KR100754851B1 - Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method - Google Patents

Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method Download PDF

Info

Publication number
KR100754851B1
KR100754851B1 KR1020060050633A KR20060050633A KR100754851B1 KR 100754851 B1 KR100754851 B1 KR 100754851B1 KR 1020060050633 A KR1020060050633 A KR 1020060050633A KR 20060050633 A KR20060050633 A KR 20060050633A KR 100754851 B1 KR100754851 B1 KR 100754851B1
Authority
KR
South Korea
Prior art keywords
air electrode
cathode
hours
metal oxide
powder
Prior art date
Application number
KR1020060050633A
Other languages
Korean (ko)
Inventor
유광수
최정운
Original Assignee
유광수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유광수 filed Critical 유광수
Priority to KR1020060050633A priority Critical patent/KR100754851B1/en
Application granted granted Critical
Publication of KR100754851B1 publication Critical patent/KR100754851B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A method for preparing an air electrode material, and the air electrode material prepared by the method are provided to lower polarization resistance and to increase electrical conductivity. A method comprises the steps of mixing Nd2O3, SrCO3 and Co2O3 or Sm2O3, SrCO3 and Co2O3 in a ratio of 9:1:10 to 7:3:10 by mol with an alumina ball for 48 hours, calcining the mixture at 1,000 deg.C for 4 hours, and pulverizing it to prepare a metal oxide air electrode powder; making a pellet by using 8 mol% Y2O3-stabilized ZrO2 (YSZ) powder, cold isostatic pressing it with 29,9000 psi, and sintering it with a temperature increasing velocity of 5 deg.C/min at 1,600 deg.C for 4 hours to prepare a metal oxide electrolyte vehicle; mixing the air electrode powder and the vehicle in a ratio of 74:26 by weight to prepare a metal oxide air electrode paste; screening printing the paste on a YSZ electrolyte, drying it, and depositing a platinum aqueous solution on the formed air electrode thick film; and evaporating an organic compound and a binder from the air electrode at 1,200 deg.C and sintering it at 1,200 deg.C for 3 hours.

Description

저온형 고체산화물 연료전지용 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물 공기극 소재 및 그 제조방법 {Air Electrode Materials of Pt fine particle-dispersed Perovskite Metal Oxides for Solid Oxide Fuel Cells Operating at Low Temperatures and Their Fabrication Method}Peroxide-structured metal oxide cathode material containing platinum microparticles for low temperature solid oxide fuel cell and method for manufacturing the same Fabrication Method}

도 1은 본 발명의 실시예에 따라 저온형 고체산화물 연료전지용 백금미세입자가첨가된 Ln0 .8Sr0 .2CoO3(Ln=Nd 또는 Sm) 공기극 소재의 제조공정도이다.1 is a manufacturing process chart of the air electrode material with a low-temperature solid oxide fuel cell, platinum fine particles are added Ln 0 .8 Sr 0 .2 CoO 3 (Ln = Nd or Sm) in accordance with an embodiment of the invention.

도 2는 본 발명의 실시예에 따라 제조한 고체산화물 연료전지용 Nd0 .8Sr0 .2CoO3 (NSC) 공기극 소재의 작동온도 변화에 따른 분극저항이다.Figure 2 is a polarization resistance according to the solid oxide fuel cell Nd 0 .8 Sr 0 .2 CoO 3 (NSC) operating temperature of the cathode material prepared according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따라 제조한 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 Nd0 .8Sr0 .2CoO3(Pt+NSC) 공기극 소재의 작동온도 변화에 따른 분극저항이다.3 is a polarization resistance corresponding to the Nd 0 .8 Sr 0 .2 CoO 3 (Pt + NSC) operating temperature change of the air electrode material is a low-temperature solid oxide fuel cell, platinum fine particles produced was added, according to an embodiment of the invention .

도 4는 본 발명의 실시예에 따라 제조한 고체산화물 연료전지용 Nd0 .8Sr0 .2CoO3 (NSC) 공기극 소재의 작동온도 변화에 따른 전기전도도이다.Figure 4 is the electrical conductivity of the solid oxide fuel cell Nd 0 .8 Sr 0 .2 CoO 3 (NSC) operating temperature of the cathode material prepared according to an embodiment of the present invention.

도 5는 본 발명의 실시예에 따라 제조한 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 Nd0 .8Sr0 .2CoO3(Pt+NSC) 공기극 소재의 작동온도 변화에 따른 전기 전도도이다.5 is an electrical conductivity corresponding to the Nd 0 .8 Sr 0 .2 operating temperature change of the air electrode material CoO 3 (Pt + NSC) is a low-temperature solid oxide fuel cell, platinum fine particles produced was added, according to an embodiment of the invention .

본 발명은 저온형 고체산화물 연료전지(Solid Oxide Fuel Cell)의 공기극(Air Electrode 또는 Cathode) 소재와 그 제조방법에 관한 것이다. 더욱 상세하게는 900℃~1000℃에서 작동되는 고체산화물 연료전지가 700℃이하의 저온에서도 작동이 가능한 낮은 분극저항과 높은 전기전도도를 갖는 공기극 소재로서 백금미세입자가 첨가된 Ln0 .8Sr0 .2CoO3(Ln=Nd 또는 Sm) 물질과 백금미세입자를 균일하게 분산시켜 첨가하는 공정을 포함하여 제조하는 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1 -xSrxCoO3(Ln=Nd 또는 Sm)] 공기극 소재 및 그 제조방법[Air Electrode Materials of Pt fine particle- dispersed Ln1- xSrxCoO3(Ln=Nd or Sm) for Solid Oxide Fuel Cells Operating at Low Temperatures and Their Fabrication Method]에 관한 것이다. The present invention relates to a cathode (Air Electrode or Cathode) material of a low temperature solid oxide fuel cell (Solid Oxide Fuel Cell) and a method of manufacturing the same. The more particularly to the platinum fine particles added as an air electrode material with a lower polarization resistance and high electrical conductivity are possible solid oxide fuel cell is operated at a low temperature of less than 700 ℃ operating at 900 ℃ ~ 1000 ℃ Ln 0 .8 Sr 0 .2 metal oxides having a perovskite structure added with platinum microparticles for low-temperature solid oxide fuel cells, comprising the step of uniformly dispersing CoO 3 (Ln = Nd or Sm) material and platinum microparticles [ Ln 1 -x Sr x CoO 3 (Ln = Nd or Sm)] Air Electrode Materials of Pt fine particle- dispersed Ln 1- x Sr x CoO 3 (Ln = Nd or Sm) for Solid Oxide Fuel Cells Operating at Low Temperatures and Their Fabrication Method.

환경 친화적이고 고 효율성을 갖는 새로운 대체에너지로 고체산화물 연료전지는 공기극, 전해질, 연료극으로 이루어졌으며, 소형발전에서 대형발전 장치까지 다양한 용량으로 제작이 가능하다는 장점이 있다. 초창기 전해질 지지형 고체산화물 연료전지에서의 최대 성능손실 요인은 전지성분 중 가장 큰 비저항을 가지는 전해질에서의 저항손실이었다. 이로 인해 전해질 지지형 단전지는 전해질에서의 저항 손실을 최소화하기 위해 900℃~1000℃ 정도의 고온에서 사용하였다. 그러나, 이러한 고온작동 조건은 전지 구성 성분간의 화학적 반응은 물론 열팽창계수의 차이로 인해 오는 신뢰성 및 성능 저하 등의 문제를 일으킨다. As a new alternative energy with environmentally friendly and high efficiency, solid oxide fuel cell is composed of cathode, electrolyte and anode, and can be manufactured in various capacities from small power generation to large power generation equipment. In the early electrolyte-supported solid oxide fuel cell, the maximum performance loss factor was resistance loss in the electrolyte having the largest specific resistance among the battery components. For this reason, the electrolyte-supported unit cell was used at a high temperature of about 900 ° C to 1000 ° C in order to minimize the resistance loss in the electrolyte. However, such high temperature operating conditions cause problems such as chemical reactions between battery components as well as reliability and performance deterioration due to differences in coefficients of thermal expansion.

한편, 전해질 두께가 수백 ㎛인 전해질 지지형에 비해 음극 지지형 연료전지는 전해질 두께를 10 ㎛ 이내로 줄임으로써 전해질에서의 성능손실을 크게 줄일 수 있다. 이로 인해 음극 지지형 연료전지는 800℃ 정도의 중온영역에서도 작동이 가능하였으며 700℃ 이하로까지 작동온도를 저온영역으로 넓혀가고 있다. 종래의 La1 -xSrxMnO3계 공기극 소재를 사용할 경우에, 음극 지지형 연료전지의 최대손실 요인은 공기극에서의 분극 손실로 알려져 있다. On the other hand, compared with an electrolyte supporting type having a thickness of several hundred μm, a negative electrode supporting fuel cell can significantly reduce performance loss in an electrolyte by reducing the electrolyte thickness to within 10 μm. As a result, the anode-supported fuel cell was able to operate in the mid-temperature region of about 800 ° C, and the operating temperature was extended to the low-temperature region up to 700 ° C or lower. In the case of using a conventional La 1- x Sr x MnO 3 -based cathode material, the maximum loss factor of the cathode-supported fuel cell is known as polarization loss at the cathode.

따라서, 저온 작동용 음극 지지형 연료전지의 성능향상을 위해서는 공기극 특성의 최적화가 이루어져야 한다. 즉, 700℃ 이하의 작동온도에서 분극 손실을 최소화하고 충분히 높은 전기전도도를 갖는 새로운 공기극 소재의 개발과 제조공정 기술이 필요하다. Therefore, in order to improve the performance of the cathode-supported fuel cell for low temperature operation, the cathode characteristics should be optimized. That is, there is a need for the development and manufacturing process technology of a new cathode material that minimizes polarization loss and has a sufficiently high electrical conductivity at an operating temperature of 700 ° C. or lower.

본 발명은 저온 작동용 고체산화물 연료전지에 적합한 공기극 소재로서 종래의 La1 - xSrxMnO3계보다 전기적 특성이 우수한 Ln1 - xSrxCoO3(Ln=Nd 또는 Sm) 물질에 백금미세입자를 균일하게 분산시켜 첨가함으로써 충분히 높은 전기전도도를 얻어 상기에서 언급된 문제점을 해결하고자 하였으며, 새로운 물질의 선정과 그 제조방법을 제공하는데 본 발명의 목적이 있다.The present invention is a cathode material suitable for a solid oxide fuel cell for low temperature operation, the platinum fine to the Ln 1 - x Sr x CoO 3 (Ln = Nd or Sm) material excellent electrical properties than the conventional La 1 - x Sr x MnO 3 system The purpose of the present invention is to solve the above-mentioned problems by obtaining sufficiently high electrical conductivity by uniformly dispersing and adding particles, and to select a new material and provide a method of manufacturing the same.

본 발명은 Nd2O3 : SrCO3 : Co2O3 또는 Sm2O3 : SrCO3 : Co2O3를 9:1:10∼7:3:10(몰%) 비율로 알루미나 볼과 함께 48시간 동안 혼합한 후 혼합한 분말을 1000℃에서 4시간 동안 하소한 다음 하소된 재료를 유발로 분쇄하여 연료전지용 금속산화물 공기극 분말을 제조하는 공정; 8 몰% YSZ(Y2O3-stabilized ZrO2) 분말 이용하여 일축가압성형을 통해 펠렛 모양의 성형체를 제조한 후 29000 psi로 냉간등압성형(Cold Isostatic Pressing)을 한 다음 고온전기로를 사용하여 5℃/min의 승온속도로 1600℃에서 4시간 동안 유지하여 소결하여 연료전지용 금속산화물 전해질 비클 (vehicle)을 제조하는 공정: 상기 공기극 분말과 비클(vehicle)을 공기극 분말 : 비클 = 74 : 26(중량%)의 비율로 혼합하여 연료전지용 금속산화물 공기극 페이스트를 제조하는 공정; 상기에서 제조한 공기극 페이스트를 YSZ 전해질 위에 스크린 프린팅법을 이용하여 후막으로 입힌 다음 건조시킨 후 공기극 후막 위에 백금수용액을 침적시키는 방법으로 첨가하는 공정: 백금미세입자가 첨가된 공기극을 5℃/min의 승온속도로 350℃에서 1시간 동안 유지하면서 유기물과 바인더를 휘발시킨 후 다시 7℃/min 승온속도로 1200℃에서 3시간 동안 유지하면서 소결하여 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1 - xSrxCoO3(Ln=Nd 또는 Sm, x=0.1∼0.3)] 조성의 공기극 소재를 제조하는 공정으로 이루어진 것을 특징으로 하는 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1-xSrxCoO3(Ln=Nd 또는 Sm)] 공기극 소재의 제조방법 및 상기 제조방법에 의 하여 제조된 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1 - xSrxCoO3(Ln=Nd 또는 Sm)] 공기극 소재에 관한 것이다.The present invention is Nd 2 O 3 : SrCO 3 : Co 2 O 3 or Sm 2 O 3 : SrCO 3 : Co 2 O 3 is mixed with alumina balls in a ratio of 9: 1: 10 to 7: 3: 10 (mol%) for 48 hours, and then the mixed powder is calcined at 1000 ° C. for 4 hours, and then the calcined material is Pulverizing by induction to produce a metal oxide cathode powder for fuel cells; Pellet-shaped molded body was produced by uniaxial press molding using 8 mol% YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder, and then cold isostatic pressed to 29000 psi, followed by high temperature electric furnace. Sintering by sintering at 1600 ℃ for 4 hours at a temperature rising rate of 5 ℃ / min to prepare a metal oxide electrolyte vehicle (vehicle) for the fuel cell: the cathode powder and vehicle (vehicle) cathode powder: vehicle = 74: 26 ( Preparing a metal oxide cathode paste for fuel cells by mixing at a weight percent); The cathode paste prepared above was coated on a YSZ electrolyte with a thick film using a screen printing method, followed by drying, followed by drying by depositing a platinum aqueous solution on the cathode thick film. The cathode with platinum fine particles was added at a temperature of 5 ° C./min. Metal oxide of perovskite structure to which platinum fine particles were added by volatilizing the organic material and binder while maintaining the temperature and the temperature at 350 ° C. for 1 hour and then sintering at 1200 ° C. for 3 hours at 7 ° C./min. Pn added platinum microparticles for low temperature solid oxide fuel cell, characterized in that it comprises a process for producing a cathode material of the composition [Ln 1 - x Sr x CoO 3 (Ln = Nd or Sm, x = 0.1 to 0.3)] Grove Sky metal oxide in the tree structure [Ln 1-x Sr x CoO 3 (Ln = Nd or Sm)] method, and before the low-temperature solid oxide fuel produced in the above production process of the air electrode material Platinum fine particles are metal oxide of the perovskite structure is added for [Ln 1 - x Sr x CoO 3 (Ln = Nd or Sm)] relates to the air electrode material.

본 발명의 특징은 공기극으로 낮은 분극저항과 높은 전기전도도를 갖는 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1 - xSrxCoO3(Ln=Nd 또는 Sm)] 소재를 사용함으로써, 700℃이하의 저온 영역에서도 작동되는 고체산화물 연료전지를 제공하는데 있다. 이하 다음과 같이 본 발명의 실시예에서 첨부된 도면과 함께 상세히 설명한다. A feature of the present invention is to use a metal oxide [Ln 1 - x Sr x CoO 3 (Ln = Nd or Sm)] material of perovskite structure to which platinum fine particles having low polarization resistance and high electrical conductivity are added as air electrodes. Accordingly, the present invention provides a solid oxide fuel cell that operates in a low temperature region of 700 ° C or lower. Hereinafter, with reference to the accompanying drawings in the embodiment of the present invention will be described in detail.

실시예 1: 공기극 소재의 제조Example 1 Preparation of Air cathode material

도 1은 Nd2O3, SrCO3, Co2O3를 출발원료로 사용하여 Nd0 .8Sr0 .2CoO3(NSC)의 공기극 재료를 합성한다. 합성방법은 전형적인 세라믹 고상반응법으로 제조한다. 도 1과 같이 조성에 따라 칭량한 후 알루미나 볼과 함께 48시간 동안 혼합한다. 혼합한 분말은 1000℃에서 4시간 동안 하소한 다음, 하소된 재료를 유발로 분쇄한 후 소정의 조성을 가지는 비클(vehicle)과 함께 질량비로 공기극 분말 : 비클 = 74 : 26의 무게비율로 혼합하여 페이스트로 제조하였다.1 is using a Nd 2 O 3, SrCO 3, Co 2 O 3 as starting materials to synthesize the air electrode material of Nd 0 .8 Sr 0 .2 CoO 3 (NSC). The synthesis method is prepared by the typical ceramic solid phase reaction method. After weighing according to the composition as shown in Figure 1 and mixed with alumina balls for 48 hours. The mixed powder was calcined at 1000 ° C. for 4 hours, and then pulverized the calcined material, followed by mixing in a weight ratio of cathode powder: vehicle = 74: 26 with a vehicle having a predetermined composition and paste. Was prepared.

실시예 2: 시험셀 제작Example 2: Test Cell Fabrication

전해질은 8 몰% YSZ(Y2O3-stabilized ZrO2) 분말 이용하여 일축가압성형을 통해 펠렛 모양의 성형체를 제조한 후, 29000 psi로 냉간등압성형(Cold Isostatic Pressing)을 한다. 이렇게 얻은 성형체는 고온전기로를 사용하여 5℃/min의 승온속도로 1600℃에서 4시간 동안 유지하여 소결한다. 상기에서 제조한 공기극 페이스트를 YSZ 전해질 위에 스크린 프린팅법을 이용하여 후막으로 입힌 다음 건조시킨 후, 공기극 후막 위에 백금수용액을 침적시키는 방법으로 첨가한다. 이와 같이 준비한 공기극(Pt+NSC)은 5℃/min의 승온속도로 350℃에서 1시간 동안 유지하면서 유기물과 바인더를 휘발시킨 후, 다시 7℃/min 승온속도로 1200℃에서 3시간 동안 유지하여 소결하였다. 공기극이 형성된 YSZ 뒷면에 스크린 프린팅법을 이용하여 일정한 패턴의 백금 전극을 부착하고, 공기극 위에는 전류 집전체로 백금 메쉬를 사용하여 붙인다. 이를 다시 7℃/min의 승온속도로 1000℃에서 3시간 동안 열처리하여 연료전지 시험셀을 완성한다.The electrolyte is a pellet-shaped molded body through uniaxial pressurization using 8 mol% YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder, and then cold isostatic pressed at 29000 psi. The molded product thus obtained is sintered by using a high temperature electric furnace for 4 hours at 1600 ° C at a temperature increase rate of 5 ° C / min. The cathode paste prepared above is coated with a thick film on the YSZ electrolyte using a screen printing method and then dried, and then the platinum aqueous solution is added to the cathode thick film. The cathode (Pt + NSC) thus prepared was volatilized with an organic material and a binder while being maintained at 350 ° C. for 1 hour at a temperature rising rate of 5 ° C./min. Sintered. A platinum electrode of a certain pattern is attached to the back of the YSZ on which the cathode is formed by using screen printing, and a platinum mesh is attached on the cathode to the current collector. This was again heat treated at 1000 ° C. for 3 hours at a temperature increase rate of 7 ° C./min to complete the fuel cell test cell.

실시예 3: 전기적 특성 Example 3: Electrical Characteristics

시험셀의 전기적 특성은 임피던스분석기를 사용하여 0.01 Hz에서 10 MHz의 주파수 범위에서 600℃~800℃의 온도범위에서 100℃ 간격으로 승온시키면서 교류 임피던스를 측정하여 분석한다. 도 2~5에서 볼 수 있듯이, 작동온도가 증가함에 따라 공기극의 분극저항은 감소하며 전기전도도는 증가하는 것을 알 수 있다. 이는 열적활성화 반응기구를 따름을 알 수 있다. 도 2와 도 3에서는 각각 Nd0 .8Sr0 .2CoO3 공기극(NSC)과 백금미세입자가 첨가된 공기극(Pt+NSC)의 작동온도 변화에 따른 분극저항 특성을 보여준다. 예를 들면, 700℃에서 NSC의 분극저항은 0.40 Ωcm2이며 Pt+NSC의 분극저항은 0.011 Ωcm2으로 백금 첨가시 분극저항이 현저히 감소함을 알 수 있다. 도 4와 도 5에서는 각각 Nd0 .8Sr0 .2CoO3 공기극(NSC)과 백금미세입자가 첨가된 공기극(Pt+NSC)의 작동온도 변화에 따른 전기전도 특성을 보여준다. 예를 들면, 700℃에서 NSC의 전기전도도는 0.0049 Scm-1이며 Pt+NSC의 전기전도도는 0.173 Scm-1으로 백금 첨가시 전기전도도가 현저히 증가함을 알 수 있다.The electrical characteristics of the test cell are analyzed by measuring the impedance of the AC while raising the temperature at intervals of 100 ° C from 600 ° C to 800 ° C in the frequency range of 0.01 Hz to 10 MHz using an impedance analyzer. 2 to 5, it can be seen that as the operating temperature increases, the polarization resistance of the cathode decreases and the electrical conductivity increases. It can be seen that it follows the thermal activation reactor. Respectively Nd 0 .8 in. 2 and 3 Sr 0 .2 shows the polarization resistance characteristics according to the operating temperature of the air electrode CoO 3 (NSC) with fine platinum particles are added air electrode (Pt + NSC). For example, at 700 ° C., the polarization resistance of NSC is 0.40 Ωcm 2 and the polarization resistance of Pt + NSC is 0.011 Ωcm 2, indicating that the polarization resistance is significantly reduced when platinum is added. In Figure 4 and 5 shows the Nd 0 .8 Sr 0 .2 CoO 3 air electrode (NSC) and a platinum electrically conductive characteristics depending on the operating temperature of the fine particles are added to the air electrode (Pt + NSC), respectively. For example, at 700 ° C., the electrical conductivity of NSC is 0.0049 Scm-1 and the electrical conductivity of Pt + NSC is 0.173 Scm-1, which shows that the electrical conductivity is significantly increased when platinum is added.

실시예 4: 공기극 소재의 제조Example 4 Preparation of Air cathode Material

실시예 1에서 Nd2O3를 사용하는 것 대신에 Sm2O3를 사용하고 실시예 1과 동일한 방법에 의하여 공기극 소재를 제조하였다. 실시예 2와 같이 시험셀을 제작하고 실시예 3과 같이 전기적 특성을 측정한 결과 동일한 결과를 얻었다. In Example 1, instead of using Nd 2 O 3 , Sm 2 O 3 was used, and a cathode material was prepared in the same manner as in Example 1. The test cell was prepared as in Example 2, and the electrical properties were measured as in Example 3, and the same result was obtained.

본 발명의 실시예에서와 같이 제조한 백금미세입자가 첨가된 Ln1-xSrxCoO3(Ln=Nd 또는 Sm) 물질은 저온 작동용 고체산화물 연료전지의 공기극 소재로 매우 우수한 소재이다. Ln 1-x Sr x CoO 3 (Ln = Nd or Sm) material to which the platinum microparticles prepared as in the embodiment of the present invention is added is a very excellent material as a cathode material of a solid oxide fuel cell for low temperature operation.

백금미세입자가 첨가된 Ln1 - xSrxCoO3(Ln=Nd 또는 Sm) 공기극 소재는 다른 공기극 소재에 비하여 낮은 분극저항과 높은 전기전도 특성을 가져 저온형 고체산화물 연료전지 산업상 매우 유용한 것이다.Ln 1 - x Sr x CoO 3 (Ln = Nd or Sm) cathode material with platinum fine particles is very useful for low temperature solid oxide fuel cell industry because it has low polarization resistance and high electric conductivity compared to other cathode materials. .

Claims (2)

Nd2O3 : SrCO3 : Co2O3 또는 Sm2O3 : SrCO3 : Co2O3를 9:1:10∼7:3:10(몰%) 비율로 알루미나 볼과 함께 48시간 동안 혼합한 후 혼합한 분말을 1000℃에서 4시간 동안 하소한 다음 하소된 재료를 유발로 분쇄하여 연료전지용 금속산화물 공기극 분말을 제조하는 공정; 8 몰% YSZ(Y2O3-stabilized ZrO2) 분말 이용하여 일축가압성형을 통해 펠렛 모양의 성형체를 제조한 후 29000 psi로 냉간등압성형(Cold Isostatic Pressing)을 한 다음 고온전기로를 사용하여 5℃/min의 승온속도로 1600℃에서 4시간 동안 유지하여 소결하여 연료전지용 금속산화물 전해질 비클(vehicle)을 제조하는 공정: 상기 공기극 분말과 비클(vehicle)을 공기극 분말 : 비클 = 74 : 26(중량%)의 비율로 혼합하여 연료전지용 금속산화물 공기극 페이스트를 제조하는 공정; 상기에서 제조한 공기극 페이스트를 YSZ 전해질 위에 스크린 프린팅법을 이용하여 후막으로 입힌 다음 건조시킨 후 공기극 후막 위에 백금수용액을 침적시키는 방법으로 첨가하는 공정: 백금미세입자가 첨가된 공기극을 5℃/min의 승온속도로 350℃에서 1시간 동안 유지하면서 유기물과 바인더를 휘발시킨 후 다시 7℃/min 승온속도로 1200℃에서 3시간 동안 유지하면서 소결하여 백금미세입자가 첨가된 Ln1-xSrxCoO3(Ln=Nd 또는 Sm, x=0.1∼0.3) 조성의 공기극 소재를 제조하는 공정으로 이루어진 것을 특징으로 하는 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1 - xSrxCoO3(Ln=Nd 또는 Sm)] 공기극 소재의 제조방법.Nd 2 O 3 : SrCO 3 : Co 2 O 3 or Sm 2 O 3 : SrCO 3 : Co 2 O 3 is mixed with alumina balls in a ratio of 9: 1: 10 to 7: 3: 10 (mol%) for 48 hours, and then the mixed powder is calcined at 1000 ° C. for 4 hours, and then the calcined material is Pulverizing by induction to produce a metal oxide cathode powder for fuel cells; Pellet-shaped molded body was produced by uniaxial press molding using 8 mol% YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder, and then cold isostatic pressed to 29000 psi, followed by high temperature electric furnace. Sintering by sintering at 1600 ℃ for 4 hours at a temperature rising rate of 5 ℃ / min to produce a metal oxide electrolyte vehicle (vehicle) for fuel cells: the cathode powder and the vehicle (vehicle) cathode powder: vehicle = 74: 26 ( Preparing a metal oxide cathode paste for fuel cells by mixing at a weight percent); The cathode paste prepared above was coated on a YSZ electrolyte with a thick film using a screen printing method, followed by drying, followed by drying by depositing a platinum aqueous solution on the cathode thick film. The cathode with platinum fine particles was added at a temperature of 5 ° C./min. the by then maintained for one hour at 350 ℃ volatilize the organic substance and the binder at a heating rate again 7 ℃ / min temperature increase rate to the sintering while maintaining at 1200 ℃ for 3 hours, the platinum fine particles are added to Ln 1-x Sr x CoO 3 A metal oxide having a perovskite structure to which platinum microparticles for low-temperature solid oxide fuel cells are added, comprising the step of manufacturing a cathode material having a composition of (Ln = Nd or Sm, x = 0.1 to 0.3) [Ln 1 - x Sr x CoO 3 (Ln = Nd or Sm)] the method of the air electrode material. 제 1 항에 의하여 제조된 저온형 고체산화물 연료전지용 백금미세입자가 첨가된 페로브스카이트 구조의 금속산화물[Ln1 -xSrxCoO3(Ln=Nd 또는 Sm)] 공기극 소재.A metal oxide having a perovskite structure to which platinum fine particles for a low-temperature solid oxide fuel cell prepared according to claim 1 is added [Ln 1- x Sr x CoO 3 (Ln = Nd or Sm)].
KR1020060050633A 2006-06-07 2006-06-07 Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method KR100754851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060050633A KR100754851B1 (en) 2006-06-07 2006-06-07 Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060050633A KR100754851B1 (en) 2006-06-07 2006-06-07 Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method

Publications (1)

Publication Number Publication Date
KR100754851B1 true KR100754851B1 (en) 2007-09-04

Family

ID=38736276

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060050633A KR100754851B1 (en) 2006-06-07 2006-06-07 Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method

Country Status (1)

Country Link
KR (1) KR100754851B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460988B1 (en) * 2013-05-22 2014-11-17 한국에너지기술연구원 Module for Ammonia Synthesis Using Gas Separation Membrane, Fabrication Method thereof and Ammonia Synthesis Method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543539A (en) 1994-02-17 1996-08-06 Shin-Etsu Chemical Co., Ltd. Silacyclohexane compound, a method of preparing it and a liquid crystal composition containing it
EP1521318A2 (en) 2003-10-03 2005-04-06 Nissan Motor Co., Ltd. Solid oxide fuel cell electrode and method of manufacturing the same
KR100634127B1 (en) 2004-11-01 2006-10-16 학교법인연세대학교 Micro-patterning method, micro-pattern substrate and single chamber solid oxide fuel cell fabricated through the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543539A (en) 1994-02-17 1996-08-06 Shin-Etsu Chemical Co., Ltd. Silacyclohexane compound, a method of preparing it and a liquid crystal composition containing it
EP1521318A2 (en) 2003-10-03 2005-04-06 Nissan Motor Co., Ltd. Solid oxide fuel cell electrode and method of manufacturing the same
KR100634127B1 (en) 2004-11-01 2006-10-16 학교법인연세대학교 Micro-patterning method, micro-pattern substrate and single chamber solid oxide fuel cell fabricated through the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460988B1 (en) * 2013-05-22 2014-11-17 한국에너지기술연구원 Module for Ammonia Synthesis Using Gas Separation Membrane, Fabrication Method thereof and Ammonia Synthesis Method using the same

Similar Documents

Publication Publication Date Title
Pang et al. Systematic evaluation of cobalt-free Ln0. 5Sr0· 5Fe0· 8Cu0· 2O3− δ (Ln= La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells
Ishihara et al. Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs
CN108448125B (en) Cathode material of proton conductor solid oxide fuel cell and preparation method thereof
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
CN103390739A (en) Solid oxide fuel cell cerium-oxide-based electrolyte barrier layer and preparation method thereof
CN104916850A (en) Solid oxide fuel cell cathode material and solid oxide fuel cell composite cathode material and preparation method thereof and cell composite cathode preparation method
CN103208634A (en) Composite cathode material for medium and low-temperature proton-conductive solid oxide fuel cells
CN104409742A (en) BaCoO3-delta base B-position Bi2O3-Nb2O5 co-doped cathode material of solid oxide fuel cell, preparation method and applications thereof
CN102208663A (en) Transition metal element B site-doped BaFeO3-delta-based ABO3 type perovskite fuel cell cathode material and application thereof
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
Kiratzis et al. Preparation and characterization of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes
CN108390087B (en) Composite solid electrolyte and preparation method thereof
CN101252190B (en) Mixing electric conduction type middle-low temperature fuel cell cathode material and preparing method thereof
KR20130075529A (en) Solid oxide electrode, solid oxide fuel cell containing solid oxide electrode, and preparation method thereof
Devi et al. Solid oxide fuel cell materials: a review
CN109687006B (en) Low-temperature solid oxide fuel cell based on cerium oxide/nickel oxide composite material
CN109904498B (en) Mineral material electrolyte for low-temperature solid oxide fuel cell
CN109818021B (en) Low-temperature solid oxide fuel cell based on cerium oxide/ferroferric oxide composite material
KR100754851B1 (en) Air electrode materials of pt fine particle-dispersed perovskite metal oxides for solid oxide fuel cells operating at low temperatures and their fabrication method
JP2003308846A (en) Perovskite oxide and air electrode for fuel cell
CN116639727A (en) Modified bismuth vanadate-based oxygen ion conductor material and preparation method thereof
CN113571750B (en) Wide bandgap semiconductor electrolyte and preparation method thereof, wide bandgap semiconductor electrolyte fuel cell and assembly method thereof
KR20100108955A (en) Cathode material for solid oxide fuel cell and manufacturing method of the same
CN101847726B (en) Composition and method for preparing cathode contact layer of solid oxide fuel battery
JP2018139182A (en) Solid electrolytic member, solid oxide type fuel cell, water electrolysis device, hydrogen pump and method for manufacturing solid electrolytic member

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120802

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130812

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee