KR100747209B1 - Method for reducing heating time for Catalyst Gasoline Engine - Google Patents

Method for reducing heating time for Catalyst Gasoline Engine Download PDF

Info

Publication number
KR100747209B1
KR100747209B1 KR1020050121081A KR20050121081A KR100747209B1 KR 100747209 B1 KR100747209 B1 KR 100747209B1 KR 1020050121081 A KR1020050121081 A KR 1020050121081A KR 20050121081 A KR20050121081 A KR 20050121081A KR 100747209 B1 KR100747209 B1 KR 100747209B1
Authority
KR
South Korea
Prior art keywords
engine
catalyst
fuel
piston
heating time
Prior art date
Application number
KR1020050121081A
Other languages
Korean (ko)
Other versions
KR20070060900A (en
Inventor
유철호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020050121081A priority Critical patent/KR100747209B1/en
Publication of KR20070060900A publication Critical patent/KR20070060900A/en
Application granted granted Critical
Publication of KR100747209B1 publication Critical patent/KR100747209B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3818Common rail control systems for petrol engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

본 발명은, 실린더 포트의 중간에 분할벽이 형성되고 피스톤(70)의 상면에 오목하게 파인 오목 공동부를 구비한 가솔린 직접 분사 엔진에 있어서, 실린더의 상면에 흡입과정 중에 흡입되고 있는 공기에 전체 연료의 60 ~80%를 1차로 분사하여 연소실과 실린더 내에 전체적으로 희박 혼합기를 형성한 후, 피스톤(70)이 상사점(TDC) 근처에 도달할 때에, 즉 압축과정 말기에 나머지 20 ~ 40%을 피스톤 상면의 오목 공동부(72) 근방에 2차로 분사하여 혼합기를 형성하므로, 시동시 촉매 가열시기에 배기로 배출되는 발열량을 증가시켜서 촉매를 급속 가열함으로써 탄화수소를 저감시키는 효과가 있다.The present invention provides a gasoline direct injection engine having a concave cavity formed in a middle of a cylinder port and having a concave cavity recessed in an upper surface of a piston 70, wherein the entire fuel is supplied to the air being sucked in the suction process on the upper surface of the cylinder. 60 to 80% of the primary injection to form a lean mixer in the combustion chamber and cylinder as a whole, then when the piston 70 reaches near top dead center (TDC), that is, the remaining 20 to 40% at the end of the compression process Since the mixer is formed by secondary injection in the vicinity of the concave cavity 72 of the upper surface, there is an effect of reducing the hydrocarbons by rapidly heating the catalyst by increasing the amount of heat emitted to the exhaust during the catalyst heating time at startup.

Description

가솔린 직접분사 엔진의 촉매 가열시간 단축방법{Method for reducing heating time for Catalyst Gasoline Engine}Reduction of catalyst heating time in gasoline direct injection engines {Method for reducing heating time for Catalyst Gasoline Engine}

도1은 본 발명이 적용되는 가솔린 직접 분사 엔진의 구성도(실린더와 피스톤 제외),1 is a block diagram of a gasoline direct injection engine to which the present invention is applied (excluding a cylinder and a piston),

도2는 본 발명이 적용되는 가솔린 직접 분사엔진의 피스톤을 나타내는 사시도,2 is a perspective view showing a piston of a gasoline direct injection engine to which the present invention is applied;

도3은 본 발명에 의한 가솔린 직접 분사 엔진의 촉매 가열시간 단축방법의 설명도,3 is an explanatory diagram of a method for shortening the catalyst heating time of a gasoline direct injection engine according to the present invention;

도4는 본 발명의 방법에 따라 공기 흡입도, 점화시기 및 촉매온도를 시험한 그래프,Figure 4 is a graph of testing the air intake, ignition timing and catalyst temperature according to the method of the present invention,

도5는 본 발명의 방법에 따라 시험한 배기 중의 탄화수소 및 질소산화물 저감도를 나타내는 그래프이다.5 is a graph showing the reduction of hydrocarbons and nitrogen oxides in the exhaust tested according to the method of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

30 : 인젝터 70 : 피스톤30: injector 70: piston

72 : 오목 공동부72: concave cavity

본 발명은 가솔린 엔진의 촉매 가열시간 단축방법에 관한 것으로서, 보다 상세하게는 가솔린 직접 분사 엔진(GDI 엔진)의 촉매 가열시간 단축방법에 관한 것이다.The present invention relates to a method for shortening the catalyst heating time of a gasoline engine, and more particularly, to a method for shortening the catalyst heating time of a gasoline direct injection engine (GDI engine).

