KR100758877B1 - Refining method of high purity platinum from platinum scrap - Google Patents
Refining method of high purity platinum from platinum scrap Download PDFInfo
- Publication number
- KR100758877B1 KR100758877B1 KR20060037703A KR20060037703A KR100758877B1 KR 100758877 B1 KR100758877 B1 KR 100758877B1 KR 20060037703 A KR20060037703 A KR 20060037703A KR 20060037703 A KR20060037703 A KR 20060037703A KR 100758877 B1 KR100758877 B1 KR 100758877B1
- Authority
- KR
- South Korea
- Prior art keywords
- platinum
- solution
- scrap
- precipitate
- ammonium chloride
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/06—Chloridising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/04—Obtaining noble metals by wet processes
- C22B11/042—Recovery of noble metals from waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/008—Wet processes by an alkaline or ammoniacal leaching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
도 1은 본 발명의 한 실시예에 따른 백금정제 공정도이다.1 is a process chart for platinum purification according to an embodiment of the present invention.
본 발명은 백금 스크랩으로부터 고순도 백금의 정제방법에 관한 것이다.The present invention relates to a method for purifying high purity platinum from platinum scrap.
백금은 주기율표에서 제8족에 속하는 대표적 전이원소로 화학적 안정성, 내열성, 내식성이 아주 우수하고 전기나 열에 대한 양도체 및 부피의 100배의 산소를 흡착할 수 있기 때문에 산화·수소화 반응에서 촉매작용이라는 특수한 성질을 지니고 있다. 이와 같은 이유 때문에 장식품, 장신구 뿐만 아니라 근래에 이르러 전자, 정밀 유리산업 및 화학공업에서는 없어서는 안 될 중요한 소재로 전량 수입에 의존하고 있다. Platinum is a representative transition element belonging to group 8 in the periodic table. It is a special catalyst called catalysis in oxidative and hydrogenation reactions because it has excellent chemical stability, heat resistance and corrosion resistance, and can adsorb 100 times the amount of oxygen and a good conductor for electricity or heat. It is tempered. For this reason, in recent years, not only ornaments and ornaments, but also in the electronics, precision glass industry and chemical industry as a vital material that is indispensable to all imports.
특히 전기재료인 접점, 스파크 플러그, 저항체, 열전대 및 광학산업에서 사용하는 백금은 고온에서 사용되기 때문에 백금표면에 산화피막이 생성되는 것을 방 지하기 위하여 백금의 순도를 4-nine 이상으로 규정하고 있다. In particular, since platinum, which is used in electrical materials such as contacts, spark plugs, resistors, thermocouples, and the optical industry, is used at high temperatures, the purity of platinum is defined as 4-nine or more to prevent the formation of an oxide film on the surface of platinum.
각 용도로 사용된 후 발생된 백금 스크랩을 다시 원자재로 사용하기 위해서는 백금의 순도를 99.99wt% 이상으로 정제하여야 하나 아직 국내 정제기술이 확립되지 않아 전량 해외로 백금 스크랩을 보내 정제하고 있는 실정이어서 외화낭비를 초래하고, 이 과정에서의 많은 시일 소요에 따른 원자재에 대한 체금금리 부담이 증가하게 되어 제품의 가격 경쟁력에 큰 장애가 되고 있다. In order to use the platinum scrap generated after each use again as raw material, the purity of platinum should be refined to more than 99.99wt%, but since domestic refining technology has not been established, all the platinum scrap is sent abroad to refine it. This leads to waste and increases the burden of the late interest rate on raw materials due to the large amount of time required in this process, which is a serious obstacle to the price competitiveness of the product.
종래에 백금을 정제하는 방법으로는 용도 폐기된 백금 스크랩을 아크 플라즈마(Arc Plazma)을 이용하여 1900℃ 이상의 고온에서 용융한 후 여기에 염소가스를 주입하여 불순물을 염화물로 변환, 기화시켜 제거하는 염소화 정제방법이 있으나 이 방법은 고온에서 백금을 용해시키기 때문에 에너지 비용이 매우 높으며 또한 염소가스를 사용하므로 인체에 유독하고 부식성이 매우 높아 막대한 설비, 장치비가 소요되는 단점이 있다. Conventionally, as a method for purifying platinum, chlorination is carried out by melting used platinum scrap at a high temperature of 1900 ° C. or higher using an arc plasma, followed by chlorine gas injection to convert impurities into chloride and remove them by vaporization. There is a refining method, but this method has a high energy cost because it dissolves platinum at a high temperature, and also uses chlorine gas, which is toxic to humans and highly corrosive, and thus requires a huge amount of equipment and equipment costs.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 각 산업현장 분야에서 사용한 후 용도 폐기된 백금 함량 75wt%∼99wt%인 스크랩을 정제시, 에너지 비용이 낮고, 또한 염소가스를 사용치 않아 인체에 무해하고 부식성이 낮아 설비, 장치비가 많이 소요되지 않는 새로운 백금 정제방법을 제공하는 데 있다. An object of the present invention for solving the problems described above is to reduce the cost of energy, and to reduce the use of chlorine gas in the human body when refining scraps of used platinum content of 75wt% to 99wt% after use in each industrial field It is to provide a new platinum refining method that is harmless and has low corrosiveness and does not require much equipment and equipment costs.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 백금의 정제방법에 있어서, 백금의 함량이 75∼99wt%인 백금 스크랩에 왕수를 가하여 가열, 분해하여 염화 백금산(hydrogen hexachloroplatinate)용액을 제조하고, 이 용액 중에 불순물로 함유되어 있는 니켈, 몰리브덴, 철, 동을 제거하기 위하여 용액 중에 용해되어 있는 백금이온을 염화 암모늄(ammonium chloride)을 첨가하여 암모늄 염화 백금산(ammonium hexachloroplatinate)의 침전물을 형성시킨 후, 이를 여과 후 에틸 알코올(ethyl alcohol)로 세정하고, 이를 100℃로 유지된 증류수에 용해하고, 여기에 50~100ml인 염산 용액을 가하여 전해액을 제조하고, 양극으로 고밀도 탄소판(high density graphite plate) 음극으로 백금판(platinum plate)을 사용하여 전해액의 온도를 50∼60℃로 유지하여 직류전원을 통전하여 전류밀도 2∼3 A/dm2로 전기분해하여 백금을 음극에 전착시키는 정제방법을 특징으로 한다.The present invention to achieve the object as described above and to perform the problem for removing the conventional defects in the method of purifying platinum, by adding aqua regia to the platinum scrap of 75 to 99wt% platinum content, heated and decomposed A solution of (hydrogen hexachloroplatinate) is prepared, and platinum ions dissolved in the solution are added to ammonium chloride to remove nickel, molybdenum, iron, and copper contained as impurities in the solution. After forming a precipitate of hexachloroplatinate), it was filtered and washed with ethyl alcohol, dissolved in distilled water maintained at 100 ℃, and added thereto hydrochloric acid solution of 50 ~ 100ml to prepare an electrolyte solution, A high density graphite plate is used as a cathode to maintain the temperature of the electrolyte at 50 to 60 ° C using a platinum plate. It is characterized by a purification method for electrodepositing platinum to the cathode by conducting a circle and electrolyzing at a current density of 2 to 3 A / dm 2 .
상기 왕수는 백금 스크랩 10g에 대하여 적어도(최소한) 왕수 200ml를 가하는데 그 이유는 이 양보다 적게 가하면 백금 스크랩이 완전히 분해되지 않기 때문에 최소한 200ml 이상을 가하여야 한다.The aqua regia adds at least 200 ml of aqua regia to 10 grams of platinum scrap because less than this amount should be added at least 200 ml because the platinum scrap will not be completely degraded.
상기 가열, 분해시 80~90℃에서 60분간 가열, 분해해야 백금 스크랩이 완전 히 분해하여 염화백금산 용액이 제조되는데, 그 이유는 가열 온도가 80℃이하에서는 이보다 많은 시간이 소요되고 90℃이상에서 백금 스크랩을 분해하는 경우 왕수의 증발량이 급격히 많아지므로 완전히 분해되지 않기 때문이다.When heated and decomposed, the platinum scrap is completely decomposed by heating and decomposing at 80 to 90 ° C. for 60 minutes to prepare a chloroplatinic acid solution. This is because when the platinum scrap is decomposed, the amount of evaporation of the aqua regia rapidly increases and thus is not completely decomposed.
상기 백금이온을 상온에서 염화암모늄(ammonium chloride)을 80g을 첨가하는데 그 이유는 백금 스크랩 10g을 왕수 200ml를 가하여 가열, 분해하면 염화백금산이 약 20g이 제조되는데, 염화백금산 중에 함유되어 있는 백금이온을 완전히 암모늄 염화백금산으로 형성시키기 위하여는 염화 암모늄을 염화 백금산 양의 약 4배(80g) 이상으로 첨가하여 한다. 그 이하로 첨가하면 백금이온이 암모늄 염화 백금산으로 치환되지 않으므로 백금의 손실을 초래하기 때문이다.80 g of ammonium chloride is added at room temperature. The reason for this is that 10 g of platinum scrap is heated and decomposed by adding 200 ml of aqua regia to produce about 20 g of chloroplatinic acid. In order to form completely ammonium chloroplatinic acid, ammonium chloride is added by adding about 4 times (80 g) or more of the amount of chloroplatinic acid. If it is added below, the platinum ion is not substituted with ammonium chloride platinum acid, which causes loss of platinum.
상기 암모늄염화 백금산(ammonium hexachloroplatinate)의 침전물을 형성시킨 후, 이를 여과 후 에틸알코올(ethyl alcohol)로 세정하고, 이를 100℃로 유지된 증류수 2ℓ에서 완전히 용해시키는데, 그 이유는 이러한 조건에서 용해율이 가장 높으며 100℃ 이하이거나 증류수양이 2ℓ이하에서는 암모늄염화백금산의 용해율이 낮아 완전한 용해가 이루어지지 않아 형성시킨 암모늄염화백금산의 일부가 침전물로 남기 때문이다.After forming a precipitate of ammonium hexachloroplatinate, it is filtered and washed with ethyl alcohol, and it is completely dissolved in 2 L of distilled water maintained at 100 ° C, because the dissolution rate is the best under these conditions. This is because some of the ammonium chloride acid formed as a precipitate is not completely dissolved because the dissolution rate of ammonium chloride acid is low because it is high and below 100 ° C. or distilled water is less than 2ℓ.
상기에서 농도가 염산 50~100 ml로 전해액을 제조하는데 그 이유는 염산을 넣음으로 전해질의 전기전도도를 향상시키 위함이며 질산이나 황산을 사용하지 않 는 이유는 암모늄염화백금산을 100℃로 유지된 증류수에 용해된 용액에는 염소이온이온이 존재하므로 반드시 염산을 사용해야 한다.The concentration of the electrolyte is prepared with 50-100 ml of hydrochloric acid. The reason for this is to improve the electrical conductivity of the electrolyte by adding hydrochloric acid. The reason for not using nitric acid or sulfuric acid is distilled water having ammonium chloroplatinic acid maintained at 100 ° C. Hydrochloric acid must be used because chlorine ions are present in the dissolved solution.
또한 염산 50 ml 이하를 첨가하는 경우 전해질의 전기전도도가 낮아 전기분해가 이루어지지 않으며 100ml 이상을 첨가하면 전가전도도가 너무 높아 음극에 부동태 현상이 발생하기 때문이다.In addition, when 50 ml or less of hydrochloric acid is added, electrolysis is not performed due to low electrical conductivity of the electrolyte, and when 100 ml or more is added, the conductivity is too high and a passivation phenomenon occurs in the negative electrode.
상기 양극으로 고밀도 탄소판(high density graphite plate) 음극으로 백금판(platinum plate)을 사용하고 그 크기는 50×200㎜, 두께 1㎜인 것을 사용하는데, 그 이유는 전류밀도를 계산하기 위해서이다. 전해액의 양이 2ℓ 이어서 부피에 대한 가장 적당한 크기를 정하였으며 양극으로 금속이 아닌 고밀도 탄소판을 사용하는 이유는 금속을 양극으로 사용하면 양극이 전류가 통전하면 용출되므로 불용성인 고밀도 탄소판을 양극으로 사용하며 음극으로 백금판을 사용하는 이유는 전기분해하여 백금이 음극에 석출되고 이를 음극으로부터 회수할 때 정제한 백금이 오염되는 것을 방지하기 위함이다.A high density graphite plate is used as the anode and a platinum plate is used as the cathode, and a size of 50 × 200 mm and a thickness of 1 mm is used for calculating the current density. Since the amount of electrolyte was 2ℓ, the most appropriate size for the volume was decided. The reason for using high density carbon plate instead of metal as the positive electrode is to use insoluble high density carbon plate as the anode because the metal is eluted when the current flows. The reason why the platinum plate is used as the negative electrode is to prevent contamination of the purified platinum when the electrolytically deposited platinum is deposited on the negative electrode and recovered from the negative electrode.
상기 전해액의 온도를 50~60℃로 한정한 이유는 50℃이하에서는 음극에 백금이 치밀하게 전착되지 않으며 60℃이상에서는 백금이 음극에 전착되지 않고 분말상이 되어 전해액 속으로 혼입되기 때문이다.The reason why the temperature of the electrolyte is limited to 50 to 60 ° C. is because platinum is not densely electrodeposited at the cathode below 50 ° C., and at 60 ° C. or more, platinum does not electrodeposit on the cathode and becomes powder and mixed into the electrolyte.
상기 직류전원을 통전하여 전류밀도 2~3 A/dm2로 한정한 이유는 전류밀도 2 A/dm2이하에서는 음극에 백금이 치밀하게 전착되지 않으며 전류밀도 3 A/dm2이상에서는 백금이 음극에 전착되지 않고 분말상이 되어 전해액 속으로 혼입되기 때문이다.The reason for limiting the current density to 2 to 3 A / dm 2 by applying the DC power is that platinum is not densely deposited on the cathode at the current density of 2 A / dm 2 or lower, and at the current density of 3 A / dm 2 or higher, the platinum is negative. This is because it is powdered and mixed into the electrolyte solution without being electrodeposited onto it.
상기 전기분해는 적어도 60분 이상 한다. 그보다 적으면 전착효율이 낮기 때문이다.The electrolysis is at least 60 minutes. If less than that, the electrodeposition efficiency is low.
이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 한 실시예에 따른 백금정제 공정도인데, 도시된 바와 같이 본 발명은 백금의 함량이 75∼99wt%인 백금 스크랩 10g에 왕수 200ml를 가하여 온도를 90℃로 유지하여 백금 스크랩이 완전히 용해될 때까지 가열, 분해하여 염화백금산(hydrogen hexachloroplatinate) 용액을 제조하고 이 용액 중에 불순물로 함유되어 있는 니켈, 로듐, 몰리브덴, 철, 동을 제거하기 위하여 용액 중에 용해되어 있는 백금이온을 상온에서 염화암모늄(ammonium chloride) 80g을 서서히 첨가하여 암모늄 염화백금산(ammonium hexachloroplatinate)의 침전물을 형성시킨 후 이를 여과한 후 여과액이 무색, 투명할 때까지 에틸알코올(ethyl alcohol)로 세정하고, 이를 100℃로 유지된 증류수 2ℓ에 용해하고 여기에 염산100ml를 가하여 전해액을 제조하고 양극으로 크기 50×100㎜, 두께 1㎜인 고밀도 탄소판(high density graphite plate) 음극으로 양극과 동일한 크기의 백금판(platinum plate)을 사용하여 전해액의 온도를 60℃로 유지하여 직류전원을 통전하여 전류밀도 3 A/dm2로 60분 동안 전기분해하여 백금을 음극에 전착시킨 후 음극에 전착된 백금을 회수하고 증류수로 세척한 후 건조하여 고순도 백금을 정제한다.1 is a process for purifying platinum according to an embodiment of the present invention, as shown in the present invention, by adding 200 ml of aqua regia to 10 g of platinum scrap having a platinum content of 75 to 99 wt% and maintaining the temperature at 90 ° C. Heat and decompose until fully dissolved to form a solution of hydrogen hexachloroplatinate, and the platinum ions dissolved in the solution are removed at room temperature to remove nickel, rhodium, molybdenum, iron and copper contained as impurities in the solution. Slowly add 80 g of ammonium chloride to form a precipitate of ammonium hexachloroplatinate, filter it, and wash with ethyl alcohol until the filtrate is colorless and transparent. It was dissolved in 2 liters of distilled water and 100 ml of hydrochloric acid was added thereto to prepare an electrolyte solution. The anode was a high-density carbon plate having a size of 50 × 100 mm and a thickness of 1 mm ( high density graphite plate) As a cathode, a platinum plate of the same size as the anode is used to maintain the temperature of the electrolyte at 60 ° C. and energize a DC power source for electrolysis at a current density of 3 A / dm 2 for 60 minutes. Electrodeposited on the negative electrode to recover the platinum deposited on the negative electrode, washed with distilled water and dried to purify the high purity platinum.
이하 본 발명의 바람직한 실시예이다.Hereinafter is a preferred embodiment of the present invention.
실시예Example 1 One
화학조성이 Pt 75.3wt%, Ni 10.3wt%, Mo 7.4wt%, Fe 4.1, Cu 2.9wt%인 백금 스크랩 10g을 파이렉스제 용기에 넣고 이어서 왕수 200㎖를 첨가하고 가열하여 온도를 90℃로 유지하여 백금 스크랩을 완전히 분해하여 염화백금산 용액을 제조한다. 10 g of platinum scrap with chemical composition of Pt 75.3 wt%, Ni 10.3 wt%, Mo 7.4 wt%, Fe 4.1, Cu 2.9 wt% was placed in a Pyrex container, followed by adding 200 mL of aqua regia and heating to maintain the temperature at 90 ° C. The platinum scrap is completely decomposed to prepare a chloroplatinic acid solution.
이 용액에 상온에서 염화암모늄 80g을 서서히 첨가하여 암모늄 염화백금산의 침전물을 형성시킨 후 이를 여과한 후 여과액이 무색, 투명할 때까지 에틸알코올(ethyl alcohol)로 세정하고, 이를 100℃로 유지된 증류수 2ℓ에 용해하고 여기에 염산 100ml를 가하여 전해액을 제조하고 양극으로 크기 50×100㎜, 두께 1㎜인 고밀도 탄소판, 음극으로 양극과 동일한 크기의 백금판을 사용하여 전해액의 온도를 50℃로 유지하여 직류전원을 통전하여 전류밀도 3 A/dm2로 60분간 전기분해하여 백금을 음극에 전착시킨 후 음극에 전착된 백금 7.5g을 회수하여 증류수로 세척한 후 70℃로 건조하여 ICP-Mass로 분석한 결과 음극에 석출된 백금 중에는 불순물로 Ni 58ppm, Mo 22ppm, Fe 12ppm, Cu 8ppm이 함유되어 있었다.80 g of ammonium chloride was slowly added to the solution at room temperature to form a precipitate of ammonium chloroplatinic acid, which was then filtered and washed with ethyl alcohol until the filtrate was colorless and transparent, which was kept at 100 ° C. Dissolve in 2 L of distilled water and add 100 ml of hydrochloric acid to prepare electrolyte solution. Maintain electrolyte temperature at 50 ℃ by using high density carbon plate with size 50 × 100mm, thickness 1mm as a positive electrode and platinum plate with same size as positive electrode as negative electrode. After electrolytically electrolysis with DC power for 60 minutes at 3 A / dm 2 , electrodeposited platinum to the cathode, 7.5g of platinum deposited on the cathode was recovered, washed with distilled water, dried at 70 ℃ and dried with ICP-Mass. As a result of analysis, platinum deposited on the cathode contained 58 ppm of Ni, 22 ppm of Mo, 12 ppm of Fe, and 8 ppm of Cu.
실시예Example 2 2
화학조성이 Pt 81.5wt%, Ni 7.5wt%, Mo 4.9wt%, Fe 4.1wt%, Cu 2.0wt%인 백금 은괴(銀塊)) 10g을 실시예 1에 표기한 동일한 방법으로 백금을 정제하여 음극에 전착된 백금 8.1g을 회수한 후 분석한 결과 불순물로 Ni 52ppm, Mo 21ppm, Fe 10ppm, Cu 7ppm이 함유되어 있었다.10 g of platinum silver ingot (Pt 81.5wt%, 7.5wt% Ni, 4.9wt% Mo, 4.1wt% Fe, 2.0wt% Cu) was purified in the same manner as described in Example 1 to purify platinum. After recovering 8.1 g of platinum electrodeposited on, the impurities contained 52 ppm Ni, 21 ppm Mo, 10 ppm Fe, and 7 ppm Cu.
실시예Example 3 3
화학조성이 Pt 87.3wt%, Ni 5.5wt%, Mo 4.0wt%, Fe 2.1wt%, Cu 1.1wt%인 백금 은괴(銀塊)) 10g을 실시예 1에 표기한 동일한 방법으로 음극에 전착된 백금 8.7g을 회수한 후 분석한 결과 불순물로 Ni 46ppm, Mo 17ppm, Fe 9ppm, Cu 6ppm이 함유되어 있었다.Platinum electrodeposited on the negative electrode in the same manner as described in Example 1 10g of platinum silver ingot (Pt 87.3wt%, Ni 5.5wt%, Mo 4.0wt%, Fe 2.1wt%, Cu 1.1wt%) As a result of analyzing 8.7g after recovery, it contained 46ppm of Ni, 17ppm of Mo, 9ppm of Fe, and 6ppm of Cu.
실시예Example 4 4
화학조성이 Pt 93.5wt%, Ni 3.0wt%, Mo 1.9wt%, Fe 1.0wt%, Cu 0.6wt%인 백금 은괴(銀塊)) 10g을 실시예 1에 표기한 동일한 방법으로 음극에 전착된 백금 9.3g을 회수한 후 분석한 결과 불순물로 Ni 40ppm, Mo 14ppm, Fe 8ppm, Cu 5ppm이 함유되어 있었다.Platinum electrodeposited 10 g of platinum silver ingot (Pt 93.5 wt%, Ni 3.0 wt%, Mo 1.9 wt%, Fe 1.0 wt%, Cu 0.6 wt%) in the same manner as described in Example 1 As a result of analyzing 9.3g after recovery, 40ppm of Ni, 14ppm of Mo, 8ppm of Fe, and 5ppm of Cu were contained.
실시예Example 5 5
화학조성이 Pt 96.2wt%, Ni 1.7wt%, Mo 1.1wt%, Fe 0.7wt%, Cu 0.3wt%인 백 금 은괴(銀塊)) 10g을 실시예 1에 표기한 동일한 방법으로 음극에 전착된 백금 9.6g을 회수한 후 분석한 결과 불순물로 Ni 34ppm, Mo 10ppm, Fe 7ppm, Cu 5ppm이 함유되어 있었다.10 g of platinum silver ingot having a chemical composition of Pt 96.2wt%, Ni 1.7wt%, Mo 1.1wt%, Fe 0.7wt%, Cu 0.3wt%) was electrodeposited to the anode by the same method as described in Example 1. After recovering 9.6 g of platinum, the impurities contained 34 ppm Ni, 10 ppm Mo, 7 ppm Fe, and 5 ppm Cu.
실시예Example 6 6
화학조성이 Pt 98.2wt%, Ni 0.9wt%, Mo 0.5wt%, Fe 0.3wt%, Cu 0.1wt%인 백금 은괴(銀塊)) 10g을 실시예 1에 표기한 동일한 방법으로 음극에 전착된 백금 9.8g을 회수한 후 결과 불순물로 Ni 29ppm, Mo 8ppm, Fe 5ppm, Cu 4ppm이 함유되어 있었다.Platinum electrodeposited 10 g of platinum silver ingot (Pt 98.2 wt%, 0.9 wt% Ni, 0.5 wt% Mo, 0.3 wt% Fe, 0.1 wt% Cu) in the same manner as described in Example 1 After recovering 9.8 g, the resulting impurities contained 29 ppm Ni, 8 ppm Mo, 5 ppm Fe, and 4 ppm Cu.
이와 같이 실시예에 표시한 바와 같이 본 발명에 의한 정제한 백금의 순도는 99.99wt%이상을 나타냄을 알 수 있다.Thus, as shown in the Examples, the purity of the purified platinum according to the present invention can be seen that 99.99wt% or more.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
상기와 같은 본 발명은 각 산업현장 분야에서 사용한 후 용도 폐기된 백금 함량 75wt%∼99wt%인 스크랩 정제시, 에너지 비용이 낮고, 또한 염소가스를 사용치 않아 인체에 무해하고 부식성이 낮아 설비, 장치비가 많이 소요되지 않는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다.The present invention as described above is used in each industrial field, the use of platinum content scrap scrap after use 75wt% ~ 99wt%, energy cost is low, and chlorine gas is not used, harmless to the human body and low corrosive facilities, equipment It is a useful invention having an advantage that does not require much rain is an invention that is greatly expected to use in industry.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060037703A KR100758877B1 (en) | 2006-04-26 | 2006-04-26 | Refining method of high purity platinum from platinum scrap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060037703A KR100758877B1 (en) | 2006-04-26 | 2006-04-26 | Refining method of high purity platinum from platinum scrap |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100758877B1 true KR100758877B1 (en) | 2007-09-14 |
Family
ID=38737843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20060037703A KR100758877B1 (en) | 2006-04-26 | 2006-04-26 | Refining method of high purity platinum from platinum scrap |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100758877B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101050826B1 (en) * | 2008-11-14 | 2011-07-21 | 진인수 | Purification Method of Platinum Group Powder |
CN102730891A (en) * | 2012-08-02 | 2012-10-17 | 华夏新资源有限公司 | System for cyclically utilizing nitric acid in wet process of surface treatment |
KR101226946B1 (en) | 2010-09-06 | 2013-01-28 | 한국화학연구원 | Method for recycling platinum from platinum based catalysts |
KR101268441B1 (en) | 2012-09-25 | 2013-06-04 | 한국지질자원연구원 | Recovering method of platinum from platinum scrap leaching solution using synthetic extraction resins |
JP2014173189A (en) * | 2013-03-05 | 2014-09-22 | Heraeus Precious Metals Gmbh & Co Kg | Method for producing highly pure platinum powder, as well as platinum powder obtained by the method, and use of the powder |
KR101749869B1 (en) * | 2016-06-03 | 2017-07-03 | 금오공과대학교 산학협력단 | Method for separating and recovering platinum group metals |
RU2711762C1 (en) * | 2019-09-04 | 2020-01-22 | Игорь Владимирович Федосеев | Method of extracting platinum from an industrial salt of ammonium hexachloroplatinate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900001832B1 (en) * | 1985-04-25 | 1990-03-24 | 크로닌 엔지니어즈 코포레이션, 리미티드 | Method of dissolving and recovering noble metals |
JPH08225979A (en) * | 1995-02-22 | 1996-09-03 | Nissan Motor Co Ltd | Method for recovering platinum group metals |
KR100201843B1 (en) | 1996-09-18 | 1999-06-15 | Hee Sung Metal Ltd | The seperating method fo platium and rhodium from pt-rh alloy |
KR100367709B1 (en) | 2000-05-29 | 2003-01-10 | 희성엥겔하드주식회사 | Recovery method of platinum group metals from waste water |
JP2004218012A (en) | 2003-01-15 | 2004-08-05 | Asahi Pretec Corp | Method for recovering noble metal in platinum group |
KR100563384B1 (en) | 2003-10-14 | 2006-03-27 | 진인수 | Recovery of precious metals from waste catalysts |
-
2006
- 2006-04-26 KR KR20060037703A patent/KR100758877B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900001832B1 (en) * | 1985-04-25 | 1990-03-24 | 크로닌 엔지니어즈 코포레이션, 리미티드 | Method of dissolving and recovering noble metals |
JPH08225979A (en) * | 1995-02-22 | 1996-09-03 | Nissan Motor Co Ltd | Method for recovering platinum group metals |
KR100201843B1 (en) | 1996-09-18 | 1999-06-15 | Hee Sung Metal Ltd | The seperating method fo platium and rhodium from pt-rh alloy |
KR100367709B1 (en) | 2000-05-29 | 2003-01-10 | 희성엥겔하드주식회사 | Recovery method of platinum group metals from waste water |
JP2004218012A (en) | 2003-01-15 | 2004-08-05 | Asahi Pretec Corp | Method for recovering noble metal in platinum group |
KR100563384B1 (en) | 2003-10-14 | 2006-03-27 | 진인수 | Recovery of precious metals from waste catalysts |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101050826B1 (en) * | 2008-11-14 | 2011-07-21 | 진인수 | Purification Method of Platinum Group Powder |
KR101226946B1 (en) | 2010-09-06 | 2013-01-28 | 한국화학연구원 | Method for recycling platinum from platinum based catalysts |
CN102730891A (en) * | 2012-08-02 | 2012-10-17 | 华夏新资源有限公司 | System for cyclically utilizing nitric acid in wet process of surface treatment |
KR101268441B1 (en) | 2012-09-25 | 2013-06-04 | 한국지질자원연구원 | Recovering method of platinum from platinum scrap leaching solution using synthetic extraction resins |
JP2014173189A (en) * | 2013-03-05 | 2014-09-22 | Heraeus Precious Metals Gmbh & Co Kg | Method for producing highly pure platinum powder, as well as platinum powder obtained by the method, and use of the powder |
EP2787093A1 (en) * | 2013-03-05 | 2014-10-08 | Heraeus Precious Metals GmbH & Co. KG | Method for the production of high purity platinum powder and platinum powder obtained with the method and use |
KR101557216B1 (en) | 2013-03-05 | 2015-10-02 | 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 | Method for producing highly pure platinum powder, as well as platinum powder that can be obtained according to said method, and use thereof |
US9562275B2 (en) | 2013-03-05 | 2017-02-07 | Heraeus Deutschland GmbH & Co., KG | Method for producing highly pure platinum powder, as well as platinum powder that can be obtained according to said method, and use thereof |
KR101749869B1 (en) * | 2016-06-03 | 2017-07-03 | 금오공과대학교 산학협력단 | Method for separating and recovering platinum group metals |
RU2711762C1 (en) * | 2019-09-04 | 2020-01-22 | Игорь Владимирович Федосеев | Method of extracting platinum from an industrial salt of ammonium hexachloroplatinate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100758877B1 (en) | Refining method of high purity platinum from platinum scrap | |
CN101914785B (en) | Method for recycling silver and copper from silver-copper alloy scrap | |
JPWO2005073434A1 (en) | Ultra high purity copper and method for producing the same | |
KR20090055651A (en) | Method for collection of valuable metal from ito scrap | |
KR100207041B1 (en) | Method of recovering antimony and bismuth from copper electrolyte | |
JP6798080B2 (en) | How to dispose of waste lithium-ion batteries | |
CN101534948A (en) | Method of extracting platinum group metals from waste catalists through electrochemical process | |
CN104775036A (en) | Method for recovering noble metal from waste titanium anodes with noble metal coatings | |
CN102560534A (en) | Process for electrolytic refining of copper | |
JP2012087407A (en) | RECOVERING METHOD OF VALUABLE METAL FROM Pb-FREE WASTE SOLDER | |
CN114105229A (en) | Preparation method of high-purity iridium trichloride | |
KR20060036631A (en) | Method for recovering high purity indium | |
CA1087131A (en) | Electrolytic removal of heavy metal ions from aqueous solutions | |
CN110551900B (en) | Combined treatment method for waste tin-plated copper scraps and copper electrolyte | |
JP3227656B2 (en) | Method for extracting high purity platinum from platinum alloy by electrolysis | |
JP4607303B2 (en) | Method for recovering platinum group metals from metal electrodes | |
JP2007254800A (en) | Method for manufacturing high purity nickel and high purity nickel obtained by using the method | |
RU2094534C1 (en) | Electrolytic method for dissolving platinum, platinum metals' impurities and/or platinum metals' alloys containing radium, palladium, iridium, gold, and silver | |
JP3825983B2 (en) | Metal purification method | |
CN109536992A (en) | A kind of method of two de- two products purifying copper electrolytes | |
KR20200064668A (en) | Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution | |
CN115928150A (en) | Method for recovering silver from silver-containing waste | |
KR100991229B1 (en) | Separation and recycling method of gold and silver from gold and silver alloy | |
KR100367709B1 (en) | Recovery method of platinum group metals from waste water | |
JP3878402B2 (en) | Metal purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20130710 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140703 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150619 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160629 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20161118 Year of fee payment: 19 |