KR100742735B1 - Silicon electrode and manufacturing method for sodium battery by using the same - Google Patents

Silicon electrode and manufacturing method for sodium battery by using the same Download PDF

Info

Publication number
KR100742735B1
KR100742735B1 KR1020060024081A KR20060024081A KR100742735B1 KR 100742735 B1 KR100742735 B1 KR 100742735B1 KR 1020060024081 A KR1020060024081 A KR 1020060024081A KR 20060024081 A KR20060024081 A KR 20060024081A KR 100742735 B1 KR100742735 B1 KR 100742735B1
Authority
KR
South Korea
Prior art keywords
sodium
battery
silicon
electrolyte
manufacturing
Prior art date
Application number
KR1020060024081A
Other languages
Korean (ko)
Inventor
김기원
안주현
남태현
안효준
조권구
조규봉
김태범
류호석
신원철
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020060024081A priority Critical patent/KR100742735B1/en
Application granted granted Critical
Publication of KR100742735B1 publication Critical patent/KR100742735B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided are a sodium battery, which is more inexpensively manufactured than the conventional lithium battery, has a high capacity and an improved handling property, and is applicable to a wide range of battery systems, and a manufacturing method thereof. The sodium battery comprises: a solid-state sodium positive electrode; an electrolyte consisting of 10-98wt% of an ion conductor, 1-3wt% of a sodium salt, and 1-88wt% of a glymic solvent; and a silicon negative electrode into which sodium ions are electrochemically inserted. The sodium battery is a Si/NaMnO2 battery, Si/NaS battery, or Si/NaFeS battery. The electrolyte is a polymeric electrolyte or solid electrolyte.

Description

나트륨전지용 실리콘 전극 및 이의 제조방법{Silicon electrode and manufacturing method for sodium battery by using the same}Silicon electrode and manufacturing method for sodium battery by using the same}

도 1은 박막으로 제조된 실리콘과 나트륨을 사용했을 때 전기화학적 삽입에 관한 실험결과를 나타낸 그래프이다.Figure 1 is a graph showing the experimental results of the electrochemical insertion when using a thin film made of silicon and sodium.

도 2는 박막으로 제조된 실리콘에 나트륨 이온이 전기화학적으로 삽입함으로써 나타나는 반응에 관한 CV(cycle voltametry) 그래프이다. FIG. 2 is a cycle voltametry (CV) graph of a reaction caused by electrochemical insertion of sodium ions into a thin film silicon.

도 3은 박막으로 제조된 실리콘에 나트륨 이온이 전기화학적으로 삽입할 때의 사이클 그래프이다.3 is a cycle graph when sodium ions are electrochemically inserted into silicon made of a thin film.

본 발명은 나트륨전지용 실리콘 전극 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 실리콘에 나트륨 이온이 전기화학적으로 삽입되고 탈리되는 특성을 이용하여 실리콘을 나트륨 전지의 음극으로 사용하여 제조된 전지로서 특별히, Si/NaMnO2 전지, Si/NaS, Si/NaFeS 등의 나트륨 전지에 관한 것이다.The present invention relates to a silicon electrode for a sodium battery and a method for manufacturing the same, and more particularly, a battery manufactured by using silicon as a negative electrode of a sodium battery by using the characteristic that the sodium ions are electrochemically inserted and detached in the silicon, A sodium battery such as a Si / NaMnO 2 battery, Si / NaS, Si / NaFeS, and the like.

최근 휴대용 전자기기의 급속한 발전과 환경문제와 관련하여 이들 제품의 동 력원으로 사용되는 이차전지 성능개선에 대한 요구가 크게 증가하고 있다.Recently, with the rapid development of portable electronic devices and environmental problems, the demand for improving the performance of secondary batteries used as a power source of these products is increasing greatly.

박막으로 제조된 실리콘 또는 순수한 실리콘, 또는 현재 음극으로 사용하고 있는 재료에 대해 전기화학적인 삽입에 관한 연구가 많이 진행되고 있다. 그 중에서 리튬은 그에 대한 용량이 커서 많은 연구가 진행되고 있다.There is a lot of research on the electrochemical intercalation of silicon or pure silicon made of thin film, or the material currently used as a cathode. Among them, lithium has a large capacity, and much research is being conducted.

하지만 나트륨 이온을 실리콘에 삽입하는 것에 관한 연구개발은 아직까지 진행된바 없다.However, research and development on the insertion of sodium ions into silicon has not been carried out yet.

나트륨 금속은 리튬에 비해 가격이 저렴하고 리튬과 비슷한 -2.71 V의 표준 환원전위를 가짐으로써 높은 용량을 가져 이것을 이용하면 2 V이상의 셀 전압을 얻을 수 있을 뿐만 아니라 자원이 풍부하고 독성이 없다는 큰 장점을 가지고 있어 매력적인 재료로 각광받고 있다. 그러나 나트륨 금속은 폭발성 등 취급이 용이하지 않다는 단점을 가진다. Sodium metal is cheaper than lithium and has a standard reduction potential of -2.71 V similar to that of lithium, which has a high capacity, making it possible not only to obtain cell voltages above 2 V, but also rich in resources and non-toxic. It has a spotlight as an attractive material. However, sodium metal has the disadvantage that it is not easy to handle such as explosive.

이에 본 발명자들은 상기와 같은 점을 고려하여 연구한 결과, 나트륨 이온을 실리콘에 전기화학적으로 삽입시킴으로써 다른 전지시스템에 응용할 수 있음을 발견하고 실리콘 등 기존의 음극으로 사용되는 재료에 나트륨 이온을 전기화학적으로 삽입시켜 유황 등 다른 양극물질과 반응시킴으로써 취급이 용이하지 않다는 단점까지 극복할 수 있는 신규의 나트륨전지용 실리콘 전극 및 이의 제조방법을 제공함으로써 본 발명을 완성하였다.Accordingly, the present inventors have studied in view of the above, and found that the present invention can be applied to other battery systems by electrochemically inserting sodium ions into silicon. The present invention has been completed by providing a novel sodium battery silicon electrode and a method of manufacturing the same, which can overcome the disadvantage of being not easy to handle by inserting and reacting with other cathode materials such as sulfur.

따라서, 본 발명은 나트륨전지용 실리콘 전극 및 이의 제조방법을 제공하는 것을 그 목적으로 한다.Accordingly, an object of the present invention is to provide a silicon electrode for sodium batteries and a method of manufacturing the same.

본 발명의 상기 목적은 나트륨 금속과 박막으로 제조되어진 실리콘을 사용하여 기존의 나트륨 전지시스템에서 문제점으로 지적되어 온 나트륨의 취급에 관한 문제점을 실리콘에 나트륨 이온을 전기화학적으로 삽입함으로써 달성하였다.The above object of the present invention has been achieved by electrochemically inserting sodium ions into silicon using a sodium metal and a silicon made of a thin film, the problem of handling sodium which has been pointed out as a problem in conventional sodium battery systems.

이하 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention.

본 발명은 나트륨 이온을 실리콘에 전기화학적으로 삽입하는 것으로써 고상의 나트륨 양극; 이온전도체, 나트륨염, 글리미계 용매로 이루어진 전해질; 및 고상의 실리콘 음극으로 이루어진다.The present invention provides a solid-state sodium anode by electrochemically inserting sodium ions into silicon; An electrolyte consisting of an ionic conductor, a sodium salt, and a glycy solvent; And a solid silicon cathode.

상기 전해질의 조성비는 이온전도체 10-98 wt%, 나트륨염 1-3 wt% 및 글리미계 용매 1-88 wt%로 이루어진다. 상기의 전해질의 조성비의 범위를 벗어날 경우, 전해질의 이온전도도가 낮게 나타나는 단점이 발생할 수 있다. The composition ratio of the electrolyte is composed of 10-98 wt% of an ion conductor, 1-3 wt% of sodium salt, and 1-88 wt% of a glycy solvent. If it is out of the range of the composition ratio of the electrolyte, a disadvantage may occur that the ionic conductivity of the electrolyte is low.

상기 나트륨 양극은 나트륨 금속, 나트륨 분말, 나트륨 합금, 나트륨 화합물, 나트륨 이온을 함유한 카본으로 이루어진 군으로부터 선택되어 사용될 수 있다.The sodium anode may be selected from the group consisting of sodium metal, sodium powder, sodium alloy, sodium compound, carbon containing sodium ions.

본 발명에서 상기 나트륨전지는 Si/NaNnO2 전지, Si/NaS 전지 또는 Si/NaFeS 전지임을 특징으로 한다.In the present invention, the sodium battery is characterized in that the Si / NaNnO 2 battery, Si / NaS battery or Si / NaFeS battery.

본 발명에서 상기 전해질은 폴리머 전해질 또는 고체 전해질이고, 고상의 나트륨 양극은 분말 또는 벌크 형태인 것이 바람직하다.In the present invention, the electrolyte is a polymer electrolyte or a solid electrolyte, and the solid sodium anode is preferably in powder or bulk form.

본 발명에서 상기 실리콘 음극은 분말, 박막 또는 벌크 형태인 것이 바람직 하다.In the present invention, the silicon anode is preferably in the form of powder, thin film or bulk.

실리콘 박막의 제조는 스퍼터링 장비의 기판에 구리 호일을 부착하고, 니켈 타겟을 RF 스퍼터링 에 장착하고 챔버를 진공상태로 만든다.The manufacture of the silicon thin film attaches a copper foil to the substrate of the sputtering equipment, mounts a nickel target to the RF sputtering and vacuums the chamber.

이때 진공도가 2×10-5 ~ 5×10-5 Torr가 되면 아르곤 가스를 주입하여 진공도가 5×10-3~2×10-2 Torr가 되면 RF 스퍼터링을 시작한다.At this time, argon gas is injected when the vacuum degree is 2 × 10 -5 to 5 × 10 -5 Torr, and RF sputtering is started when the vacuum degree is 5 × 10 -3 to 2 × 10 -2 Torr.

그리고 상기와 동일한 방법으로 실리콘 타겟을 장착하고 동일한 진공도에서 실리콘의 증착을 실시한다.Then, the silicon target is mounted in the same manner as described above and the silicon is deposited at the same vacuum degree.

이하, 본 발명을 실시예에 의해 상세히 설명하나, 본 발명의 단순한 변형 또는 변경이 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Hereinafter, the present invention will be described in detail by way of examples, but simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes are included in the scope of the present invention. It can be seen as.

실시예Example 1 : 나트륨 이온을 실리콘에 삽입시키는 전해질의 제조 1: Preparation of Electrolyte to Insert Sodium Ion into Silicon

나트륨염으로 나트륨니트레이트와 글리미계 용매로 테트라에틸렌을 중량비 1 : 10 wt%로 적정하고, 이것을 혼합기에 넣은 후, 3시간 동안 교반하여 균질하게 혼합된 점성의 액상을 제조하였다. 상기의 방법은 아르곤 가스가 충진된 글로브 박스에서 실시하였다.Sodium nitrate with sodium salt and tetraethylene were titrated at a weight ratio of 1:10 wt% with a glycy solvent, and this was added to a mixer and stirred for 3 hours to prepare a homogeneously mixed viscous liquid. The method was carried out in a glove box filled with argon gas.

실시예Example 2 : 나트륨 이온을 삽입시키기 위한 박막실리콘의 실리콘 제작 2: Silicon production of thin film silicon to insert sodium ions

스퍼터링 장비의 기판에 구리 호일을 부착하고, 니켈 타겟을 RF 스퍼터링 에 장착하고 챔버를 진공상태로 만들었다.A copper foil was attached to the substrate of the sputtering equipment, a nickel target was mounted on the RF sputtering and the chamber was vacuumed.

이때 진공도가 2×10-5 ~ 5×10-5 Torr가 되면 아르곤 가스를 주입하여 진공도가 5×10-3~2×10-2 Torr가 되면 RF 스퍼터링을 시작하였다.At this time, argon gas was injected when the vacuum degree was 2 × 10 −5 to 5 × 10 −5 Torr, and RF sputtering was started when the vacuum degree was 5 × 10 −3 to 2 × 10 −2 Torr.

그리고 상기와 동일한 방법으로 실리콘 타겟을 장착하고 동일한 진공도에서 실리콘을 증착을 실시하였다.In the same manner as above, a silicon target was mounted and silicon was deposited at the same degree of vacuum.

실시예Example 3 : 나트륨 이온이 실리콘에 삽입되는 전기화학적 특성 조사 3: Investigation of electrochemical properties of sodium ions into silicon

아르곤 가스의 분위기에서 나트륨/전해질/실리콘 순서로 적층하여 나트륨/실리콘으로 구성하였다. 상기 전해질은 실시예 1에서 제조한 전해질을 사용하였고, 나트륨과 실리콘 전극은 실시예 2에서 제조한 전극을 사용하였다. 나트륨 이온이 실리콘에 삽입되는 전기화학적 특성을 알아보기 위하여 전기화학적 테스트를 실시하였다. 실험조건은 상온에서 휴지시간을 6시간 동안 유지한 다음, 방전 전류 밀도를 5㎂/g-Silicon 전압구간은 2.0V~0.01V로 하였다.Laminated in the order of sodium / electrolyte / silicon in the atmosphere of argon gas was composed of sodium / silicon. As the electrolyte, the electrolyte prepared in Example 1 was used, and the sodium and silicon electrodes used the electrode prepared in Example 2. Electrochemical tests were conducted to determine the electrochemical properties of sodium ions in silicon. The experimental conditions were maintained for 6 hours at room temperature, the discharge current density was set to 5V / g-Silicon voltage range of 2.0V ~ 0.01V.

도 1은 나트륨 이온이 실리콘에 전기화학적으로 삽입특성에 관한 실험 그래프로서 상온에서 788 mAh/g-Silicon의 방전용량을 얻었다.Figure 1 is an experimental graph of the electrochemical insertion characteristics of sodium ions into silicon to obtain a discharge capacity of 788 mAh / g-Silicon at room temperature.

실시예Example 3 : 나트륨 이온이 실리콘에 전기화학적으로 삽입될 때 반응 3: reaction when sodium ions are electrochemically inserted into silicon

나트륨 금속에 실리콘을 전극재료로 사용한 실험의 구성은 실시예 2에 따라 제조하였다. The configuration of the experiment using silicon as the electrode material for sodium metal was prepared according to Example 2.

도 2는 실시예 1과 2에 따라 제조된 전해질과 실리콘을 나트륨금속과 실리콘의 순환전압전류법을 실험한 그래프로 상온에서 10-5 mV/s의 주사속도로 실시하였으며, 이 때의 반응이 가역적임을 알 수 있었다.FIG. 2 is a graph illustrating experiments of cyclic voltammetry of sodium metal and silicon on electrolytes and silicon prepared according to Examples 1 and 2, at a scanning speed of 10 −5 mV / s at room temperature. It was found to be reversible.

실시예Example 4 : 나트륨금속에 실리콘을 전극재료로 사용한 사이클 특성 실험 4: Experimental cycle characteristics using silicon as an electrode material for sodium metal

전지의 구성은 실시예 3과 같이 실시하였다. 도 3은 실시예 1, 2에 따라 제조된 전해질과 실리콘을 사용한 나트륨금속에 실리콘을 전극재료로 사용한 사이클을 실험한 그래프로서, 상온에서 10회의 사이클이 진행되는 동안 180 mAh/g-Silicon의 방전용량을 얻었다.The battery was configured in the same manner as in Example 3. 3 is a graph illustrating a cycle of using silicon as an electrode material in an electrolyte prepared in Examples 1 and 2 and sodium metal using silicon, and discharging 180 mAh / g-Silicon during 10 cycles at room temperature. Capacity was obtained.

이상 상기에서 살펴본 바와 같이 본 발명은 나트륨전지용 실리콘 전극 및 이의 제조방법에 관한 것으로, 실리콘에 나트륨 이온이 전기화학적으로 삽입되고 탈리되는 특성을 이용하여 실리콘을 나트륨 전지의 음극으로 사용하여 전지 특별히, Si/NaMnO2 전지, Si/NaS, Si/NaFeS 등의 나트륨 전지를 제조함으로써 기존의 리튬 전지에 비하여 저렴한 가격으로 제조할 수 있으며, 리튬을 나트륨으로 대체함으로써 광범위한 전지시스템에 응용이 가능한 매우 뛰어난 효과가 있으므로 전기 전자기구 산업상 매우 유용한 것이다.As described above, the present invention relates to a silicon electrode for a sodium battery and a method of manufacturing the same, by using silicon as a negative electrode of a sodium battery by using a characteristic in which sodium ions are electrochemically inserted into and desorbed from a silicon battery, in particular, Si By manufacturing sodium batteries such as / NaMnO 2 batteries, Si / NaS, and Si / NaFeS, it can be manufactured at a lower price than the existing lithium batteries. Therefore, it is very useful for the electric and electronic device industry.

Claims (4)

고상의 나트륨 양극; 이온전도체 10-98 wt%, 나트륨염 1-3 wt% 및 글리미계 용매 1-88 wt%로 이루어진 전해질; 및 나트륨 이온이 전기화학적으로 삽입된 실리콘 음극으로 구성됨을 특징으로 하는 나트륨전지.Solid sodium anode; An electrolyte consisting of 10-98 wt% of an ion conductor, 1-3 wt% of sodium salt, and 1-88 wt% of a glycy solvent; And a silicon anode having sodium ions electrochemically inserted therein. 제 1항에 있어서, 상기 나트륨전지는 Si/NaMnO2 전지, Si/NaS 전지 또는 Si/NaFeS 전지임을 특징으로 하는 나트륨전지.The sodium battery according to claim 1, wherein the sodium battery is a Si / NaMnO 2 battery, a Si / NaS battery, or a Si / NaFeS battery. 제 1항에 있어서, 상기 전해질은 폴리머 전해질 또는 고체 전해질이고, 고상의 나트륨 양극은 분말 또는 벌크 형태임을 특징으로 하는 나트륨전지.The sodium battery of claim 1, wherein the electrolyte is a polymer electrolyte or a solid electrolyte, and the solid sodium anode is in powder or bulk form. 제 1항에 있어서, 상기 실리콘 음극은 분말, 박막 또는 벌크 형태임을 특징으로 하는 나트륨전지.The sodium battery of claim 1, wherein the silicon anode is in powder, thin film or bulk form.
KR1020060024081A 2006-03-15 2006-03-15 Silicon electrode and manufacturing method for sodium battery by using the same KR100742735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060024081A KR100742735B1 (en) 2006-03-15 2006-03-15 Silicon electrode and manufacturing method for sodium battery by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060024081A KR100742735B1 (en) 2006-03-15 2006-03-15 Silicon electrode and manufacturing method for sodium battery by using the same

Publications (1)

Publication Number Publication Date
KR100742735B1 true KR100742735B1 (en) 2007-07-25

Family

ID=38499561

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060024081A KR100742735B1 (en) 2006-03-15 2006-03-15 Silicon electrode and manufacturing method for sodium battery by using the same

Country Status (1)

Country Link
KR (1) KR100742735B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268587A (en) 1977-10-11 1981-05-19 General Electric Company Solid state, ambient temperature electrochemical cell
KR960002922A (en) * 1994-06-07 1996-01-26 조규향 Manufacturing method of solid electrolyte for sodium-sulfur battery
KR20030086348A (en) * 2001-04-06 2003-11-07 발렌스 테크놀로지, 인코포레이티드 Sodium Ion Batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268587A (en) 1977-10-11 1981-05-19 General Electric Company Solid state, ambient temperature electrochemical cell
KR960002922A (en) * 1994-06-07 1996-01-26 조규향 Manufacturing method of solid electrolyte for sodium-sulfur battery
KR20030086348A (en) * 2001-04-06 2003-11-07 발렌스 테크놀로지, 인코포레이티드 Sodium Ion Batteries

Similar Documents

Publication Publication Date Title
Balducci et al. Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)
EP2156503B1 (en) Plastic crystal electrolyte with a broad potential window
Kumar et al. Solid-state rechargeable magnesium cell with poly (vinylidenefluoride)–magnesium triflate gel polymer electrolyte
JP4519956B2 (en) Organic electrolyte and lithium secondary battery using the same
Stadler et al. Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries
EP0905807B1 (en) Nonaqueous secondary battery
KR100535290B1 (en) Gel Electrolyte Secondary Cell
Jow et al. A rechargeable cell based on a conductive polymer/metal alloy composite electrode
KR20110078307A (en) Metal based zn negative active material and lithium secondary battery comprising thereof
Houghton et al. An Experimental Magnesium Ion Battery Cell Made of Flexible Materials
JP3587791B2 (en) Method for producing positive electrode for battery and non-aqueous electrolyte battery
KR100742735B1 (en) Silicon electrode and manufacturing method for sodium battery by using the same
KR101748914B1 (en) Lithium electrode, method for the same and lithium battery compring the same
KR100459882B1 (en) Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same
KR20050022567A (en) Lithium/sulfur secondary batteries inserted with graphitic nano fiber membrane
KR100408515B1 (en) Organic electrolyte and lithium secondary battery using the same
KR100354229B1 (en) Low impedance lithium-sulfur batteries
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage
KR100402109B1 (en) Novel Na/S Battery
Máca et al. Influence of new aprotic electrolytes on negative electrode materials for lithium-ion batteries
Kumar et al. All solid state sodium-sulfur cells using composite sulfur cathode at room temperature conditions
KR100400216B1 (en) Organic electrolyte solution for lithium secondary battery and lithium secondary battery employing the solution
EP1406336A1 (en) Electrolyte composition having improved aluminium anticorrosive properties
JP2019061825A (en) Lithium ion secondary battery
JP4892964B2 (en) Charging method of lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130709

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee