KR100753207B1 - Structure of absorption tower for nitrogen generator - Google Patents

Structure of absorption tower for nitrogen generator Download PDF

Info

Publication number
KR100753207B1
KR100753207B1 KR1020060031025A KR20060031025A KR100753207B1 KR 100753207 B1 KR100753207 B1 KR 100753207B1 KR 1020060031025 A KR1020060031025 A KR 1020060031025A KR 20060031025 A KR20060031025 A KR 20060031025A KR 100753207 B1 KR100753207 B1 KR 100753207B1
Authority
KR
South Korea
Prior art keywords
adsorption
layer
nitrogen
adsorption layer
tower structure
Prior art date
Application number
KR1020060031025A
Other languages
Korean (ko)
Inventor
황철용
Original Assignee
(주)하나플랜트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)하나플랜트 filed Critical (주)하나플랜트
Priority to KR1020060031025A priority Critical patent/KR100753207B1/en
Application granted granted Critical
Publication of KR100753207B1 publication Critical patent/KR100753207B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

An adsorption tower structure for a nitrogen generating apparatus, which has a lower installation cost, can obtain nitrogen products with higher purity compared with the flow amount, and improves efficiency of the installation space as a whole, is provided. In an adsorption tower structure for a nitrogen generating apparatus separating nitrogen from supply air using the adsorbing-and-desorbing principle of a crystalline solid compound, the adsorption tower structure for the nitrogen generating apparatus comprises: a first adsorption layer(21) in which 10 to 50% of activated carbon having a micropore size of 2.8 to 3.1 Å is filled; a second adsorption layer(22) which is formed on an upper portion of the first adsorption layer, and in which 50 to 90% of activated carbon having a micropore size of 3.8 to 4.1 Å is filled; a separation mesh(23) interposed between the first and second adsorption layers. The adsorption tower structure further comprises: a silica gel layer(31) filled in a lower part of the first adsorption layer in the amount of 5 to 20% of the total of the first and second adsorption layers; and a separation mesh(32) interposed between the first adsorption layer and the silica gel layer.

Description

질소 발생장치의 흡착탑 구조{STRUCTURE OF ABSORPTION TOWER FOR NITROGEN GENERATOR}Adsorption tower structure of nitrogen generator {STRUCTURE OF ABSORPTION TOWER FOR NITROGEN GENERATOR}

도 1은 본 발명에 따른 질소 발생장치의 흡착탑 구조를 나타내는 단면도,1 is a cross-sectional view showing a structure of an adsorption tower of a nitrogen generator according to the present invention;

도 2는 흡착탑 구조가 적용된 질소 발생장치를 개략적으로 나타내는 구성도이다.2 is a configuration diagram schematically showing a nitrogen generator to which the adsorption tower structure is applied.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

1: 오일분리기 2,3: 흡착탑1: oil separator 2,3: adsorption tower

4: 저장탱크 20: 흡착층4: storage tank 20: adsorption layer

21: 제1 흡착층 22: 제2 흡착층21: first adsorption layer 22: second adsorption layer

23: 분리망 31: 실리카겔층23: separation network 31: silica gel layer

32: 분리망32: separation network

본 발명은 흡착탑 구조에 관한 것으로서, 더욱 상세하게는 제조비용이 저렴하고 유량에 비해 고순도의 질소제품(N2)을 얻을 수 있는 질소 발생장치의 흡착탑 구조에 관한 것이다.The present invention relates to an adsorption tower structure, and more particularly, to an adsorption tower structure of a nitrogen generating device capable of obtaining a low-purity nitrogen product (N 2 ) with high purity compared to a flow rate.

기체분리법으로는 주로 화학반응법, 전기분해법 및 물리적 분리법이 이용되고 있으며, 물리적 분리법에는 기체의 물질에 대한 극성의 차이와 기체분자 크기의 상이성을 이용하여 기체를 분리하는 막분리 방식과 결정성 고체 화합물의 흡탈착 원리를 이용하여 기체를 분리하는 압력진동흡착(PSA:Pressure Swing Absorption) 기술이 있다.Chemical separation, electrolysis, and physical separation are mainly used as gas separation methods, and the membrane separation method and crystallinity in which the gas is separated by using the difference in polarity and the gas molecule size of the gas are separated. There is a pressure swing adsorption (PSA) technique that separates gas using the adsorption and desorption principle of solid compounds.

