KR100757007B1 - Method for manufacturing polytetramethyleneetherglycol diester - Google Patents

Method for manufacturing polytetramethyleneetherglycol diester Download PDF

Info

Publication number
KR100757007B1
KR100757007B1 KR1020060083451A KR20060083451A KR100757007B1 KR 100757007 B1 KR100757007 B1 KR 100757007B1 KR 1020060083451 A KR1020060083451 A KR 1020060083451A KR 20060083451 A KR20060083451 A KR 20060083451A KR 100757007 B1 KR100757007 B1 KR 100757007B1
Authority
KR
South Korea
Prior art keywords
reactor
ptmeg
diester
delete delete
catalyst
Prior art date
Application number
KR1020060083451A
Other languages
Korean (ko)
Inventor
김성일
Original Assignee
김성일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김성일 filed Critical 김성일
Priority to KR1020060083451A priority Critical patent/KR100757007B1/en
Application granted granted Critical
Publication of KR100757007B1 publication Critical patent/KR100757007B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

A method for preparing polytetramethylene ether glycol diester is provided to improve the uniformity of physical properties of polytetramethylene ether glycol diester by polymerizing tetrahydrofuran. A method for preparing polytetramethylene ether glycol diester comprises the step of polymerizing tetrahydrofuran in the presence of a carboxylic anhydride by using a catalyst selected from an aluminum silicate-based material such as leached soil, amorphous aluminum silicate, magnesium aluminum hydrosilicate, kaolin, halocite, etc. to prepare polytetramethylene ether glycol diester, wherein a polymerization reactor is divided into a main reactor and an auxiliary reactor and the main reactor and the auxiliary reactor are connected in serial or in parallel.

Description

폴리테트라메틸렌에테르글리콜 디에스테르의 제조 방법{Method for Manufacturing Polytetramethyleneetherglycol diester} Method for manufacturing polytetramethylene ether glycol diester {Method for Manufacturing Polytetramethyleneetherglycol diester}

도 1은 본 발명에 따른 주반응기 및 부반응기를 이용한 테트라하이드로푸란의 연속중합에 관한 기본 공정예시도1 is a basic process example of the continuous polymerization of tetrahydrofuran using the main reactor and the sub-reactor according to the present invention

<도면의 주요부분에 대한 간단한 설명><Brief description of the main parts of the drawing>

10 : THF저장조10: THF Storage Tank

11 : THF펌프11: THF pump

12 : 원료혼합설비12: raw material mixing equipment

13 : 무수카르복시산13: carboxylic anhydride

14 : 유량조절변14: flow control valve

15 : 순환펌프15: circulation pump

16 : 열교환기16: heat exchanger

17 : 주반응기17: main reactor

18 : 유량조절변18: flow control valve

19 : 유량조절변19: flow control valve

20 : 압력조절변20: pressure regulating valve

22 : 유량조절변22: flow control valve

23 : 유량조절변23: flow control valve

24 : 순환펌프24: circulation pump

25 : 열교환기25: heat exchanger

26 : 부반응기26: side reactor

27 : 유량조절변27: flow control valve

28 : 유량조절변28: flow control valve

29 : 압력조절변29: pressure regulating valve

30 : 인라인믹서30: inline mixer

31 : 저장조31: reservoir

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명은 무수카르복시산 존재 하에 촉매를 사용하여 테트라하이드로푸란(Tetrahydrofuran, 이하 “THF"라 칭함)을 연속 중합하여 폴리테트라메틸렌에테르글리콜 디에스테르(Polytetramethyleneetherglycol diester, 이하 "PTMEG-디에스테르"라 칭함)를 제조하는 방법에 관한 것으로, 무수카르복시산 존재 하에 “THF"를 연속 중합하여 "PTMEG-디에스테르"를 제조함에 있어서 주반응기에 소형의 부반응기를 접합하여 촉매층의 부위별로 "THF"를 투입하거나, 또는 주 및 부반응기를 병렬 또는 필요에 따라서는 직렬로 운전하여 매우 균일한 물성의 "PTMEG-디에스테르"를 제조하는 개선된 방법을 제공하기 위한 것이다.The present invention is a continuous polymerization of tetrahydrofuran (hereinafter referred to as "THF") using a catalyst in the presence of anhydrous carboxylic acid to form polytetramethyleneetherglycol diester (hereinafter referred to as "PTMEG-diester"). The method relates to a process for producing "PTMEG-diester" by continuously polymerizing "THF" in the presence of anhydrous carboxylic acid, and attaching a small side reactor to the main reactor to introduce "THF" for each part of the catalyst layer, or It is to provide an improved method of producing "PTMEG-diesters" of very uniform physical properties by running the main and subreactors in parallel or as necessary in series.

삭제delete

"PTMEG-디에스테르"는 폴리테트라메틸렌에테르글리콜(Polytetramethyleneetherglycol, 이하 "PTMEG"이라 칭함)의 중간물질로서 공지의 방법으로 “PTMEG”로 용이하게 전환시킬 수 있으며, “PTMEG”는 스판덱스, 인 조피혁, 폴리우레탄, 열가소성 폴리에스테르, 폴리아미드, 엘라스토머의 등에 주원료로 사용되고 있는 그 용도가 매우 다양하고 유용한 고분자물 이다. "PTMEG-diester" is an intermediate of polytetramethyleneetherglycol (hereinafter referred to as "PTMEG") and can be easily converted to "PTMEG" by a known method, and "PTMEG" is made of spandex, artificial leather. It is a very versatile and useful polymer that is used as a main raw material in polyurethanes, thermoplastic polyesters, polyamides, and elastomers.

그런데, 종래에는 이러한 "PTMEG-디에스테르"를 무수카르복시산의 존재 하에 표백토(Bleaching Earth)계 및 무정형 알루미늄실리케이트(Amorphous Aluminiumsilicate), 마그네시움알루미늄하이드로실리케이트(Magnesium aluminium hydrosilicate), 카오린(Kaolin) 및 할로이싸이트(Halloysite) 등의 알루미늄실리케이트계의 촉매나 다른 금속의 화합물인 촉매를 사용하여 연속중합 함으로서 제조하여 왔던 바, 이와 같은 종래의 공정에서는 촉매의 사용기간에 따라 지속적으로 활성도가 감소하고, 이에 따라 "PTMEG-디에스테르"의 물성이 지속적으로 변화하는 피할 수 없는 단점이 있었다. However, conventionally, such "PTMEG-diesters" are used in the presence of anhydrous carboxylic acid, bleaching earth-based and amorphous aluminum silicate, magnesium aluminum hydrosilicate, kaolin, and kaolin. It has been produced by continuous polymerization using an aluminum silicate-based catalyst such as Haloysite or a catalyst of a compound of another metal. In such a conventional process, the activity is continuously decreased according to the service life of the catalyst. Accordingly, there is an inevitable disadvantage that the physical properties of the "PTMEG-diester" are constantly changing.

무수카르복시산 존재 하에 "PTMEG-디에스테르"를 제조하는 촉매로서,As a catalyst for producing "PTMEG-diester" in the presence of anhydrous carboxylic acid,

1. 표백토계의 촉매는 미국특허 제4,198,566호, 제4,243,799호, 제5,210,283호, 제6,362,312호, 제6,274,700호, 제7,041,752호 등에서 개시되었고, 1.Bleached earth catalysts have been disclosed in US Pat. Nos. 4,198,566, 4,243,799, 5,210,283, 6,362,312, 6,274,700, 7,041,752, and the like.

2. 제올라이트 촉매는 미국특허 제4,303,782 호, 제5,641,857호 등에서 개시되었고,2. Zeolite catalysts are disclosed in US Pat. Nos. 4,303,782, 5,641,857, and the like.

3. 알루미늄시리케이트계 또는 다른 유사한 물질을 이용하는 촉매는 미국특허 제5,208,385호, 제5,210,283호, 제6,069,226호, 제6,207,793호, 제6,271,413호, 제6,455,711호 및 일본 특허 공개 JP, 04-277522 A호 및 JP, 04-306228 A호에서 개시하였고, 본 발명자에 의하여 발명된 한국특허 제0219792호 및 제0219793호 등에서 개시하였다. 3. Catalysts using aluminum silicate-based or other similar materials are described in U.S. Pat.Nos. 5,208,385, 5,210,283, 6,069,226, 6,207,793, 6,271,413, 6,455,711 and Japanese Patent Publication JP, 04-277522 A. And JP, 04-306228 A, and Korean Patent Nos. 0219792, 0219793, and the like, which are invented by the present inventors.

4. 기타, 금속의 화합물을 이용한 촉매는 미국특허 제5,149,862호, 제5,773,648호, 제6,211,401호 및 일본 특허공개 JP 2001-122957 등에서 개시되었다.4. Other catalysts using metal compounds have been disclosed in US Pat. Nos. 5,149,862, 5,773,648, 6,211,401 and Japanese Patent Publication JP 2001-122957.

이들 촉매를 사용하는 대부분의 연속중합 공정에서는 촉매의 사용기간에 따라 지속적으로 활성도가 감소하고, 이에 따라 "PTMEG-디에스테르"의 물성이 지속적으로 변화하는 피할 수 없는 단점이 있다. In most continuous polymerization processes using these catalysts, there is an inevitable disadvantage in that the activity is continuously decreased with the use of the catalyst, and thus the properties of the "PTMEG-diester" are continuously changed.

삭제delete

삭제delete

삭제delete

이와 같은 "PTMEG-디에스테르"는 연속중합 방법에서는 무수카르복시산 존재 하에 "THF"를 중합하여 제조하며, 종래의 연속중합은 알루미늄실리케이트계 및 또 다른 금속화합물을 촉매로 이용하나, 이러한 촉매들은 촉매의 사용기간에 따라 촉매의 활성도가 지속적으로 감소하여 "PTMEG-디에스테르"의 물성이 지속적으로 변화하는 피할 수 없는 단점이 있다. 이를 극복하기 위해서는 특징이 있는 개선된 "PTMEG-디에스테르"의 제조공정을 도입하여야 함은 필수적이다. Such "PTMEG-diesters" are prepared by polymerizing "THF" in the presence of anhydrous carboxylic acid in a continuous polymerization method. Conventional continuous polymerization uses aluminum silicate and another metal compound as catalysts. There is an inevitable disadvantage that the activity of the catalyst continuously decreases with the use period and the physical properties of the "PTMEG-diester" continuously change. In order to overcome this, it is necessary to introduce a process for producing an improved "PTMEG-diester" characterized.

본 발명의 목적은 균일한 물성의, 더욱 상세하게는 균일한 분자량분포 및 균일한 점도의, "PTMEG-디에스테르"를 제조하는 연속중합 방법 및 공정을 제공하는데 있다.It is an object of the present invention to provide a continuous polymerization method and process for producing "PTMEG-diesters" of uniform physical properties, more particularly uniform molecular weight distribution and uniform viscosity.

종래의 기술의 단점인 "PTMEG-디에스테르"의 물성의 변화를 보완하기 위하여는 반응시간을 증가시키거나, 반응온도를 올려 반응속도를 증가시켜 물성의 변화폭을 줄여야 하나, 반응시간을 증가시킬 경우에는 생산량이 줄어들게 되고, 반응온도를 증가 시킬 때에는 전환률이 감소하고 색도가 나빠짐으로, 반응 시간을 증가시키거나 반응온도를 높임에는 한계가 있다.In order to compensate for the change in the properties of the "PTMEG-diester" which is a disadvantage of the prior art, the reaction time should be increased or the reaction temperature should be increased by increasing the reaction temperature to decrease the change in the physical properties. When the production is reduced, the increase in the reaction temperature decreases the conversion rate and the color is worse, there is a limit to increase the reaction time or increase the reaction temperature.

본 발명은 이를 극복하기 위하여 개선된 공정을 제공하며, 주반응기에 소형의 부반응기를 결합하여, 원료인 "THF"를 반응기 촉매층의, 바람직하게는 촉매층을 2 내지 4개층으로 분리하거나, 더욱 바람직하게는 3개층으로 분리하여, 부위별로 투입하거나, 이를 병렬 또는 경우에 따라서는 직렬로 운전함으로서 더욱더 균일한 물성의 "PTMEG-디에스테르"를 제조하는데 목적이 있다.The present invention provides an improved process for overcoming this, by combining a small subreactor with the main reactor, separating the raw material "THF" from the reactor catalyst layer, preferably from two to four layers, or more preferably. Preferably it is separated into three layers, and put into each part, or by operating in parallel or in some cases in series it is an object to produce a more uniform "PTMEG-diester" of physical properties.

삭제delete

본 발명에 의하면 매우 균일한 물성의 "PTMEG-디에스테르"의 제조가 가능하다.According to the invention it is possible to produce "PTMEG-diesters" of very uniform physical properties.

연속중합 공정에서는 촉매의 사용기간이 경과함에 따라 촉매의 활성도가 감소함은 피할 수 없는 일이며, 촉매 활성도의 감소에 따라 "PTMEG-디에스테르"의 분자량분포 및 점도가 증가하게 된다. 이를 보완하기 위하여는 반응시간을 증가시키거나 중합반응 온도를 상승시켜 반응속도를 증가시켜야 물성의 변화폭을 줄일 수 있으나, 반응시간을 증가시킬 결우에는 생산량이 줄어들게 되고, 반응온도를 증가 시킬 때에는 전환률 및 색도가 나빠지게 되어 반응온도를 높임에는 한계가 있다.In the continuous polymerization process, it is inevitable that the activity of the catalyst decreases as the service life of the catalyst elapses. As the catalyst activity decreases, the molecular weight distribution and viscosity of the "PTMEG-diester" increase. To compensate for this, the reaction time can be reduced by increasing the reaction time or raising the polymerization temperature to increase the reaction rate, but in the case of increasing the reaction time, the yield decreases, and when the reaction temperature is increased, the conversion rate is increased. And chromaticity is worse, there is a limit to increase the reaction temperature.

"PTMEG-디에스테르"의 분자량분포 및 점도가 균일하지 않을 경우에는 "PTMEG"의 주 용도인 스판덱스 제조 시 스판덱스의 물성이 변화하여 고급 스판덱스의 제조가 곤란한 단점이 있어, 근래에는 매우 소폭에서의 점도 변화가 요구되고 있다.
동일 수평균분자량에서의 "PTMEG-디에스테르"의 분자량분포 및 점도는 상관관계가 있고, 균일한 점도는 균일한 분자량분포를 의미하여 이후부터는 점도로서 분자량분포를 대변한다.
본 발명에서는 주반응기에 물성 조절용으로 소형의 부반응기를 결합하여 이를 병렬로, 또 경우에 따라서는 직렬로 이용하여 균일한 물성의 "PTMET-디에스테르"의 제조가 가능하게 하는 바, '도 1'에는 본 발명의 내용을 설명하는 기본적인 공정을 도시하였다.
"THF"의 중합은 회분식(Batch) 및 연속식(Continuous) 중합이 모두 가능하나, 본 발명에 의한 연속중합은, '도 1'의 연속중합 공정도와 같이, THF저장조(10)로부터 THF펌프(11)에 의하여 공급되는 "THF"와 분자량 조절에 알맞은 양의 무수카르복시산으로 무수초산(13)을 원료혼합설비(12)에서 혼합 후, 이 혼합물(이하 "원료"라 칭함)을 유량조절변(14)을 이용하여 촉매가 충전된 고정촉매상의 주반응기(17)에 연속 투입한다. 주반응기(17)는 그 내부에 촉매가 충전되어 있으며, 3개층으로 부위별로 분할되어 있다. 반응 내용물은 주반응기의 순환펌프(15)를 이용하여 주반응기의 열교환기(16)에서 반응열을 제거한 후 주반응기(17)로 순환시켜 반응온도를 일정하게 유지하는 등온반응 하에서 연속적으로 "PEMEG-디에스테르"를 제조한다. 이때, 주반응기(17)에 "원료" 투입량(14)의 변화 없이, "원료"를 단지 주반응기(17)의 촉매층 부위별로 분산 투입하게 되면, 이러한 부위별 순환량 조절 만으로라도 어느 정도 반응시간의 조절이 가능하다. 따라서, 생산량의 변화없이 점도를 조절할 필요가 있을 시에는 주반응기로 순환되는 부위별 유량을 유량조절변(18 및 19)을 이용하여 조절한다.
이는, 아래의 수평균분자량 및 분자량분포의 정의식에서 보는 바와 같이, "PTMEG-디에스테르"는 다양한 분자량(중합도)의 "PTMEG-디에스테르"의 혼합물이며, 이의 분자 수(∑Ni)와 각개 분자(i)의 분자량(Mi)에 따라 동일한 수평균분자량에서도 분자의 수와 각개 분자의 분자량이 달라질 수 있으며, 이에 따라 분자량분포가 변하며 또 분자량분포와 점도는 상관관게가 있어 분자량분포의 변화는 점도의 변화를 의미한다. 주 및 부반응기(17, 26)에 "원료" 투입량은 변화 없이, "원료"를 반응기의 촉매층 부위별로 적당량 투입하면, "원료"가 촉매와 접촉하여 반응하는 평균 반응시간에는 변화가 없으나, 각개의 "PTMEG-디에스테르" 분자(i)의 반응시간은 다르게 되며, 반응시간에 따라 분자의 수와 각개의 분자의 분자량이 다르게 되어 분자량의 분포와 이에 따른 점도가 변화하게 된다. 본 발명에서는 반응기의 촉매층 부위별로 "원료"를 적당량 투입하여 동일 "PTMEG-디에스테르"의 수평균분자량 하에서 분자량분포 및 점도의 변화의 폭을 줄여 비교적 균일한 물성의 "PTMEG-디에스테르"를 제조 할 수 있다.
If the molecular weight distribution and viscosity of the "PTMEG-diester" are not uniform, the physical properties of the spandex may be changed during the production of the spandex, which is the main use of the "PTMEG," and thus, it is difficult to manufacture high-grade spandex. Change is required.
The molecular weight distribution and viscosity of "PTMEG-diester" at the same number average molecular weight are correlated, and uniform viscosity means uniform molecular weight distribution, and hereafter represents molecular weight distribution as viscosity.
In the present invention, it is possible to produce a "PTMET-diester" of uniform physical properties by combining a small side reactor for controlling the physical properties to the main reactor in parallel, and in some cases in series, 'FIG. 'Shows a basic process for explaining the contents of the present invention.
The polymerization of "THF" can be both batch and continuous polymerization, but the continuous polymerization according to the present invention, as shown in the continuous polymerization process of the 'FIG. 1', THF pump ( 11) After acetic anhydride (13) is mixed in the raw material mixing plant (12) with "THF" and carboxylic anhydride in an amount suitable for molecular weight control, the mixture (hereinafter referred to as "raw material") is a flow control valve ( 14) is continuously added to the main reactor 17 of the fixed catalyst filled with the catalyst. The main reactor 17 is filled with a catalyst therein, and is divided into parts into three layers. The reaction contents are continuously removed under an isothermal reaction in which the reaction heat is removed from the heat exchanger 16 of the main reactor using the circulation pump 15 of the main reactor and then circulated to the main reactor 17 to keep the reaction temperature constant. Diester ". At this time, if the "raw material" is dispersed in each of the catalyst bed parts of the main reactor 17 without changing the "raw material" input amount 14 to the main reactor 17, even if the amount of circulation of each part of the reaction time Adjustable Therefore, when it is necessary to adjust the viscosity without changing the amount of production, the flow rate for each part circulated to the main reactor is controlled by using the flow control valves 18 and 19.
As shown in the following formula, the number average molecular weight and molecular weight distribution, "PTMEG-diester" is a mixture of "PTMEG-diester" of various molecular weights (polymerization degree), its number of molecules (∑Ni) and individual molecules Depending on the molecular weight (Mi) of (i), even in the same number average molecular weight, the number of molecules and the molecular weight of each molecule may be changed. As a result, the molecular weight distribution changes and the molecular weight distribution and viscosity have a correlation. Means change. If the input amount of "raw material" into the main and sub-reactors 17 and 26 is not changed, and an appropriate amount of "raw material" is added to each part of the catalyst layer of the reactor, the average reaction time of the "raw material" in contact with the catalyst does not change, but each The reaction time of the "PTMEG-diester" molecule (i) is different, the number of molecules and the molecular weight of each molecule is different according to the reaction time, the molecular weight distribution and the resulting viscosity is changed. In the present invention, "PTMEG-diester" having a relatively uniform physical property is prepared by reducing the width of the molecular weight distribution and the change in viscosity under the number average molecular weight of the same "PTMEG-diester" by adding an appropriate amount of "raw material" for each catalytic layer part of the reactor. can do.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

Mn= ω/ΣNi = ΣMiNi/ΣNiMn = ω / ΣNi = ΣMiNi / ΣNi

분자량분포(D)= Mw / MnMolecular weight distribution (D) = Mw / Mn

여기서,here,

Mn: 수평균분자량 ω : "PTMEG-디에스테르"시료의 무게Mn: number average molecular weight ω: weight of the "PTMEG-diester" sample

i : "PTMEG-디에스테르" 각 개의 분자i: each molecule of "PTMEG-diester"

ΣNi : "PTMEG-디에스테르"시료의 전체 몰 수 ΣNi: total molar number of “PTMEG-diester” samples

Ni : i의 몰수 Mi : i의 분자량Molecular weight of Ni: i Mi: molecular weight of i

Mw : 중량평균분자량Mw: weight average molecular weight

본 중합반응은 발열반응으로서 반응 초기에는 주 및 부반응기의 열교환기(16, 25)에 온수나 저압스팀을 공급하여 반응온도까지 가온 하고, 반응이 시작되면 주 및 부반응기의 열교환기(16, 25)에 냉각수를 공급하여 반응열을 연속적으로 제거한다. The polymerization reaction is an exothermic reaction. At the beginning of the reaction, hot water or low pressure steam is supplied to the heat exchangers 16 and 25 of the main and sub-reactors to warm up to the reaction temperature. Cooling water is supplied to 25) to continuously remove the heat of reaction.

부반응기(26)에서도 주반응기(17)와 동일한 방법으로 "원료"를 유량조절변(27,28)을 이용하여 각 촉매층의 부위별로 투입하여 점도의 조절이 가능하다. 즉, 부반응기(26) 또한 촉매층을 3개 부위로 분할시켜 구성시키고 각 층의 부위별로 “원료”를 투입하여 점도를 조절할 수 있다. "원료"는 주반응기(17)의 1/8에서 1/4 양의 촉매가 충전 된 고정촉매상의 부반응기(26)에 연속적으로 투입하며, 반응 내용물은 부반응기의 순환펌프(24)를 이용하여 부반응기의 열교환기(25)에서 반응열을 제거 한 후 부반응기(26)로 순환시켜 반응온도를 일정하게 유지하는 등온반응 하에서 연속 반응을 시킨다. 부반응기(26)는 주반응기(17)와 병렬로 "PTMEG-디에스테르"를 제조하며, 주반응 및 부반응 계내의 압력은 압력조절변(20 및 29)를 이용하여 조절한다. In the sub-reactor 26, the " raw material " can be added to each part of each catalyst layer using the flow control valves 27 and 28 in the same manner as the main reactor 17 to control the viscosity. That is, the sub-reactor 26 may also be configured by dividing the catalyst layer into three parts, and adding a “raw material” to each part of each layer to adjust the viscosity. &Quot; Raw material " is continuously fed to the fixed catalyst subreactor 26 filled with 1/8 to 1/4 of the amount of catalyst in the main reactor 17, and the reaction contents are used with the circulation pump 24 of the subreactor. After the reaction heat is removed from the heat exchanger 25 of the sub-reactor, the reaction is circulated to the sub-reactor 26 to continuously react under an isothermal reaction to keep the reaction temperature constant. The subreactor 26 produces "PTMEG-diester" in parallel with the main reactor 17, and the pressure in the main reaction and subreaction systems is controlled using pressure control valves 20 and 29.

주반응기(17) 및 부반응기(26)에서 제조한 "PTMEG-디에스테르"는 파이프라인 내에서 혼합하고 인라인믹서(30)를 거쳐 저장조(31)로 이송한다. 이때, 혼합물의 물성 조절은 부반응기(26)의 물성을 변수로 하여 다음의 식에 의하여 부반응기(26)에서 제조하여야 하는 "PTMEG-디에스테르" 수평균분자량과 점도를 계산하여 부반응기(26)의 반응온도 및 "원료"의 투입량(22)을 조절하여 주반응기(17)에서 제조하는 "PTMEG-디에스테르"와 혼합하여 요구되는 수평균분자량 및 균일한 점도의 "PTMEG-디에스테르"를 제조한다. The "PTMEG-diesters" produced in the main reactor 17 and the subreactor 26 are mixed in the pipeline and transferred to the reservoir 31 via the inline mixer 30. At this time, the physical properties of the mixture is controlled by the sub-reactor 26 by calculating the number average molecular weight and viscosity of the "PTMEG-diester" which should be prepared in the sub-reactor 26 by the following equation. The reaction temperature of &lt; RTI ID = 0.0 &gt;) &lt; / RTI &gt; and the input amount 22 of " raw material " are mixed with &quot; PTMEG-diester &quot; produced in the main reactor 17 to obtain the required number average molecular weight and &quot; PTMEG-diester &quot; Manufacture.

μ2 = [μ3 x (Q1 + Q2)] - (μ1 x Q1)μ2 = [μ3 x (Q1 + Q2)]-(μ1 x Q1)

여기서,here,

- μ1,μ2 : 주 및 부반응기에서 제조한 "PTMEG-디에스테르"의 40℃에서의 점도(Cp).μ1, μ2: Viscosity (Cp) at 40 ° C. of “PTMEG-diesters” prepared in the main and subreactors.

- μ3 : 혼합 후 요구되는 점도(Cp).μ3: viscosity required after mixing (Cp).

- Q1,Q2 : 주 및 부반응기에서 제조한 "PTMEG-디에스테르"의 생산 유량 (kg/Hr).Q1, Q2: Production flow rate (kg / Hr) of "PTMEG-diesters" produced in the main and subreactors.

Q2 = Q1 x Mn2 x (Mn3 - Mn1)/ [Mn1 x (Mn2 - Mn3)]Q2 = Q1 x Mn2 x (Mn3-Mn1) / [Mn1 x (Mn2-Mn3)]

여기서,here,

- Q1, Q2 : 주 및 부반응기에서 제조한 "PTMEG-디에스테르"의 생산 유량 (kg/Hr).Q1, Q2: Production flow rate (kg / Hr) of "PTMEG-diesters" produced in the main and subreactors.

- Mn1, Mn2 : 주 및 부반응기에서 제조한 "PTMEG-디에스테르"의 수평균분자량.Mn1, Mn2 : Number average molecular weight of "PTMEG-diester" prepared in main and secondary reactors.

- Mn3 : 혼합 후 요구되는 수평균분자량.Mn 3: Number average molecular weight required after mixing.

또한, 동일 반응기에서 제조되는 "PTMEG-디에스테르"의 수평균분자량과 점도의 관계는 아래의 수식과 같이 표시 할 수 있으며, 각 반응기에서 점도정수(Kμ)를 일정범위 내에서 균일하게 조정함으로서 각 반응기에서 균일한 분자량과 점도를 유지 할 수 있으며, 혼합 후의 물성을 매우 균일 하게 유지 할 수 있다.In addition, the relationship between the number average molecular weight and the viscosity of the "PTMEG-diester" produced in the same reactor can be expressed as shown below, by adjusting the viscosity constant (Kμ) uniformly within a certain range in each reactor It can maintain a uniform molecular weight and viscosity in the reactor, it can maintain a very uniform physical properties after mixing.

95Kμ = Mn/ μ0.493 95 Kμ = Mn / μ 0.493

여기서,here,

- Mn: "PTMEG-디에스테르"의 평균분자량.Mn: average molecular weight of "PTMEG-diester".

- μ : 40℃에서의 점도(Poise). μ: viscosity at 40 ° C.

- Kμ: 점도정수이며, 반응온도, 반응시간 및 촉매의 활성도가 일정하면 일정하다.-Kμ: Viscosity constant, constant if reaction temperature, reaction time and activity of catalyst are constant.

또, 주반응기(17)에서 제조한 "PTMEG-에스테르"의 점도가 높아 부반응 기(26)에서 제조한 "PTMEG-에스테르"를 혼합 시 부반응기(26)에 의한 점도 조절의 한계를 넘을 경우에는 주반응기(17)에서 제조한 "PTMEG-에스테르"의 일부 또는 전량을 유량조절변(23)을 이용하여 부반응기(26)에 투입하는, 주반응기(17)와 부반응기(26)의 직렬운전 방법으로 조절한다. 또, 경우에 따라서는 주반응기(17)에서 제조한 "PTMEG-에스테르"의 일부 및 적당량의 "원료"를 유량조절변(22)을 이용하여 부반응기(26)에 투입하면 점도의 조절이 매우 균일하게 된다. In addition, when the viscosity of the "PTMEG-ester" produced in the main reactor 17 is high and the "PTMEG-ester" produced in the sub-reactor 26 is exceeded, the viscosity of the viscosity controlled by the sub-reactor 26 is exceeded. A series operation of the main reactor 17 and the subreactor 26 in which part or all of the "PTMEG-ester" manufactured in the main reactor 17 is introduced into the subreactor 26 using the flow control valve 23. Adjust it in the way. In some cases, when a part of "PTMEG-ester" produced in the main reactor 17 and an appropriate amount of "raw material" are introduced into the sub-reactor 26 using the flow regulating valve 22, the viscosity is very controlled. Become uniform.

무수초산 존재 하에 알루미늄실리케이트 계의 촉매를 사용 하여 연속중합을 할 경우에는 반응물 순환은 상부에서 하부로 순환시키는 것이 바람직하며 순환량은 시간당 주 및 부반응기(17, 26) 촉매부피의 2배 내지 4배의 양이 적당하다. 또 주반응기(17)에 "원료"의 시간당 투입량(14)은 주반응기(17)에 충전 한 촉매량의 2 내지 5 %에 해당하는 양이 적당하며, 동량을 "PTMEG-디에스테르"로 생산한다. 반응온도는 "THF"의 비점을 고려하여 20℃ 내지 60℃, 상세하게는 30℃ 내지 55℃, 반응압력 6 게이지압 (kg/cm2g) 미만에서 중합반응이 효과적으로 진행된다. 미반응 "THF"는 미반응 무수초산(무수카르복시산) 분리공정을 거쳐 회수하여 정제하지 않고 중합반응에 재이용한다. 본 발명의 공정에 의하여 중합된 "PTMEG-디에스테르"는 공지의 트랜스에테르화 반응을 거쳐 PTMEG를 용이하게 제조할 수 있다.In the case of continuous polymerization using an aluminum silicate catalyst in the presence of acetic anhydride, it is preferable that the reactant circulation is circulated from the top to the bottom, and the circulation amount is 2 to 4 times the volume of the main and subreactors (17, 26) per hour. The amount of is appropriate. In addition, an amount corresponding to 2 to 5% of the amount of the catalyst charged into the main reactor 17 is appropriate for the hourly input amount 14 of the "raw material" to the main reactor 17, and the same amount is produced as "PTMEG-diester". . In consideration of the boiling point of "THF", the reaction proceeds effectively at 20 ° C to 60 ° C, specifically 30 ° C to 55 ° C, and a reaction pressure of less than 6 gauge pressure (kg / cm 2 g). Unreacted "THF" is recovered through an unreacted acetic anhydride (carboxylic anhydride) separation process and reused in the polymerization without purification. The "PTMEG-diester" polymerized by the process of the present invention can easily produce PTMEG via a known transetherification reaction.

본 발명에 의한 공정에서 제조되는 "PTMEG-디에스테르"는 하기의 일반식으로 표시되며, 아래의 식 중 n은 9~100의 정수이고, R1 및 R2는 각기 탄소수 1~4인 알칼기 또는 알킬기 유도체이며, 서로 같거나 다를 수 있다."PTMEG-diester" produced in the process according to the present invention is represented by the following general formula, wherein n is an integer of 9 to 100, R1 and R2 are each an alkyl or alkyl group having 1 to 4 carbon atoms. Derivatives and may be the same or different from one another.

R1CO-O-(CH2-CH2-CH2-CH2-O)n-COR2 R1CO-O- (CH2-CH2-CH2-CH2-O) n-COR2

다음에 실시 예에서 본 발명을 상세히 설명하고자 하며, 본 실시 예로서 본 발명의 범위를 제한하고자 하는 것은 아니다. 다음 실시 예에서 사용한 부(%)는 중량부(%)를 의미한다.Next, the present invention will be described in detail with reference to the following examples, which are not intended to limit the scope of the present invention. Parts (%) used in the following examples means parts by weight (%).

(실시 예 1)(Example 1)

한국특허 제 0219792 호에 의한 산처리 후 염화암모늄 처리하여 650℃에서 10시간 소성한 한 촉매를 이용하여 순도 99.8%의 "THF" 96.49% 및 무수초산 3.51% 비율로 조제하여 반응온도 46.5℃에서 평균 반응시간 16 시간동안 연속중합 한 후 미반응물인 "THF"를 180℃, 5mbar Abs에서 증류하여 분석한 결과, 반응물의 조성은 "PTMEG-디아세테이트" 53%, 미반응 "THF" 46.79%, 미만응 무수초산 0.21%, "PTMEG-디아세테이트" 수평균분자량은 1,696g/g-mol, 40℃에서의 점도는 795 Cp (식 Kμ= Mn/μ0.493에 의한 점도정수는 610.3)이었다. 이를 소형 부반응기에 상기의 반응물 및 상기와 동일 한 "THF"와 무수초산 혼합물을 10:1의 비율로 투입하여 46.5℃에서 평균반응시간 1시간 연속 반응시킨 후의 조성은 "PTMEG-디아세테이트" 54.6%, 미반응 "THF" 45.24%, 미반응 무수초산 0.16%, "PTMEG-디아세테이트" 수평균분자량은 1,698 g/g-mol, 40℃에서의 점도는 768 Cp(점도정수는 621.5)이었다. 이는 초기 반응물과 동일한 수평균분자량(1696)에서의 점도는 766Cp에 해당하며(식 Kμ = Mn/μ0.493에서 Kμ는 621.5, Mn은 1,696으로 하여 μ를 계산) 이는 점도가 줄어들었음은 물론 분자량분포 역시 개선되었음을 의미한다.After the acid treatment according to Korean Patent No. 0219792, ammonium chloride treatment was used, and the catalyst was calcined at 650 ° C for 10 hours to prepare 96.49% "THF" of 99.8% purity and 3.51% acetic anhydride, and averaged at a reaction temperature of 46.5 ° C. After 16 hours of continuous polymerization, unreacted "THF" was analyzed by distillation at 180 ° C and 5 mbar Abs. The composition of the reactants was "PTMEG-Diacetate" 53% and unreacted "THF" 46.79%. The acetic anhydride was 0.21%, the number average molecular weight of "PTMEG- diacetate" was 1,696 g / g-mol, and the viscosity in 40 degreeC was 795 Cp (viscosity constant 610.3 by the formula K (micro) = Mn / (micro) 0.493 ). The reactant and the same "THF" and acetic anhydride mixture were added to the small subreactor at a ratio of 10: 1, and the composition was continuously reacted at 46.5 ° C for 1 hour, and the composition was "PTMEG-Diacetate" 54.6 %, Unreacted "THF" 45.24%, unreacted acetic anhydride 0.16%, "PTMEG- diacetate" number average molecular weight was 1,698 g / g-mol, viscosity at 40 ℃ was 768 Cp (viscosity constant 621.5). This means that the viscosity at the same number-average molecular weight (1696) as the initial reactant is equivalent to 766 Cp (Kμ = 621.5 and Mn = 1696 calculated at the equation Kμ = Mn / μ 0.493 ). It also means improvements.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

(실시 예 2)(Example 2)

상기의 ‘실시 예 1’와 같은 방법으로 "PTMEG-디아세테이트", "THF" 및 무수초산 혼합물의 비율, 반응시간 및 반응온도를 달리하여 시험한 결과는 다음과 같다.In the same manner as in Example 1, "PTMEG- Diacetate", "THF" and the ratio of the acetic anhydride mixture, the reaction time and the reaction temperature were tested as follows.

구분division 혼합비율Mixing ratio 반응시간Reaction time 반응온도 (℃)Reaction temperature (℃) 수평균 분자량변화Number average molecular weight change 점도변화Viscosity change 점도정수 변화Viscosity constant change 무수초산 농도(%)Acetic anhydride concentration (%) 1One 20:120: 1 1One 4444 +2+2 -14-14 5.45.4 3.563.56 22 10:1.510: 1.5 1One 47.547.5 +5+5 -57-57 25.325.3 3.453.45 33 10:110: 1 33 47.547.5 00 -42-42 17.417.4 3.453.45 44 4:14: 1 55 47.547.5 +2+2 -59-59 24.224.2 3.453.45

본 발명은 무수카르복시산 존재 하에 촉매를 사용하여 테트라하이드로푸란 을 연속 중합하여 폴리테트라메틸렌에테르글리콜 디에스테르를 제조함에 있어서, 주반응기에 소형의 부반응기를 접합하여 촉매층의 부위별로 테트라하이드로푸란을 투입하거나, 또는 주 및 부반응기를 병렬 또는 필요에 따라서는 직렬로 운전하여 매우 균일한 물성의 폴리테트라메틸렌에테르글리콜 디에스테르를 제조할 수 있게 하는 효과가 있다. In the present invention, in the production of polytetramethylene ether glycol diester by continuously polymerizing tetrahydrofuran using a catalyst in the presence of anhydrous carboxylic acid, tetrahydrofuran is added to each part of the catalyst layer by joining a small side reactor to the main reactor. It is effective to make polytetramethylene ether glycol diesters of very uniform physical properties by operating main and secondary reactors in parallel or as necessary in series.

Claims (5)

삭제delete 삭제delete 표백토계 및 무정형 알루미늄실리케이트, 마그네시움아루미늄하이드로실리케이트, 카오린, 할로이싸이트와 같은 알루미늄실리케이트계의 물질을 이용한 촉매 중에서 선택된 촉매를 이용하여 무수카르복시산 존재 하에 테트라하이드로푸란을 중합 하여 폴리테트라메틸렌에테르글리콜 디에스테르를 제조함에 있어서, 중합반응기를 주반응기 및 부반응기로 나누어 설치하되 이를 병렬 또는 직렬로 이용하여 폴리테트라메틸렌에테르글리콜 디에스테르를 제조하는 방법. Polymerization of tetrahydrofuran in the presence of anhydrous carboxylic acid using a catalyst selected from a catalyst using aluminum silicate-based materials such as bleached earth and amorphous aluminum silicate, magnesium aluminium hydrosilicate, kaolin, and halosites In preparing the ester, a polymerization reactor is divided into a main reactor and a secondary reactor, and a polytetramethylene ether glycol diester is prepared by using the same in parallel or in series. 제3항에 있어서, 주반응기는 촉매층을 2개 내지는 4 개 부위로 분할하고 각 부위별로 테트라하이드로푸란과 무수카르복시산의 혼합물을 투입하여 폴리테트라메틸렌에테르글리콜 디에스테르를 제조하는 방법.The method of claim 3, wherein the main reactor divides the catalyst layer into two or four sites, and injects a mixture of tetrahydrofuran and carboxylic anhydride to each site to prepare polytetramethylene ether glycol diester. 제3항에 있어서, 부반응기는 촉매층을 2개 내지는 4 개 부위로 분할하고 각 부위별로 테트라하이드로푸란과 무수카르복시산의 혼합물을 투입하여 폴리테트라메틸렌에테르글리콜 디에스테르를제조하는 방법.The method of claim 3, wherein the sub-reactor divides the catalyst layer into two or four sites and adds a mixture of tetrahydrofuran and carboxylic anhydride to each site to prepare polytetramethylene ether glycol diester.
KR1020060083451A 2006-08-31 2006-08-31 Method for manufacturing polytetramethyleneetherglycol diester KR100757007B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060083451A KR100757007B1 (en) 2006-08-31 2006-08-31 Method for manufacturing polytetramethyleneetherglycol diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060083451A KR100757007B1 (en) 2006-08-31 2006-08-31 Method for manufacturing polytetramethyleneetherglycol diester

Publications (1)

Publication Number Publication Date
KR100757007B1 true KR100757007B1 (en) 2007-09-07

Family

ID=38737108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060083451A KR100757007B1 (en) 2006-08-31 2006-08-31 Method for manufacturing polytetramethyleneetherglycol diester

Country Status (1)

Country Link
KR (1) KR100757007B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0158706B1 (en) * 1990-04-02 1998-12-01 알. 더블유. 보우르니, 쥬니어. Process for the preparation of high purity tetrahydrofuran
KR100270423B1 (en) 1992-09-04 2000-11-01 스타르크, 카르크 Process for the preparation of polytetramethylene ether glycol diester using an aluminosilicate type catalyst
KR20010046899A (en) * 1999-11-16 2001-06-15 조정래 Preparation Method of Polytetramethylene Ether Glycol Diester
US6979752B1 (en) 1999-10-27 2005-12-27 Basf Aktiengesellschaft Continuous process for converting polytetramethylene ether diester to polytetramethylene ether glycol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0158706B1 (en) * 1990-04-02 1998-12-01 알. 더블유. 보우르니, 쥬니어. Process for the preparation of high purity tetrahydrofuran
KR100270423B1 (en) 1992-09-04 2000-11-01 스타르크, 카르크 Process for the preparation of polytetramethylene ether glycol diester using an aluminosilicate type catalyst
US6979752B1 (en) 1999-10-27 2005-12-27 Basf Aktiengesellschaft Continuous process for converting polytetramethylene ether diester to polytetramethylene ether glycol
KR20010046899A (en) * 1999-11-16 2001-06-15 조정래 Preparation Method of Polytetramethylene Ether Glycol Diester

Similar Documents

Publication Publication Date Title
KR101179285B1 (en) Method for producing polyether alcohols
CN104769008B (en) The method for preparing polyether carbonate polyol
KR940010013B1 (en) Methylene-crosslinked polyarylamine and process for preparing same
CN1678650A (en) Isocyanate compounds containing uretdione groups
CA1112659A (en) Partially carbodiimidized methylenebis (phenyl isocyanate) and preparation thereof
KR20010040725A (en) Method for the production of methylenedi(phenylamine) and methylenedi(phenyl isocyanate)
JPS6351171B2 (en)
CN101857721A (en) Cold-resistant, solvent-resistant and yellowing-resistant polyurethane resin and preparation method thereof
KR100630887B1 (en) A method of ethylene polymerization for producing products having various properties with high productivity and a tubular reactor for the same
CN112955425B (en) Preparation method and preparation system of ester composition
CN112110954A (en) Method for synthesizing 3- (butoxymethylphosphoryl) -1-cyanopropyl acetate based on microchannel reactor
KR100757007B1 (en) Method for manufacturing polytetramethyleneetherglycol diester
JP2002069166A (en) Polycarbonate diol coplymer and its production method
CN101817739A (en) Synthesis method of alpha-methacryloylchloride
CN116355193B (en) Preparation method of polycarbonate polyol
CN107250190A (en) The method for preparing the composition comprising poly- carbodiimide with improved storage stability
KR20090129971A (en) An apparatus for preparation of polytetramethylene ether glycol-diester and a preparation method of polytetramethylene ether glycol-diester
CN109957101B (en) Polycarbonate polyol and synthesis method and application thereof
KR20080094357A (en) Method for adjusting molecular weight distribution of the polytetramethylene ether glycol
US6156930A (en) Method for producing trifluoromethanesulfonyl chloride
CN113956287B (en) Preparation method of phosphoric acid n-ester
JP2020172565A (en) Polyetherpolycarbonatediol composition and method for producing the same
EP4282852A1 (en) Method for chlorinating aromatic compound
CN113968880B (en) Preparation method of tris- (2-chloroethyl) phosphite ester
KR100888733B1 (en) Manufacturing method of polymethylene polyphenyl polyamine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
A110 Patent application of lawful right holder
FPAY Annual fee payment

Payment date: 20130801

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160809

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190718

Year of fee payment: 13