KR100751726B1 - Control method for electrnoic expansion valve - Google Patents

Control method for electrnoic expansion valve Download PDF

Info

Publication number
KR100751726B1
KR100751726B1 KR1020050114786A KR20050114786A KR100751726B1 KR 100751726 B1 KR100751726 B1 KR 100751726B1 KR 1020050114786 A KR1020050114786 A KR 1020050114786A KR 20050114786 A KR20050114786 A KR 20050114786A KR 100751726 B1 KR100751726 B1 KR 100751726B1
Authority
KR
South Korea
Prior art keywords
expansion valve
electronic expansion
brine
opening amount
steps
Prior art date
Application number
KR1020050114786A
Other languages
Korean (ko)
Other versions
KR20070056305A (en
Inventor
윤현진
안상영
서진용
백원기
모재홍
변정훈
Original Assignee
유니셈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유니셈(주) filed Critical 유니셈(주)
Priority to KR1020050114786A priority Critical patent/KR100751726B1/en
Publication of KR20070056305A publication Critical patent/KR20070056305A/en
Application granted granted Critical
Publication of KR100751726B1 publication Critical patent/KR100751726B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823835Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

반도체 공정설비용 칠러 장치에 적용되는 전자식 팽창밸브를 제어하는 방법으로서, 전자식 팽창밸브의 전체 스텝 수에 기초하여 최소 개도량에 대응하는 하한 스텝 수와 최대 개도량에 대응하는 상한 스텝수를 설정하는 단계; 설정된 상한 스텝 수와 하한 스텝수를 기준으로 균등 분할하는 단계; 및 전자식 팽창밸브에 인가되는 신호 출력 백분율에 균등 분할된 단위 스텝을 대응시키는 단계를 포함하는 칠러 장치의 전자식 팽창밸브의 제어방법이 개시된다.A method of controlling an electronic expansion valve applied to a chiller device for semiconductor process equipment, the method comprising: setting a lower limit step number corresponding to a minimum opening amount and an upper limit step number corresponding to a maximum opening amount based on the total number of steps of the electronic expansion valve. step; Dividing equally on the basis of the set upper limit step number and the lower limit step number; And correspondingly dividing the unit steps equally divided into the signal output percentage applied to the electronic expansion valve.

최소개도량, 최대개도량, 분할, 안정화, 브라인, 프로그램, 컨트롤러 Minimum opening, maximum opening, split, stabilization, brine, program, controller

Description

칠러 장치의 전자식 팽창밸브 제어방법{Control method for electrnoic expansion valve}Control method for electrnoic expansion valve

도 1은 반도체 공정설비를 위한 칠러 장치의 일 예를 나타내는 계통도이다.1 is a system diagram illustrating an example of a chiller apparatus for a semiconductor processing facility.

도 2는 반도체 공정설비를 위한 칠러 장치의 다른 예를 나타내는 계통도이다.2 is a system diagram showing another example of a chiller device for a semiconductor processing equipment.

도 3은 본 발명에 따른 전자식 팽창밸브의 제어방법을 설명하는 도식도이다.3 is a schematic diagram illustrating a control method of an electronic expansion valve according to the present invention.

본 발명은 반도체 공정설비를 위한 칠러 장치에 적용되는 전자식 팽창밸브의 제어방법에 관한 것이다.The present invention relates to a control method of an electronic expansion valve applied to a chiller device for a semiconductor processing equipment.

칠러는 반도체 소자의 제조공정에서 안정적인 공정제어를 위한 온도조절장치이다. 특히 칠러는 여러 공정 중 식각 및 노광공정에서 주로 사용하는데 공정 중 과도한 열이 발생하는 전극판 및 챔버(chamber)의 온도를 일정하게 유지시켜 줌으로써 고온으로 인한 웨이퍼의 파손 및 생산성의 저하를 막아준다.The chiller is a temperature controller for stable process control in the manufacturing process of semiconductor devices. In particular, the chiller is mainly used in the etching and exposure processes of the various processes to keep the temperature of the electrode plate and the chamber (chamber) that generates excessive heat during the process to prevent damage to the wafer and degradation of productivity due to high temperature.

이러한 기능을 수행하는 칠러의 냉동사이클은 냉매 경로와 브라인 경로가 일 부분에서 중첩되어 열교환이 이루어진다.In the chiller cycle of the chiller that performs this function, the refrigerant path and the brine path overlap each other to form heat exchange.

여기서, 브라인(brine)은 낮은 동결점을 가진 용액 또는 액체로, 보통 CaCl2와 NaCl의 수용액이 사용된다. Here, brine is a solution or liquid with a low freezing point, usually an aqueous solution of CaCl 2 and NaCl is used.

도 1은 반도체 공정설비를 위한 칠러 장치의 일 예를 나타내는 계통도이다.1 is a system diagram illustrating an example of a chiller apparatus for a semiconductor processing facility.

먼저 냉동사이클로 형성되는 냉매(예를 들어, 프레온 가스)의 순환경로를 보면 다음과 같다.First, the circulation path of the refrigerant (for example, freon gas) formed by the refrigeration cycle is as follows.

즉, 압축기(100)에서 압축된 냉매는 응축기(110)에서 응축과정을 수행한 후, 온도식 팽창밸브(120, TEV)에서 팽창을 수행하고, 증발기(130)의 냉매경로를 통해서 열교환되며, 액분리기(150)와 흡입압력 조절기(160)를 거쳐 다시 압축기(100)로 유입되는 과정을 반복하게 된다.That is, the refrigerant compressed by the compressor 100 performs the condensation process in the condenser 110, expands in the thermal expansion valve 120 (TEV), and heat exchanges through the refrigerant path of the evaporator 130, After the liquid separator 150 and the suction pressure controller 160, the process of inflowing into the compressor 100 is repeated.

또한, 냉각유체(브라인)의 순환경로를 보면 다음과 같다.In addition, the circulation path of the cooling fluid (Brine) is as follows.

즉, 반도체 공정용설비(200)를 빠져나온 브라인은 브라인 인렛(210)을 통하여 증발기(130)의 브라인 경로로 유입되어 냉매경로와의 열교환을 수행한 후, 브라인 히터(220)에서 가열되고, 브라인 펌프(230)와 브라인 아웃렛(240)을 통하여 다시 반도체공정용 설비(200)로 유입되는 경로를 형성한다.That is, the brine exiting the semiconductor processing equipment 200 flows into the brine path of the evaporator 130 through the brine inlet 210 and performs heat exchange with the refrigerant path, and is then heated in the brine heater 220. The brine pump 230 and the brine outlet 240 form a path that flows back into the semiconductor processing facility 200.

이때, 상기한 브라인 경로와 냉매경로가 열교환되는 곳은 증발기(130)이며, 증발기(130)에는 하나의 경로로 냉매경로가 형성되고, 다른 경로로 브라인 경로가 형성된다. 물론 두 유체경로는 경로 간의 열교환이지, 두 유체 자체가 혼합되는 것은 아니다.At this time, the place where the brine path and the refrigerant path are heat exchanged is the evaporator 130, the refrigerant path is formed in one path, the brine path is formed in the other path. Of course the two fluid paths are heat exchange between the paths, not the two fluids themselves mixing.

이와 같이, 두 개의 경로가 열교환됨으로써, 브라인 경로 상의 위치 A, B 또는 C의 온도가 일정하게 유지되며, 이에 따라 반도체 공정설비(200)의 내부 챔버는 일정한 온도로 유지될 수 있다. As such, the two paths are heat-exchanged, so that the temperature of the position A, B or C on the brine path is kept constant, and thus the internal chamber of the semiconductor processing equipment 200 may be maintained at a constant temperature.

그러나, 이와 같은 종래의 칠러 장치에 의하면, 냉동시스템에서 위치 a와 위치 b 사이의 온도차이, 즉 과열도를 감지하여 기계적으로 작동하는 온도식 팽창밸브를 사용함으로써 브라인에 부가되거나 제거되는 부하에 대한 응답성이 느려 온도편차가 발생한다는 문제점이 있다.However, according to such a conventional chiller device, the temperature difference between the position a and the position b in the refrigeration system, i.e., by using a thermal expansion valve that senses the degree of superheat and mechanically operates the load to be added to or removed from the brine. There is a problem that a temperature deviation occurs due to the slow response.

또한, 브라인의 온도 및 부하조건에 따라 다름으로 인해서 증발기 출구단에서 압축기로 유입되는 냉매의 상태를 안정화, 즉 기체상태의 유지와 압력유지를 위하여 액분리기(150)와 흡입압력 조절기(160)를 사용함으로써 소요부품의 수량이 증가되고, 온도식 팽창밸브(120)와 흡입압력 조절기(160)를 수동으로 조작함으로써 칠러의 동일한 모델에서도 서로 상이한 냉동사이클을 보이는 등 제품간의 표준화 관리가 어렵다는 문제가 있다.In addition, the liquid separator 150 and the suction pressure regulator 160 are stabilized in order to stabilize the state of the refrigerant flowing into the compressor from the evaporator outlet due to the temperature and load conditions of the brine, that is, to maintain the gas state and maintain the pressure. There is a problem that it is difficult to standardize management between products, such as the number of required parts increases, and by manually operating the thermostatic expansion valve 120 and the suction pressure regulator 160, different refrigeration cycles are shown even in the same model of the chiller. .

이러한 문제점을 해결하기 위하여 본 출원인은 다른 형태의 칠러 장치를 제안하였다.In order to solve this problem, the present applicant has proposed another type of chiller apparatus.

도 2는 본 출원인에 의해 제안된 반도체 공정설비를 위한 칠러 장치의 다른 예를 나타내는 계통도이다.2 is a schematic diagram showing another example of a chiller apparatus for a semiconductor processing equipment proposed by the present applicant.

먼저, 브라인 경로를 살펴보면, 반도체 공정설비(200) -> 브라인 인렛(210) -> 증발기(130)내 브라인경로 -> 브라인 히터(220) -> 브라인 펌프(230) -> 브라인 아웃렛(240) -> 반도체 공정설비(200)가 순서대로 연결되는 폐회로로 이루어진다.First, referring to the brine path, the semiconductor process equipment 200-> brine inlet 210-> brine path in the evaporator 130-> brine heater 220-> brine pump 230-> brine outlet 240 -> The semiconductor processing equipment 200 is made of a closed circuit connected in sequence.

브라인 히터(220)는 브라인 경로 상의 특정 위치 A, B 또는 C의 온도를 피드백 받아 브라인의 설정온도와 비교하여 그 출력값을 PID 제어를 통해 조절하게 된다. The brine heater 220 receives the temperature of a specific position A, B or C on the brine path and compares it with the set temperature of the brine to adjust its output value through PID control.

또한, 냉매 경로를 살펴보면, 압축기(100)에서 압축된 냉매는 응축기(110)에서 응축과정을 수행한 후 전자식 팽창밸브(120a,EEV)에서 팽창을 수행한 다음, 증발기(130)의 냉매경로를 통해서 브라운경로와 열교환되며, 이후 다시 압축기(100)로 유입되는 과정을 반복하게 된다.In addition, referring to the refrigerant path, the refrigerant compressed by the compressor 100 performs the condensation process in the condenser 110, and then expands in the electronic expansion valves 120a and EEV, and then the refrigerant path of the evaporator 130 is reduced. Heat exchange with the brown path through, and then repeats the process flowing back into the compressor (100).

이러한 구성에 의하면, 전자식 팽창밸브(120a)의 원활한 개도 조절기능을 활용함으로써 종래 온도식 팽창밸브를 사용하여 야기되었던 부하응답성이 느리거나 저하되는 것을 개선하여 브라인에 부가되는 부하에 대해 신속하게 대응함으로써 브라인 온도의 안정화를 꾀할 수 있다.According to this configuration, by utilizing the smooth opening adjustment function of the electronic expansion valve (120a) to improve the slow or lower load response caused by using the conventional thermal expansion valve to respond quickly to the load added to the brine By doing so, the brine temperature can be stabilized.

또한, 전자식 팽창밸브의 종래 브라인 온도의 변화나 부하응답에 대응하기 위해 온도식 팽창밸브의 개도를 수동으로 조절하는 번거로움을 개선할 수 있다.In addition, it is possible to improve the trouble of manually adjusting the opening degree of the thermal expansion valve in order to cope with a change in the conventional brine temperature or a load response of the electronic expansion valve.

이러한 전자식 팽창밸브(120a)의 개도량을 조절하기 위한 피드백 신호는 여러 가지 형태로 제공될 수 있다. The feedback signal for adjusting the opening amount of the electronic expansion valve 120a may be provided in various forms.

먼저, 브라인 히터를 적용하지 않는 경우, 브라인 경로 상의 하나의 특정 위치 A, B 또는 C의 온도상태를 피드백 신호로 받아들여 그 온도에 따라 전자식 팽창밸브(120a)가 PID 제어에 의해서 그 개도를 조정할 수 있다. First, when the brine heater is not applied, the temperature of one specific position A, B or C on the brine path is taken as a feedback signal, and the electronic expansion valve 120a adjusts the opening degree by PID control according to the temperature. Can be.

또한, 브라인 경로 상의 하나의 특정 위치 A, B 또는 C의 온도상태를 브라인 히터(220)에서 피드백 받아 브라인 히터(220)가 그 출력량을 조절하고, "100% - 브 라인 히터의 출력량"으로 계산된 잔여량을 전자식 팽창밸브(120a)의 신호로 인식하여 개도를 조정할 수 있다.In addition, the temperature of one particular position A, B or C on the brine path is fed back from the brine heater 220, and the brine heater 220 adjusts its output amount and calculates as "100%-output of the blower heater". The opening amount may be adjusted by recognizing the remaining amount as a signal of the electronic expansion valve 120a.

또한, 브라인 경로 상의 하나의 특정 위치 A, B 또는 C의 온도상태를 브라인 히터(220)에서 피드백 받아 브라인 히터(220)가 그 출력량을 조절하고, 전자식 팽창밸브(120a)는 브라인 설정온도별로 각각의 과열도, 즉 증발기 후단의 온도에서 증발기 전단의 온도를 뺀 값을 미리 지정한 후, 그 과열도를 조정하기 위해서 PID 제어에 의해서 개도를 조정할 수 있다.In addition, the brine heater 220 receives a feedback of the temperature state of one particular position A, B or C on the brine path from the brine heater 220, and the output of the electronic expansion valve 120a is set for each brine set temperature. The superheat degree of, i.e., the value obtained by subtracting the temperature of the front end of the evaporator from the temperature after the evaporator is specified in advance, and the opening degree can be adjusted by PID control to adjust the superheat degree.

물론, 상기한 방법 이외에 다양한 방법으로 전자식 팽창밸브의 개도를 조정할 수 있다.Of course, the opening degree of the electronic expansion valve can be adjusted in various ways in addition to the above-described method.

이와 같은 구조에 적용되는 전자식 팽창밸브(120a)는 디지털화된 전기적 신호, 즉 펄스를 입력받아 스텝퍼 구동방식으로 0 내지 N 스텝으로 개도를 변화시키는 밸브이다.The electronic expansion valve (120a) applied to such a structure is a valve that receives a digitized electrical signal, that is, a pulse to change the opening degree from 0 to N steps by a stepper driving method.

통상 전자식 팽창밸브의 제조업체에서는 안정성을 고려하여 전자식 팽창밸브의 전체 스텝 수에 대한 백분율로 볼 때, 0 내지 10%의 범위 내에서는 팽창밸브가 열리지 않도록 세팅한다. 그러나, 전자식 팽창밸브를 칠러 장치에 적용하는 경우, 전체 스텝을 균일하게 이용해야 하는 상황에서 이러한 세팅이 오히려 방해 요소로 작용한다는 문제가 있다.In general, the manufacturer of the electronic expansion valve is set so that the expansion valve does not open in the range of 0 to 10%, in consideration of stability, as a percentage of the total number of steps of the electronic expansion valve. However, when the electronic expansion valve is applied to the chiller device, there is a problem that this setting acts as an obstacle in the situation where the entire step must be used uniformly.

또한, 전자식 팽창밸브의 스텝 수를 증가하고자 하는 경우, 기존에 사용하던 전자식 팽창밸브는 더 이상 사용할 수 없다는 문제가 있다. 예를 들어, 기존에 500 스텝의 전자식 팽창밸브를 사용하다가 필요에 의해 1000 스텝의 전자식 팽창밸브를 사용해야 할 경우 기존의 500 스텝의 전자식 팽창밸브는 폐기되어야 했다.In addition, when the number of steps of the electronic expansion valve is to be increased, there is a problem that the existing electronic expansion valve can no longer be used. For example, if a 500-step electronic expansion valve is used and a 1000-step electronic expansion valve is needed, the existing 500-step electronic expansion valve had to be discarded.

또한, 전자식 팽창밸브를 통과하는 냉매의 유량에 따라 브라인의 온도 변화는 민감하게 변화한다. 따라서, 전자식 팽창밸브의 단위 스텝당 브라인의 온도 변화를 작게 할수록 좋다. 그러나, 이를 위해서는 스텝 수가 적은 전자식 팽창밸브를 사용하는 것을 고려할 수 있지만, 실제 생산되는 전자식 팽창밸브는 훨씬 더 많은 스텝 수를 갖기 때문에 적용할 수 없으며, 스텝 수가 적은 전자식 팽창밸브를 적용하더라도 상기와 같이 스텝 수 증가시에 문제가 발생하게 된다.In addition, the temperature change of the brine is sensitively changed depending on the flow rate of the refrigerant passing through the electronic expansion valve. Therefore, the smaller the temperature change of the brine per unit step of the electronic expansion valve, the better. However, for this purpose, an electronic expansion valve having a small number of steps can be considered. However, an electronic expansion valve that is actually produced cannot be applied because it has a much larger number of steps. Problems arise when the number of steps increases.

따라서, 본 발명의 목적은 브라인의 온도 안정화를 구현할 수 있는 전자식 팽창밸브 제어방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide an electronic expansion valve control method capable of implementing temperature stabilization of brine.

본 발명의 다른 목적은 통상의 전자식 팽창밸브를 적용하면서도 초기 스텝에서도 피드백 신호에 정확하게 반응하고, 스텝 수 확장이 용이하도록 하는 칠러 장치의 전자식 팽창밸브 제어방법을 제공하는 것이다. Another object of the present invention is to provide a method for controlling an electronic expansion valve of a chiller device, in which a conventional electronic expansion valve is applied, but precisely responds to a feedback signal even in an initial step, and the number of steps can be easily expanded.

본 발명의 다른 목적과 특징 및 이점은 이하에 서술되는 실시예로부터 명확하게 이해될 것이다.Other objects, features and advantages of the invention will be apparent from the examples set forth below.

반도체 공정설비용 칠러 장치에 적용되는 전자식 팽창밸브를 제어하는 방법으로서, 전자식 팽창밸브의 전체 스텝 수에 기초하여 최소 개도량에 대응하는 하한 스텝 수와 최대 개도량에 대응하는 상한 스텝수를 설정하는 단계; 설정된 상한 스텝 수와 하한 스텝수를 기준으로 균등 분할하는 단계; 및 전자식 팽창밸브에 인가 되는 신호 출력 백분율에 균등 분할된 단위 스텝을 대응시키는 단계를 포함하는 칠러 장치의 전자식 팽창밸브의 제어방법이 개시된다.A method of controlling an electronic expansion valve applied to a chiller device for semiconductor process equipment, the method comprising: setting a lower limit step number corresponding to a minimum opening amount and an upper limit step number corresponding to a maximum opening amount based on the total number of steps of the electronic expansion valve. step; Dividing equally on the basis of the set upper limit step number and the lower limit step number; And the method for controlling the electronic expansion valve of the chiller device comprising the step of matching the equally divided unit step to the signal output percentage applied to the electronic expansion valve.

일 예로, 균등 분할은 100 등분일 수 있다.For example, the equal division may be 100 equal parts.

바람직하게, 최소 개도량은 전자식 팽창밸브의 출하시 세팅된 비동작 범위 이상으로 설정될수 있다.Preferably, the minimum opening amount may be set above the non-operating range set at the time of shipment of the electronic expansion valve.

바람직하게, 상기 각 단계는 칠러 장치에 설치되는 컨트롤러에 실장되는 마이크로프로세서에 프로그램 형태로 구현될 수 있다.Preferably, each step may be implemented in the form of a program in a microprocessor mounted on a controller installed in the chiller device.

바람직하게, 상기 전자식 팽창밸브는 디지털화된 전기적 신호를 입력받아 스텝퍼 구동방식으로 0 내지 N 단계로 개도가 변화되는 밸브이다.Preferably, the electronic expansion valve is a valve in which the opening degree is changed in 0 to N steps by a stepper driving method by receiving a digitized electrical signal.

이하에서는 본 발명의 일 실시예에 따른 전자식 팽창밸브의 제어방법을 첨부된 도면을 참조하여 설명한다.Hereinafter, a control method of an electronic expansion valve according to an embodiment of the present invention will be described with reference to the accompanying drawings.

전자식 팽창밸브는 그 특성상 저온의 냉매를 통과시켜 증발기로 유입되도록 하는 것이므로, 통과되는 냉매의 유량에 따라서 브라인의 온도변화는 민감하게 반응하게 된다.Since the electronic expansion valve is to pass the low-temperature refrigerant to flow into the evaporator, the temperature change of the brine is sensitive to the flow rate of the refrigerant passing through.

따라서, 먼저 본 발명에서는 브라인의 온도유지의 안정화와 냉동사이클의 압력상승을 방지하기 위하여 전자식 팽창밸브의 개도 상한과 하한을 설정하여 강제적으로 그 개도를 제한한다.Therefore, in the present invention, in order to stabilize the temperature maintenance of the brine and to prevent the pressure rise of the refrigeration cycle, the opening and closing limits of the electronic expansion valve are set to force the opening degree.

예를 들어, 전체 500 스텝의 전자식 팽창밸브(120a)의 최소 개도량을 50 스텝으로 설정하였을 때, 신호 출력이 0%인 경우 전자식 팽창밸브(120a)의 개도량은 설정된 최소 개도량에 의해서 실제로는 50 스텝의 개도가 열린다. For example, when the minimum opening amount of the electronic expansion valve 120a of all 500 steps is set to 50 steps, when the signal output is 0%, the opening amount of the electronic expansion valve 120a is actually set by the set minimum opening amount. Opens 50 steps.

마찬가지로, 전자식 팽창밸브(120a)의 최대 개도량을 250 스텝으로 설정하였을 때, 신호 출력이 100%인 경우 전자식 팽창밸브(120a)의 개도량은 설정된 최대 개도량에 의해서 실제로는 250 스텝의 개도가 열린다. Similarly, when the maximum opening amount of the electronic expansion valve 120a is set to 250 steps, when the signal output is 100%, the opening amount of the electronic expansion valve 120a is actually 250 opening degrees according to the set maximum opening amount. Open.

결론적으로, 신호 출력에 의해서 전자식 팽창밸브(120a)가 실제로 열리는 개도량은 최소 개도량과 최대 개도량의 범위 내에서 변동하게 된다.In conclusion, the opening amount of the electronic expansion valve 120a actually opened by the signal output varies within a range of the minimum opening amount and the maximum opening amount.

따라서, 상기한 바와 같이, 종래의 전자식 팽창밸브에서는 통상 전체 스텝 수에 대한 백분율로 볼 때, 예를 들어, 0 내지 10%의 범위(비동작 범위) 내에서는 팽창밸브가 열리지 않도록 세팅한 경우, 작은 신호 출력에 의해서는 전자식 팽창밸브가 열리지 않았지만, 본 발명에 의하면, 최소 개도량을 출하시 세팅 범위 이상으로 설정함으로써 작은 신호 출력에 대해서도 개도량이 변화되도록 할 수 있다.Accordingly, as described above, in the conventional electronic expansion valve, when the expansion valve is not set to open in the range of 0 to 10% (non-operation range), usually, as a percentage of the total number of steps, Although the electronic expansion valve was not opened by the small signal output, according to the present invention, the opening amount can be changed even with the small signal output by setting the minimum opening amount to be greater than or equal to the factory setting range.

또한, 본 발명에 따르면 전자식 팽창밸브의 최소 개도량과 최대 개도량이 설정된 후, 최소 개도량에 대응하는 스텝 수와 최대 개도량에 대응하는 스텝 수를 각각 하한과 상한 기준 스텝 수로 하여 신호 출력 백분율에 대응하여 100 등분으로 균등 분할한다.According to the present invention, after the minimum opening amount and the maximum opening amount of the electronic expansion valve are set, the number of steps corresponding to the minimum opening amount and the number of steps corresponding to the maximum opening amount are defined as the lower limit and the upper limit reference step, respectively, to the signal output percentage. Correspond equally into 100 equal parts.

이를 도 3을 참조하여 구체적으로 설명한다.This will be described in detail with reference to FIG. 3.

도 3은 본 발명에 따른 전자식 팽창밸브의 제어방법을 설명하는 도식도이다.3 is a schematic diagram illustrating a control method of an electronic expansion valve according to the present invention.

도 3a와 3b에 도시된 바와 같이, 예를 들어, 전체 500 스텝 수를 갖는 전자식 팽창밸브의 최소 개도량(하한)이 50 스텝에 대응하도록 설정하고, 최대 개도량(상한)이 250 스텝에 대응하도록 설정한다.As shown in Figs. 3A and 3B, for example, the minimum opening amount (lower limit) of the electronic expansion valve having a total number of 500 steps is set to correspond to 50 steps, and the maximum opening amount (upper limit) corresponds to 250 steps. Set to

이어, 도 3c와 같이, 최소 개도량과 최대 개도량 사이를 신호 출력 백분율에 대응하도록 100 등분한다.Next, as shown in FIG. 3C, the minimum opening amount and the maximum opening amount are divided equally by 100 to correspond to the signal output percentage.

따라서, 신호 출력 1%에 대해 2 스텝씩 변화하게 된다.Therefore, the signal output changes by 1 step for 1%.

결국, 도 3a에 도시된 바와 같이, 신호 출력 1%에 대해 5 스텝씩 변화하는 것과 비교하여 신호 출력에 대한 변화량이 적으며, 이는 전자식 팽창밸브의 개도에 대한 저온 상태로 팽창된 냉매 유량의 변화량이 적다는 것을 의미하고, 이에 따라 냉매 유량의 변화가 안정적으로 되어 결과적으로 냉매와 열교환되는 브라인의 온도 안정화를 구현할 수 있다.As a result, as shown in FIG. 3A, the amount of change in the signal output is small compared with the change in 5 steps for the signal output 1%, which is the amount of change in the refrigerant flow rate expanded at a low temperature with respect to the opening of the electronic expansion valve. This means that it is small, and accordingly, the change in the refrigerant flow rate becomes stable, and consequently, temperature stabilization of the brine heat exchanged with the refrigerant can be realized.

이러한 구성에 의하면, 스텝 수가 많은 전자식 팽창밸브를 사용하더라도 스텝 수가 적은 전자식 팽창밸브로 실질적으로 변경하는 효과를 가져오기 때문에 크게 문제가 되지 않는다.According to such a structure, even if the electronic expansion valve with a large number of steps is used, it does not become a big problem because it brings about the effect which changes substantially to the electronic expansion valve with a small number of steps.

또한, 이와 같이 스텝 수가 많은 전자식 팽창밸브를 적용함으로써 추후에 스텝 수를 증가하고자 하는 경우에도 쉽게 증가할 수 있다. 더욱이, 하나의 전자식 팽창밸브를 이용하여 다양한 스텝 수를 갖는 전자식 팽창밸브를 구현할 수 있다.In addition, by applying an electronic expansion valve having a large number of steps in this way, it is easy to increase the number of steps in the future. Furthermore, an electronic expansion valve having various step numbers can be implemented using one electronic expansion valve.

한편, 상기한 최소 개도량과 최대 개도량의 설정이나 스텝 수의 균등 분할 등은 칠러 장치에 설치되는 컨트롤러의 마이크로프로세서에 프로그램 형태로 내장된다.On the other hand, the setting of the minimum opening amount and the maximum opening amount, the equal division of the number of steps, and the like are incorporated in the form of a program in the microprocessor of the controller installed in the chiller device.

따라서, 필요에 따라 최소 개도량이나 최대 개도량을 변경하거나, 분할 스텝 수를 변경하고자 하는 경우에는 프로그램 수정 등을 통하여 달성할 수 있다.Therefore, when the minimum opening amount or the maximum opening amount is changed as necessary, or when the number of split steps is to be changed, it can be achieved through program modification or the like.

상기한 최소 개도량과 최대 개도량의 스텝 수는 일 예에 지나지 않으며, 다 양한 변경이 가능하다. 예를 들어, 브라인의 온도를 유지하는 과정, 상승 또는 하강하는 과정 등을 분리하여 최소 및 최대 개도량을 다르게 설정할 수 있다. 또한, 개도량의 상한과 하한 사이를 100 등분하지 않고 50 등분이나 40등분을 할 수도 있다.The number of steps of the minimum opening amount and the maximum opening amount is only an example, and various changes are possible. For example, the process of maintaining the temperature of the brine, the process of raising or lowering, etc. may be separated to set the minimum and maximum opening amounts differently. In addition, 50 equal parts or 40 equal parts can also be divided between the upper limit and the lower limit of the opening amount.

이상에서는 본 발명의 일 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경과 변형이 가능하다. 따라서, 본 발명의 범주는 상기한 실시예에 한정되어서는 안 되며 이하에 기술되는 청구범위에 의해 해석되어야 할 것이다.Although the above has been described with reference to one embodiment of the present invention, various changes and modifications are possible at the level of those skilled in the art. Therefore, the scope of the present invention should not be limited to the above embodiment but should be interpreted by the claims described below.

이상에서 설명한 바와 같이, 본 발명에 따르면 여러 가지의 효과를 갖는다.As described above, the present invention has various effects.

먼저, 온도식 팽창밸브를 전자식 팽창밸브로 대체함으로써, 종래 온도식 팽창밸브를 사용하여 야기되었던 부하응답성이 느리거나 저하되는 것을 개선하여 브라인에 부가되는 부하에 대해 신속하게 대응함으로써 브라인 온도의 안정화를 꾀할 수 있다.First, by replacing the thermal expansion valve with an electronic expansion valve, it is possible to improve the slow or deteriorated load response caused by using the conventional thermal expansion valve to quickly respond to the load added to the brine stabilization of the brine temperature Can be tried.

또한, 전자식 팽창밸브의 최소 개도량을 설정하고, 선택적으로 최대 개도량을 설정하고, 이들 사이를 신호 출력 백분율에 대응하여 일정하게 균등 분할함으로써 브라인의 온도 안정화를 구현할 수 있다.In addition, it is possible to implement temperature stabilization of the brine by setting the minimum opening amount of the electronic expansion valve, optionally setting the maximum opening amount, and evenly divides them evenly in correspondence to the signal output percentage.

더욱이, 신호 출력 백분율에 대응하여 일정하게 균등 분할함으로써 스텝 수가 많은 전자식 팽창밸브를 사용하더라도 스텝 수가 적은 전자식 팽창밸브로 실질적으로 변경하는 효과를 가져 오며, 스텝 수가 많은 전자식 팽창밸브를 적용함으로 써 추후에 스텝 수를 증가하고자 하는 경우에도 쉽게 증가할 수 있다.Moreover, evenly dividing the signal output percentage into a constant evenly results in an effect of substantially changing the electronic expansion valve with a small number of steps even if an electronic expansion valve with a large number of steps is used. It can be easily increased even when the number of steps is to be increased.

Claims (5)

반도체 공정설비용 칠러 장치에 적용되는 전자식 팽창밸브를 제어하는 방법으로서,A method of controlling an electronic expansion valve applied to a chiller device for semiconductor processing equipment, 상기 전자식 팽창밸브의 전체 스텝 수에 기초하여 최소 개도량에 대응하는 하한 스텝 수와 최대 개도량에 대응하는 상한 스텝수를 설정하는 단계;Setting a lower limit step number corresponding to a minimum opening amount and an upper limit step number corresponding to a maximum opening amount based on the total number of steps of the electronic expansion valve; 상기 설정된 상한 스텝 수와 하한 스텝수를 기준으로 균등 분할하는 단계; 및Dividing equally on the basis of the set upper limit step number and lower limit step number; And 상기 전자식 팽창밸브에 인가되는 신호 출력 백분율에 상기 균등 분할된 단위 스텝을 대응시키는 단계를 포함하는 것을 특징으로 하는 칠러 장치의 전자식 팽창밸브의 제어방법.And matching the equally divided unit steps to the signal output percentage applied to the electronic expansion valve. 청구항 1에 있어서,The method according to claim 1, 상기 균등 분할은 100 등분인 것을 특징으로 하는 칠러 장치의 전자식 팽창밸브의 제어방법.The equal division is 100 equal parts control method of the electronic expansion valve of the chiller device. 청구항 1에 있어서,The method according to claim 1, 상기 최소 개도량은 상기 전자식 팽창밸브의 출하시 세팅된 비동작 범위 이상으로 설정되는 것을 특징으로 하는 칠러 장치의 전자식 팽창밸브의 제어방법.The minimum opening amount is a control method of the electronic expansion valve of the chiller device, characterized in that the non-operation range set at the time of shipment of the electronic expansion valve. 청구항 1에 있어서,The method according to claim 1, 상기 각 단계는 상기 칠러 장치에 설치되는 컨트롤러에 실장되는 마이크로프로세서에 프로그램 형태로 구현되는 것을 특징으로 하는 칠러 장치의 전자식 팽창밸브의 제어방법.Wherein each step is implemented in the form of a program in a microprocessor mounted on a controller installed in the chiller device. 청구항 1에 있어서,The method according to claim 1, 상기 전자식 팽창밸브는 디지털화된 전기적 신호를 입력받아 스텝퍼 구동방식으로 0 내지 N 단계로 개도가 변화되는 밸브인 것을 특징으로 하는 칠러 장치의 전자식 팽창밸브의 제어방법.The electronic expansion valve is a control method of the electronic expansion valve of the chiller device, characterized in that the valve is changed in the opening degree in 0 to N steps by the stepper driving method receives the digitized electrical signal.
KR1020050114786A 2005-11-29 2005-11-29 Control method for electrnoic expansion valve KR100751726B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050114786A KR100751726B1 (en) 2005-11-29 2005-11-29 Control method for electrnoic expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050114786A KR100751726B1 (en) 2005-11-29 2005-11-29 Control method for electrnoic expansion valve

Publications (2)

Publication Number Publication Date
KR20070056305A KR20070056305A (en) 2007-06-04
KR100751726B1 true KR100751726B1 (en) 2007-08-24

Family

ID=38354085

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050114786A KR100751726B1 (en) 2005-11-29 2005-11-29 Control method for electrnoic expansion valve

Country Status (1)

Country Link
KR (1) KR100751726B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025615A (en) * 2013-08-09 2016-03-08 가부시키가이샤 케르쿠 Circulation cooling and heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048759A (en) * 1999-11-29 2001-06-15 윤종용 Method for controlling electric expansion valve of multi type air conditioner
KR100457569B1 (en) * 2002-11-22 2004-11-18 엘지전자 주식회사 a linear expansion valve's control method for a heat pump system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048759A (en) * 1999-11-29 2001-06-15 윤종용 Method for controlling electric expansion valve of multi type air conditioner
KR100457569B1 (en) * 2002-11-22 2004-11-18 엘지전자 주식회사 a linear expansion valve's control method for a heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025615A (en) * 2013-08-09 2016-03-08 가부시키가이샤 케르쿠 Circulation cooling and heating device
KR101716294B1 (en) 2013-08-09 2017-03-14 가부시키가이샤 케르쿠 Circulation cooling and heating device
US10629460B2 (en) 2013-08-09 2020-04-21 Kelk Ltd. Circulation cooling and heating device for controlling a temperature of a circulating fluid supplied to a chamber

Also Published As

Publication number Publication date
KR20070056305A (en) 2007-06-04

Similar Documents

Publication Publication Date Title
US5000009A (en) Method for controlling an electronic expansion valve in refrigeration system
US8996141B1 (en) Adaptive predictive functional controller
US9250001B2 (en) Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
US20180238580A1 (en) Air conditioner and its operating method
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
JP2008510953A (en) Compressor loading control
JPH0348428B2 (en)
KR20090054597A (en) Chiller apparatus for semiconductor process equipment
KR20080073475A (en) An air conditioner and control method of electronic expansion valve thereof
EP2515056A2 (en) Control algorithm for electronic expansion valve modulation
KR101901300B1 (en) Method for controlling of air conditioner
JP2007100699A (en) Method of controlling variable capacity compressor of air conditioner
WO2005090874A1 (en) Multi-variable control of refrigerant systems
KR100725720B1 (en) Chiller apparatus for semiconductor process device
TW201818039A (en) Temperature control method and maintenance method of circulating liquid using chiller with remote control and parameter control
KR101372097B1 (en) Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
KR101354474B1 (en) Chiller apparatus for working process equipment
US20090126378A1 (en) Chiller of etch equipment for semiconductor processing
KR20060131178A (en) Method to control electric valve of air conditioner
KR100505237B1 (en) Control method of air-conditioner
KR100751726B1 (en) Control method for electrnoic expansion valve
KR101450543B1 (en) Air conditioning system
KR100718824B1 (en) Chiller apparatus for semiconductor process device
KR101123839B1 (en) Method of controlling electronic expansion valve used in chiller apparatus for semiconductor process
KR100718825B1 (en) Chiller apparatus for semiconductor process device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120808

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130820

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140811

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160708

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180615

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 13