가솔린 엔진은 연료와 공기의 흡입방법에 따라 카뷰레터(carburetor) 엔진, MPI(Multi Point Injection) 엔진 및 GDI(Gasoline Direct Injection) 엔진으로 나눌 수 있다. Gasoline engines can be divided into carburetor engines, multi-point injection (MPI) engines, and gasoline direct injection (GDI) engines according to fuel and air intake methods.

카뷰레터 엔진은 연료와 연결된 노즐의 끝에 기화기가 결합된 엔진으로서, 흡기행정 때 일시적으로 진공이 되는 실린더 내부로 공기가 급하게 빨려 들어가면 기압이 낮아져 기화기를 통해 연료가 분무되는 엔진이다. 이러한 엔진은 효율이 떨어짐은 물론 유해한 배기가스도 많이 배출되므로, 엔진에 대한 전자제어기술이 발달하면서 현재는 거의 사용되지 않는다. The carburettor engine is an engine in which a carburetor is coupled to the end of a nozzle connected to fuel, and when the air is sucked into the cylinder which is temporarily vacuumed during the intake stroke, the air pressure is lowered to spray the fuel through the carburetor. These engines not only reduce efficiency but also emit a lot of harmful exhaust gases, and as the electronic control technology for the engine is developed, it is rarely used at present.

MPI 엔진은 기본적으로 엔진의 외부에 분사기(Injector)가 있는 엔진으로서, 각각의 흡입구 포트에 달린 이 분사기가 컴퓨터로 제어되며 엔진자체의 온도를 비롯한 엔진의 상태와 운전자의 의도, 즉 가속 페달을 밟는 힘의 세기 등을 고려하여 가솔린의 양을 결정해서 실린더 안으로 분사하는 엔진이다. MPI 엔진은 현재 가장 많이 사용되고 있는 엔진으로서, 카뷰레터 엔진의 경우 겨울철에 엔진이 얼어 있을 때 시동을 걸고 10분 정도 엔진을 가열할 필요가 있었으나, MPI 엔진의 경우 거의 곧바로 출발해도 엔진에 무리가 없다. 그러나 MPI 엔진은 실린더에 들어가기 전에 연료와 공기가 혼합되기 때문에 연료공급반응과 소비조절에 한계가 있다.The MPI engine is basically an engine with an injector on the outside of the engine. The injector at each inlet port is computer controlled, and the engine's state, including the temperature of the engine itself, and the driver's intention, that is, the accelerator pedal It is an engine that determines the amount of gasoline and injects it into the cylinder in consideration of the strength of the power. The MPI engine is currently the most used engine, and the carburettor engine needed to start the engine and heat it for about 10 minutes while the engine was frozen in winter, but the MPI engine could be started almost immediately. However, MPI engines are limited in fuel supply response and consumption control because they mix fuel and air before entering the cylinder.

GDI 엔진은 공기의 흡입에 맞추어 컴퓨터로 제어되는 노즐을 통해 연료분사량 및 연료분사시기를 정밀하여 조정하여 직접 가솔린을 분사하는 방식의 엔진으로서, 매우 희박한 혼합기를 공급하여 연소가 가능하게 함으로써 MPI 엔진보다 뛰어난 연료효율을 발휘할 수 있고, 효율적인 흡입구 구조로 인해 상대적으로 고압축비를 유지할 수 있기 때문에 MPI 엔진을 능가하는 고성능과 응답성을 얻을 수 있는 엔진이다. GDI 엔진은 연료의 저소비와 고출력을 동시에 만족시키는 차세대 엔진으로 각광받고 있다. The GDI engine is a type of engine that directly injects gasoline by precisely adjusting the fuel injection amount and fuel injection timing through a computer-controlled nozzle in response to the intake of air, and by supplying a very thin mixer to enable combustion, The engine can achieve high performance and responsiveness over MPI engines because it can show excellent fuel efficiency and maintain a relatively high compression ratio due to its efficient intake structure. The GDI engine is in the spotlight as a next-generation engine that simultaneously satisfies low fuel consumption and high power.

한편, 가솔린 엔진의 전체 배기 배출량의 90%는 시동과 시동 직후의 촉매 가열 전에 배출되므로 시동시의 배기 저감과 시동후의 촉매를 급격히 가열할 필요가 있다.On the other hand, since 90% of the total exhaust emission of the gasoline engine is discharged before the catalyst heating immediately after starting and starting, it is necessary to abate the exhaust gas at the start and to rapidly heat the catalyst after starting.

MPI 엔진의 경우, 초기 시동후 약 30초 동안 촉매 온도가 낮아서 정화효율이 매우 낮다. 낮은 온도의 촉매에서 탄화수소(HC)를 정화할 수 없으므로 30초 이내에 모두 배출된다. 탄화수소(HC) 저감을 위해서는 촉매를 빨리 가열하여 정화온도에 도달시켜서 탄화수소를 저감시키는 것이 필수적이다. MPI 엔진의 경우에는 연소 안정성이 확보되는 범위(약 ATDC 10도 정도)에서 점화시기를 지연시켜서 촉매를 가열시키나 촉매가열시간이 크게 단축되지 않아서 전체 운전 모드(mode) 배출량의 약 70% 정도가 30초 이내에 배출된다.For MPI engines, the catalyst temperature is low for about 30 seconds after initial start-up, resulting in very low purging efficiency. In low temperature catalysts, hydrocarbons (HC) cannot be purified and are therefore all discharged within 30 seconds. In order to reduce the hydrocarbon (HC) it is essential to reduce the hydrocarbon by heating the catalyst quickly to reach the purification temperature. In the case of MPI engines, the catalyst is heated by delaying the ignition time within the range of combustion stability (about ATDC 10 degrees), but since the catalyst heating time is not shortened, about 70% of the total operating mode emissions are 30 Emitted within seconds.

MPI 엔진의 경우, 포트에 연료를 분사하므로 분사된 연료가 분할벽 등에 벽습윤(wall wetting)을 발생시키므로 텀블 포트에서 분할벽 등을 사용한 적극적인 유동강화가 불가능하다. 그러므로 분할벽을 사용하지 않고 분무의 벽습윤(wall wetting)을 피하여 상류에 텀블 플랩(flap)을 사용하여 유동을 강화하지만, 텀블 유동은 밸브까지 도달하면서 강도가 크게 상쇄된다. In the case of the MPI engine, since the fuel is injected into the port, the injected fuel causes wall wetting to the partition wall, and thus, active flow strengthening using the partition wall and the like in the tumble port is impossible. Therefore, tumble flaps are used to enhance the flow upstream without the use of a dividing wall and to avoid wall wetting of the spray, but the tumble flow cancels the strength significantly as it reaches the valve.

또한, 포트에서 연료를 분사하여 실린더 내로 도입하는 균일 혼합기를 사용함으로 인하여 성층 연소에 비하여 플러그 주위에 혼합기 농도가 린(lean)상태가 되므로 일정각도 이상의 TDC 이후로의 점화시기 지연은 연소불안을 일으킨다. 미점화(misfiring) 발생시에는 오히려 미연의 탄화수소(HC)가 크게 증가하므로 연소 안정성이 확보되는 한도내에서 점화시기를 지연시킨다. 이러한 제약 때문에 초기 30초 이내의 탄화수소(HC) 저감량이 부족하여 원가가 증가되는데 촉매 볼륨이나 귀금속량의 증대 등으로 대응하고 있는 실정이다.In addition, due to the use of a homogeneous mixer that injects fuel from the port and introduces it into the cylinder, the concentration of the mixer around the plug is lean compared to stratified combustion, resulting in delayed ignition timing after a certain angle of TDC. . In the case of misfiring, unburned hydrocarbons (HC) are greatly increased, thus delaying the ignition timing within the limit of combustion stability. Due to these limitations, the cost of hydrocarbons is reduced due to the shortage of hydrocarbon (HC) within the initial 30 seconds.

따라서, 본 발명은 상기 문제점을 해결하기 위해 이루어진 것으로서, 본 발명의 목적은 시동시 촉매 가열시기에 배기로 배출되는 발열량을 증가시켜서 촉매를 급속 가열함으로써 탄화수소를 저감시키는 가솔린 직접분사 엔진의 촉매 가열시간 단축방법을 제공하는데 있다.Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to increase the calorific value discharged to the exhaust gas during the start-up of the catalyst so that the catalyst heating time of the gasoline direct injection engine to reduce the hydrocarbon by heating the catalyst rapidly To provide a shortening method.

본 발명에 의한 가솔린 직접 분사 엔진의 촉매 가열시간 단축방법은, 분할벽을 매개로 상부통로와 하부통로가 분할된 흡기 포트에 상기 하부통로를 개폐가능하게 조절하도록 설치된 VCM 기구와, 피스톤의 상면에 오목하게 파인 오목 공동부를 구비한 가솔린 직접 분사 엔진에 있어서, 시동 초기에 상기 VCM 기구를 작동시켜 상기 흡기 포트의 상부통로를 통해 연소실내로 유입되는 흡기에 강한 텀블유동을 부여하고, 흡기의 과정중에 분사되는 전체 연료의 60 ~80%를 1차로 분사하여 연소실내에 희박 혼합기를 형성하며, 압축과정 말기에 전체 연료중 나머지 20 ~ 40%를 2차로 상기 피스톤 상면의 오목 공동부 근방에 분사하여 연소실내에 희박 혼합기를 형성하는 것을 특징으로 한다.The method for shortening the catalyst heating time of the gasoline direct injection engine according to the present invention includes a VCM mechanism installed to open and close the lower passage in an intake port in which the upper passage and the lower passage are divided through a partition wall, and on the upper surface of the piston. In a gasoline direct injection engine having a concave recessed cavity, the VCM mechanism is operated at the beginning of startup to impart a strong tumble flow to the intake air flowing into the combustion chamber through the upper passage of the intake port, and during the intake process. 60 to 80% of the total fuel injected is first injected to form a lean mixer in the combustion chamber, and at the end of the compression process, the remaining 20 to 40% of the total fuel is injected to the vicinity of the concave cavity of the upper surface of the piston for second combustion. It is characterized by forming a lean mixer in the room.

삭제delete

이하, 본 발명에 의한 가솔린 직접 분사 엔진의 촉매 가열시간 단축방법에 대해 상세히 설명한다.Hereinafter, a method of shortening the catalyst heating time of the gasoline direct injection engine according to the present invention will be described in detail.

도1은 본 발명이 적용되는 GDI 엔진의 시스템도이다.(도면에서 실린더와 피스톤은 도시되어 있지 않음) 도시한 바와 같이 GDI 엔진은 고압 연료계(10)와 저압 연료계(20)가 인젝터(30)에 연결되어 있으며, 상기 인젝터(30)는 ECU(40)에 의해 제어되는 인젝터 드라이브(50)를 통해 엔진의 운전상황에 부합하도록 이상적인 분사모양(소용돌이 모양)을 만들게 된다. 상기 고압 연료계(10)의 고압펌프(12) 및 고압조절기(14), 상기 저압 연료계(20)의 저압펌프(22) 및 저압조절기(24)는 ECU(40)의 제어에 의해 필요한 양의 연료를 압축하여 연료 레일(60)에 고압, 저압의 연료를 형성한다. Fig. 1 is a system diagram of a GDI engine to which the present invention is applied. (The cylinder and the piston are not shown in the drawing.) As shown, the GDI engine includes a high pressure fuel gauge 10 and a low pressure fuel gauge 20 injector. 30 is connected to the injector 30, and the injector 30 is controlled by the ECU 40 to create an ideal injection shape (swirl shape) to match the operating conditions of the engine. The high pressure pump 12 and the high pressure regulator 14 of the high pressure fuel gauge 10, the low pressure pump 22 and the low pressure regulator 24 of the low pressure fuel gauge 20 are required by the control of the ECU 40. Fuel is compressed to form high-pressure and low-pressure fuel in the fuel rail 60.

한편, 본 발명이 적용되는 GDI 엔진은, 흡입시 실린더 내에 텀블 유동을 형성하고 포트의 중간에 분할벽(split wall)을 갖고 포트를 상하로 나누는 텀블 포트를 구비하며, 흡기 매니폴드와 헤드의 포트 입구 사이에 설치한 스터브 메니폴드(stub manifold)에 설치되어서 시동 초기의 촉매 가열모드로의 운전시 분할벽(split wall) 하부에 있는 포트의 하면을 닫아 연소실내로 유입되는 흡기의 유동이 상부에 위치한 통로로만 유동되게 하는 VCM(variable control module, 가변 제어 모듈) 기구를 구비하는 구조를 예로 들어 설명한다.On the other hand, the GDI engine to which the present invention is applied has a tumble port which forms a tumble flow in the cylinder upon inhalation, has a split wall in the middle of the port, and divides the port up and down, and the port of the intake manifold and the head. It is installed in the stub manifold between the inlets, and closes the lower surface of the port under the split wall during the operation of the catalyst heating mode at the beginning, so that the intake air flow into the combustion chamber is located at the top. A structure having a variable control module (VCM) mechanism for allowing only flow through a passage will be described as an example.

상기 텀블 포트 내에 있는 분할벽(split wall)과 VCM 기구의 닫힘작동으로 흡기의 유동을 강화시켜서 연소를 촉진(화염전파속도 증대, 점화지연 및 주연소기간 단축)하여 연소 안정성을 증대시킨다. 그리고, GDI 엔진의 피스톤(70)은 도2에 도시한 바와 같이 그 상면에 숟가락 모양으로 파인 오목 공동부(72: shallow bowl)를 구비하여 연소실내로 유입된 흡기에 대한 텀블유동을 강화시킴과 더불어 실린더 헤드와의 사이에서 연소실을 형성하게 되는데, 분할 분사(split injetion) 후반부에 분사된 연료가 점화 플러그의 주위에서 배기과정 중에도 안정된 가연 혼합기를 형성하게 된다.The closing operation of the split wall and the VCM mechanism in the tumble port enhances the flow of intake air to promote combustion (increase flame propagation speed, ignition delay and main combustion period) to increase combustion stability. In addition, the piston 70 of the GDI engine has a shallow bowl 72 recessed in its upper surface as shown in FIG. 2 to enhance tumble flow for intake air introduced into the combustion chamber. In addition, a combustion chamber is formed between the cylinder head, and the fuel injected in the latter part of the split injetion forms a stable combustible mixer even during the exhaust process around the spark plug.

이와 같이 구성된 GDI 엔진에서, 도3에 도시한 바와 같이, 흡입과정에서는 VCM 기구를 닫아 분할벽(split wall)의 하면을 막아서 강한 텀블 유동으로 상부의 통로를 통해서만 공기를 연소실 내부로 유입시킨다. In the GDI engine configured as described above, as shown in FIG. 3, in the suction process, the VCM mechanism is closed to block the lower surface of the split wall so that air is introduced into the combustion chamber only through the upper passage with strong tumble flow.

흡입과정 중에 흡입되고 있는 공기에 대해 전체 연료의 60 ~80%(70% 일 경우, 전체 공연비 14.5 인 경우 1차분사 공연비는 21임)를 1차로 분사하여 연소실내에 전체적으로 희박 혼합기를 형성한다. 이로서 벽습윤(wall wetting)이 최소화되고 압축행정의 후반부 과정에서 형성되는 연소실에서 연료의 연소가 이루어지게 된다.60-80% of the total fuel (70%, the first injection air-fuel ratio is 21 for the total air-fuel ratio 14.5 for 21%) is injected into the inhalation process to form a lean mixer as a whole in the combustion chamber. This minimizes wall wetting and results in the combustion of fuel in the combustion chamber formed during the latter part of the compression stroke.

다음에, 피스톤(70)이 상사점(TDC) 근처에 도달할 때에, 즉 압축과정 말기에 나머지 20 ~ 40%(30%일 경우, 전체 공연비 14.5인 경우 2차분사 공연비는 48임)을 피스톤 상면의 오목 공동부(72)의 근방에 2차로 분사하여 점화 플러그 주변만 공연비 연소가 안정되게 하는 혼합기를 형성한다. 즉, 점화 플러그 주위에 성층의 혼합기를 형성한다. 이러한 혼합기는 피스톤이 하방향으로 이동하는 팽창과정 초반에도 연소가 가능한 혼합기를 유지한다. 그러므로 팽창과정에 연소가 안정되는 점화지연시기가 확대된다. 점화 후에 화염이 초기에 국부적으로 점화 플러그 주위의 가연 혼합기에서 형성되어서 가장자리의 혼합기까지 전파된다.Next, when the piston 70 reaches near the top dead center (TDC), i.e. at the end of the compression process, the remaining 20-40% (30%, the second injection air-fuel ratio is 48 when the total air-fuel ratio is 14.5) Secondary injection near the concave cavity 72 of the upper surface forms a mixer in which the air-fuel ratio combustion is stabilized only in the vicinity of the spark plug. That is, a stratified mixer is formed around the spark plug. Such a mixer maintains a combustible mixer early in the expansion process in which the piston moves downward. Therefore, the ignition delay time during which the combustion is stabilized during the expansion process is extended. After ignition, flames initially form locally in the combustible mixer around the spark plug and propagate to the edge mixer.

점화시기의 지연으로 동일한 토오크 베이스(torque base)에서 흡입되는 공기량을 증가시킬 수 있으므로 동일 공연비에서 연료의 전체 발열량이 크게 증가하게 된다. 즉, 안정된 연소로 매우 크게 점화시기 지각이 가능하고 배기에서의 발열량 증가로 도4의 그래프에서 표시한 바와 같이, 촉매의 전단부 온도가 운전시작 후 약 2초부터 크게 증가하여 15초 후에는 기존에 비해 약 400℃ 정도 차이가 난다. The delay of the ignition timing can increase the amount of air sucked in the same torque base, so that the total amount of heat generated by the fuel is greatly increased at the same air-fuel ratio. That is, it is possible to perceive the ignition timing very largely with stable combustion and increase the calorific value in the exhaust, as shown in the graph of Fig. 4, the temperature of the front end of the catalyst increases greatly from about 2 seconds after the start of operation, Compared to about 400 ℃.

이러한 촉매로 도입되는 많은 양의 발열량은 초기 시동후 차가운 촉매를 빠는 시간내에 정화가 가능한 온도로 가열시켜서 엔진에서 배출되는 탄화수소(HC)를 촉매에서 대폭적으로 저감할 수 있다. A large amount of calorific value introduced into the catalyst can be heated to a temperature that can be purified within the time to suck the cold catalyst after the initial start-up can significantly reduce the hydrocarbon (HC) emitted from the engine in the catalyst.

도5에 표시한 바와 같이, 본 발명에 의하면, 시동시 촉매가열시기에 배기로 배출되는 발열량을 증가시켜서 촉매를 빠른 시간(시동후 15초부터 30초)내에 가열시켜서 초기 시동 60초 이내에 배출되는 탄화수소(모드 운전 중 90% 정도 배출)를 40%이상 저감할 수 있고, 또한 점화 시기 변경의 자유도를 활용하여 모드운전에서 점화시기를 약간 당겨서 탄화수소(HC) 배출량을 조금 높이면서 40% 정도의 질소산화물(NOx) 저감이 가능하다. As shown in Fig. 5, according to the present invention, the amount of heat generated by the exhaust gas at the time of heating the catalyst is increased so that the catalyst is heated within a short time (15 to 30 seconds after startup) to be discharged within the initial 60 seconds. It is possible to reduce the hydrocarbon (90% emission during the mode operation) by more than 40%, and also take advantage of the freedom of changing the ignition timing, and slightly increase the hydrocarbon (HC) emission by slightly pulling the ignition timing during the mode operation. Oxide (NOx) reduction is possible.

도4 및 도5는 1차 연료분사시에는 전체 연료의 70%를 분사하고, 2차 연료분 사시에는 전체 연료의 30%를 분사하여 시험한 그래프이다.4 and 5 are graphs in which 70% of the total fuel is injected during the primary fuel injection and 30% of the total fuel is injected during the secondary fuel injection.

본 발명에 의한 가솔린 직접 분사 엔진의 촉매 가열시간 단축방법에 의하면, 시동 초기의 촉매 가열모드로의 운전시 연소후 배출되는 배기의 발열량을 단시간내에 증가시켜 촉매를 급속 가열함으로써 탄화수소를 저감시키며, 촉매 부피의 감소 및 셀(cell) 크기 감소 등으로 배압(약 5Kpa 정도 이내)이 저감되어 성능이 향상되고, 차량에서 배기계 설치 등의 자유도가 증가한다. 그리고 종래 사용하던 촉매 볼륨이나 귀금속량의 증대를 줄이므로 원가가 절감하게 된다. According to the method of shortening the catalyst heating time of the gasoline direct injection engine according to the present invention, the heating value of the exhaust gas discharged after combustion during operation in the catalyst heating mode at the initial stage of startup is increased within a short time to rapidly heat the catalyst to reduce the hydrocarbon, and the catalyst Back pressure (within about 5 Kpa) is reduced due to volume reduction and cell size reduction, thereby improving performance, and increasing freedom of installing an exhaust system in a vehicle. In addition, the cost is reduced because the increase in the amount of catalyst or precious metal used in the past is reduced.

Claims (2)

분할벽을 매개로 상부통로와 하부통로가 분할된 흡기 포트에 상기 하부통로를 개폐가능하게 조절하도록 설치된 VCM 기구와, 피스톤의 상면에 오목하게 파인 오목 공동부를 구비한 가솔린 직접 분사 엔진에 있어서, In a gasoline direct injection engine having a VCM mechanism provided to open and close the lower passage in an intake port in which the upper passage and the lower passage are divided through a partition wall, and a concave cavity recessed in an upper surface of the piston. 시동 초기에 상기 VCM 기구를 작동시켜 상기 흡기 포트의 상부통로를 통해 연소실내로 유입되는 흡기에 강한 텀블유동을 부여하고, 흡기의 과정중에 분사되는 전체 연료의 60 ~80%를 1차로 분사하며, 압축과정 말기에 전체 연료중 나머지 20 ~ 40%를 2차로 상기 피스톤 상면의 오목 공동부 근방에 분사하는 것을 특징으로 하는 가솔린 직접 분사 엔진의 촉매 가열시간 단축방법.By operating the VCM mechanism at the beginning of the start to give a strong tumble flow to the intake air flowing into the combustion chamber through the upper passage of the intake port, injecting 60 ~ 80% of the total fuel injected during the intake process, A method of shortening the catalyst heating time of a gasoline direct injection engine, characterized in that the remaining 20 to 40% of the total fuel at the end of the compression process in the second injection near the concave cavity of the upper surface of the piston. 삭제delete
KR1020050121081A 2005-12-09 2005-12-09 Method for reducing heating time for Catalyst Gasoline Engine KR100747209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050121081A KR100747209B1 (en) 2005-12-09 2005-12-09 Method for reducing heating time for Catalyst Gasoline Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050121081A KR100747209B1 (en) 2005-12-09 2005-12-09 Method for reducing heating time for Catalyst Gasoline Engine

Publications (2)

Publication Number Publication Date
KR20070060900A KR20070060900A (en) 2007-06-13
KR100747209B1 true KR100747209B1 (en) 2007-08-07

Family

ID=38356855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050121081A KR100747209B1 (en) 2005-12-09 2005-12-09 Method for reducing heating time for Catalyst Gasoline Engine

Country Status (1)

Country Link
KR (1) KR100747209B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990071403A (en) * 1998-02-20 1999-09-27 와다 아끼히로 Compression-ignition internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990071403A (en) * 1998-02-20 1999-09-27 와다 아끼히로 Compression-ignition internal combustion engine

Also Published As

Publication number Publication date
KR20070060900A (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4472932B2 (en) Engine combustion control device
JP4075588B2 (en) diesel engine
US20130104850A1 (en) Multi-fuel pre-mixed combustion system of internal combustion engine
US20110060514A1 (en) Fuel injection control apparatus of internal combustion engine
JP2001248484A (en) Direct cylinder injection engine, control device and controlling method
KR20010024363A (en) Catalyst light-off method and device for direct injection engine
KR101745005B1 (en) Diesel - Gasoline Complex Engine
CN110318891B (en) Multi-mode combustion organization method for natural gas/diesel dual-fuel engine
US20130192561A1 (en) Ignition delay period estimation apparatus and ignition time control apparatus for internal combustion engine
KR20110062146A (en) Gasoline direct injection engine
CN109268170B (en) Composite gas supply dual-fuel engine system with double needle valve oil injector and combustion method
JP2003120300A (en) Gasoline direct injection engine
CN211666804U (en) Pre-combustion system with air-entraining nozzle and internal combustion engine thereof
CN110953059A (en) Pre-combustion system with air entrainment nozzle, internal combustion engine and pre-combustion control method
CN110953067B (en) Engine and double-jet combustion method thereof
JP2001263067A (en) Compressed self-ignition type gasoline engine
JP2007051549A (en) Fuel injection valve and direct injection engine provided with it
KR100747209B1 (en) Method for reducing heating time for Catalyst Gasoline Engine
JP2002266643A (en) Engine, its operating method and auxiliary combustion chamber mechanism
JP2007192235A (en) Control device and method for spark ignition internal combustion engine
JPH07332140A (en) Compressive ignition type internal combustion engine
JP4145177B2 (en) Engine and operation method thereof
JP2003106195A (en) Control system for spark ignition type direct injection engine
JP2003120391A (en) Compression ignition internal combustion engine
CN111456858B (en) Natural gas engine fuel gas injection method based on&#39; previous cycle effect

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190729

Year of fee payment: 13