일반적으로 고순도의 질소는 여러 화학공정과 제강, 제련 및 기타 산업용도로 사용되며, 공기를 분리하여 질소를 생산하는 방법에도 다양한 기술이 알려져 있으나, 비교적 적은 양의 질소를 생산하는 경우 저온 공기분리 플랜트 보다는 압력진동흡착(PSA) 방식을 이용하는 것이 경제성이 높다.Generally, high purity nitrogen is used in various chemical processes, steelmaking, smelting, and other industrial purposes, and various techniques are known for the separation of air to produce nitrogen, but when producing a relatively small amount of nitrogen, The use of pressure vibration adsorption (PSA) is highly economical.

기체분리를 위한 통상의 압력진동흡착(PSA) 공정에서는 공급공기를 용이하게 흡착할 수 있는 성분으로 이루어진 흡착베드를 높은 흡착압력으로 통과시켜 질소나 산소를 선택적으로 흡착하고, 그 후에 흡착베드를 낮은 탈착압력으로 감압하여 질소 또는 산소를 흡착베드로부터 탈착시켜 제거하고, 공기를 다시 공급하여 흡착베드 내에서 흡착 및 탈착과정이 반복적으로 이루어지도록 한다.In the conventional pressure vibration adsorption (PSA) process for gas separation, adsorption beds made of components that can easily adsorb supply air are passed through a high adsorption pressure to selectively adsorb nitrogen or oxygen, and then the adsorption beds are lowered. By depressurizing to a desorption pressure, nitrogen or oxygen is desorbed and removed from the adsorption bed, and air is supplied again to repeat the adsorption and desorption process in the adsorption bed.

그리고, 99.5% 이상의 순도를 가지는 질소를 생산하기 위해서는 압력진동흡착 공정에서 빠른 순환공정 중 속도에 선택성이 있는 탄소분자체(CMS)를 흡착제로 사용하며, 이 탄소분자체(CMS)는 용이하게 흡착할 수 있는 성분으로서 산소를 선택적으로 흡착하여, 흡착압력에서 비교적 낮은 이슬점을 갖는 질소를 생산하게 된다.In order to produce nitrogen having a purity of 99.5% or more, carbon molecular sieve (CMS) having a selectivity in speed during a rapid circulation process in a pressure vibration adsorption process is used as an adsorbent, and the carbon molecular sieve (CMS) can be easily adsorbed. Oxygen is selectively adsorbed as a component present to produce nitrogen having a relatively low dew point at the adsorption pressure.

그러나, 종래의 질소 발생장치의 흡착탑은 미세공의 크기가 크거나 작은 탄소분자체(CMS) 중 어느 하나를 선택하여 충진하기 때문에, 고순도의 질소를 얻기 위해서는 설치비가 많이 드는 반면, 설치비를 줄이는 경우 순도가 현저히 저하되는 단점이 있었다. However, since the adsorption tower of the conventional nitrogen generating device selects and fills any one of large or small carbon molecular sieves (CMS), the installation cost is high to obtain high purity nitrogen, while the purity is reduced when the installation cost is reduced. There was a disadvantage that is significantly reduced.

또한, 질소생성을 위해 외부 유입공기로부터 질소를 분리하기 전에 흡입공기 속에 포함된 수분을 제거하기 위한 건조기가 별도로 분리 설치되므로, 전체적인 설치공간을 크게 차지하여 공간적인 면과 비용적인 면에서 효율성이 떨어지는 문제점이 있었다.In addition, dryers are separately installed to remove the moisture contained in the intake air before the nitrogen is separated from the external inlet air for nitrogen production, thus occupying the entire installation space and inefficient in terms of space and cost. There was a problem.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 설치비가 저렴하면서도 유량에 비해 순도 높은 질소제품(N2)을 얻을 수 있고, 전체적인 설치공간의 효율성이 향상되는 질소 발생장치의 흡착탑 구조에 관한 것이다.The present invention has been made in order to solve the problems of the prior art as described above, it is possible to obtain a nitrogen product (N 2 ) of high purity compared to the flow rate while low installation cost, the efficiency of the overall installation space of the nitrogen generating apparatus It relates to an adsorption tower structure.

이와 같은 목적을 달성하기 위한 본 발명의 질소 발생장치의 흡착탑 구조는,Adsorption tower structure of the nitrogen generating device of the present invention for achieving the above object,

결정성 고체 화합물의 흡탈착 원리를 이용하여 공급공기로부터 질소를 분리하는 질소 발생장치의 흡착탑 구조에 있어서,In the adsorption tower structure of the nitrogen generator which separates nitrogen from the supply air using the adsorption-desorption principle of the crystalline solid compound

미세공의 크기가 2.8~3.1Å인 활성탄 10~50%가 충진되는 제1 흡착층과;A first adsorption layer filled with 10 to 50% of activated carbon having a micropore size of 2.8 to 3.1Å;

상기 제1 흡착층의 상부에 미세공의 크기가 3.8~4.1Å인 활성탄 50~90%가 충진되는 제2 흡착층과;A second adsorption layer in which 50 to 90% of activated carbon having a size of 3.8 to 4.1 kPa is filled in an upper portion of the first adsorption layer;

상기 제1 흡착층과 제2 흡착층의 사이에 개재되는 분리망;A separation network interposed between the first adsorption layer and the second adsorption layer;

으로 구성되는 것을 특징으로 한다.Characterized in that consists of.

그리고, 상기 제1 흡착층의 하부에는 실리카겔층이 제1,2 흡착층 전체의 5~20%로 충진되며, 제1 흡착층과 실리카겔층의 사이에는 분리망이 개재되는 것을 특징으로 한다.In addition, the lower portion of the first adsorption layer is filled with a silica gel layer of 5-20% of the first and second adsorption layer, characterized in that the separation network is interposed between the first adsorption layer and the silica gel layer.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 질소 발생장치의 흡착탑 구조를 나타내는 단면도이고, 도 2는 흡착탑 구조가 적용된 질소 발생장치를 개략적으로 나타내는 구성도이다.1 is a cross-sectional view showing the structure of the adsorption tower of the nitrogen generator according to the present invention, Figure 2 is a schematic view showing a nitrogen generator to which the adsorption tower structure is applied.

도 2에 도시된 바와 같이, 본 발명의 결정성 고체 화합물의 흡탈착 원리를 이용하여 공급공기로부터 질소를 분리하는 흡착탑 구조가 적용된 질소 발생장치를 개략적으로 살펴보면, 먼저 분리하고자 하는 공기를 오일분리기(1)를 경유시켜 유분을 제거한 후에 병렬 설치된 두 개의 흡착탑(2,3)의 하부로부터 상부로 통과시켜 산소가 배제된 질소만을 저장탱크(4)로 송출한다.As shown in FIG. 2, a schematic view of a nitrogen generator using an adsorption tower structure for separating nitrogen from a supply air by using the adsorption and desorption principle of the crystalline solid compound of the present invention, first, to separate the air to be separated into an oil separator ( After the oil is removed via 1), only the oxygen-free nitrogen is sent to the storage tank 4 from the bottom of the two adsorption towers 2 and 3 installed in parallel.

도면에서 미설명 부호는 공지된 구성인 여과기(strainer)(5), 압력게이지(pressure gauge)(6), 유량측정기(flow meter)(7), 산소분석기(oxygen analyzer)(8), 솔레노이드 밸브(solenoid valve)(9), 소음기(silencer)(10), 감압밸브(11)(pressure reducing valve), 볼밸브(12)(ball valve), 체크밸브(13)(check valve), 글로브 밸브(14)(globe valve) 등이다.In the drawings, reference numerals denote known configurations of a strainer 5, a pressure gauge 6, a flow meter 7, an oxygen analyzer 8, and a solenoid valve. (solenoid valve) (9), silencer (10), pressure reducing valve (11) (pressure reducing valve), ball valve (12) (ball valve), check valve (13), globe valve ( 14) (globe valve).

여기서, 두 개의 흡착탑(2,3)은 제1 흡착층(21), 제2 흡착층(22)이 적층된 구조로 이루어지거나 여기에 실리카겔층(31)이 더 포함된 구조로 이루어진다.Here, the two adsorption towers 2 and 3 have a structure in which the first adsorption layer 21 and the second adsorption layer 22 are stacked, or the silica gel layer 31 is further included therein.

제1 흡착층(21)은 유분이 제거된 상태에서 공급되는 6.5kg/㎠g의 압축공기(oil free, dry air)로부터 산소(O2)와 이산화탄소(CO2) 등을 일부 포집하기 위해 흡착탑(2,3)의 하부에 충진되는 활성탄(CMS: Coulm Molecular Sieves)이다.The first adsorption layer 21 is an adsorption tower for partially collecting oxygen (O 2 ) and carbon dioxide (CO 2 ) from 6.5kg / cm 2 compressed air (oil free, dry air) supplied while oil is removed. Activated carbon (CMS: Coulm Molecular Sieves) filled at the bottom of (2,3).

이 제1 흡착층(21)은 무연탄으로 이루어지고, 분자의 크기가 2.8~3.0Å인 산소(O2)를 포집하기 위해 그 미세공의 크기가 2.8~3.1Å이며, 전체 흡착층(20)의 10~50%를 채운다.The first adsorption layer 21 is made of anthracite coal, and the size of the micropores is 2.8 to 3.1 Pa in order to trap oxygen (O 2 ) having a molecular size of 2.8 to 3.0 Pa. Fill 10-50% of the time.

제2 흡착층(22)은 상기 제1 흡착층(21)에서 일부 포집되지 못한 산소(O2)를 완전히 포집하기 위해 제1 흡착층(21)의 상부에 충진되는 활성탄(CMS: Coulm Molecular Sieves)이다.The second adsorption layer 22 is activated carbon (CMS: Coulm Molecular Sieves) filled in the upper part of the first adsorption layer 21 to completely collect oxygen (O 2 ) that is not partially captured in the first adsorption layer 21. )to be.

이 제2 흡착층(22)은 식물성 야자열매를 재료로 하고, 분자의 크기가 2.8~3.0Å인 산소(O2)를 완전히 포집하기 위해 그 미세공의 크기가 3.8~4.1Å이며, 전체 흡착층(20)의 50~90%를 충진한다.The second adsorption layer 22 is made of a vegetable coconut material, and the size of the micropores is 3.8 to 4.1 GPa in order to completely capture oxygen (O 2 ) having a molecular size of 2.8 to 3.0 GPa. Fill 50-90% of layer 20.

그리고, 상기 제1 흡착층(21)의 하부에는 유분이 제거된 상태에서 공급되는 공기(air)에 함유된 수분을 제거하기 위해 실리카겔층(silicagel)(31)이 전체 흡착층(20)의 5~20%로 충진된다.In addition, a silica gel layer 31 is formed on the lower portion of the first adsorption layer 21 to remove moisture contained in the air supplied while the oil is removed. Filled at ~ 20%.

여기서, 상기 제1 흡착층(21)과 제2 흡착층(22)의 사이 및 제1 흡착층(21)과 실리카겔층(31)의 사이에는 미세공의 크기가 다른 활성탄끼리 또는 활성탄과 실리카겔끼리 혼합되지 않도록 금속재질(스테인레스 등)이나 합성수지로 이루어진 분리망(mesh)(23,32)을 개재시키는 것이 바람직하다.Here, between the first adsorption layer 21 and the second adsorption layer 22 and between the first adsorption layer 21 and the silica gel layer 31, activated carbons having different micropore sizes, or activated carbons and silica gels, It is preferable to interpose the separating meshes 23 and 32 made of metal material (stainless steel or the like) or synthetic resin so as not to be mixed.

상기와 같이 구성된 본 발명의 질소 발생장치의 흡착탑 구조는 다음과 같이 작용한다.The adsorption tower structure of the nitrogen generator of the present invention configured as described above acts as follows.

본 발명의 질소 발생장치의 흡착탑 구조는 우선, 하부에 실리카겔층(silicagel)(31)이 전체 흡착층(20)의 5~20%로 충진되기 때문에, 유분 및 먼지가 제거된 상태에서 공급되는 압축공기(air)에 함유된 수분과 기타 질소(N2), 산소(O2), 일산화탄소(CO) 등을 제거한다.In the adsorption tower structure of the nitrogen generating apparatus of the present invention, first, the silica gel layer 31 is filled with 5 to 20% of the entire adsorption layer 20 at the lower side, and thus, the compression is supplied while the oil and dust are removed. Removes water and other nitrogen (N 2 ), oxygen (O 2 ) and carbon monoxide (CO) contained in air.

그리고, 미세공의 크기가 2.8~3.1Å의 활성탄(CMS)인 제1 흡착층(21)이 상기 실리카겔층(31)의 상부에 전체 흡착층(20)의 10~50%로 충진되므로, 수분이 제거된 공기(air)로부터 산소(O2)와 이산화탄소(CO2)를 일부 포집(분자의 크기가 2.8~3.0Å인 산소(O2)가 용이하게 포집)한다.Since the first adsorption layer 21, which is activated carbon (CMS) having a micropore size of 2.8-3.1 mm 3, is filled in the upper portion of the silica gel layer 31 with 10-50% of the entire adsorption layer 20, the oxygen is removed from the air (air) (O 2) and carbon dioxide (CO 2) capture a portion (the size of 2.8 ~ 3.0Å molecular oxygen (O 2) is easily collected).

다음으로, 미세공의 크기가 3.8~4.1Å의 활성탄(CMS)인 제2 흡착층(22)이 상기 제1 흡착층(21)의 상부에 전체 흡착층(20)의 50~90%로 충진되어서, 제1 흡착층(21)에서 일부 포집되지 못한 산소(O2)와 이산화탄소(CO2)를 완전히 포집한다.Next, the second adsorption layer 22, which is activated carbon (CMS) having a micropore size of 3.8 to 4.1 kPa, is filled in the upper portion of the first adsorption layer 21 to 50 to 90% of the entire adsorption layer 20. As a result, oxygen (O 2 ) and carbon dioxide (CO 2 ) not partially collected in the first adsorption layer 21 are completely collected.

이때, 제2 흡착층(22)에서 분자의 크기가 2.8~3.0Å인 산소(O2)는 매우 용이하게 포집되며, 분자의 크기가 3.8~4.1Å인 질소(N2)가 미량 포집될 수 있다.In this case, oxygen (O 2 ) having a molecular size of 2.8 to 3.0 kPa is very easily collected in the second adsorption layer 22, and a trace amount of nitrogen (N 2 ) having a molecular size of 3.8 to 4.1 kPa may be collected. have.

따라서, 공급공기로부터 산소(O2), 일(이)산화탄소(CO,CO2) 등이 제거되면서 제2 흡착층(22)으로부터 고순도의 질소제품(N2)을 획득할 수 있는 것이다.Therefore, while the oxygen (O 2 ), carbon monoxide (CO, CO 2 ) and the like are removed from the supply air, it is possible to obtain a high purity nitrogen product (N 2 ) from the second adsorption layer (22).

특히, 흡착층(20) 전체를 미세공의 크기가 2.8~3.1Å의 활성탄(CMS)으로만 충진할 경우 비용이 많이 들고 질소제품(N2)의 순도가 낮은 문제가 있고, 흡착층(20) 전체를 미세공의 크기가 3.8~4.1Å의 활성탄(CMS)으로만 충진할 경우 산소(O2)가 거의 포집됨으로써 고순도의 질소제품(N2)을 얻을 수는 있지만, 포집되어 버리는 질소(N2)의 양이 많고 고용량의 컴프레셔를 사용해야만 하는 문제가 있는데, 본 발명의 흡착탑 구조는 미세공의 크기가 2.8~3.1Å의 활성탄(CMS)이 10~50%, 미세공의 크기가 3.8~4.1Å의 활성탄(CMS)이 50~90%로 순차적인 다층(multi-layer)의 포집과정을 거치므로 비용이 저렴하고 버리는 질소(N2)의 양이 적으며 저용량의 컴프레셔를 사용할 수 있으면서도 저유량으로 고순도의 질소(N2)제품을 획득할 수 있게 된다.In particular, when the entire adsorption layer 20 is filled with only activated carbon (CMS) having a micropore size of 2.8 to 3.1Å, there is a problem of high cost and low purity of the nitrogen product (N 2 ), and the adsorption layer 20 ) If the whole is filled only with activated carbon (CMS) of 3.8 ~ 4.1Å micropore size, oxygen (O 2 ) is almost collected, so that high purity nitrogen product (N 2 ) can be obtained. There is a problem that a large amount of N 2 ) and a high capacity compressor must be used. The adsorption tower structure of the present invention has a micropore size of 2.8-3.1 Å activated carbon (CMS) of 10-50%, and a micropore size of 3.8. 50% to 90% of activated carbon (CMS) is sequential multi-layer capture process, so it is inexpensive and has low amount of nitrogen (N 2 ). It is possible to obtain high purity nitrogen (N 2 ) products at low flow rates.

게다가, 실리카겔층(31)이 제1 흡착층(21)의 하부에 충진됨으로써, 건조기를 별도로 구비하지 않아도 되므로 설치비용이 저렴하고 공간활용도도 우수해진다.In addition, since the silica gel layer 31 is filled in the lower portion of the first adsorption layer 21, it is not necessary to provide a dryer separately, so that installation cost is low and space utilization is also excellent.

이에 더하여, 제1 흡착층(21)과 제2 흡착층(22)의 사이 및 제1 흡착층(21)과 실리카겔층(31)의 사이에는 분리망(mesh)(23,32)을 개재되기 때문에, 미세공의 크기가 다른 활성탄끼리 또는 활성탄과 실리카겔끼리 혼합되지 않는다.In addition, separation meshes 23 and 32 are interposed between the first adsorption layer 21 and the second adsorption layer 22 and between the first adsorption layer 21 and the silica gel layer 31. Therefore, activated carbons having different sizes of micropores or activated carbons and silica gels are not mixed.

마지막으로, 활성탄(CMS)에 의해 흡착된 산소(O2)와 이산화탄소(CO2)는 대기압으로 감압해서 배출함으로써, 활성탄(CMS)을 계속해서 재생하여 질소가스를 연속적으로 생산할 수 있다.Finally, oxygen (O 2 ) and carbon dioxide (CO 2 ) adsorbed by activated carbon (CMS) are discharged under reduced pressure to atmospheric pressure, thereby continuously regenerating activated carbon (CMS) to continuously produce nitrogen gas.

이와 같이 구성된 본 발명의 질소 발생장치의 흡착탑 구조는 고순도의 질소제품(N2)을 얻을 수 있고 포집되어 버리는 질소(N2)의 양이 적으며, 저용량의 컴프레셔를 사용할 수 있고 설치비용이 저렴하고 공간활용도가 우수해질 뿐만 아니라 활성탄과 실리카겔이 혼합되지 않고 재생되는 유용한 효과를 발휘한다.The adsorption tower structure of the nitrogen generating device of the present invention configured as described above can obtain a high purity nitrogen product (N 2 ), and the amount of nitrogen (N 2 ) that is collected is low, a low-capacity compressor can be used, and the installation cost is low. In addition to excellent space utilization, the activated carbon and silica gel are not mixed and have a useful effect of regeneration.

본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 사상과 범위내에서 다양하게 변경 또는 변형하여 실시할 수 있음은 본 발명이 속하는 기술분야의 당업자에게는 자명한 것이며, 따라서 그러한 변경 또는 변형은 첨부된 특허청구범위에 속한다 해야 할 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various changes or modifications can be made within the spirit and scope of the present invention, and such modifications or variations are attached thereto. Belong to the claims.

Claims (2)

결정성 고체 화합물의 흡탈착 원리를 이용하여 공급공기로부터 질소를 분리하는 질소 발생장치의 흡착탑 구조에 있어서,In the adsorption tower structure of the nitrogen generator which separates nitrogen from the supply air using the adsorption-desorption principle of the crystalline solid compound 미세공의 크기가 2.8~3.1Å인 활성탄 10~50%가 충진되는 제1 흡착층과;A first adsorption layer filled with 10 to 50% of activated carbon having a micropore size of 2.8 to 3.1Å; 상기 제1 흡착층의 상부에 미세공의 크기가 3.8~4.1Å인 활성탄 50~90%가 충진되는 제2 흡착층과;A second adsorption layer in which 50 to 90% of activated carbon having a size of 3.8 to 4.1 kPa is filled in an upper portion of the first adsorption layer; 상기 제1 흡착층과 제2 흡착층의 사이에 개재되는 분리망;A separation network interposed between the first adsorption layer and the second adsorption layer; 으로 구성되는 것을 특징으로 하는 질소 발생장치의 흡착탑 구조.Adsorption tower structure of the nitrogen generator, characterized in that consisting of. 제 1항에 있어서,The method of claim 1, 상기 제1 흡착층의 하부에는 실리카겔층이 제1,2 흡착층 전체의 5~20%로 충진되며, 제1 흡착층과 실리카겔층의 사이에는 분리망이 개재되는 것을 특징으로 하는 질소 발생장치의 흡착탑 구조.In the lower part of the first adsorption layer, the silica gel layer is filled with 5-20% of the first and second adsorption layers, and a separation network is interposed between the first adsorption layer and the silica gel layer. Adsorption tower structure.
KR1020060031025A 2006-04-05 2006-04-05 Structure of absorption tower for nitrogen generator KR100753207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060031025A KR100753207B1 (en) 2006-04-05 2006-04-05 Structure of absorption tower for nitrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060031025A KR100753207B1 (en) 2006-04-05 2006-04-05 Structure of absorption tower for nitrogen generator

Publications (1)

Publication Number Publication Date
KR100753207B1 true KR100753207B1 (en) 2007-09-03

Family

ID=38736102

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060031025A KR100753207B1 (en) 2006-04-05 2006-04-05 Structure of absorption tower for nitrogen generator

Country Status (1)

Country Link
KR (1) KR100753207B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888023B1 (en) * 2008-03-31 2009-03-10 (주)하나플랜트 Nitrogen generator
KR101068226B1 (en) 2010-03-25 2011-09-28 주식회사크린월드 High efficiency deodorizing filter
EP2926883A1 (en) 2014-04-01 2015-10-07 GS Engineering & Construction Corp. System for gas separation
KR20180049598A (en) 2016-11-03 2018-05-11 이엠코리아주식회사 Nitrogen seperator for nitrogen generator
KR20200114656A (en) 2019-03-29 2020-10-07 이엠코리아주식회사 test device for Nitrogen seperator
CN112169532A (en) * 2020-08-19 2021-01-05 中国港湾工程有限责任公司 Air compression nitrogen making system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204018A (en) 1985-03-05 1986-09-10 Mitsubishi Chem Ind Ltd Treating apparatus for gas containing hydrocarbon
JPH0938442A (en) * 1995-05-25 1997-02-10 Kuraray Eng Kk Adsorption element and waste gas adsorber using the same
US6402813B2 (en) 2000-01-25 2002-06-11 L'AIR LIQUIDE, SOCIETE ANONYME A DIRECTOIRE éT CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE Process for purifying a gas by adsorption of the impurities on several active carbons
US6805728B2 (en) 2002-12-09 2004-10-19 Advanced Technology Materials, Inc. Method and apparatus for the abatement of toxic gas components from a semiconductor manufacturing process effluent stream
KR100496185B1 (en) 2003-03-31 2005-06-20 주식회사 케이피씨 Nitrogen generator, and method for generating nitrogen using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204018A (en) 1985-03-05 1986-09-10 Mitsubishi Chem Ind Ltd Treating apparatus for gas containing hydrocarbon
JPH0938442A (en) * 1995-05-25 1997-02-10 Kuraray Eng Kk Adsorption element and waste gas adsorber using the same
US6402813B2 (en) 2000-01-25 2002-06-11 L'AIR LIQUIDE, SOCIETE ANONYME A DIRECTOIRE éT CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE Process for purifying a gas by adsorption of the impurities on several active carbons
US6805728B2 (en) 2002-12-09 2004-10-19 Advanced Technology Materials, Inc. Method and apparatus for the abatement of toxic gas components from a semiconductor manufacturing process effluent stream
KR100496185B1 (en) 2003-03-31 2005-06-20 주식회사 케이피씨 Nitrogen generator, and method for generating nitrogen using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888023B1 (en) * 2008-03-31 2009-03-10 (주)하나플랜트 Nitrogen generator
KR101068226B1 (en) 2010-03-25 2011-09-28 주식회사크린월드 High efficiency deodorizing filter
EP2926883A1 (en) 2014-04-01 2015-10-07 GS Engineering & Construction Corp. System for gas separation
KR20180049598A (en) 2016-11-03 2018-05-11 이엠코리아주식회사 Nitrogen seperator for nitrogen generator
KR20200114656A (en) 2019-03-29 2020-10-07 이엠코리아주식회사 test device for Nitrogen seperator
CN112169532A (en) * 2020-08-19 2021-01-05 中国港湾工程有限责任公司 Air compression nitrogen making system

Similar Documents

Publication Publication Date Title
KR100753207B1 (en) Structure of absorption tower for nitrogen generator
KR101312914B1 (en) Carbon dioxide recovery
US20100251887A1 (en) Carbon Dioxide Recovery
CN108619859B (en) Coupling type pressure swing adsorption gas production system and method
AU2005200931B2 (en) Periodic high temperature regeneration of thermal swing adsorption systems
JPS58120504A (en) Nitrogen generating system
CA2633652A1 (en) The use of mofs in pressure swing adsorption
CN1017331B (en) Process for producing high purity oxygen gas from air
RU2008115271A (en) METHOD FOR CLEANING NATURAL GAS FROM ORGANIC WASTE
JP3902416B2 (en) Gas separation method
JP2011506065A (en) Plant and method for recovering carbon dioxide
CN102351147A (en) Moderate temperature pressure swing adsorption method for CO2, H2S and H2 mixed gas separation
CN104192807A (en) Oxygen generating equipment system and process flow thereof
Plaza et al. Evaluation of microporous biochars produced by single-step oxidation for postcombustion CO2 capture under humid conditions
US6060032A (en) Layered adsorbent bed for carbon monoxide production
CN108236829B (en) From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus
KR20160013686A (en) Biogas pretreatment apparatus
WO2008072215A2 (en) Separation column and pressure swing adsorption process for gas purification
KR100324709B1 (en) Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof
AU2016201267B2 (en) A plant and process for simutaneous recovering multiple gas products from petrochemical offgas
CN112960650B (en) Method and device for preparing high-purity oxygen based on coupling separation technology
CN114483546A (en) Method for improving quality of compressed air of air compression station
KR100468915B1 (en) A oxygen generator
KR100275858B1 (en) Pressure and apparatus for nitrogen production by pressure swing adsorption
RU2012107387A (en) METHOD FOR REMOVING HARMFUL SUBSTANCES FROM CARBON DIOXIDE AND DEVICE FOR ITS IMPLEMENTATION

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130719

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140715

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150812

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160811

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190812

Year of fee payment: 13