KR100741381B1 - Organic-inorganic complex nano-hydrogel and preparing process thereof - Google Patents

Organic-inorganic complex nano-hydrogel and preparing process thereof Download PDF

Info

Publication number
KR100741381B1
KR100741381B1 KR1020050095584A KR20050095584A KR100741381B1 KR 100741381 B1 KR100741381 B1 KR 100741381B1 KR 1020050095584 A KR1020050095584 A KR 1020050095584A KR 20050095584 A KR20050095584 A KR 20050095584A KR 100741381 B1 KR100741381 B1 KR 100741381B1
Authority
KR
South Korea
Prior art keywords
organic
silicate
weight
water
parts
Prior art date
Application number
KR1020050095584A
Other languages
Korean (ko)
Other versions
KR20070040173A (en
Inventor
이현석
김기홍
김한도
Original Assignee
주식회사 지케이엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지케이엘 filed Critical 주식회사 지케이엘
Priority to KR1020050095584A priority Critical patent/KR100741381B1/en
Publication of KR20070040173A publication Critical patent/KR20070040173A/en
Application granted granted Critical
Publication of KR100741381B1 publication Critical patent/KR100741381B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명은 유무기 복합 나노 하이드로겔 및 그 제조방법에 관한 것이며, 더욱 상세하게는 난연처리제로서 유용한 내수성이 향상된 규산염계 유무기 복합 나노 하이드로겔과 그 제조방법에 관한 것이다. The present invention relates to an organic-inorganic hybrid nanohydrogel and a method for producing the same, and more particularly, to a silicate-based organic / inorganic hybrid nanohydrogel having improved water resistance, which is useful as a flame retardant, and a method for producing the same.

본 발명에 따른 유무기 복합 나노 하이드로겔은 이온결합을 형성할 수 있는 고분자의 다공성 나노입자의 표면에 규산염계 무기 수용액이 이온결합형태로 결합되어 스킨-코어 구조를 형성한 것을 특징으로 하며, 유기용제에 녹인 고분자 용액을 수용성 고분자 계면활성제를 이용하여 유화시키고, 이렇게 얻어진 에멀젼의 미셀로부터 유기용제를 급속히 제거하여 다공질의 구조를 갖도록 하는 방법으로 표면적을 비약적으로 증가시킨 다음, 수용성 무기물을 첨가함으로써 열역학적 평형을 조절하여 미셀 내지 입자의 크기를 나노미터 수준으로 최소화시키는 것과 동시에 미셀 내지 입자 표면에서의 유무기 이온결합성 가교결합을 유도하는 방법에 의해 제조된다.The organic-inorganic hybrid nanohydrogel according to the present invention is characterized in that a silicate-based inorganic aqueous solution is bonded to the surface of a porous nanoparticle of a polymer capable of forming an ionic bond in an ion-bonded form to form a skin-core structure, The surface area is dramatically increased by emulsifying the polymer solution dissolved in the solvent with a water-soluble polymer surfactant, rapidly removing the organic solvent from the micelles of the emulsion thus obtained to have a porous structure, and then adding a water- And adjusting the equilibrium so as to minimize the size of the micelle to the nanometer level, while at the same time inducing an organic or ionic bond cross-linking at the surface of the micelle or particle.

유무기, 복합, 규산염, 나노, 하이드로겔, 내수성, 가교결합 Organic, complex, silicate, nano, hydrogel, water resistant, cross-linked

Description

유무기 복합 나노 하이드로겔 및 그 제조방법{ORGANIC-INORGANIC COMPLEX NANO-HYDROGEL AND PREPARING PROCESS THEREOF}TECHNICAL FIELD [0001] The present invention relates to an organic-inorganic hybrid nano-hydrogel and an organic-inorganic hybrid nano-hydrogel,

도 1은 본 발명의 실시예 1에서 제조된 유무기 복합 나노 하이드로겔의 주사전자현미경사진.1 is a scanning electron microscope (SEM) image of the organic / inorganic hybrid nanohydrogel prepared in Example 1 of the present invention.

본 발명은 유무기 복합 나노 하이드로겔 및 그 제조방법에 관한 것이며, 더욱 상세하게는 난연처리제로서 유용한 내수성이 향상된 규산염계 유무기 복합 나노 하이드로겔과 그 제조방법에 관한 것이다. The present invention relates to an organic-inorganic hybrid nanohydrogel and a method for producing the same, and more particularly, to a silicate-based organic / inorganic hybrid nanohydrogel having improved water resistance, which is useful as a flame retardant, and a method for producing the same.

규산염계 수용성 무기물은 소재의 표면에 난연성 막을 형성하여 내부의 기질의 내열성, 방염성 및 난연성을 향상시키는 특성이 있어서 섬유 및 부직포 제품의 난연처리에 널리 이용되고 있다. 그러나 규산염계 수용성 무기물은 물에 약하다는 치명적인 단점을 가지므로, 섬유 및 부직포 등의 기질에 이용되는 경우, 대기중의 수분 흡수 및 재건조에 따른 백탁화와 분진발생의 문제점을 야기한다. 따라서 규산염계 무기물의 내수성을 향상시키기 위한 연구가 활발히 진행되고 있으나 아직까지 보편적으로 받아들여지는 성과는 미미하다.The silicate-based water-soluble inorganic material has a property of improving the heat resistance, flame resistance, and flame retardancy of the inner substrate by forming a flame retardant film on the surface of the material, and is widely used for the flame retarding treatment of fiber and nonwoven products. However, since the silicate-based water-soluble inorganic material has a fatal disadvantage that it is weak in water, when it is used in a substrate such as fiber and nonwoven fabric, it causes cloudiness and dust generation due to moisture absorption and reconstruction in the air. Therefore, studies for improving the water resistance of silicate-based minerals have been actively carried out, but the results are not yet widely accepted.

대한민국 특허공고 제0509705호 공보에는 규산염계 무기물의 내수성을 향상시킬 수 있는 방법으로 고급 알코올계 유기물 및 고분자를 이용하여 규산염과의 이온성 착체를 형성하는 방법이 보고되어 있으나, 이는 괴상의 결과물을 얻을 수 있는 방법으로서 아직 나노 사이즈까지의 구조제어를 실현한 성과는 보고되고 있지 않은 실정이다.Korean Patent Publication No. 0509705 discloses a method of forming an ionic complex with a silicate using a high-alcohol-based organic material and a polymer as a method for improving the water resistance of a silicate-based inorganic material, As a possible method, the achievement of structure control up to nano size has not been reported yet.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위해 이루어진 것으로서, 섬유 내지 고분자 수지 등에 사용할 수 있는 난연성 조제의 가공성 및 내수성을 향상시키기 위하여 평균입자 사이즈가 수십 나노미터 단위를 갖고 물에 용해되지 않는 유무기 복합 나노 하이드로겔 및 그 제조방법을 제공하는 것을 목적으로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in order to solve the problems of the prior art as described above, and it is an object of the present invention to provide a flame retardant additive having an average particle size of several tens of nanometers and not dissolving in water Organic-inorganic hybrid nanohydrogels and a process for producing the same.

상기 목적을 달성하기 위한 본 발명에 따른 유무기 복합 나노 하이드로겔은,In order to accomplish the above object, the present invention provides an organic / inorganic hybrid nanohydrogel,

이온결합을 형성할 수 있는 고분자의 다공성 나노입자의 표면에 규산염계 무기 수용액이 이온결합형태로 결합되어 스킨-코어 구조를 형성한 유무기 복합체를 포함한 것을 특징으로 한다.And a porous organic nanoparticle of a polymer capable of forming an ionic bond is formed on the surface of the porous nanoparticle by forming a skin-core structure by bonding a silicate-based inorganic aqueous solution in an ionic bond form.

그리고, 상기와 같은 본 발명에 따른 유무기 복합 나노 하이드로겔을 제조하는 방법은,The method for producing the organic / inorganic hybrid nanohydrogel according to the present invention as described above,

이온성 말단기를 형성할 수 있는 지용성 고분자를 유기용제에 용해시키는 단계와;Dissolving a fat-soluble polymer capable of forming an ionic terminal group in an organic solvent;

수용성 계면활성제를 포함한 수용액과 상기 지용성 고분자의 용액을 혼합하는 단계와;Mixing a solution of the oil-soluble polymer with an aqueous solution containing a water-soluble surfactant;

상기 혼합용액을 교반하여 미셀을 형성시키는 단계와;Stirring the mixed solution to form micelles;

상기 미셀이 형성된 혼합액에 물을 더 첨가하고 교반하여 미셀로부터 유기용제를 급속하게 용출시킴으로써 다공성 나노입자를 제조하는 단계와;Adding water to the mixed solution in which the micelles are formed, and stirring the mixed solution to rapidly elute the organic solvent from the micelles, thereby preparing porous nanoparticles;

상기 다공성 나노입자 혼합액에 규산염계 무기물의 수용액을 첨가하여 나노 입자 표면에서의 이온결합을 유도하는 단계를 포함하여 이루어지는 것을 특징으로 한다.And adding an aqueous solution of a silicate-based inorganic material to the porous nanoparticle mixture to induce ionic bonding on the surface of the nanoparticles.

이상 설명한 본 발명에 따른 유무기 복합 나노 하이드로겔 제조 과정에 있어서, 상기 이온결합을 형성할 수 있는 고분자 내지 이온성 말단기를 형성할 수 있는 지용성 고분자는, 예컨대 폴리아크릴로니트릴 및 그 공중합체, 폴리에틸렌글리콜 및 그 공중합체, 폴리프로필렌글리콜, 폴리락틱산 및 그 공중합체, 폴리비닐아세테이트 및 그 공중합체, 개질 셀룰로오스 및 그 유도체 등 산성 또는 알칼리성 조건에서 말단기가 해리하여 이온성 말단기를 형성할 수 있는 고분자 등을 말하는 것으로서 반드시 이들에 한정되는 것은 아니며, 다른 방법에 의해 이온성 말단기를 형성할 수 있는 형태도 포함된다. In the process for producing an organic / inorganic hybrid nanohydrogel according to the present invention, the polymer capable of forming an ionic bond or the lipophilic polymer capable of forming an ionic terminal group may be, for example, polyacrylonitrile and a copolymer thereof, Terminal groups may dissociate under acidic or alkaline conditions such as polyethylene glycol and its copolymers, polypropylene glycol, polylactic acid and its copolymers, polyvinyl acetate and its copolymers, modified cellulose and its derivatives, And the like, and is not necessarily limited to these, and includes forms in which ionic terminal groups can be formed by other methods.

그리고 이때 사용되는 상기 고분자의 평균분자량은 100~1,0000,000 사이 범위의 것을 사용하며, 바람직하게는 약 700~200,000의 범위 내인 것을 선택한다. 상기 범위는 실험결과로 얻은 경험치이지만, 상기 범위에서 다소 벗어나도 본 발명의 실시가 불가능한 것은 아니다.The average molecular weight of the polymer used herein is in the range of 100-1,000,000, preferably in the range of about 700-200,000. The above range is an experiential value obtained as a result of the experiment, but the present invention can not be practiced even if it deviates slightly from the above range.

본 발명의 방법에 따르면, 상기 이온성 말단기를 형성하는 지용성 고분자를 용매가 되는 용제에 용해시킨 다음, 이 용액을 수용성 계면활성제를 포함한 수용액과 혼합하고 교반하여 미셀을 형성시킨다.According to the method of the present invention, the oil-soluble polymer forming the ionic terminal group is dissolved in a solvent which is a solvent, and the solution is mixed with an aqueous solution containing a water-soluble surfactant and stirred to form micelles.

그리고 여기에 다시 물을 첨가하고 교반하여 미셀로부터 유기용제를 급속하게 제거하여 고분자가 다공성 나노 입자를 형성하도록 한다. 이때 물의 온도는 40~90℃ 정도의 온수를 사용하는 것이 바람직한데, 온도가 높을수록 유기용제의 용출이 신속하게 이루어져 미세공의 형성이 많아 표면적이 넓어지고 반응속도도 빨라진다. 다만, 온도가 지나치게 높을 경우 증발이 일어나 바람직하지 않으며, 온도가 낮으면 미세공의 형성이 적고 반응속도도 느리다.Then, water is added thereto again and stirred to rapidly remove the organic solvent from the micelles, so that the polymer forms porous nanoparticles. In this case, it is preferable to use hot water having a temperature of about 40 to 90 ° C. The higher the temperature, the faster the elution of the organic solvent, the more the micropores are formed, the larger the surface area and the faster the reaction rate. However, when the temperature is too high, evaporation occurs, which is undesirable. When the temperature is low, the formation of micropores is small and the reaction rate is slow.

한편, 이와 같이 다공성 나노 입자를 형성한 고분자를 포함한 혼합액에 규산염계 무기수용액을 첨가하여 고분자의 다공성 나노입자의 표면에서 규산염 물질과의 이온결합이 이루어지도록 함으로써 최종적으로 스킨-코어구조의 유무기 복합 나노하이드로겔이 형성된다.On the other hand, by adding a silicate-based inorganic aqueous solution to the mixed solution containing the polymer in which the porous nanoparticles are formed, the ionic bonding with the silicate material is performed on the surface of the porous nanoparticles of the polymer, A nanohydrogel is formed.

상기 규산염계 무기물의 수용액은 규산나트륨, 규산칼륨, 규산소다칼륨과 같은 한 종류 이상의 규산염 물질이 물에 0.5중량% 내지 80중량%의 함량비로 용해되어 있는 것을 사용한다.The aqueous solution of the silicate-based inorganic material is one in which one or more silicate materials such as sodium silicate, potassium silicate and sodium silicate potassium are dissolved in water at a content ratio of 0.5% by weight to 80% by weight.

이 과정에서는, 예컨대 규산염계 무기수용액 환경에서 개질된 고분자가 물과 결합하는 경향과 규산염이 물과 결합하는 경향보다 이들 개질된 고분자와 규산염 상호간의 결합 성향이 우세한 특성을 갖도록 용액의 산도를 조절함에 의해 평균직경이 수십 나노미터 내지 수백 나노미터 수준의 내수성 나노 하이드로겔을 얻을 수 있다.In this process, the acidity of the solution is adjusted so that, for example, the polymer modified in the silicate-based inorganic aqueous solution has a tendency of binding to water and a tendency of bonding between the modified polymer and silicate rather than a tendency of the silicate to bond with water A water-resistant nanohydrogel having an average diameter of several tens nanometers to several hundreds of nanometers can be obtained.

이렇게 제조된 유무기 복합 나노 하이드로겔은 난연처리제 등 최종적인 제품의 목적에 따라 다양하게 응용될 수 있다. 그리고 이 과정에서, 발포제, 핵제, 윤활제, 산화방지제, 열안정제, 자외선 안정제, 생물안정제, 충진제, 보강제, 가소제, 착색제, 내충격제, 난연제, 대전방지제, 가교제, 형광증백제, 열전도성 부여제, 전기전도성 부여제, 투과성 조절제, 자성 부여제, 계면활성제, 안정제, 부형제, 의약제, 용매, 경화제, 흡습제, 강화제, 향료, 항균제와 같은 다른 가공제를 첨가하여 사용할 수 있다. The organic / inorganic hybrid nanohydrogels thus prepared can be applied variously according to the purpose of the final product such as a flame retarding agent. In this process, it is also possible to use, in the course of the process, a foaming agent, a nucleating agent, a lubricant, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, a biostabilizer, a filler, a reinforcing agent, a plasticizer, a colorant, an impactor, a flame retardant, an antistatic agent, Other processing agents such as an electric conductivity imparting agent, a permeability adjusting agent, a magnetic property imparting agent, a surfactant, a stabilizer, an excipient, a medicine, a solvent, a hardener, a moisture absorber, a reinforcing agent, a perfume and an antibacterial agent may be added.

실시예Example

이하, 바람직한 실시예를 참조하여 본 발명을 더욱 상세하게 설명한다. 이하의 실시예들은 본 발명을 설명하기 위한 것으로, 이들 실시예에 의해 본 발명의 범위가 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. The following examples are intended to illustrate the present invention, and the scope of the present invention is not limited by these examples.

실시예Example 1 One

폴리비닐아세테이트 2중량부를 유기용제인 에틸아세테이트 100중량부에 녹여 균일한 용액을 형성한 다음, 계면활성제인 폴리비닐알코올 2중량부를 물 100중량부에 녹인 수용액과 혼합하였다.2 parts by weight of polyvinyl acetate was dissolved in 100 parts by weight of ethyl acetate as an organic solvent to form a homogeneous solution. Then, 2 parts by weight of polyvinyl alcohol as a surfactant was mixed with an aqueous solution of 100 parts by weight of water.

상기 혼합액을 균질화기를 이용하여 10분간 혼합함으로써 폴리비닐아세테이트 미셀을 형성하였다.The mixed solution was mixed with a homogenizer for 10 minutes to form polyvinyl acetate micelles.

상기 혼합용액에 80℃의 온수를 첨가하여 나노입자의 다공성 및 표면적을 증가시킨 후, 상기 혼합용액에 희석된 아세트산을 적가하여 용액의 산도를 pH 3~4로 맞춘 다음, 염기성 규산염계 수용액을 당량 첨가하고 30분간 서서히 교반하였다.After adding the hot water at 80 ° C to the mixed solution to increase the porosity and surface area of the nanoparticles, the diluted acetic acid was added dropwise to the mixed solution to adjust the acidity of the solution to 3 to 4, and then the basic silicate- And the mixture was gradually stirred for 30 minutes.

반응이 종료된 용액은 폴리비닐아세테이트 혹은 비누화된 폴리비닐알코올과 규산염으로 구성된 스킨-코어 구조의 유무기 복합 나노 하이드로겔이 분산된 상태이므로, 원심분리 후 진공 상에서 1일간 건조하여 고화된 입자를 제조하였다.Since the reaction-terminated solution is a state in which the organic-inorganic hybrid nanohydrogels of skin-core structure composed of polyvinyl acetate or saponified polyvinyl alcohol and silicate are dispersed, it is centrifuged and dried in vacuum for 1 day to produce solidified particles Respectively.

건조된 입자는 수중에서 초음파 균질화기를 이용하여 균일하게 분사시킨 다음 입도 분석기를 이용하여 평균입자크기를 측정하였으며, 그 결과 193㎚의 값을 얻었다. The dried particles were uniformly sprayed in water using an ultrasonic homogenizer, and the average particle size was measured using a particle size analyzer. As a result, a value of 193 nm was obtained.

도 1은 이렇게 하여 얻은 고화된 유무기 복합 나노 하이드로겔의 주사전자현미경사진을 나타낸 것이다.FIG. 1 is a scanning electron microscope (SEM) image of the solidified organic / inorganic hybrid nanohydrogel thus obtained.

그리고, 이렇게 하여 얻어진 유무기 복합 나노 하이드로겔의 내수성을 평가하기 위하여 고화된 나노 하이드로겔을 60℃의 온수에서 서서히 교반하면서 4시간 방치한 다음, 중량회복율을 측정하여 99% 이상의 값을 얻었다.In order to evaluate the water resistance of the obtained organic / inorganic hybrid nanohydrogel, the solidified nanohydrogel was allowed to stand for 4 hours with gentle stirring at 60 ° C in hot water, and the weight recovery rate was measured to be 99% or more.

실시예Example 2~24 2 to 24

하기 표 1에 보인 바와 같은 조건을 사용하여 실시예 1에서와 마찬가지로 본 발명의 방법에 따라 유무기 복합 나노하이드로겔을 제조하였다.Using the conditions shown in Table 1 below, the organic / inorganic hybrid nanohydrogels were prepared in the same manner as in Example 1, according to the method of the present invention.

구분division 고분자Polymer 유기용매 (유기용매100중량부당 고분자량)Organic solvent (high molecular weight per 100 weight parts of organic solvent) 계면활성제 (물 100중량부당 계면활성제량)Surfactant (amount of surfactant per 100 parts by weight of water) 규산염 수용액 첨가량 (중량부)Amount of silicate aqueous solution added (parts by weight) 평균 입자크기Average particle size 중량 회복률 (%)Weight recovery rate (%) 실시예 2Example 2 PANPAN 디메틸술폭시드 (2중량부)Dimethyl sulfoxide (2 parts by weight) PVA (1중량부)PVA (1 part by weight) 100100 310310 9797 실시예 3Example 3 PANPAN 디메틸술폭시드 (2중량부)Dimethyl sulfoxide (2 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 213213 8484 실시예 4Example 4 PANPAN 디메틸술폭시드 (2중량부)Dimethyl sulfoxide (2 parts by weight) PVA (5중량부)PVA (5 parts by weight) 100100 196196 7979 실시예 5Example 5 PANPAN 디메틸술폭시드 (2중량부)Dimethyl sulfoxide (2 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 211211 8888 실시예 6Example 6 PANPAN 디메틸술폭시드 (5중량부)Dimethyl sulfoxide (5 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 478478 >99> 99 실시예 7Example 7 PANPAN 디메틸술폭시드 (5중량부)Dimethyl sulfoxide (5 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 452452 >99> 99 실시예 8Example 8 PANPAN 디메틸술폭시드 (1중량부)Dimethyl sulfoxide (1 part by weight) PVA (2중량부)PVA (2 parts by weight) 100100 148148 6969 실시예 9Example 9 PEGPEG 에틸아세테이트 (2중량부)Ethyl acetate (2 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 225225 6565 실시예 10Example 10 PEGPEG 에틸아세테이트 (2중량부)Ethyl acetate (2 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 210210 6262 실시예 11Example 11 PEGPEG 에틸아세테이트 (5중량부)Ethyl acetate (5 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 578578 7171 실시예 12Example 12 PEGPEG 에틸아세테이트 (5중량부)Ethyl acetate (5 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 496496 7575 실시예 13Example 13 PEGPEG 에틸아세테이트 (1중량부)Ethyl acetate (1 part by weight) PVA (2중량부)PVA (2 parts by weight) 100100 170170 5858 실시예 14Example 14 PVAcPVAc 에틸아세테이트 (2중량부)Ethyl acetate (2 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 8686 9292 실시예 15Example 15 PVAcPVAc 에틸아세테이트 (5중량부)Ethyl acetate (5 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 409409 >99> 99 실시예 16Example 16 PVAcPVAc 에틸아세테이트 (5중량부)Ethyl acetate (5 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 135135 9595 실시예 17Example 17 PVAcPVAc 에틸아세테이트 (1중량부)Ethyl acetate (1 part by weight) PVA (2중량부)PVA (2 parts by weight) 100100 122122 9191 실시예 18Example 18 PVAcPVAc 프로필렌카보네이트(2중량부)Propylene carbonate (2 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 341341 8787 실시예 19Example 19 PVAcPVAc 프로필렌카보네이트(1중량부)Propylene carbonate (1 part by weight) PVA (2중량부)PVA (2 parts by weight) 100100 302302 9090 실시예 20Example 20 PLGAPLGA 에틸아세테이트 (2중량부)Ethyl acetate (2 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 8989 9494 실시예 21Example 21 PLGAPLGA 에틸아세테이트 (2중량부)Ethyl acetate (2 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 8080 9191 실시예 22Example 22 PLGAPLGA 에틸아세테이트 (5중량부)Ethyl acetate (5 parts by weight) PVA (2중량부)PVA (2 parts by weight) 100100 105105 >99> 99 실시예 23Example 23 PLGAPLGA 에틸아세테이트 (5중량부)Ethyl acetate (5 parts by weight) DMAB (2중량부)DMAB (2 parts by weight) 100100 100100 9898 실시예 24Example 24 PLGAPLGA 에틸아세테이트 (1중량부)Ethyl acetate (1 part by weight) PVA (2중량부)PVA (2 parts by weight) 100100 4545 8888

본 발명의 방법에 따르면 입자 직경이 수십 내지 수백 나노미터 수준이면서 물에 용해되지 않는 유무기 복합 나노 하이드로겔이 얻어지기 때문에, 특히 나노 수준의 입자 크기를 필요로 하는 섬유 및 수지류의 기능성 조제, 특히 난연처리제의 제조에 유용하게 이용될 수 있다.According to the method of the present invention, an organic-inorganic hybrid nanohydrogel having a particle diameter of several tens to several hundreds of nanometers and not dissolving in water is obtained. Therefore, a functional preparation of fibers and resins requiring nano- And can be particularly useful for the production of a flame retardation treatment agent.

Claims (5)

이온결합을 형성할 수 있는 고분자의 다공성 나노입자의 표면에 규산염계 무기 수용액이 이온결합형태로 결합되어 스킨-코어 구조를 형성한 유무기 복합체를 포함한 것을 특징으로 하는 유무기 복합 나노 하이드로겔.Wherein the porous organic nanoparticle comprises an organic-inorganic hybrid material having a skin-core structure formed by binding an aqueous solution of a silicate-based inorganic material in ionic form to the surface of porous nanoparticles of a polymer capable of forming an ionic bond. 이온성 말단기를 형성할 수 있는 지용성 고분자를 유기용제에 용해시키는 단계와;Dissolving a fat-soluble polymer capable of forming an ionic terminal group in an organic solvent; 수용성 계면활성제를 포함한 수용액과 상기 지용성 고분자의 용액을 혼합하는 단계와;Mixing a solution of the oil-soluble polymer with an aqueous solution containing a water-soluble surfactant; 상기 혼합용액을 교반하여 미셀을 형성시키는 단계와;Stirring the mixed solution to form micelles; 상기 미셀이 형성된 혼합액에 물을 더 첨가하고 교반하여 미셀로부터 유기용제를 급속하게 용출시킴으로써 다공성 나노입자를 제조하는 단계와;Adding water to the mixed solution in which the micelles are formed, and stirring the mixed solution to rapidly elute the organic solvent from the micelles, thereby preparing porous nanoparticles; 상기 다공성 나노입자 혼합액에 규산염계 무기물의 수용액을 첨가하여 나노 입자 표면에서의 이온결합을 유도하는 단계를 포함하여 이루어지는 것을 특징으로 하는 유무기 복합 나노 하이드로겔의 제조방법.And adding an aqueous solution of a silicate-based inorganic material to the porous nanoparticle mixture to induce ionic bonding on the surface of the nanoparticles. 제 2항에 있어서, 상기 다공성 나노입자를 제조하는 단계에서 40~90℃ 범위의 온수를 사용하는 것을 특징으로 하는 유무기 복합 나노 하이드로겔의 제조방법.The method according to claim 2, wherein hot water in the range of 40 to 90 ° C is used in the step of preparing the porous nanoparticles. 제 2항에 있어서, 상기 이온성 말단기를 형성할 수 있는 고분자는 폴리아크릴로니트릴 및 그 공중합체, 폴리에틸렌글리콜 및 그 공중합체, 폴리프로필렌글리콜, 폴리락틱산 및 그 공중합체, 폴리비닐아세테이트 및 그 공중합체, 개질 셀룰로오스 및 그 유도체로 이루어진 군 중에서 선택되는 것임을 특징으로 하는 유무기 복합 나노 하이드로겔 제조방법. The polymer according to claim 2, wherein the polymer capable of forming the ionic terminal group is selected from the group consisting of polyacrylonitrile and a copolymer thereof, polyethylene glycol and a copolymer thereof, polypropylene glycol, polylactic acid and a copolymer thereof, polyvinyl acetate and Wherein the polymer is selected from the group consisting of a copolymer, a modified cellulose, and a derivative thereof. 제 2항에 있어서, 상기 규산염계 무기물의 수용액은 규산나트륨, 규산칼륨 및 규산소다칼륨으로 이루어진 군으로부터 선택되는 한 종류 이상의 규산염물질이 물에 0.5중량% 내지 80중량%의 함량비로 용해되어 있는 것을 특징으로 하는 유무기 복합 나노 하이드로겔의 제조방법.The aqueous solution of the silicate-based inorganic material according to claim 2, wherein at least one silicate material selected from the group consisting of sodium silicate, potassium silicate and sodium silicate potassium is dissolved in water at a content ratio of 0.5% by weight to 80% by weight Wherein the method comprises the steps of:
KR1020050095584A 2005-10-11 2005-10-11 Organic-inorganic complex nano-hydrogel and preparing process thereof KR100741381B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050095584A KR100741381B1 (en) 2005-10-11 2005-10-11 Organic-inorganic complex nano-hydrogel and preparing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050095584A KR100741381B1 (en) 2005-10-11 2005-10-11 Organic-inorganic complex nano-hydrogel and preparing process thereof

Publications (2)

Publication Number Publication Date
KR20070040173A KR20070040173A (en) 2007-04-16
KR100741381B1 true KR100741381B1 (en) 2007-07-20

Family

ID=38176006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050095584A KR100741381B1 (en) 2005-10-11 2005-10-11 Organic-inorganic complex nano-hydrogel and preparing process thereof

Country Status (1)

Country Link
KR (1) KR100741381B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045822A1 (en) 2004-09-01 2006-03-02 Board Of Regents, The University Of Texas System Plasma polymerization for encapsulating particles
US8088451B2 (en) 2008-03-13 2012-01-03 Board Of Regents, The University Of Texas System Covalently functionalized particles for synthesis of new composite materials
EP3705533A4 (en) * 2017-11-06 2020-11-04 National University Corporation Gunma University Self-supporting hydrogel and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010012217A (en) * 1997-05-14 2001-02-15 슈미트 헬무트 Nano composite for thermal insulation
US20030114568A1 (en) 2000-07-07 2003-06-19 Shizuko Sato Ultrafine metal particle/polymer hybrid material
JP2004091328A (en) 2002-08-29 2004-03-25 Kyoritsu Kagaku Sangyo Kk Inorganic nanoparticle-organic compound composite and unidimensionally arranged integrated structure thereof
JP2004263066A (en) 2003-02-28 2004-09-24 National Institute Of Advanced Industrial & Technology Laminar organosilica nanocomposite and method for producing the same
KR20050115905A (en) * 2003-03-14 2005-12-08 샌트랄 글래스 컴퍼니 리미티드 Organic-inorganic hybrid vitreous material and method for producing same
KR20060028604A (en) * 2004-09-25 2006-03-30 경북대학교 산학협력단 Process for preparing nano-hydrogel of hydrophilic polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010012217A (en) * 1997-05-14 2001-02-15 슈미트 헬무트 Nano composite for thermal insulation
US20030114568A1 (en) 2000-07-07 2003-06-19 Shizuko Sato Ultrafine metal particle/polymer hybrid material
JP2004091328A (en) 2002-08-29 2004-03-25 Kyoritsu Kagaku Sangyo Kk Inorganic nanoparticle-organic compound composite and unidimensionally arranged integrated structure thereof
JP2004263066A (en) 2003-02-28 2004-09-24 National Institute Of Advanced Industrial & Technology Laminar organosilica nanocomposite and method for producing the same
KR20050115905A (en) * 2003-03-14 2005-12-08 샌트랄 글래스 컴퍼니 리미티드 Organic-inorganic hybrid vitreous material and method for producing same
KR20060028604A (en) * 2004-09-25 2006-03-30 경북대학교 산학협력단 Process for preparing nano-hydrogel of hydrophilic polymer

Also Published As

Publication number Publication date
KR20070040173A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
Zhao et al. Construction of bioinspired organic-inorganic hybrid composite by cellulose-induced interfacial gelation assisted with Pickering emulsion template
EP1505111A1 (en) Polyamide powder containing phosphonate based fire retardant, production process thereof and molded objects therefrom
DE10140597A1 (en) Partially cross-linked polyvinyl alcohol
DE102006005500A1 (en) Use of polymer powder, prepared from a dispersion, in a molding process and molding, made from this polymer powder
JP5466245B2 (en) Method for controlling the dispersibility and barrier properties of dry nanocrystalline cellulose in solutions of various pH and ionic strength
KR100741381B1 (en) Organic-inorganic complex nano-hydrogel and preparing process thereof
US20080139069A1 (en) Spunbond non-woven containing bamboo charcoal and method for fabricating the same
KR101677979B1 (en) Hydrogel composite comprising nanocellulose and fabrication method thereof
RU2436821C2 (en) Methods and devices for continuous production of polymer dispersions
JP2001502012A (en) Composition comprising fine solid particles
EP3121151A1 (en) Needle-shaped strontium carbonate microparticles and dispersion liquid thereof
CN107630257B (en) A kind of method of cellulose electrostatic spinning
Wani et al. Formulation, development and characterization of drug delivery systems based telmisartan encapsulated in silk fibroin nanosphere’s
KR20160075563A (en) Needle-like strontium carbonate fine powder and method for producing same
WO2012168324A1 (en) Biodegradable polyester mixture
Hu et al. Facile fabrication of macroporous Plga microspheres via double‐pickering emulsion templates
CN105646946A (en) Carbon-coated zirconium phosphate composite powder, method for preparing same and application of carbon-coated zirconium phosphate composite powder
KR100919508B1 (en) Alginate particle containing calcium carbonate in matrix and the method for production of the said alginate particle
KR20220048116A (en) Surface-modified polylactic acid particles and preparation method thereof
US20220378713A1 (en) Soy proteins for preparation of gels, fibers and films
CN114031877A (en) Nano-silica modified PVB material and preparation method thereof
KR101367386B1 (en) Photo-responsive interpenetrating beads composed of alginate and polymer-coumarin conjugate and method for preparing the same
KR101344486B1 (en) Fabrication method of polyamide nanofiber non-woven fabric using a radiation technique and crosslinked nanofiber non-woven fabric thereby
JP3799117B2 (en) Biodegradable chitosan-containing composition and method for producing the same
CN109824920A (en) One-step method prepares polyvinyl alcohol copolymer melamine resin nanosphere

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160713

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170711

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee