KR100757031B1 - Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof - Google Patents

Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof Download PDF

Info

Publication number
KR100757031B1
KR100757031B1 KR1020060038895A KR20060038895A KR100757031B1 KR 100757031 B1 KR100757031 B1 KR 100757031B1 KR 1020060038895 A KR1020060038895 A KR 1020060038895A KR 20060038895 A KR20060038895 A KR 20060038895A KR 100757031 B1 KR100757031 B1 KR 100757031B1
Authority
KR
South Korea
Prior art keywords
zeolite
beta
reaction
olefin
trimer
Prior art date
Application number
KR1020060038895A
Other languages
Korean (ko)
Inventor
정성화
장종산
윤지웅
이지혜
이희두
추대현
김태진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020060038895A priority Critical patent/KR100757031B1/en
Priority to PCT/KR2007/001159 priority patent/WO2007105875A1/en
Application granted granted Critical
Publication of KR100757031B1 publication Critical patent/KR100757031B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing a trimer by using an olefin, and a method for preparing an alkylate are provided to improve the selectivity of trimers and to increase the viscosity of an alkylate. A preparation method of a trimer comprises the step of polymerizing an olefin in the presence of a zeolite catalyst comprising a pore having 12 oxygen atoms, a pore crossing with the pore and having 12 oxygen atoms and/or having 6-10 oxygen atoms. Preferably the reaction is carried out at a temperature of 50-100 deg.C and with a space velocity of 0.5-100 h^-1. Preferably the olefin is isobutene; and the zeolite catalyst is zeolite beta, Al-rich beta, boron-containing zeolite, gallium-containing beta zeolite, titanium-containing beta zeolite, CIT-6, beta zeolite comprising silica only, or zeolite having Tschernichite structure.

Description

제올라이트를 이용한 올레핀 삼량체 제조방법 및 그를 이용한 고비점알킬레이트 제조 방법{Preparing Method of Light Olefin Trimer by using zeolites and Production of heavy alkylates by Using Thereof}Preparing Method of Light Olefin Trimer by using zeolites and Production of heavy alkylates by Using Thereof}

도 1은 실시예 1에 따른 이소부텐의 올리고머화 반응에서의 시간에 따른 전환율과 선택도의 변화를 나타낸 것이다.Figure 1 shows the change in conversion and selectivity over time in the oligomerization of isobutene according to Example 1.

본 발명은 올레핀의 올리고머화 방법 및 그로 인해 얻어지는 삼량체의 제조 방법 및 삼량체의 수소화에 의해 고비점알킬레이트를 얻는 방법에 관한 것이다. The present invention relates to a method for oligomerization of olefins, a process for producing trimers obtained thereby, and a method for obtaining high boiling point alkylates by hydrogenation of trimers.

보다 상세하게는 올리고머화에 있어서 사용되는 촉매로 제올라이트를 이용하되 교차하는 세공 특성을 갖는 제올라이트를 촉매로 사용함으로써 삼량체의 선택성을 증가시킴으로써, 올레핀의 삼량체의 생산성 및 순도를 높일 수 있을 뿐만 아니라 촉매 수명이 매우 증가된 효과적인 제조 방법을 제공하는 것이다. More specifically, by using a zeolite as a catalyst used in oligomerization but using a zeolite having cross pore properties as a catalyst, the selectivity of the trimer is increased, thereby increasing the productivity and purity of the trimer of the olefin, It is to provide an effective production method with a very increased catalyst life.

올레핀의 올리고머화 반응은 담지된 인산(supported phosphoric acid) 같은 산촉매를 주로 이용하여 진행되며 주로 이량체의 생산 후 수소화 반응을 거쳐 휘발유 첨가제를 제조하는데 활용 된다(US 6689927, 6284938). 올리고머화 후 수소화를 거친 이러한 탄화수소를 알킬레이트(alkylates)라고 하는데 그 알킬레이트의 탄소 수에 따라 다양한 용도를 가진다.The oligomerization of olefins is mainly carried out using acid catalysts such as supported phosphoric acid and is mainly used to produce gasoline additives through hydrogenation after the production of dimers (US 6689927, 6284938). These hydrocarbons, which have undergone hydrogenation after oligomerization, are called alkylates, and have various uses depending on the carbon number of the alkylates.

알킬레이트를 얻는 또 다른 방법으로는 황산 혹은 불산의 존재 하에 올레핀과 파라핀 간의 알킬화 반응이 있으며 관련 문헌이 공지되어 있으나(Catalysis Today, 49, 193, 1999), 액체산의 사용에 따른 환경 및 부식 문제가 항상 큰 걸림돌로 작용하고 있다. 또한 상기 선행문헌(Catalysis Today, 49, 193, 1999)에 기재된 알킬레이트 제조 반응에서는 C9 이상의 고비점알킬레이트가 5-10% 정도로 소량 얻어져서, 고급 용제로 사용되고 경유의 세탄치 향상을 위한 첨가제로 사용되기도 하나 그 생산성에 한계가 있으므로 다른 공정 개발이 더욱 요청되는 상황이다. Another way of obtaining alkylates is the alkylation reaction between olefins and paraffins in the presence of sulfuric acid or hydrofluoric acid and related literature is known (Catalysis Today, 49, 193, 1999), but with environmental and corrosion problems associated with the use of liquid acids. Has always been a big stumbling block. In addition, in the alkylate production reaction described in the above-mentioned publication (Catalysis Today, 49, 193, 1999), a small amount of C 9 or more high boiling point alkylate is obtained at about 5-10%, and is used as a high-quality solvent and as an additive for improving cetane value of diesel fuel. Although it is used, its productivity is limited, so other process development is required more.

올레핀의 올리고머화에 관한 연구 중 삼량체를 만드는 연구는 최근에 다수 알려지고 있다. 주로 고체산 촉매를 사용하여 올레핀 올리고머화를 추진하였는데 사용된 촉매로는 헤테로폴리산(JP 2005015383), 지르코니아(JP 2005015384), Al-TS-1이라는 제올라이트(US 6914165), 설페이티드(sulfated)-티타니아(J. Molecular Catalysis A, 228, 333, 2005) 및 이오닉리퀴드(CN 1379005 ) 등을 사용하여 제조하는 발명 등을 들 수 있다. Among the studies on oligomerization of olefins, studies of making trimers have been known in recent years. Olefin oligomerization was mainly carried out using a solid acid catalyst. The catalysts used were heteropolyacid (JP 2005015383), zirconia (JP 2005015384), zeolite named Al-TS-1 (US 6914165), sulfated-titania (J. Molecular Catalysis A, 228, 333, 2005), Ionic liquid (CN 1379005), etc., etc. are mentioned.

또한 양이온 교환수지를 촉매로 활용한 예도 일부 알려져 있다. US 2005/ 0119111A1의 공개 특허에서는 이량화에 이온 교환수지가 촉매로 적용될 수 있음을 주장하였고, US 5789643에서도 이온 교환수지를 사용하여 올리고머화 반응이 진행될 수 있음이 알려졌으며, US 6239321에서는 이미 이량화된 이량체의 올리고머화에 의한 사량체 혹은 오량체의 제조에 있어 이온 교환수지를 사용하기도 하였다. 본 발명자들은 거대세공의 수소형 양이온 교환수지를 활용하고 전환율을 높게 유지하여 삼량체의 선택도를 높일 수 있음을 최근에 발명한 바 있다 (한국특허 출원 10-2006-0012317). 또한 Amberlyst-15라는 이온 교환수지를 촉매로 사용하여 이소부텐의 올리고머화를 진행한 예도 알려져 있으나 (Catalysis Today 100, 463, 2005) 전환율이 40% 이하로 매우 낮고, 주로 이량체가 생성되었다.In addition, some examples of using a cation exchange resin as a catalyst are also known. The published patent of US 2005 / 0119111A1 claims that ion exchange resins can be used as catalysts for dimerization, and US 5789643 also shows that oligomerization reactions can be carried out using ion exchange resins. Ion exchange resins have also been used in the preparation of tetramers or pentamers by oligomerization of the dimers. The present inventors have recently invented that the selectivity of the trimer can be increased by utilizing the hydrogen-type cation exchange resin of macropore and maintaining a high conversion rate (Korean Patent Application 10-2006-0012317). In addition, an example of proceeding oligomerization of isobutene by using an ion exchange resin called Amberlyst-15 as a catalyst (Catalysis Today 100, 463, 2005) has a very low conversion rate of 40% or less, and mainly generates dimers.

또한, 제올라이트를 올리고머화 반응의 산촉매로 사용한 예도 일부 시도된 바가 있으나 (Catalysis Today 100, 463, 2005) H-ZSM-5, Y, beta, mordenite 등의 제올라이트에서는 연구한 조건에서는 이량체가 생성될 뿐만 아니라 급격한 비활성화로 인해 3-4 시간 후에는 반응성이 거의 없었다.In addition, some examples of using zeolite as an acid catalyst for the oligomerization reaction have been attempted (Catalysis Today 100, 463, 2005). However, in the zeolites such as H-ZSM-5, Y, beta, and mordenite, dimers are produced under the studied conditions. But after 3-4 hours there was little reactivity due to rapid deactivation.

그러므로 현재까지 제올라이트를 촉매로 사용한 경우에 삼량화를 위주로 얻은 결과는 알려진 바가 없으며 특수한 세공 구조를 갖는 제올라이트를 선정하여 삼량화를 추진하고자 한 예는 더욱 없었다. Therefore, until now, the result obtained mainly from trimerization when using zeolite as a catalyst has not been known, and there is no further example of promoting the trimerization by selecting a zeolite having a special pore structure.

이에 따라 본 발명은 올레핀의 올리고머화, 특히 삼량체를 제조하는 기술을 개발하고자 하였고 이러한 삼량체를 수소화반응에 의해 고비점알킬레이트를 용이하게 제조하는 신규한 방법을 개발하게 되어 본 발명을 완성하였다.Accordingly, the present invention has attempted to develop a technology for preparing oligomerization of olefins, in particular, trimers, and has developed a novel method for easily preparing high boiling point alkylates by hydrogenation of such trimers.

특히, 삼량체의 높은 선택도 외에 높은 생산성 및 긴 촉매 수명을 갖는 올리고머화 반응 기술 및 고비점알킬레이트 생산 기술을 개발하는데 본 발명의 목적이 있다.In particular, it is an object of the present invention to develop oligomerization reaction technology and high boiling point alkylate production technology having high productivity and long catalyst life in addition to high selectivity of trimers.

상기의 목적을 달성하기 위하여 본 발명은 올레핀 올리고머화 및 고비점알킬레이트 제조의 신규한 방법으로서, 상호 교차하는 세공을 갖는 제올라이트를 촉매로 사용함으로써, 놀랍게도 삼량체의 선택도를 크게 높인 신규한 삼량체 제조방법을 발견하게 되었다.In order to achieve the above object, the present invention is a novel method for producing olefin oligomerization and high boiling point alkylate, which uses a zeolite having mutually intersecting pores as a catalyst, thereby surprisingly increasing the selectivity of the trimer. The manufacturing method was found.

특히 본 발명은 상호 교차하는 세공을 갖는 제올라이트 중 세공의 산소 수가 12개인 (이하 12 membered ring이라고 하며 12 MR으로 약함) 세공과 이와 교차하는 12MR 세공을 갖는 제올라이트를 촉매로 사용함으로써, 현저히 높은 생산성, 높은 선택성 및 높은 안정성을 갖는 반응을 수행하게 되었고 삼량체를 효과적으로 제조하게 되었다. Particularly, the present invention provides remarkably high productivity by using a zeolite having 12 pore oxygen (hereinafter referred to as 12 membered ring and weakened to 12 MR) pores and zeolite having 12MR pores intersecting therewith among zeolites having cross pores. The reaction with high selectivity and high stability was carried out and the trimer was effectively prepared.

또한 본 발명은 상기에서 제조된 선택성이 높은 올레핀의 삼량체를 이용하여 수소화반응을 통하여 C9 이상의 비점이 높은 고비점알킬레이트를 얻는다. 상기 수소화는 귀금속 혹은 니켈 촉매 존재 하에서 Fine chemicals through heterogeneous catalysis, Wiley-VCH, 2001, pp. 351-426에서 기재된 바와 같은 방법으로 비교적 용이하게 진행됨이 잘 알려져 있으므로 이에 대하여는 더 이상 설명을 생략한다.In addition, the present invention obtains a high boiling point alkylate having a high boiling point of C 9 or more through hydrogenation using the trimer of the highly selective olefin prepared above. The hydrogenation is carried out in fine chemicals through heterogeneous catalysis, Wiley-VCH, 2001, pp. It is well known that the process proceeds relatively easily in the manner described in 351-426, and thus the description thereof will be omitted.

본 발명에서, 올리고머화에 사용되는 올레핀은 C2 이상의 올레핀이면 어떠한 것이나 무관하나 C3-C4올레핀이 적당하며 C4 올레핀이 더욱 적당하고 이소부텐이 가 장 적합하다. 올리고머화에 의해 C8이상의 올레핀이 얻어지며 특히 C9 이상의 올레핀이 더욱 적합하고 C12 올레핀이 가장 적합하다. In the present invention, the olefin used for oligomerization may be any C 2 or higher olefin, but C 3 -C 4 olefin is suitable, C 4 olefin is more suitable, and isobutene is most suitable. Oligomerization yields C 8 or more olefins, in particular C 9 or more olefins being more suitable and C 12 olefins being most suitable.

올리고머화 반응의 온도는 제한되지는 않으나 실온 ~ 120 ℃가 적합하며 온도가 너무 낮으면 반응 속도가 너무 느리고 온도가 너무 높으면 올리고머화 반응의 발열 반응으로 인해 반응 전환율이 불리할 뿐만 아니라 고분자 화합물이 쉽게 얻어져 촉매의 비활성화가 증가하는 단점이 있다. 반응 온도는 50-100 ℃가 더욱 적당하다.The temperature of the oligomerization reaction is not limited, but room temperature ~ 120 ℃ is suitable, if the temperature is too low, the reaction rate is too slow, if the temperature is too high, the reaction conversion rate is not only disadvantageous due to the exothermic reaction of the oligomerization reaction, the polymer compound is easily There is a disadvantage that the deactivation of the catalyst is increased. 50-100 degreeC of reaction temperature is more suitable.

올리고머화 반응은 회분식 및 연속식 모두 가능하며 대규모의 생산 공정에는 연속식 공정이 적당하다. 연속식 공정은 어떠한 반응기를 사용하여도 가능하나 연속 교반 반응기를 이용할 수 있고 고정층 반응기를 이용하여 진행함이 적당하며 반응물은 상류로 흘릴 수도 있고 하류로 흘릴 수도 있다. The oligomerization reaction can be both batch and continuous and continuous processes are suitable for large scale production processes. The continuous process may be any reactor, but a continuous stirred reactor may be used, and it is suitable to proceed using a fixed bed reactor, and the reactants may flow upstream or downstream.

올리고머화는 반응열이 매우 큰 발열 반응이므로 반응열을 제어하는 것이 매우 중요하며 또한 원료 및 생성물의 이송 등을 용이하게 하기 위해 용매를 사용하는 것이 좋다. 용매는 탄화수소가 좋고 C2-C10 사이의 파라핀 성분의 탄화수소가 더욱 좋으며 이소부탄, 노르말부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸 등이 더더욱 좋으며 시클로헥산을 사용할 수도 있다. 반응물과 용매의 비는 1:100~100:1 사이의 어떠한 조성도 무관하며 운전의 편의성과 생산성을 고려하여 1:10~10:1로 유지함이 바람직하다. 용매 대신에 희석제로 불활성 기체인 질소, 아르곤, 이산화탄소 및 헬륨을 사용할 수도 있으며 희석제로 기체를 사용하면 고정층 반응기의 경우 에는 하류로 반응물과 희석제를 흘려주는 것이 좋다.Since oligomerization is an exothermic reaction with a very large heat of reaction, it is very important to control the heat of reaction and to use a solvent to facilitate the transfer of raw materials and products. Solvents may be good and the hydrocarbon is C 2 -C 10 hydrocarbon paraffin components between good more isobutane, normal butane, pentane, hexane, heptane, octane, nonane, decane, etc. is more and more good use of cyclohexane. The ratio of reactant to solvent is irrelevant to any composition between 1: 100 and 100: 1 and is preferably maintained at 1:10 to 10: 1 in consideration of ease of operation and productivity. Instead of solvents, inert gases such as nitrogen, argon, carbon dioxide and helium may be used as diluents. If gas is used as a diluent, it is preferable to flow reactants and diluents downstream in a fixed bed reactor.

올리고머화 반응의 촉매는 상호 교차하는 세공을 갖는 제올라이트이면 무관하나 특히 12MR의 세공을 갖는 제올라이트이면 어떠한 촉매라도 좋다. 12MR과 교차하는 세공은 12 MR 또는/및 10~6 MR이면 좋다. 12MR과 교차하는 12 MR 또는/및 10~6 MR을 갖는 제올라이트로 중에서 12MR과 12MR이 교차하는 Beta 제올라이트(Zeolites, 8, 446-452 (1988), IZA code로는 BEA로 표기됨)가 활성 및 촉매 안정성이 뛰어나다. Beta 제올라이트와 동일한 구조인 Al-rich Beta(Microporous Materials, 5, 289-297, 1996), 붕소 함유 Beta 제올라이트(Proc. 9th Int. Zeolite Conf., pp. 425-432, 1993; J. Incl. Phenom. Mol. Recogn. Chem., 20, 197-210, 1994), 갈륨 함유 Beta 제올라이트(J. Incl. Phenom. Mol. Recogn. Chem., 20, 197-210, 1994), 티탄 함유 Beta 제올라이트(Chem. Commun., 2367-2368, 1996), CIT-6(Topics in Catalysis, 9, 35-42, 1999), 실리카로만 이루어진 Beta 제올라이트(pure silica beta, Chem. Commun., 2365-2366, 1996) 및 Tschernichite(Am. Mineral., 78, 822-826, 1993)도 가능하며, 수소 양이온이 조금이라도 존재하여 산점을 가지면 삼량화 촉매로 사용될 수 있다. 제올라이트 촉매는 자체의 산성도에 의해 어떤 이온형이라도 적용 가능하나 수소형(proton form)이면 산성도가 높고 반응성이 우수하므로 더욱 바람직하며 이온 교환 가능한 양이온을 수소로 치환하되 교환 가능한 양이온 몰 대비 수소의 몰비가 0.5 이상이면 더 더욱 바람직하다.The catalyst of the oligomerization reaction may be any catalyst as long as it is a zeolite having pores that cross each other. The pores intersecting with 12MR may be 12 MR or / and 10-6 MR. In zeolites with 12 MR and / or 10-6 MR crossing 12MR, Beta zeolites 12ZE and 12MR crossed (Zeolites, 8, 446-452 (1988), designated BEA in IZA code) are active and catalytic Excellent stability Al-rich Beta (Microporous Materials, 5, 289-297, 1996), boron-containing Beta zeolite (Proc. 9th Int. Zeolite Conf., Pp. 425-432, 1993; J. Incl. Phenom Mol.Recogn.Chem., 20, 197-210, 1994), beta zeolite containing gallium (J. Incl. Phenom.Mol.Recogn.Chem., 20, 197-210, 1994), beta zeolite with titanium (Chem) Commun., 2367-2368, 1996), CIT-6 (Topics in Catalysis, 9, 35-42, 1999), beta zeolite consisting solely of silica (pure silica beta, Chem. Commun., 2365-2366, 1996) and Tschernichite (Am. Mineral., 78, 822-826, 1993) is also possible and can be used as a trimerization catalyst if any hydrogen cation is present and has an acid point. Zeolite catalysts can be applied to any ionic form by its acidity, but in the hydrogen form (proton form) it is more preferable because the acidity is high and the reactivity is more preferable. It is still more preferable if it is 0.5 or more.

상호 교차하는 세공을 갖는 제올라이트 촉매는 분말 혹은 알갱이 등으로 성 형하여 사용 가능하며 바인더를 추가로 사용하여 펠렛, 구, 사출물 (extrudate) 등의 성형된 형태 등 어떠한 형태도 가능하며 알갱이나 펠렛 등 성형된 형태가 차압을 방지하는 측면에서 더욱 바람직하다. 촉매의 크기에는 실제적으로 제한이 있는 것은 아니지만 알갱이 크기는 0.1mm 이상이 바람직하며 0.2-10mm가 더욱 적합하다.Zeolite catalysts with intersecting pores can be used in the form of powder or granules, and can be formed in any form such as pellets, spheres, extrudates, etc. by using additional binders. The preferred form is more preferable in terms of preventing the differential pressure. The size of the catalyst is not practically limited, but the grain size is preferably 0.1 mm or more, more preferably 0.2-10 mm.

올리고머화의 전환율은 전환율이 높을수록 삼량체의 농도가 증가하므로 50% 이상이면 무관하나 실제적으로는 90% 이상의 전환율이 더욱 바람직하다. 너무 전환율이 낮으면 불순물의 생성이 많으며 너무 전환율이 높으면 사량체 이상의 더욱 큰 분자량의 불순물이 혼입되기 쉬우므로 희석제나 용매의 농도를 높일 필요가 있다.As the conversion rate of oligomerization increases as the conversion rate increases, the concentration of trimer increases so that it is irrelevant to 50% or more. If the conversion rate is too low, there is a large amount of impurities, and if the conversion rate is too high, impurities of larger molecular weight or higher than tetramers are easily mixed, so it is necessary to increase the concentration of the diluent or the solvent.

반응물의 유속은 너무 느리면 생산성이 낮을 뿐만 아니라 큰 분자량의 불순물이 부생될 수 밖에 없으며 너무 빠르면 반응의 전환율과 삼량체의 선택도가 낮다. 올레핀의 공간속도(WHSV, weight hourly space velocity)기준으로 0.5-100 h-1이 적당하며 1-50 h-1이 더욱 적당하다. If the flow rate of the reactants is too slow, not only the productivity is low but also the by-products of large molecular weight are bound to by-products and if too fast, the conversion rate of the reaction and the selectivity of the trimer are low. 0.5-100 h -1 is appropriate and 1-50 h -1 is more suitable based on the weight hourly space velocity (WHSV) of the olefin.

올리고머화에 의해 얻어진 올리고머를 네오산(neo-acid) 화합물을 만드는 등 바로 산업적으로 이용할 수도 있고 수소화를 거쳐 고비점알킬레이트로 전환할 수도 있다. 수소화 반응을 위해서는 고정층 반응기 및 연속교반 반응기 등의 일반적인 수소화 반응기 및 촉매를 이용할 수 있으며 촉매는 Pd/C, Pd/알루미나, Pt/C, Pt/알루미나, Ru/C, Ru/알루미나, Ni/C, Ni/알루미나 등 담지된 촉매, 이들을 혼합한 촉매 및 수소화 활성을 갖는 Pd, Pt, Ru, Ni 등이 혼합되어 담지된 촉매도 무관하 다. 수소화 반응은 액상 및 기상의 어떠한 반응도 가능하며 수소는 수소화 반응의 당량 이상이면 무관하다.The oligomers obtained by oligomerization may be used directly for industrial purposes, such as making neo-acid compounds, or may be converted to high boiling point alkylates through hydrogenation. For the hydrogenation reaction, general hydrogenation reactors and catalysts such as fixed bed reactors and continuous stirring reactors can be used.The catalysts are Pd / C, Pd / alumina, Pt / C, Pt / alumina, Ru / C, Ru / alumina, Ni / C. , Supported catalysts such as Ni / alumina, mixed catalysts thereof, and catalysts in which Pd, Pt, Ru, Ni, etc., which have a hydrogenation activity, are mixed and supported. The hydrogenation reaction can be any reaction in the liquid and gas phase, and hydrogen is irrelevant as long as it is equal to or more than the equivalent of the hydrogenation reaction.

이하, 아래의 비제한적 실시예에서 본 발명을 보다 자세하게 설명한다. Hereinafter, the present invention is described in more detail in the following non-limiting examples.

실시예Example 1 One

Beta 제올라이트 (NH4-형, Zeolyst사, CP814E, SiO2/Al2O3=25, 표면적=680m2/g)를 550℃에서 8시간 소성하여 수소형으로 전환 후 촉매(H-Beta촉매)로 사용하였다. 상류로 흐르는 고정층 반응기에 프레스로 압축하여 건조한 펠렛형 (직경: 0.5-2mm 사이에 분포)의 상기 H-Beta 촉매 2g을 장착한 후 질소로 300 ℃에서 10시간 유지하여 전처리한 후 냉각 후 반응기 온도를 70 ℃로 유지한 후 액체 MFC(mass flow controller)를 이용하여 n-부탄과 iso-부텐을 1:1 (무게비)로 주입하며 올리고머화 반응을 추진하였다. i-부텐은 WHSV (g-isobutene/g-catalyst/h)=10 h-1가 되도록 공급하였다. 반응열이 발생함에 따라 외부에서 주입 혹은 흡수하는 열량을 조절할 수 있게 액체 순환기(circulator)를 이용하여 일정한 반응 온도를 유지하였다. 반응 후 배출되는 n-부탄과 iso-부텐의 총 유속을 MFM(mass flow meter)으로 계량하여 전환율을 계산하였고 GC(기체크로마토그라피)로 기체 성분을 분석하여 전환율을 재차 확인하였다. 액체 생성물을 포집하여 GC로 분석하여 생성물의 조성을 분석하였다. 도 1에서 보는 바와 같이 60시간의 반응을 통해 반응은 매우 안정적이며 60시간 후의 전환율은 99.9 %, 삼량체의 선택도는 57.9 wt%로 유지되었고 이량체의 선택도는 12.9 wt%로 소량 존재하였다. 자세한 반응 조건 및 결과는 표 1에 요약되어 있다. Beta zeolite (NH 4 -type, Zeolyst, CP814E, SiO 2 / Al 2 O 3 = 25, surface area = 680m 2 / g) was calcined at 550 ° C for 8 hours to convert to hydrogen type catalyst (H-Beta catalyst) Used as. After press-fitting a fixed pellet reactor flowing upstream with dry pellet type (diameter: distributed between 0.5-2 mm) of 2 g of the H-Beta catalyst, it was maintained at 300 ° C. for 10 hours with nitrogen, pretreated, and then cooled to reactor temperature. Was maintained at 70 ° C and n-butane and iso-butene were injected at a ratio of 1: 1 (weight ratio) using a liquid mass flow controller (MFC) to promote the oligomerization reaction. i-butene was fed such that WHSV (g-isobutene / g-catalyst / h) = 10 h −1 . As reaction heat was generated, a constant reaction temperature was maintained by using a liquid circulator to control the amount of heat injected or absorbed from the outside. After the reaction, the total flow rate of n-butane and iso-butene was measured by mass flow meter (MFM) to calculate the conversion rate, and the conversion rate was again confirmed by analyzing gaseous components by gas chromatography (GC). The liquid product was collected and analyzed by GC to analyze the composition of the product. As shown in FIG. 1, the reaction was very stable through the reaction for 60 hours, the conversion after 60 hours was 99.9%, the selectivity of the trimer was maintained at 57.9 wt%, and the selectivity of the dimer was present at a small amount of 12.9 wt%. . Detailed reaction conditions and results are summarized in Table 1.

실시예Example 2 2

실시예 1과 동일하게 반응을 진행하되, i-부텐 WHSV를 10 h-1 대신에 50 h-1 으로 증가하여 공간 속도를 크게 유지하였다. 매우 빠른 공간 속도에서도 12시간의 반응 후 i-부텐 전환율은 94.7 %, 삼량체의 선택도는 57.6 wt%로 유지되었고 이량체의 선택도는 30.7 wt%였다. 자세한 반응 조건 및 결과는 표 1 에 요약되어 있다. The reaction was performed in the same manner as in Example 1, but i-butene WHSV was increased to 50 h −1 instead of 10 h −1 to maintain a large space velocity. The i-butene conversion was 94.7%, the trimer selectivity was 57.6 wt% and the dimer selectivity was 30.7 wt% after 12 hours of reaction even at very high space velocity. Detailed reaction conditions and results are summarized in Table 1.

실시예Example 3. 수소화반응 3. Hydrogenation

실시예 1에서 얻어진 삼량체를 증류로 분리한 후 연속교반 반응기에 10g 가한 후 용매로 시클로헥산을 90g 더하였다. 교반되는 축에 스테인레스 스틸 메쉬로 만든 촉매 바구니를 설치하고 그 안에 Pd(5%)/C의 촉매를 0.5g 담은 후 100 ℃로 승온한 뒤 수소를 이용하여 10기압으로 유지하였다. 교반을 하여 반응을 시작하였고 소모되는 수소는 배압 조절기(back pressure regulator)를 이용하여 항상 10기압이 되도록 공급하였다. 1시간의 반응 후 시클로헥산을 증류하여 제거한 후 올레핀의 파라핀으로의 전환율이 99.5% 임을 기체 크로마토피/질량분석기로 알 수 있었고 고비점알킬레이트가 성공적으로 얻어짐을 알 수 있었다. After separating the trimer obtained in Example 1 by distillation, 10 g was added to the continuous stirring reactor, and 90 g of cyclohexane was added as a solvent. A catalyst basket made of stainless steel mesh was installed on the stirred shaft, and 0.5 g of Pd (5%) / C catalyst was placed therein, and the temperature was raised to 100 ° C. and maintained at 10 atm using hydrogen. The reaction was started by stirring, and the consumed hydrogen was always supplied to 10 atm using a back pressure regulator. After 1 hour of reaction, cyclohexane was distilled off and the conversion of olefin to paraffin was found to be 99.5% by gas chromatographic / mass spectrometry, indicating that high boiling point alkylate was successfully obtained.

비교예Comparative example 1 One

실시예 1과 동일하게 반응을 진행하되, 상기 H-Beta를 촉매를 사용하는 대신에 상업용 암모니움 형태의 mordenite (Zeocat, SiO2/Al2O3=25)를 550℃의 전기로에서 소성하여 암모니아가 제거되게 하여 수소 형의 H-mordenite로 전환한 후 촉매로 사용하였다. Mordenite 촉매는 상호 교차하는 세공을 갖지 않고 12 MR의 1차원적인 세공만을 갖는다. 비록 반응 초기에는 활성이 높았으나 12 시간의 반응 후 전환율은 20.0 % 로 급격히 감소하였고, 삼량체의 선택도는 8.7 wt%로 소량 존재하였다. 자세한 반응 조건 및 결과는 표 1에 요약되어 있다. 비록 반응 시간이 짧았으나 전환율이 낮고 삼량체의 선택도가 매우 낮음을 알 수 있었다.In the same manner as in Example 1, instead of using the H-Beta catalyst, commercial ammonium mordenite (Zeocat, SiO 2 / Al 2 O 3 = 25) was calcined in an electric furnace at 550 ° C. After the removal, the H-mordenite was converted to hydrogen and used as a catalyst. Mordenite catalysts do not have intersecting pores but only one-dimensional pores of 12 MR. Although the activity was high at the beginning of the reaction, the conversion rate decreased rapidly to 20.0% after 12 hours of reaction, and the selectivity of the trimer was present in a small amount of 8.7 wt%. Detailed reaction conditions and results are summarized in Table 1. Although the reaction time was short, the conversion was low and the selectivity of the trimer was very low.

[표 1] 삼량체화 반응 조건 및 결과Table 1 trimerization reaction conditions and results

Figure 112006030322167-pat00001
Figure 112006030322167-pat00001

상술한 바와 같이, 본 발명에 따라 상호 교차하는 세공을 갖는 제올라이트를 촉매로 사용함에 따라 올레핀의 삼량화 반응이 선택적으로 진행될 수 있다. 이렇게 얻어진 올리고머는 네오산(neo-acid)을 제조하는 데 사용될 수도 있고 수소화 반응 을 시켜 고급 용매 및 경유의 첨가제로 사용할 수 있는 고비점알킬레이트로 전환될 수도 있다. As described above, according to the present invention, the use of a zeolite having mutually intersecting pores as a catalyst may selectively proceed with the olefin trimerization reaction. The oligomers thus obtained can be used to prepare neo-acids or can be converted to high boiling point alkylates which can be used as additives for higher solvents and gas oils by hydrogenation.

Claims (9)

상호 교차하는 세공은 산소를 12개 함유한 세공 및 이와 교차하는 12개의 산소를 함유한 세공 또는/및 10 내지 6개의 산소를 함유한 세공으로 이루어진 제올라이트를 촉매를 사용함을 특징으로 하는 올레핀을 이용한 삼량체의 제조방법.The amount of olefins using a catalyst is characterized by using a zeolite composed of a zeolite composed of 12 oxygen-containing pores, 12 oxygen-containing pores, and / or 10 to 6 oxygen-containing pores. Method of making sieves. 제 1항에 있어서, The method of claim 1, 상호 교차하는 세공을 갖는 제올라이트는 제올라이트 Beta, Al-rich Beta, 붕소 함유 Beta 제올라이트, 갈륨 함유 Beta 제올라이트, 티탄 함유 Beta 제올라이트, CIT-6, 실리카로만 이루어진 Beta 제올라이트 혹은 Tschernichite 구조를 갖는 것을 특징으로 하는 올레핀 삼량체의 제조방법.Zeolites having mutually intersecting pores are zeolite Beta, Al-rich Beta, boron-containing Beta zeolite, gallium-containing Beta zeolite, titanium-containing Beta zeolite, CIT-6, silica zeolite consisting of only beta or Tschernichite structure Method for preparing trimer. 제 2항에 있어서, The method of claim 2, 상호 교차하는 세공을 갖는 제올라이트는 제올라이트 Beta 구조를 갖는 것을 특징으로 하는 올레핀 삼량체의 제조방법.Zeolites having pores that cross each other have a zeolite Beta structure. 제 1항에 있어서, The method of claim 1, 상호 교차하는 세공을 갖는 제올라이트는 수소형인 것을 특징으로 하는 올레핀 삼량체의 제조방법.Zeolites having pores that cross each other are hydrogen-type. 제 1항에 있어서, The method of claim 1, 반응 온도는 50 ~ 100 ℃, 공간속도가 0.5 ~ 100 h- 1 로 유지하여 반응하는 것을 특징으로 하는 올레핀 삼량체 제조방법.The reaction temperature is 50 to 100 ℃, the space velocity is 0.5 to 100 h - 1 maintaining the reaction, characterized in that the olefin trimer production method. 제 1항에 있어서, The method of claim 1, 올레핀의 전환율을 50% 이상으로 유지함을 특징으로 하는 올레핀 삼량체의 제조방법.A method for producing an olefin trimer, wherein the conversion rate of the olefin is maintained at 50% or more. 제 1항에 있어서, The method of claim 1, 올레핀은 이소부텐인 것을 특징으로 하는 올레핀 삼량체의 제조방법.The olefin is isobutene, the process for producing an olefin trimer. 삭제delete 삭제delete
KR1020060038895A 2006-03-10 2006-04-28 Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof KR100757031B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060038895A KR100757031B1 (en) 2006-04-28 2006-04-28 Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof
PCT/KR2007/001159 WO2007105875A1 (en) 2006-03-10 2007-03-09 Preparing method of light olefin trimers and production of heavy alkylates by using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060038895A KR100757031B1 (en) 2006-04-28 2006-04-28 Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050677A Division KR100775973B1 (en) 2007-05-25 2007-05-25 Preparing Method of Light Olefin Trimer by using zeolites and Production of heavy alkylates by Using Thereof

Publications (1)

Publication Number Publication Date
KR100757031B1 true KR100757031B1 (en) 2007-09-07

Family

ID=38737119

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060038895A KR100757031B1 (en) 2006-03-10 2006-04-28 Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof

Country Status (1)

Country Link
KR (1) KR100757031B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082299A (en) * 1996-02-08 1999-11-25 윌리암 에이. 케네디 Alkylation Method of Aromatic Compounds and Systems thereof
WO2001002706A1 (en) * 1999-06-30 2001-01-11 Mtu Friedrichshafen Gmbh Liquid cooled internal combustion engine
US6703356B1 (en) 2000-03-23 2004-03-09 Exxonmobil Research And Engineering Company Synthetic hydrocarbon fluids
US20050013774A1 (en) 2001-09-28 2005-01-20 Dakka Jihad Mohammed Crystalline molecular sieves
US20050197256A1 (en) 2002-04-30 2005-09-08 Carl Dunlop Process for reducing the toxicity of hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082299A (en) * 1996-02-08 1999-11-25 윌리암 에이. 케네디 Alkylation Method of Aromatic Compounds and Systems thereof
WO2001002706A1 (en) * 1999-06-30 2001-01-11 Mtu Friedrichshafen Gmbh Liquid cooled internal combustion engine
US6703356B1 (en) 2000-03-23 2004-03-09 Exxonmobil Research And Engineering Company Synthetic hydrocarbon fluids
US20050013774A1 (en) 2001-09-28 2005-01-20 Dakka Jihad Mohammed Crystalline molecular sieves
US20050197256A1 (en) 2002-04-30 2005-09-08 Carl Dunlop Process for reducing the toxicity of hydrocarbons

Similar Documents

Publication Publication Date Title
US11078433B2 (en) Conversion of mixtures of C2—C8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
KR100763216B1 (en) Method for producing high-purity diisobutene
DK1714952T3 (en) PROCEDURE WITH SOLID CATALYST FOR ALKYLING AN AROMATIC HYDROCARBON OR AN ISOALKAN WITH AN OLEFIN
US20060135823A1 (en) Process for preparing dimethylether from methanol
KR20180042212A (en) Improved catalyst alkylation, alkylation catalysts and alkylation catalysts
CN102126916A (en) Process of producing 1,1 diaryl alkanes and derivatives thereof
US10421698B2 (en) Production of high octane hydrocarbon from light alkane feed using oxidation and acid catalysis chemistry
KR100784118B1 (en) Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof
US4423267A (en) Supported ferric sulfate and cobalt sulfate catalysts for the oligomerization of olefins
CN100410219C (en) Solid acid alkylating process of isomerized alkane and olefin
WO2007105875A1 (en) Preparing method of light olefin trimers and production of heavy alkylates by using thereof
KR100757031B1 (en) Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof
KR100775973B1 (en) Preparing Method of Light Olefin Trimer by using zeolites and Production of heavy alkylates by Using Thereof
KR20060103268A (en) Continuous preparation of 4,4'-diisopropylbiphenyl
KR100718014B1 (en) Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof
KR100718018B1 (en) A method for preparing heavy alkylates using zeolites
KR100864376B1 (en) Preparing method of butene trimers from olefins containing various olefin components and production of heavy alkylates by using thereof
KR100786613B1 (en) Preparing method of light olefin trimers and production of heavy alkylates by using thereof
KR20090092121A (en) Preparing method of light olefin trimers by using zirconias and production of heavy alkylates by using thereof
US20220259508A1 (en) Selective formation of jet and diesel fuels from bio-based c3-c8 olefins via oligomerization with tungstated catalysts
US11325894B2 (en) Upgrading ketoacid
CN106278785A (en) A kind of isoparaffin and the solid acid alkylating reaction method of alkene
WO2021154440A1 (en) Oligomerization of isobutanol in the presence of mww zeolite solid acid catalysts
Ingallina et al. Isobutane alkylation catalyzed by supported perfluoroalkanedisulphonic acids
MONTILLET et al. EFFECTS OF SUPERCRITICAL MEDIA ON CATALYTIC REACTIONS: APPLICATION TO ALIPHATIC ALKYLATION

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100621

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee