KR100742239B1 - Piezoelectric ceramics - Google Patents

Piezoelectric ceramics Download PDF

Info

Publication number
KR100742239B1
KR100742239B1 KR1020060028869A KR20060028869A KR100742239B1 KR 100742239 B1 KR100742239 B1 KR 100742239B1 KR 1020060028869 A KR1020060028869 A KR 1020060028869A KR 20060028869 A KR20060028869 A KR 20060028869A KR 100742239 B1 KR100742239 B1 KR 100742239B1
Authority
KR
South Korea
Prior art keywords
present
piezoelectric transformer
pzn
temperature
piezoelectric
Prior art date
Application number
KR1020060028869A
Other languages
Korean (ko)
Inventor
류주현
백동수
이창배
Original Assignee
류주현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 류주현 filed Critical 류주현
Priority to KR1020060028869A priority Critical patent/KR100742239B1/en
Application granted granted Critical
Publication of KR100742239B1 publication Critical patent/KR100742239B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Abstract

Provided is a composition of piezoelectric ceramics sintered at a low temperature and being superior in piezoelectric properties to be applied to a multi layer piezoelectric transformer. The composition of piezoelectric ceramics is prepared by adding Pb[(Mn1/3Nb2/3)O3 - Pb(Zn1/3Nb2/3)O3 - Pb(Zr, Ti)O3 with at least one of Li2CO3, Bi2O3, and CuO. Preferably, the Pb[(Mn1/3Nb2/3)0.07 (Zn1/3Nb2/3)a(Zr0.48Ti0.52)1-0.07-aO3] + xwt.%Li2CO3 + ywt.%Bi2O3 + zwt.%CuO, wherein a is a value between 0.02 and 0.16, x is a value between 0 and 3, y is a value between 0 and 3, and z is a value between 0 and 3, x, y, and z not being zero. Li2CO3, Bi2O3, and CuO are used as a sintering additive for low-temperature sintering of the composition.

Description

압전 세라믹스 조성물 {PIEZOELECTRIC CERAMICS}Piezoelectric Ceramics Composition {PIEZOELECTRIC CERAMICS}

도 1은 본 발명의 일 실시예에 있어서 PZN의 치환량과 소결온도 변화에 따른 시편의 소결밀도 변화를 나타낸 그래프.1 is a graph showing the sintered density change of the specimen according to the substitution amount and sintering temperature change of the PZN in one embodiment of the present invention.

도 2는 본 발명의 일 실시예에 있어서 PZN 치환량과 소결온도 변화에 따른 유전상수의 변화를 나타낸 그래프.2 is a graph showing the change in dielectric constant according to the PZN substitution amount and the sintering temperature change in one embodiment of the present invention.

도 3은 본 발명의 일 실시예에 있어서 PZN 치환량과 소결온도 변화에 따른 전기기계 결합계수의 변화를 나타내는 그래프.Figure 3 is a graph showing the change in the electromechanical coupling coefficient according to the PZN substitution amount and the sintering temperature change in one embodiment of the present invention.

도 4는 본 발명의 일 실시예에 있어서 PZN 치환량과 소결온도 변화에 따른 기계적 품질계수의 변화를 나타낸 그래프.4 is a graph showing a change in the mechanical quality factor according to the PZN substitution amount and the sintering temperature change in one embodiment of the present invention.

도 5a는 본 발명의 일 실시예에 있어서 제조된 적층 압전변압기의 개략 구조도.5A is a schematic structural diagram of a laminated piezoelectric transformer manufactured in an embodiment of the present invention.

도 5b는 도 5a에 있어서 내부전극 인쇄시 사용한 내부전극의 사진.Figure 5b is a photograph of the internal electrode used when printing the internal electrode in Figure 5a.

도 5c는 도 5a의 사진.5C is a photograph of FIG. 5A.

도 6은 본 발명의 다른 일 실시예에 있어서 제조된 적층형 변압기의 단면에 대한 전자현미경 사진.Figure 6 is an electron micrograph of the cross section of the multilayer transformer produced in another embodiment of the present invention.

도 7은 본 발명의 다른 일 실시예에 있어서 제조된 적층 압전변압기의 임피던스 특성을 나타낸 그래프.Figure 7 is a graph showing the impedance characteristics of the multilayer piezoelectric transformer manufactured in another embodiment of the present invention.

도 8은 본 발명의 다른 일 실시예에 있어서 적층 압전변압기의 입력전압을 일정하게 유지한 상태에서 주파수와 부하저항에 따른 승압비를 나타낸 그래프.FIG. 8 is a graph illustrating a boost ratio according to a frequency and a load resistance in a state in which an input voltage of a multilayer piezoelectric transformer is constantly maintained.

도 9는 본 발명의 다른 일 실시예에 있어서 제조된 적층 압전변압기에 있어서 부하저항에 따른 효율을 나타낸 그래프.9 is a graph showing the efficiency according to the load resistance in the multilayer piezoelectric transformer manufactured in another embodiment of the present invention.

도 10은 본 발명의 다른 일 실시예에 있어서 제조된 적층 압전변압기의 공진주파수에서 입력전압과 부하저항에 따른 출력전력을 나타낸 그래프.10 is a graph showing the output power according to the input voltage and the load resistance at the resonant frequency of the multilayer piezoelectric transformer manufactured in another embodiment of the present invention.

도 11은 본 발명의 다른 일 실시예에 있어서 제조된 적층 압전변압기에 있어서 부하저항에 따른 각 출력전력에서 20분간 구동 후에 측정된 온도상승의 결과를 나타낸 그래프.FIG. 11 is a graph illustrating a result of temperature rise measured after driving for 20 minutes at each output power according to load resistance in the multilayer piezoelectric transformer manufactured in another embodiment of the present invention. FIG.

본 발명은 압전 세라믹스 조성물에 관한 것으로, 특히 소결온도가 낮으면서도 우수한 압전특성을 가져 적층형 압전변압기로의 적용에 적합한 압전 세라믹스 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition, and more particularly, to a piezoelectric ceramic composition suitable for application to a laminated piezoelectric transformer, having excellent piezoelectric properties while having a low sintering temperature.

최근 TFT-LCD 백라이트(Backlight) 구동용 인버터에 압전변압기가 적용될 수 있음이 연구결과를 통해 확인된 이래로, 압전변압기로 적용될 수 있는 조성의 개발 및 특성 평가 방법 등에 대한 연구가 적극적으로 이루어지고 있다. Recently, since the piezoelectric transformer can be applied to the TFT-LCD backlight driving inverter, research has been actively conducted on the development of the composition that can be applied to the piezoelectric transformer and evaluation methods.

이러한 압전변압기에 대한 연구는 응용분야에 있어서 IT 산업의 한 축으로서 크게 성장하고 있는 LCD 디스플레이, DC-DC 컨버터, AC-DC 컨버터, 기타 고전압 전 원장치 등과 같이 그 범위가 상당히 넓다. These piezoelectric transformers have a wide range of applications, such as LCD displays, DC-DC converters, AC-DC converters, and other high voltage power supplies, which are growing rapidly in the IT industry.

압전변압기는 기존의 권선형 변압기에 비하여 누설자속이 없어 노이즈 발생이 없고, 공진 주파수만을 이용하므로 출력파형이 정현파에 가까워 고조파 잡음이 없으며, 불연성의 장점을 갖고 있다. 특히, 소형화, 슬림화, 경량화가 가능하고 90% 이상의 높은 효율을 얻을 수 있다. Piezoelectric transformers have no leakage flux compared to conventional winding transformers, and use only resonant frequency. Therefore, the output waveform is close to sinusoidal waveform, so there is no harmonic noise, and it has the advantage of incombustibility. In particular, it is possible to miniaturize, slim, and lightweight, and obtain high efficiency of 90% or more.

최근, 단판형 압전변압기의 출력한계를 개선하기 위해 높은 승압비와 고출력을 얻을 수 있는 적층형 압전변압기가 제안되었다. 그러나, 적층 압전변압기의 제작에 있어서 상기 단판형 압전변압기에 비하여 여러 가지 문제점을 가지고 있다.Recently, in order to improve the output limit of a single plate piezoelectric transformer, a multilayer piezoelectric transformer capable of obtaining a high boost ratio and a high output has been proposed. However, there are various problems in manufacturing a laminated piezoelectric transformer as compared to the single plate piezoelectric transformer.

즉, 압전변압기의 실용적인 사용을 위해서는 높은 기계적 품질계수(Qm)와 전기기계 결합계수(kp)가 필요하다. 또한, 적층형 소자의 구조는 내부에 금속전극을 포함하므로 제조공정에 있어 고온에서의 소성이 문제로 되는데, 일반적인 Pb계열의 소성온도인 고온의 1200℃에서 이들 금속의 내부전극과 함께 소성을 하기 위해서는 결국 값비싼 팔라듐(Pd) 함량이 높은 전극을 사용하여야 한다. That is, high mechanical quality factor (Q m ) and electromechanical coupling factor (k p ) are required for practical use of piezoelectric transformers. In addition, since the structure of the stacked device includes metal electrodes therein, calcination at a high temperature is a problem in the manufacturing process. In order to perform sintering together with the internal electrodes of these metals at a high temperature of 1200 ° C. After all, an expensive electrode with high Pd content should be used.

따라서, Pd 함량이 낮은 Ag/Pd 전극을 사용하기 위해서는 저온소결이 가능한 조성개발이 필수적이다. 또한, 친환경적인 면에서 볼 때에도, 저온소성은 PbO의 휘발을 억제할 수 있어 환경오염을 방지하기 위하여 필수적이다.Therefore, in order to use Ag / Pd electrode having a low Pd content, it is essential to develop a composition capable of low temperature sintering. In addition, even from an environmentally friendly point of view, low-temperature firing can suppress the volatilization of PbO, which is essential for preventing environmental pollution.

이에, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로, 본 발명의 목적은 Pb(Mn1/3Nb2/3)O3 - Pb(Zn1/3Nb2/3)O3- Pb(Zr,Ti)O3계 세라믹스에 소결 촉진 제로서 Li2CO3, Bi2O3, CuO 중 적어도 어느 하나를 첨가하여 소성온도가 낮으면서도 우수한 압전특성을 가져 적층형 압전변압기로의 적용에 적합한 압전 세라믹스 조성물을 제공하는데 있다.Accordingly, the present invention was devised to solve the above problems, and an object of the present invention is Pb (Mn 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/3 Nb 2/3 ) O 3- By adding at least one of Li 2 CO 3 , Bi 2 O 3 , CuO as a sintering accelerator to Pb (Zr, Ti) O 3 -based ceramics, it has a low firing temperature and excellent piezoelectric properties. It is to provide a suitable piezoelectric ceramic composition.

이와 같은 목적을 달성하기 위하여, 본 발명에 의한 압전 세라믹스 조성물은 조성식 Pb[(Mn1/3Nb2/3)0.07(Zn1/3Nb2/3)a(Zr0.48Ti0.52)1-0.07-aO3]+xwt%Li2CO3+ywt%Bi2O3+zwt%CuO (이때, 0.02≤a≤0.16, 0<x≤3, 0<y≤3, 0<z≤3)을 갖는 압전 세라믹스 조성물인 것을 특징으로 한다.In order to achieve the above object, the piezoelectric ceramic composition according to the present invention is a composition formula Pb [(Mn 1/3 Nb 2/3 ) 0.07 (Zn 1/3 Nb 2/3 ) a (Zr 0.48 Ti 0.52 ) 1-0.07 -a O 3 ] + xwt% Li 2 CO 3 + ywt% Bi 2 O 3 + zwt% CuO (where: 0.02 ≦ a ≦ 0.16, 0 <x ≦ 3, 0 <y ≦ 3, 0 <z ≦ 3) It is a ceramic composition, It is characterized by the above-mentioned.

이하, 본 발명을 첨부한 도면을 참조하여 상세히 설명한다. Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.

삭제delete

통상적으로 Pb(Mn1/3Nb2/3)O3 (이하, "PMN") - Pb(Zr1/3Ti2/3)O3(이하, "PZT")계 세라믹스는 매우 높은 기계적 품질계수를 나타내는 것으로 알려져 있는 조성물이다. 또한, Pb(Zn1/3Nb2/3)O3 (이하, "PZN") - Pb(Zr,Ti)O3계 세라믹스는 전기기계 결합계수가 높은 것으로 알려져 있는 조성물이다. Typically, Pb (Mn 1/3 Nb 2/3 ) O 3 (hereinafter “PMN”)-Pb (Zr 1/3 Ti 2/3 ) O 3 (hereinafter “PZT”) based ceramics have very high mechanical quality. It is a composition known to exhibit coefficients. In addition, Pb (Zn 1/3 Nb 2/3 ) O 3 (hereinafter “PZN”)-Pb (Zr, Ti) O 3 based ceramics are compositions known to have high electromechanical coupling coefficients.

따라서, 본 발명에 의하면 상기 두 세라믹스를 합성함으로써 기계적 품질계수 및 전기기계 결합계수가 향상된 세라믹스를 제조할 수가 있다. 이는 상기 PMN- PZT에 PZN을 치환함으로써 달성될 수 있으며, 본 발명에 의한 압전 세라믹스 조성물의 기본 조성식은 식 1과 같다;Therefore, according to the present invention, ceramics having improved mechanical quality coefficients and electromechanical coupling coefficients may be manufactured by synthesizing the two ceramics. This can be achieved by substituting PZN for the PMN-PZT, and the basic composition of the piezoelectric ceramic composition according to the present invention is shown in Equation 1;

Pb[(Mn1 /3Nb2 /3)0.07(Zn1 /3Nb2 /3)a(Zr0.48Ti0 .52)1-0.07- aO3] (식 1) Pb [(Mn 1/3 Nb 2/3) 0.07 (Zn 1/3 Nb 2/3) a (Zr 0.48 Ti 0 .52) 1-0.07- a O 3] ( Equation 1)

이때, a는 치환되는 PZN의 mol%를 나타내며, 이의 값은 0.02 내지 0.16으로 함이 바람직하다. In this case, a represents mol% of PZN to be substituted, and its value is preferably set to 0.02 to 0.16.

또한, 본 발명에 있어서는 상기 압전 세라믹스 조성물의 저온소결을 위하여 소결조제로서 0 내지 3.0wt%의 Li2CO3, 0 내지 3.0wt%의 Bi2O3, 0 내지 3.0wt%의 CuO 중 적어도 어느 하나 이상이 첨가됨이 바람직하다. 이때, 본 발명의 바람직한 일 실시예에 의하면 상기 소결조제로서 0.1wt% Li2CO3와 0.3wt% Bi2O3 및 0.3wt% CuO가 동시에 첨가된다. 이러한 소결조제의 첨가에 따라 Pb계열의 소성온도인 고온의 1200℃의 소결온도를 940℃ 내지 1000℃ 정도의 저온의 소결온도로 낮출 수 있게 된다.In the present invention, at least any one of 0 to 3.0 wt% Li 2 CO 3 , 0 to 3.0 wt% Bi 2 O 3 , and 0 to 3.0 wt% CuO as a sintering aid for low temperature sintering of the piezoelectric ceramic composition. It is preferred that one or more are added. At this time, according to a preferred embodiment of the present invention 0.1wt% Li 2 CO 3 and 0.3wt% Bi 2 O 3 and 0.3wt% CuO are added simultaneously as the sintering aid. According to the addition of such a sintering aid, the sintering temperature of 1200 ° C., which is the firing temperature of the Pb series, can be lowered to the sintering temperature of about 940 ° C. to 1000 ° C.

이하, 본 발명의 바람직한 실시예들을 첨부한 도면을 참조하여 더욱 상세히 설명한다. 다만, 본 발명이 하술하는 실시예들은 본 발명의 전반적인 이해를 돕기 위하여 제공되는 것이며, 본 발명은 상기 실시예들로만 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the embodiments described below are provided to assist the overall understanding of the present invention, and the present invention is not limited to the above embodiments.

실시예 1Example 1

본 실시예에 있어서는 아래 식 2를 조성으로 하여 산화물 혼합법을 이용하여 각 시편을 제조하였다;In this example, each specimen was prepared by using an oxide mixing method with the following formula 2 as a composition;

Pb[(Mn1 /3Nb2 /3)0.07(Zn1 /3Nb2 /3)a(Zr0.48Ti0 .52)1-0.07- aO3]+0.1wt%Li2CO3+0.3wt%Bi2O3 +0.3wt%CuO (이때, a=0.02 ~ 0.16) (식 2) Pb [(Mn 1/3 Nb 2/3) 0.07 (Zn 1/3 Nb 2/3) a (Zr 0.48 Ti 0 .52) 1-0.07- a O 3] + 0.1wt% Li 2 CO 3 +0. 3wt% Bi 2 O 3 + 0.3wt% CuO (where a = 0.02 ~ 0.16) (Equation 2)

먼저 기본조성식 Pb[(Mn1 /3Nb2 /3)0.07(Zn1 /3Nb2 /3)a(Zr0.48Ti0 .52)1-0.07- aO3]에 따른 시료의 정확한 몰비를 10-4까지 평량하였고, 아세톤을 분산매로 볼밀을 사용하여 24시간동안 혼합 분쇄하였으며, 항온조에서 건조한 후 850℃에서 2시간동안 하소하였다. 하소한 후, 0.1wt%Li2CO3+0.3wt%Bi2O3+0.3wt%CuO를 이에 첨가하여 24시간동안 재혼합 분쇄 후 바인더로서 PVA(Polyvinyl Alcohol: 5% 수용액) 5wt%를 첨가하여 kp 모드로서 제조하기 위하여 직경 21[㎜φ] 몰더로 1[ton/㎠]의 압력을 가하여 성형하였다. 성형한 시편을 600℃의 온도로 3시간동안 상기 바인더의 번아웃(Burn Out: B/O) 과정을 거치고, 1000, 970, 940℃의 온도로 각각 소결하였다. 소결을 마친 후 특성 측정을 위해 1[㎜] 두께로 시편을 연마하였고, Ag 페이스트를 도포하여 650℃에서 10분간 열처리하였다. 전극이 형성된 시편을 120℃ 실리콘유 속에서 30[㎸/㎝]의 전계를 30분동안 인가하여 분극하였다. 24시간이 지난후에 공진 및 반공진법에 따라 임피던스 애널라이저 (Agilent사, 4294A)를 사용하여 유전 및 압전특성을 측정하였다.First, the exact molar ratio of the sample according to the base composition formula Pb [(Mn 1/3 Nb 2/3) 0.07 (Zn 1/3 Nb 2/3) a (Zr 0.48 Ti 0 .52) 1-0.07- a O 3] Basis to 10 -4 , acetone was mixed and ground for 24 hours using a ball mill as a dispersion medium, dried in a thermostat and then calcined at 850 ℃ for 2 hours. After calcining, 0.1 wt% Li 2 CO 3 +0.3 wt% Bi 2 O 3 + 0.3 wt% CuO was added thereto, followed by remixing and grinding for 24 hours, and then 5 wt% of PVA (Polyvinyl Alcohol: 5% aqueous solution) was added as a binder. In order to prepare as a k p mode, the mold was molded by applying a pressure of 1 [ton / cm 2] to a diameter 21 [mmφ] molder. The molded specimen was subjected to a burnout (B / O) process of the binder for 3 hours at a temperature of 600 ° C., and sintered at temperatures of 1000, 970, and 940 ° C., respectively. After sintering, the specimen was polished to a thickness of 1 [mm] for the measurement of properties, and Ag paste was applied and heat-treated at 650 ° C. for 10 minutes. The specimen on which the electrode was formed was polarized by applying an electric field of 30 [㎸ / cm] for 30 minutes in 120 degreeC silicone oil. After 24 hours, dielectric and piezoelectric properties were measured using an impedance analyzer (Agilent, 4294A) according to the resonance and antiresonance method.

도 1은 본 실시예에 있어서 PZN의 치환량과 소결온도 변화에 따른 시편의 소결밀도 변화를 나타낸 그래프이다. 1 is a graph showing the sintered density change of the specimen according to the substitution amount and the sintering temperature change of the PZN in the present embodiment.

940℃의 소결온도에서는 6mol% PZN 치환시 7.78[g/㎤]의 최대값을 나타내었고, 970℃의 소결온도에서는 8mol% PZN 치환시 7.84[g/㎤], 1000℃의 소결온도에서는 10mol% PZN 치환시 7.93[g/㎤]의 최대값을 나타내었다. 즉, 소결온도가 증가하 면서 PZN의 고용한계 또한 증가하여 이에 따라 소결밀도가 증가하게 된다. 그러나, PZN이 과잉치환되면서부터는 밀도가 감소하게 된다.At the sintering temperature of 940 ℃, the maximum value of 7.78 [g / cm3] was obtained at 6mol% PZN substitution, and at 970 ℃ sintering temperature, it was 7.84 [g / cm3] at 8mol% PZN substitution and 10mol% at the sintering temperature of 1000 ℃. The maximum value of 7.93 [g / cm 3] was shown for the PZN substitution. That is, as the sintering temperature increases, the solubility limit of PZN also increases, thereby increasing the sintering density. However, since PZN is oversubstituted, the density decreases.

도 2는 본 실시예에 있어서 PZN 치환량과 소결온도 변화에 따른 유전상수의 변화를 나타낸 그래프이다. 2 is a graph showing the change in dielectric constant according to the PZN substitution amount and the sintering temperature change in the present embodiment.

940℃ 및 970℃의 소결온도에서는 유전상수가 8mol%의 PZN 치환시까지 증가하여 각각 1455와 1551의 최대값을 나타내었고, 10mol% 이상 치환시에는 점차 감소하였다. 1000℃의 소결온도에서는 PZN의 치환량 8mol%까지 970℃에서 소결한 시편의 유전상수와 거의 일치하는 값을 나타내었지만, 그 후로도 감소하지 않고 계속 증가하면서 14mol% 치환시에는 1733의 최대값을 나타내었다. At the sintering temperature of 940 ℃ and 970 ℃, the dielectric constant increased up to 8mol% PZN substitution and reached the maximum value of 1455 and 1551, respectively. At the sintering temperature of 1000 ° C, the PZN substitution amount was almost identical to the dielectric constant of the specimen sintered at 970 ° C up to 8mol% of PZN.However, the maximum value of 1733 was obtained at 14mol% substitution without increasing after that. It was.

도 3은 본 실시예에 있어서 PZN 치환량과 소결온도 변화에 따른 전기기계 결합계수의 변화를 나타내는 그래프이다. 3 is a graph showing the change of the electromechanical coupling coefficient according to the PZN substitution amount and the sintering temperature change in this embodiment.

전기기계 결합계수(kp)는 도 1의 밀도특성과 같은 경향을 나타내었다. 즉, 940℃의 소결온도에서는 8mol% PZN 치환시 0.524의 최대값을, 970℃의 소결온도에서는 10mol% 치환시 0.543의 최대값을, 1000℃의 소결온도에서는 12mol% 치환시 0.545의 최대값을 각각 나타내었다. 이는 구조상 삼방정상(Rhombohedral)을 갖고 있는 PZN의 치환에 의해 PMN-PZT계 세라믹스의 정방성(Tetrgonality)이 약화되었기 때문이다.Electromechanical coupling coefficient (k p ) showed the same tendency as the density characteristic of FIG. In other words, the maximum value of 0.524 for 8 mol% PZN substitution at the sintering temperature of 940 ° C, the maximum value of 0.543 for the substitution of 10 mol% at the sintering temperature of 970 ° C, and the maximum value of 0.545 for 12mol% substitution at the sintering temperature of 1000 ° C Respectively. This is because the tetragonality of PMN-PZT ceramics is weakened by the substitution of PZN having a trihedral phase.

도 4는 본 실시예에 있어서 PZN 치환량과 소결온도 변화에 따른 기계적 품질계수의 변화를 나타낸 그래프이다. 4 is a graph showing the change in the mechanical quality factor according to the PZN substitution amount and the sintering temperature change in the present embodiment.

본 실시예에 있어서 기계적 품질계수(Qm)는 940℃의 소결온도에서 4mol% 치환시에는 2139의 최대값을, 970℃의 소결온도에서 2mol% 치환시에는 2217의 최대값을, 1000℃의 소결온도에서 2mol% 치환시에는 1965의 최대값을 각각 나타내었고, 또한 PZN의 치환량이 증가할수록 점차 감소하였다.In this embodiment, the mechanical quality factor (Q m ) is the maximum value of 2139 when the 4 mol% substitution at sintering temperature of 940 ℃, the maximum value of 2217 when replacing 2 mol% at the sintering temperature of 970 ℃, 1000 ℃ The maximum value of 1965 was shown at 2 mol% substitution at the sintering temperature, and gradually decreased as the substitution amount of PZN increased.

실시예 2Example 2

본 실시예에 있어서는 실시예 1에서 가장 우수한 유전 및 압전특성을 나타내는 조성을 산화물혼합법에 의해 분말로 제조하고 이를 이용하여 적층형 압전변압기를 제조하였다. 또한, 일 표면에 링-도트(Ring-Dot) 형상의 내부전극 구조를 인쇄한 후, 그린 바(Green Bar)의 크기를 32.5×32.5×2.76㎣으로 절단하여 소결하였고, 각각의 승압특성 및 출력전력 등을 조사하였다. In this embodiment, the composition showing the best dielectric and piezoelectric properties in Example 1 was prepared as a powder by an oxide mixing method, and a multilayer piezoelectric transformer was manufactured using the same. In addition, after printing an internal electrode structure having a ring-dot shape on one surface, the size of the green bar was cut into 32.5 × 32.5 × 2.76㎣ and sintered. The power and the like were examined.

본 실시예에서 제조된 적층 압전변압기의 구조는 도 5a에 나타내며, 이때 P는 분극방향을 나타낸다. 본 실시예에 의한 적층형 압전변압기는 입력측(Vin)이 직렬로 되어 있기 때문에 입력 임피던스가 크고, 출력측(Vout)은 병렬로 되어 정전용량이 크게되므로 출력 임피던스가 작고 출력전류를 크게 할 수 있는 구조이며, 강압되도록 설계하였다. 이하 본 실시예의 제작공정을 상술한다.The structure of the multilayer piezoelectric transformer manufactured in this embodiment is shown in FIG. 5A, where P represents the polarization direction. In the stacked piezoelectric transformer according to the present embodiment, since the input side (V in ) is in series, the input impedance is large, and the output side (V out ) is in parallel and the capacitance is large, so that the output impedance is small and the output current can be increased. It is a structure and designed to be pushed down. Hereinafter, the manufacturing process of this embodiment is explained in full detail.

먼저, 산화물혼합법에 의하여 제조된 분말을 이용하여 세라믹 시트를 제작하였다. 이때, 슬러리 제조를 위한 바인더는 Ferro 사의 바인더인 B73305를 사용하였다. 그리고, 이를 밀링(Milling)한 후, 850℃에서 2시간동안 하소하였으며 하소된 분말을 다시 분쇄하여 건조시켰다. 이후, 하소된 분말을 2차 밀링한 후, 분말과 바 인더 용액의 배합비를 70:30으로 혼합하고 5 Liter Jar에 20㎜φ 볼을 사용하여 슬러리를 제작하였다. First, the ceramic sheet was manufactured using the powder manufactured by the oxide mixing method. In this case, B73305, a binder manufactured by Ferro, was used as a binder for slurry production. Then, after milling it, it was calcined at 850 ° C. for 2 hours, and the calcined powder was pulverized again and dried. Thereafter, after calcining the calcined powder for the second time, a mixture ratio of the powder and the binder solution was mixed at 70:30, and a slurry was prepared using 20 mmφ balls in a 5 Liter Jar.

슬러리의 캐스팅(Casting)은 닥터 블레이드(Doctor Blade)법을 이용하였으며, 시트의 두께가 70㎛가 되도록 캐스팅하였다. 이때, 사용한 캐리어 필름(Carrier Film)은 실리콘 오일이 도포된 필름을 사용하였다. 본 실시예에서는 90Ag/10Pd의 내부전극을 사용하였으며, 내부전극 인쇄시 사용한 내부전극 구조를 도 5b에 나타낸다. Casting of the slurry (Casting) using the Doctor Blade (Doctor Blade) method, it was cast so that the thickness of the sheet 70㎛. At this time, the carrier film used was a film coated with silicone oil. In this embodiment, an internal electrode of 90Ag / 10Pd was used, and the internal electrode structure used for printing the internal electrode is shown in FIG. 5B.

그리고, 적층된 세라믹스 시트의 상하부를 70℃에서 30분간 예열한 후 3200psi로 40분간 일축성형하였다. 압착된 소자는 내부전극과 같은 위치로 전극이 도포된 시트를 최상층에 적층하여 마커(Marker)를 확인하면서 절단하였으며, 소자 절단시 소자의 하부를 70℃로 예열하였다.Then, the upper and lower parts of the laminated ceramic sheet were preheated at 70 ° C. for 30 minutes and uniaxially molded at 3200 psi for 40 minutes. The compressed device was cut while checking the marker by stacking the sheet coated with the electrode on the same layer as the internal electrode on the uppermost layer, and preheating the lower part of the device to 70 ° C. when cutting the device.

그리고, 최종제품의 전기적 특성의 열화를 초래하게 되는 바인더를 완전하게 제거하기 위하여 0.2℃/min의 승온율로 승온시키면서 340℃에서 3시간동안 바인더 B/O공정을 행하였으며, 이후 950℃에서 1시간동안 소결하였다. 특히 내부전극으로 사용된 Ag/Pd 전극재의 고온에서의 부피 팽창 및 수축으로 인한 결함 발생을 억제하기 위하여 850℃에서 950℃ 사이의 승온율을 현저히 낮추어서 소결하였다.And, in order to completely remove the binder that causes deterioration of the electrical properties of the final product, the binder B / O process was performed for 3 hours at 340 ℃ while raising the temperature at a temperature rising rate of 0.2 ℃ / min, then 1 at 950 ℃ Sintered for time. In particular, in order to suppress the occurrence of defects due to volume expansion and contraction at a high temperature of the Ag / Pd electrode material used as the internal electrode sintered by significantly lowering the temperature increase rate between 850 ℃ to 950 ℃.

소결이 끝난 적층형 압전변압기의 입력부 및 구동부에 외부전극으로 Ag 페이스트를 사용하여 스크린 인쇄한 후, 600℃에서 10분간 열처리하여 외부전극을 형성하였다. 도 5c는 상기와 같이 제조된 압전변압기를 나타낸다. 또한, 입력단 및 출력단을 120℃의 절연유 속에서 25㎸/㎝의 전압을 10분간 인가하여 분극하였다. 적 층형 압전변압기의 전기적 특성을 측정하기 위해 입력전압에 따른 출력전압 및 출력전력은 파워앰프(Power Amp.:Trek 50/750), 함수발생기(Function Generator: HP 33120A) 및 오실로스코프(Oscilloscpoe: Tektronix TDS3054)를 이용하여 각각 측정하였고, 출력전력에 따른 온도상승은 접촉식 온도계로 측정하였다. After the screen printing using Ag paste as an external electrode on the input part and the driving part of the sintered stacked piezoelectric transformer, heat treatment was performed at 600 ° C. for 10 minutes to form an external electrode. 5C shows a piezoelectric transformer manufactured as described above. In addition, the input and output terminals were polarized by applying a voltage of 25 mA / cm for 10 minutes in an insulating oil at 120 ° C. In order to measure the electrical characteristics of the stacked piezoelectric transformer, the output voltage and output power according to the input voltage were measured using a power amplifier (Trek 50/750), a function generator (HP 33120A), and an oscilloscope (Oscilloscpoe: Tektronix TDS3054). ), And the temperature rise according to the output power was measured by a contact thermometer.

도 6은 본 실시예에 의하여 제조된 적층형 변압기의 단면에 대한 전자현미경 사진으로서, 이를 보면 내부전극이 세라믹과 Delamination없이 일체 소결된 것을 확인할 수 있다. 6 is an electron micrograph of the cross section of the multilayer transformer manufactured according to the present embodiment, which shows that the internal electrodes are integrally sintered without ceramic and delamination.

도 7은 본 실시예에 의하여 제조된 적층 압전변압기의 임피던스 특성을 나타낸 그래프로서, 입력 및 출력의 keff가 각각 0.34 및 0.23을 나타내어 우수한 압전특성을 나타내었다.FIG. 7 is a graph showing the impedance characteristics of the multilayer piezoelectric transformer manufactured according to the present embodiment, and k eff of the input and the output showed 0.34 and 0.23, respectively, and showed excellent piezoelectric characteristics.

도 8은 본 실시예에 의하여 적층 압전변압기의 입력전압을 일정하게 유지한 상태에서 주파수와 부하저항에 따른 승압비를 나타낸 그래프이다.   FIG. 8 is a graph showing a boost ratio according to a frequency and a load resistance in a state in which an input voltage of a multilayer piezoelectric transformer is kept constant according to the present embodiment.

부하저항의 증가에 따라 승압비는 증가하는 특성을 보였고, 부하저항이 높으면 최대 승압비는 다소 높은 주파수에서 나타났다. 부하저항은 100Ω, 250Ω, 500Ω, 750Ω 그리고 무부하를 사용하여 측정하였다. 부하저항 100Ω을 연결했을 때에는 주파수 75㎑에서 0.59배, 250Ω을 연결했을 때에는 주파수 75㎑에서 0.9배, 500Ω을 연결했을 때에는 주파수 76㎑에서 1.47배, 750Ω을 연결했을 때에는 주파수 76㎑에서 1.88배, 그리고 무부하시에는 주파수 76㎑에서 2.89배의 최대 승압비를 각각 나타내었다.As the load resistance increased, the boost ratio increased, and when the load resistance was high, the maximum boost ratio appeared at a rather high frequency. The load resistance was measured using 100 Ω, 250 Ω, 500 Ω, 750 Ω and no load. When load resistance is 100 배, 0.59 times at frequency 75㎑, when 250Ω is connected, frequency is 75㎑ 0.9 times; when 500Ω is connected, frequency is 76㎑ 1.47 times, when 750 is connected, frequency is 76㎑ to 1.88 times, At no load, the maximum boost ratio was 2.89 times.

도 9는 본 실시예에 의하여 제조된 적층 압전변압기에 있어서 부하저항에 따른 효율을 나타낸 그래프이다. 9 is a graph showing the efficiency according to the load resistance in the multilayer piezoelectric transformer manufactured by the present embodiment.

부하저항 250Ω과 500Ω에서 가장 높은 효율을 나타내었는데, 이러한 결과는 적층 압전변압기의 출력측 임피던스가 부하저항과 일치할 때 최대의 효율을 나타냄을 알 수 있다. 따라서 최대전력전달 효율을 얻기 위해서는 적층 압전변압기의 출력측 임피던스와 부하저항과의 정합이 중요한 요소로 된다.The highest efficiency was shown at the load resistance of 250Ω and 500Ω. This result shows the maximum efficiency when the output impedance of the multilayer piezoelectric transformer matches the load resistance. Therefore, in order to obtain the maximum power transfer efficiency, the matching between the output impedance and the load resistance of the multilayer piezoelectric transformer becomes an important factor.

도 10은 본 실시예에 의하여 제조된 적층 압전변압기의 공진주파수에서 입력전압과 부하저항에 따른 출력전력을 나타낸 그래프이다.   10 is a graph showing the output power according to the input voltage and the load resistance at the resonance frequency of the multilayer piezoelectric transformer manufactured by the present embodiment.

인가된 입력전압에 따른 출력특성은 인가전압이 높아질수록 출력 또한 높아졌으며, 공진저항 부근인 250Ω과 500Ω에서 가장 높은 출력전력을 나타내었다. 500Ω과 750Ω에서는 비교적 낮은 출력전력을 나타냈는데, 이러한 결과는 부하저항의 증가에 따라 발열이 커지면서 발생하는 손실에 기인한다.The output characteristics according to the applied input voltage increased as the applied voltage increased, and showed the highest output power at 250 Ω and 500 부근 near the resonance resistance. The output power was relatively low at 500 Ω and 750 Ω, which is due to the loss caused by the heat generation as the load resistance increases.

도 11은 본 실시예에 의하여 제조된 적층 압전변압기에 있어서 부하저항에 따른 각 출력전력에서 20분간 구동 후에 측정된 온도상승의 결과를 나타낸 그래프다.   FIG. 11 is a graph showing a result of temperature rise measured after driving for 20 minutes at each output power according to load resistance in the multilayer piezoelectric transformer manufactured by the present embodiment.

적층 압전변압기의 온도는 출력전력이 증가함에 따라 증가하는 특성을 나타내었고, 부하저항이 증가할수록 온도상승의 폭이 커지는 것을 확인하였다. 이러한 결과는 출력전력의 증가에 따른 출력전류의 증가에 의하여 일반적으로 출력전류에 비례하는 진동변위의 크기가 증가하고, 이에 따라 진동속도의 증가에 의한 기계적손실이 증가한 것으로 볼 수 있다. 100 내지 500Ω의 부하저항에서 6W까지는 거의 같은 온도상승을 나타내었고, 100Ω과 500Ω의 부하저항 연결시 8W이상에서 급격한 온도상승을 나타내었으나, 250Ω의 부하저항 연결시에는 10W까지 안정된 온도상승을 나타내었다. 압전변압기의 허용 발열량을 20℃이내의 범위로 볼 때, 250Ω의 부하저항에서 10W까지 안정적인 구동이 가능한 것으로 판단된다.The temperature of the multilayer piezoelectric transformer increased as the output power increased, and the increase of the load resistance increased the temperature increase. These results indicate that the magnitude of the vibration displacement, which is generally proportional to the output current, increases with the increase of the output current according to the increase of the output power, and accordingly, the mechanical loss due to the increase of the vibration speed increases. At the load resistance of 100 to 500 에서, the temperature rise was almost the same up to 6 W, and when the load resistance of 100 Ω and 500 연결 was connected, the temperature increased rapidly above 8 W. However, when the load resistance of 250 Ω was connected, the temperature increased up to 10 W. . When the allowable calorific value of the piezoelectric transformer is within the range of 20 ° C, it is judged that stable driving up to 10W is possible at a load resistance of 250 kPa.

이상에서 설명한 바와 같이, 본 발명에 의한 압전 세라믹스 조성물은 기계적품질계수가 높은 PMN-PZT 세라믹스에 전기기계 결합계수를 높이기 위하여 PZN을 치환하고 이에 Li2CO3, Bi2O3, CuO 등의 소결조제를 첨가함으로써 소결온도가 낮으면서도 우수한 압전특성을 가져 적층형 압전변압기로의 적용에 아주 적합하다.As described above, the piezoelectric ceramic composition according to the present invention substitutes PZN to PMN-PZT ceramics having a high mechanical quality coefficient to increase the electromechanical coupling coefficient, and sinters Li 2 CO 3 , Bi 2 O 3 , CuO, and the like. The addition of the additives has a low piezoelectric property while having a low sintering temperature, which makes it well suited for application to multilayer piezoelectric transformers.

아울러 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이며, 해당 분야에서 통상의 지식을 가진 자라면 누구나 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이고, 이러한 수정, 변경, 부가 등은 특허청구범위에 속하는 것으로 보아야 한다.In addition, the preferred embodiment of the present invention is disclosed for the purpose of illustration, anyone of ordinary skill in the art will be possible to various modifications, changes, additions, etc. within the spirit and scope of the present invention, such modifications, changes, Additions and the like should be considered to be within the scope of the claims.

Claims (5)

하기 조성식을 갖는 압전 세라믹스 조성물;Piezoelectric ceramic compositions having the following formula; Pb[(Mn1/3Nb2/3)0.07(Zn1/3Nb2/3)a(Zr0.48Ti0.52)1-0.07-aO3]+xwt%Li2CO3+ywt%Bi2O3+zwt%CuO (이때, 0.02≤a≤0.16, 0<x≤3, 0<y≤3, 0<z≤3).Pb [(Mn 1/3 Nb 2/3 ) 0.07 (Zn 1/3 Nb 2/3 ) a (Zr 0.48 Ti 0.52 ) 1-0.07-a O 3 ] + xwt% Li 2 CO 3 + ywt% Bi 2 O 3 + Zwt% CuO (in this case, 0.02≤a≤0.16, 0 <x≤3, 0 <y≤3, 0 <z≤3). 삭제delete 삭제delete 제1항의 압전 세라믹스 조성물로 제조되는 적층 압전변압기.A multilayer piezoelectric transformer made of the piezoelectric ceramic composition of claim 1. 제4항에 있어서,The method of claim 4, wherein 상기 적층 압전변압기는 Ag와 Pd가 함유되는 조성의 내부전극을 포함하며, 상기 Ag와 Pd의 비율이 0<Ag/Pd≤9로 되는 것을 특징으로 하는 적층 압전변압기.The multilayer piezoelectric transformer includes an internal electrode having a composition containing Ag and Pd, wherein the ratio of Ag and Pd is 0 <Ag / Pd≤9.
KR1020060028869A 2006-03-30 2006-03-30 Piezoelectric ceramics KR100742239B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060028869A KR100742239B1 (en) 2006-03-30 2006-03-30 Piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060028869A KR100742239B1 (en) 2006-03-30 2006-03-30 Piezoelectric ceramics

Publications (1)

Publication Number Publication Date
KR100742239B1 true KR100742239B1 (en) 2007-07-24

Family

ID=38499435

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060028869A KR100742239B1 (en) 2006-03-30 2006-03-30 Piezoelectric ceramics

Country Status (1)

Country Link
KR (1) KR100742239B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077961B1 (en) * 2009-09-07 2011-10-31 한국과학기술연구원 High power piezoelectric ceramic compositions for low temperature co-firing
KR20170081979A (en) * 2016-01-05 2017-07-13 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN111960818A (en) * 2020-07-23 2020-11-20 广东工业大学 Low-temperature sintered ceramic material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062790A (en) 1971-02-08 1977-12-13 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic compositions
JPS52154100A (en) 1976-06-16 1977-12-21 Matsushita Electric Ind Co Ltd Piezo-electric ceramic composite
JPH029761A (en) * 1988-06-28 1990-01-12 Kawasaki Steel Corp Piezoelectric porcelain composition
JPH03164470A (en) * 1989-11-22 1991-07-16 Matsushita Electric Ind Co Ltd Piezoelectric ceramics and production thereof
KR19990019770A (en) 1997-08-29 1999-03-15 조희재 Piezoelectric ceramic composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062790A (en) 1971-02-08 1977-12-13 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic compositions
JPS52154100A (en) 1976-06-16 1977-12-21 Matsushita Electric Ind Co Ltd Piezo-electric ceramic composite
JPH029761A (en) * 1988-06-28 1990-01-12 Kawasaki Steel Corp Piezoelectric porcelain composition
JPH03164470A (en) * 1989-11-22 1991-07-16 Matsushita Electric Ind Co Ltd Piezoelectric ceramics and production thereof
KR19990019770A (en) 1997-08-29 1999-03-15 조희재 Piezoelectric ceramic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077961B1 (en) * 2009-09-07 2011-10-31 한국과학기술연구원 High power piezoelectric ceramic compositions for low temperature co-firing
KR20170081979A (en) * 2016-01-05 2017-07-13 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR102551214B1 (en) * 2016-01-05 2023-07-03 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN111960818A (en) * 2020-07-23 2020-11-20 广东工业大学 Low-temperature sintered ceramic material and preparation method thereof

Similar Documents

Publication Publication Date Title
US9105845B2 (en) Piezoelectric ceramic comprising an oxide and piezoelectric device
KR20030094066A (en) Method for manufacturing piezoelectric ceramic and piezoelectric element
Guo et al. High‐performance small‐amount Fe2O3‐doped (K, Na) NbO3‐based lead‐free piezoceramics with irregular phase evolution
JPWO2010128647A1 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
KR20060105788A (en) Piezoelectric porcelain and method for production thereof
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
KR20050008737A (en) Piezoelectric porcelain composition, laminated piezoelectric device therefrom and process for producing the same
KR100742239B1 (en) Piezoelectric ceramics
Hou et al. Effects of CuO addition on the structure and electrical properties of low temperature sintered Pb ((Zn1/3Nb2/3) 0.20 (Zr0. 50Ti0. 50) 0.80) O3 ceramics
AU2009297025B2 (en) NBT based lead-free piezoelectric materials for high power applications
KR20130086093A (en) Lead-free piezoelectric ceramics composition
Priya et al. Low Temperature Coefficient of Resonance Frequency Composition in the System Pb (Zr, Ti) O3—Pb (Mn1/3 Nb2/3) O3
KR20150042075A (en) Piezoelectric materials for low sintering
KR101099980B1 (en) Lead-free piezoelectric ceramic composition
KR100765176B1 (en) Piezoelectric ceramics and the manufacturing method thereof
JP4396136B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP5158516B2 (en) Piezoelectric ceramic composition and piezoelectric element
KR20080004903A (en) Piezoelectric ceramics, method of manufacturing the same and piezoelectric device
KR102341837B1 (en) Method for menufacturing piezoelectric ceramic, and piezoelectric ceramic manufactured thereby
KR20190116690A (en) Lead-free piezoelectric ceramic composition, and preparation method thereof
Lu et al. Low-temperature sintering of PNW–PMN–PZT piezoelectric ceramics
KR101792084B1 (en) Pmw-pnn-pzt piezoelectric ceramics, manufacturing method thereof and ultrasonic transmitting/receiving sensor using the same
KR20070000124A (en) Low temperature sintering pmw-pnn-pzt ceramics and manufacturing method thereof
Su et al. MICROSTRUCTURE, ELECTRICAL PROPERTIES AND PROCESSING DEPENDENCE OF CuO MODIFIED(Na 0. 52 K 0. 48) NbO 3 CERAMICS
KR20050104670A (en) Piezoelectric ceramics and the manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee