게 설명되었지만, 본 발명의 기술 사상 범위 내에서 다양한 변형 및 수정 가능한 것은 이 분야에서 통상의 지식을 가진 자에게는 명백한 것이고, 본 발명은 이러한 수정 및 변형 발명에 의하여 제한이 되지 않는다.Although the present invention has been described in detail only with respect to specific examples, it is apparent to those skilled in the art that various changes and modifications can be made within the technical spirit of the present invention, and the present invention is limited by these modifications and variations. This doesn't work.

본 발명에 따라 제조된 나노입자는 색깔이 선명하고, 전하를 띠고 있어 전기영동 이동도가 높다. 따라서 본 발명의 나노입자를 사용하여 전자종이에서 선명한 컬러를 구현할 수 있다. The nanoparticles prepared according to the present invention have a vivid color, are charged, and have high electrophoretic mobility. Therefore, using the nanoparticles of the present invention can realize a vivid color in the electronic paper.

Claims (4)

전자종이용 다색 나노입자에 있어서,In the multi-color nanoparticles for electronic paper, 헥사메틸렌디아민과의 가아민분해반응에 의하여 아민기가 결합되어 있는 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자에 분산염료가 염착된 것을 특징으로 하는 하기 화학식 1로 나타내어지는 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자.Poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticles to which an amine group is bound by a amine decomposition reaction with hexamethylenediamine Multi-colored poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticles characterized by dyes dispersed in particle. [화학식 1][Formula 1]
Figure 112007046473870-pat00004
Figure 112007046473870-pat00004
제 1항에 있어서, 상기 분산염료는 아조염료인 C. I. 분산염료 빨강 152, C.I. 분산염료 노랑 241, 및 안트라퀴논 염료인 C.I. 분산염료 파랑 73이 되는 것을 특징으로 하는 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레 이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자.The disperse dye according to claim 1, wherein the disperse dye is an azo dye. Disperse dyes Yellow 241, and C.I. A multicolored poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticle, characterized by being disperse dye blue 73. 제 1항에 있어서, 상기 다색 나노입자의 전기영동 이동도가 8.3×10-6인 것을 특징으로 하는 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자.The multicolored poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (meth) according to claim 1, wherein the electrophoretic mobility of the multicolored nanoparticles is 8.3 × 10 −6 . Krilloxy) ethyl] trimethyl ammonium chloride) nanoparticles. 전자종이용 다색 나노입자의 제조방법에 있어서,In the manufacturing method of multi-color nanoparticles for electronic paper, 메틸 메타크릴레이트, 에틸렌글리콜 디메타크릴레이트 및 [2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드]를 개시제 2,2'-아조비스(2-메틸프로피온아미딘) 디하이드로클로라이드를 사용하여 무유화 공중합법으로 가교시켜 공중합체 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이드) 나노입자를 제조하는 단계;Methyl methacrylate, ethylene glycol dimethacrylate and [2- (methacryloxy) ethyl] trimethyl ammonium chloride] were free of initiator 2,2'-azobis (2-methylpropionamidine) dihydrochloride. Crosslinking by emulsion copolymerization to prepare copolymer poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) nanoparticles; 상기 나노입자에 헥사메틸렌디아민을 가하고 실온에서 11 내지 13시간 교반 반응시켜 아민기가 도입된 나노입자(NH2-PMMA)를 제조하는 단계; 및Hexamethylenediamine was added to the nanoparticles, followed by stirring at room temperature for 11 to 13 hours to prepare nanoparticles (NH 2 -PMMA) to which amine groups were introduced; And 상기 아민기가 도입된 나노입자를 물:분산염료를 5 ~ 40:1의 무게비율로 한 분산염료액으로 염색하는 단계를 포함하는 다색 폴리(메틸 메타크릴레이트-co-에틸렌 글리콜 디메타크릴레이트-co-[2-(메타크릴옥시)에틸]트리메틸 암모늄 클로라이 드) 나노입자의 제조방법. Multi-colored poly (methyl methacrylate-co-ethylene glycol dimethacrylate- comprising dyeing the nanoparticles having the amine group introduced therein with a disperse dye solution having a water: dispersant at a weight ratio of 5 to 40: 1. co- [2- (methacryloxy) ethyl] trimethyl ammonium chloride) method for preparing nanoparticles.
KR1020060044392A 2006-05-17 2006-05-17 Colored electornic ink nanoparticles for electronic displays and preparation thereof KR100763953B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060044392A KR100763953B1 (en) 2006-05-17 2006-05-17 Colored electornic ink nanoparticles for electronic displays and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060044392A KR100763953B1 (en) 2006-05-17 2006-05-17 Colored electornic ink nanoparticles for electronic displays and preparation thereof

Publications (1)

Publication Number Publication Date
KR100763953B1 true KR100763953B1 (en) 2007-10-05

Family

ID=39419266

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060044392A KR100763953B1 (en) 2006-05-17 2006-05-17 Colored electornic ink nanoparticles for electronic displays and preparation thereof

Country Status (1)

Country Link
KR (1) KR100763953B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854692B1 (en) 2011-09-01 2018-05-04 엘지디스플레이 주식회사 Color electrophoretic display using the same and method for manufacturing electrophoretic display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150244A (en) 1984-01-14 1985-08-07 Pioneer Electronic Corp Optical information recording carrier
KR100427725B1 (en) 2001-03-22 2004-04-27 광주과학기술원 Manufacturing Process of Nanocomposites Using Nanoparticles And Copolymers
KR100596325B1 (en) 2005-04-19 2006-07-05 박찬동 Photochromic sheet
KR20070024152A (en) * 2005-08-26 2007-03-02 엘지전자 주식회사 Particle for electronic paper using collision electrification and display device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150244A (en) 1984-01-14 1985-08-07 Pioneer Electronic Corp Optical information recording carrier
KR100427725B1 (en) 2001-03-22 2004-04-27 광주과학기술원 Manufacturing Process of Nanocomposites Using Nanoparticles And Copolymers
KR100596325B1 (en) 2005-04-19 2006-07-05 박찬동 Photochromic sheet
KR20070024152A (en) * 2005-08-26 2007-03-02 엘지전자 주식회사 Particle for electronic paper using collision electrification and display device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854692B1 (en) 2011-09-01 2018-05-04 엘지디스플레이 주식회사 Color electrophoretic display using the same and method for manufacturing electrophoretic display

Similar Documents

Publication Publication Date Title
JP5902481B2 (en) Particles for electrophoretic displays
KR102058339B1 (en) Particles for electrophoretic displays
JP2012517486A (en) Colored particles for electrophoretic displays
JP2012517608A (en) Colored particles for electrophoretic displays
CN1116369C (en) Polymer/dye complexes for improved chroma in pigment-based ink jet inks
EP2240518A2 (en) Fluid compositions for colour electrophoretic displays
JP2012517487A (en) Particles for electrophoretic displays
TW201207006A (en) Coloured polymer particles
KR20130087005A (en) White reflective polymer particles
KR20150003263A (en) Particles for electrophoretic displays comprising a core and a random-copolymer coating
TW201402715A (en) Particles for electrophoretic displays
CN103360788A (en) Blue pigment dispersion composition for color filter and blue pigment dispersion anti-corrosion composition for color filter containing the same
TW201402718A (en) Particles for electrophoretic displays
TW201406873A (en) Particles for electrophoretic displays
CN107108818B (en) Particles for electrophoretic displays
KR100763953B1 (en) Colored electornic ink nanoparticles for electronic displays and preparation thereof
US9803315B2 (en) Cationizing agent, method for firmly fixing water-insoluble particles, and method for producing dyed material
KR100753487B1 (en) Colored electornic ink nanoparticles for electronic displays and preparation thereof
KR100763952B1 (en) Colored electornic ink nanoparticles for electronic displays and preparation thereof
JP6891117B2 (en) Particles for electrophoresis display
KR20150142041A (en) Particles for electrophoretic displays
Wang et al. Preparation, Characterization and Application of Ultra-Fine Modified Pigment in Textile Dyeing
CN114516931A (en) Preparation method of nanoscale colored microspheres based on electrostatic effect
JPH09325343A (en) Liquid crystal display element and light shieldable spacer
JPS61221234A (en) Production of fine powder of colored acrylonitrile resin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130527

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140612

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee